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LOCAL K-CONVOLUTED C-SEMIGROUPS AND
ABSTRACT CAUCHY PROBLEMS

Chung-Cheng Kuo

Abstract. Let K : [0,7p) — F be a locally integrable function, and C' : X — X
a bounded linear operator on a Banach space X over the field F(=R or C).
In this paper, we will deduce some basic properties of a nondegenerate local
K-convoluted C-semigroup on X and some generation theorems of local K-
convoluted C-semigroups on X with or without the nondegeneracy, which can
be applied to obtain some equivalence relations between the generation of a non-
degenerate local K -convoluted C-semigroup on X with subgenerator A and the
unique existence of solutions of the abstract Cauchy problem:

u'(t) = Au(t) + f(t) forae. t € (0,Tp),

ACP(A4, f,x) {u(o) .

when K isakernel on [0,7p), C': X — X an injection,and A: D(4A) Cc X — X
a closed linear operator in X such that CA Cc AC. Here 0 < Ty < o0, = € X,
and f € Llloc([O»TO)vX)'

1. INTRODUCTION

Let X be a Banach space over the field F(=R or C) with norm | - ||, and let
L(X) denote the family of all bounded linear operators from X into itself. For each
0 < Ty < oo, we consider the following abstract Cauchy problem:

(2.1) ACP(A, f, ) {Zg;: ;‘U<t>+f<t> for a.e. ¢ € (0, Tp),

wherez € X, A: D(A) C X — X isaclosed linear operator, and f € L}, ([0, Tp), X).

loc

A function w is called a (strong) solution of ACP(A4, f,z) if u € C([0,Tp), X) sat-
isfies ACP(A, f,z) (that is, u(0) = x and for a.e. ¢ € (0,Tp), u(t) is differentiable
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and u(t) € D(A), and v'(t)=Au(t)+f(t) for ae. t € (0,7p)). For each C' € L(X)
and K € L}, ([0, Tp),F), a family S(-)(= {S(t)|0 < t < Tp}) in L(X) is called a

local K-convoluted C-semigroup on X if it is strongly continuous, S(-)C = CS(-),
and satisfies

t+s t s
12) s56r=([ = [ = [DK+s-nsca

forall 0 < ¢,s,t +s < Tp and = € X (see [8]). In particular, S(-) is called a
local (O-times integrated) C-semigroup on X if K = j_;(the Dirac measure at 0) or
equivalently, S(-) is strongly continuous, S(-)C' = CS(-), and satisfies

(1.3) S(t)S(s)x=8(t+s)Cx forall 0 <t,s,t+s<Tpandxe X

(see [1, 3-4, 26, 28, 30]). Moreover, we say that S(-) is nondegenerate, if x = 0
whenever S(t)z = 0 for all 0 < ¢ < T,. The nondegeneracy of a local K-convoluted
C-semigroup S(-) on X implies that

(14) S(O0)=Cif K =j_1, and S(0) = 0 (the zero operator on X) otherwise,

and the (integral) generator A : D(A) C X — X of S(-) is a closed linear operator in
X defined by

D(A) = {x € X | there exists a y, € X such that

S(-)x — Ko(-)Cx = S(-)y, on [0,Tp)}

t
and Az =y, for all zeD(A). Here K3(t) =K *js(t) :/ K(t—s)js(s)ds for 3>—1
0
t
with jg(t) = F(ﬂtiil) and the Gamma function T'(-), and S(t)z = / S(s)zds.
In general, a local K-convoluted C-semigroup on X is called a K-con(\)/oluted C-
semigroup on X if Ty = oo (see [8, 17]); a (local) K'-convoluted C-semigroup on X
is called a (local) K'-convoluted semigroup on X if C' = I(the identity operator on X)
or a (local) a-times integrated C-semigroup on X if K = j,_1 for some o > 0 (see
[2, 5, 12-16, 21-25, 29, 31]). Some basic properites of a nondegenerate (local) a-times
integrated C-semigroup on X have been established by many authors (see results in
[2, 3, 26-28] for the case oo = 0, in [19] for the case o € N, in [14] for the case a > 0
is arbitrary with Ty = oo and in [18] for the general case 0 < Ty < oo), which can be
applied to deduce some equivalence relations between the generation of a nondegenerate
(local) a-times integrated C-semigroup on X with subgenerator A (see Definition 2.4
below) and the unique existence of strong or weak solutions of the abstract Cauchy
problem ACP(A, f, x) (see the results in [2-3, 26-27] for the case o = 0, in [19] when
a € N and in [11, 14-15, 18, 29] when « > 0 is arbitrary). The purpose of this paper
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is to investigate the following basic properties of a nondegenerate local K-convoluted
C-semigroup S(-) on X just as results in [18] concerning local a-times integrated
C-semigroups on X when C' is injective and some additional conditions are taken into
consideration.

(1.5) C1AC = 4;

S(t)z € D(A) and AS(t)z = S(t)z — Ko(t)Cx

(1.6)
forall z € X and 0 <t < Tp;

(L.7)  S(t)xr € D(A) and AS(t)x = S(t)Ax forall z € D(A) and 0 <t < Tp;
and
(1.8) S(t)S(s) =S(s)S(t) forall 0 <t,s,t+s<Tp

(see Theorems 2.7 and 2.11, and Corollary 2.12 below). We then deduce some equiv-
alence relations between the generation of a nondegenerate local K-convoluted C-
semigroup on X with subgenerator A and the unique existence of strong solutions of
ACP(A, f,z) in section 3 just as some results in [14, 15] concerning some equivalence
relations between the generation of a nondegenerate local a-times C-semigroup on X
with subgenerator A and the unique existence of strong solutions of ACP(A, f, z).
To do these, we will prove an important lemma which shows that a strongly contin-
uous family S(-) in L(X) is a local K-convoluted C-semigroup on X is equivalent
to say that S(-) is a local K(-convoluted C-semigroup on X (see Lemma 2.1 be-
low), and then show that a strongly continuous family S(-) in L(X) which commutes
with ¢ on X is a local K-convoluted C-semigroup on X is equivalent to say that
S(t)[S(s) — Ko(s)CI=[S(t) — Ko(t)C1S(s) for all 0 < ¢, s,t+ s < T (see Theorem
2.2 below). In order, we show that a « S(-) is a local a * K-convoluted C-semigroup
on X if S(-) is a local K-convoluted C-semigroup on X and a € L},.([0, Tp), F).
In particular, jg* S(-) is a local K z-convoluted C-semigroup on X if S(-) is a local
K-convoluted C;-semigroup on X and 8 > —1 (see Proposition 2.3 below). Here

Stz = / f(t—s)S(s)xds for all z € X and f € L} ([0, Tp),F). We also

loc

show that a str%ngly continuous family in L(X) which commutes with C' on X is a
local K-convoluted C-semigroup on X when S(-) has a subgenerator (see Theorem
2.5 below), which had been proven in [8] by another method similar to that already
employed in [14] in the case that S(-) has a closed subgenerator and C' is injective;
and the generator of a nondegenerate local K-convoluted C-semigroup S(-) on X is
the unique subgenerator of S(-) which contains all subgenerators of S(-) and each sub-
generator of S(-) is closable and its closure is also a subgenerator of S(-) when S(-)
has a subgenerator (see Theorems 2.7 and 2.11, and Corollary 2.12 below). This can
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be applied to show that CA C AC and S(-) is a nondegenerate local K -convoluted

C-semigroup on X with generator C~! AC when C is injective, K, a kernel on [0, Tp)
t

(that is, f = 0 on [0, Ty) whenever f € C([0,Tp),F) with / Kot —s)f(s)ds=0

for all 0 < ¢ < Tp) and S(-) a strongly continuous family in L?X) with closed subgen-
erator A. In this case, C~'AyC is the generator of S(-) for each subgenerator A, of
S(-) (see Theorem 2.13 below). Some illustrative examples concerning these theorems
are also presented in the final part of paper.

2. Basic ProreRTIES OF LocAL K -CONVOLUTED (C-SEMIGROUPS

We will deduce an important lemma which can be applied to obtain an equivalence
relation between the generation of a local K-convoluted C-semigroup S(-) on X and
the equation

@1)  S)[S(s) — Ko(s)C] = [S(t) — Ko(t)C)S(s) for all 0 < t, s, + s < T

(see a result in [18] for the case of local a-times integrated C-semigroup and a cor-
responding statement in [9] for the case of (a, k)-regularized (C, Cs)-existence and
uniqueness family).

Lemma 2.1. Let S(-) be a strongly continuous family in L(X). Then S(-) is a
local K'-convoluted C-semigroup on X if and only if S(-) is a local Ky-convoluted
C-semigroup on X.

Proof. We will show that

d t+s t s ~ ~
EK/O _/O _/O VKo(t + 5 — 1) S(r) Cndr] + Ko(3)S(H)C

= </Ot+8 = /Ot— /OS)K(tJrs —7)S(r)Cxdr

forall x € X and 0 <t,s,t+ s < Tp. Indeed, for 0 <+¢,s,t+ s < Ty, we have

S [ st s - n3m0s

t+s t S — ~
:[(/O _/O _/O VK(t+ 5 — 1)S(r)Cadr — Ko(s)8(t)Ca).

That is, (2.2) holds for all 0 < 't,s,t+ s < Ty. Clearly, the right-hand side of (2.2) is
symmetric in ¢, s with 0 < ¢, s,t 4+ s < Tp. It follows that

d t+s t s . .
£[</O _/O _/O VKo(t + 5 — r)S(r) Candr] + Ko(t)8(5)Cr

= (/Ot+s—/0t—/08)K(t+s—r)g(r)C'xdr

2.2)

(2.3)
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forall z € X and 0 <t,s,t+ s < Tp. Using integration by parts, we obtain

t+s t s ~
(/0 —/O —/O VK (t+s—1r)S(r)Cxdr
(2.4) = t+8— t— ’ s —1r)S(r)Cxdr
~([ = [ = [ate+ s=risircsd
+Ko(s)S(t)Cx + Ko(t)S(s)Ca

forall z € X and 0 < ¢,s,t+ s < Tp. Suppose that §(~) is a local K-convoluted
C-semigroup on X. Then we have by (2.3) — (2.4) that

$(6)S(s)z = %5@)5(3)3;

t+s t s .
:(/O _/O _/O VKo(t + 5 — 1)S(r)Cadr + Ko(s)S(H)Ca

+ Ko(t)S(s)Cx — Ko(t)S(s)Cx

t+s t s .
:(/O _/O _/O VKo(t + 5 — 1)S(r)Cadr + Ko(s)S(£)Ca

forall r € X and 0 < t,s,t+ s < Tp, so that

. t+s t s
(25)  S@®)S(s)x= %S(t)S(s)a: = (/O —/O —/O VK (t+ s —1r)S(r)Czdr

forall z € X and 0 < ¢,s,t + s < Tp. Hence, S(-) is a local K-convoluted C-
semigroup on X. Conversely, suppose that S(-) is a local K-convoluted C-semigroup
on X. We will apply Fubini’s theorem for double integrals to obtain

26)  S(HS(s)z = (/Ot+8—/0t—/OS)Ko(t+s—r)S(r)C’xdr+Kg(t)§(s)C’x

forallz € X and 0 < t,s,t+s < Ty. Letx € X begiven, thenfor0 < ¢, 7,t+7 < Ty,
we have

T pt+A
/ / K({t+X—r)S(r)CxdrdA
0o Jt

27) _ / o / " K(t4 )= 1)S(r)CrdAdr
t r—t

t+T1
= Ko(t+71—1r)S(r)Cxdr,
t
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and
T pPA
/ / K(t—X+7)S(r)Cxdrd\
0 0
(2.8) = /0 /T K({t—=X+r)S(r)CxdAdr
_ /O Kot — 7+ 1)S(r)Cadr — Ko(t)3(r)Ca.

Combining (1.2) with (2.7) and (2.8), we get

. t+7 t T .
s<t>s<7>x:</0 _/O _/O VKo(t+ 7 — 1)S(r)Cadr + Ko(t)S(7)C.

That is, (2.6) holds for all x € X and 0 < ¢,s,t+ s < Tp. Combining (2.2) with (2.4)
and (2.6), we have

S()S(s)x
t+s t s . .
= (/O _/0 _/0 VK (t+s—1)S(r)Cxdr — Ko(s)S(t)Cx

= %[(/OHS—/;—/OS)KOG—FS—r)g(r)Cmdr]

forall z € X and 0 < ¢,s,t+ s < Tp. Combining this and (2.2) with ¢t = 0, we
conclude that S(-) is a local Kj-convoluted C-semigroup on X.

Theorem 2.2. Let S(-) be a strongly continuous family in L(X') which commutes
with C on X. Then S(-) is a local K-convoluted C-semigroup on X if and only if
(2.1) holds for all 0 < ¢, s,t+ s < Tp.

Proof. Suppose that S(-) is a local K-convoluted C-semigroup on X. By Lemma
2.1, (2.2) and (2.3), we have S(t)S(s)x+ Ko(s)S(t)Cz = S(t)S(s)z+ Ko(t)S(s)Cx
forall z € X and 0 < t,s,t + s < Tp or equivalently, S(¢)[S(s) — Ko(s)C]=[S(t) —
Ko(t)C]S(s) forall 0 <t,s,t+ s < Ty. Conversely, suppose that (2.1) holds for all
0<tst+s<Tp Then S(t)S(s)z — S(t)S(s)x = Ko(s)S(t)Cx — Ko(t)S(s)Ca
forallze Xand 0 <t,s,t+s<Tp FixeeXand0<t,s,t+s < Ty we have

Sit+s—r)S(r)ex—S{t+s—r)S(r)x

2.9) ° 4
= Ko(r)S(t+s—r)Cx — Ko(t+s—r)S(r)Cx

for all 0 < »r < t. Using integration by parts to the left-hand side of the integration
of (2.9) and change of variables to the right-hand side of the integration of (2.9), we
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obtain

S(H)3(s)z = /O [S(t+5—r)S(r)z— S(t+ 5 — 1)S(r)aldr
= /t[Ko(T’)g(t +5—1)Cx — Ko(t + s — )S(r)Cx]dr

0
t+s t s
= ( —/ —/ VKo(t 4+ s — r)S(r)Cadr
0 0 0
forall z € X and 0 < ¢,s,t+ s < Tp. Consequently, §(~) is a local Ky-convoluted
C-semigroup on X. Combining this with Lemma 2.1, we get that S(-) is a local K-
convoluted C-semigroup on X.
By slightly modifying the proof of [18, Corollary 2.4], the next result concerning
local K-convoluted C-semigroups on X is also attained.

Proposition 2.3. Let S(-) be a local K-convoluted C-semigroup on X and a €
Li..([0, Tp), F). Then a = S(-) is a local a * K-convoluted C-semigroup on X. In
particular, for each 8 > —1 jg * S(-) is a local Kz-convoluted C-semigroup on X.

Definition 2.4. Let S(-) be a strongly continuous family in L(X). A linear operator
Ain X is called a subgenerator of S(-) if

(2.10) S(t)x — Ko(t)Cx = /t S(r)Azdr
0
forall z € D(A) and 0 <t < Ty, and
t t
(2.11) / S(r)zdr € D(A) and A/ S(r)zdr = S(t)x — Ko(t)Cx
0 0

forall x € X and 0 < ¢t < Ty. A subgenerator A of S(-) is called the maximal
subgenerator of S(-) if it is an extension of each subgenerator of S(-) to D(A).

Applying Theorem 2.2, we can obtain the next result concerning the generation
of a local K-convoluted C-semigroup S(-) on X, which had been proven in [8] by
another method similar to that already employed in [14] in the case that S(-) has a
closed subgenerator and C' is injective.

Theorem 2.5. Let S(-) be a strongly continuous family in L(X') which commutes
with C' on X. Assume that S(-) has a subgenerator. Then S(-) is a local K-convoluted
C-semigroup on X. Moreover, S(-) is nondegenerate if the injectivity of C' is added
and K is a non-zero function on [0, Tp).

Proof. Let A be a subgenerator of S(-). By (2.11), we have
[S(t) = Ko()C]S(-)x = S(t)AS(-)x = S(#)[S(-) = Ko(-)Cla
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on [0,7y —t) forall z € X and 0 <t < Tj. Applying Theorem 2.2, we get that S(-)
is a local K-convoluted C-semigroup on X. Suppose that C is injective, K is a non-
zero function, z € X and S(t)x = 0, t € [0,Tp). By (2.11), we have Ky(-)Cz =0
on [0,Tp), and so Cz = 0. Hence, = = 0, which implies that S(-) is nondegenerate.

Lemma 2.6. Let A be a closed subgenerator of a strongly continuous family S(-)
in L(X), and K a kernel on [0, ¢y) (or equivalently, K is a kernel on [0, t5)). Assume
that C' is injective and u € C(]0, ty), X) satisfies u(-) = Ajo*u(-) on [0, ¢y) for some
0 < t9 < Tp. Then uw =0 on [0, ty).

t t
Proof. We know from (2.10)-(2.11) that A/ S(r)xdr = / S(r)Azdr for all

0 0

x € D(A) and 0 < ¢t < Ty. Combining this with the closedness of A, we have
t

AS(t)x = S(t)Ax for all x € D(A) and 0 < ¢t < Ty, and so / S(t— s)u(s)ds =

/St—s)Ajg*u( )ds—/AS(t—s)]O*u( Jds = A /St—s)jg*u( )ds =
AS s u(t /St—s ds—C’/ Ko(t — s)u(s)ds for all 0 <t < ty. Hence,

Ko(t — s)u(s)ds = 0 for all 0 < t < tg, which implies that u(¢) = 0 for all
OOS t < tgp.

Theorem 2.7. Let S(-) be a nondegenerate local K-convoluted C-semigroup on
X with generator A. Assume that S(-) has a subgenerator. Then A is the maximal
subgenerator of S(-), and each subgenerator of S(-) is closable and its closure is also
a subgenerator of S(-). Moreover, if C' is injective. Then (1.5)-(1.7) hold, and (1.8)
also holds when K| is a kernel on [0, T) or T = oo

Proof. Let B be a subgenerator of S(-). Clearly, B C A. It follows that C(t)z —
t s t s

Ky(t)Cz = B/ / C(r)zdrds = A/ / C(r)zdrds forall z € X and 0 < ¢ <

Ty, which togett(w)er Svith the definition o% Aoimplies that A is also a subgenerator of
S(-). To show that each subgenerator of S(-) is closable and its closure is also a
subgenerator of S(-). We will show that B is closable. Let x;, € D(B), x; — 0, and
Bz, — yin X. Then z;, € D(A) and Az, = Bz, — y. By the closedness of A,
we have y = 0. In order to show that B is a subgenerator of S(-). Let x € D(B)
be given, then z;, — z and Bz, — Bz in X for sequence {z;}?°, in D(B). By

t
(2.10), we have S(t)z, — Ko(t)Cxy, = / S(r)Bxdr forall ke Nand 0 <t < T.
0

t
Letting £ — oo, we get that S(t)z — Ko(t)Cx = / S(r)Bxdr for all 0 < t < Tp.
0
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t t
Since B C B, we also have S(t)z — Ko(t)Cz = B/ S(r)zdr = F/ S(r)zdr
0 0
forall z € X and 0 < t < Ty. Consequently, the closure of B is a subgenerator of
S(-). To show that A is the maximal subgenerator of S(-). Let F be the family of
all subgenerators of S(-). We define a partial order "C” on F by f C ¢ if g is an
extension of fto D(g). By Zorn’s lemma, (F,C) has a maximal element B which is a
subgenerator of S(-), and does not have a proper extension that is still a subgenerator of
S(-). In particular, B C A. Similarly, we can show that B is the maximal subgenerator
of S(-), which implies that A C B. Clearly,(1.6) and (1.7) both hold because A is the
maximal subgenerator of S(-). To show that (1.5) holds when C' is injective. We will
show that A C C~'AC or equivalently, CA C AC. Let 2 € D(A) be given, then
Kq(t)Cx = S(t)x — jox S(t)Ax € D(A) and
AK{(t)Cx =AS(t)x — Ajo * S(t) Az

=AS(t)z — [S(t) Az — K, (t)C Ax]

:K1<t>CAIE
forall 0 <t < Tp, so that CAx = ACx. Hence, CA C AC. In order to show that

C~1AC c A. Letx € D(CLAC) be given, then Cx € D(A) and ACx € R(C). By
the definition of generator and the commutatlwty of C with S( ), we have C[S(t)z —

Ko(t)Cx] = S(t)Cx — Ko(t)C? / S(r)ACxzdr = / S(r)CC~'ACzdr =

C’/ S(r)C~'ACzdr. Since C is injective, we have = € D(A) and Az = C~'ACxz.

Consequently, A ¢ C~tAC. Finally, we will show that (1. .8) holds when K is a
kernel on [0, Ty). Clearly, it suffices to show that 5(¢)S(s)z=S(s)S(t)z for all z € X
and 0 <t,s <Tp. Letz € X and 0 < s < Tj be given. By (1.7) and the closedness
of A, we have

on [0, Ty), and so [S(-) <s>x—§<
Hence, 5(-)S(s)z=5(s ni
all 0 <t,s < Tp.

(-)2] AJo*[S(>§(8>f£ S(s)S(-)x] on [0, Ty).
To), which implies that S(¢).S(s)x=S(s)S(t)x for

Lemma 2.8. Let S(-) be a local K-convoluted C-semigroup on X, and 0 €
suppKj (the support of Kj). Assume that S(-)x = 0 on [0, ) for some z € X and
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0 <ty <Tp. Then CS(-)z =0o0n [0,Tp). In particular, S(t)z = 0forall 0 < ¢ < Ty
if the injectivity of C' is added.

Proof. Let 0 < ¢ < Ty be given, then ¢ + s < Ty and K(s) is nonzero for some
0 < s < to, 50 that S(s)S(t)x = S(t)S(s)x = 0, S(s)S(t)x = S(t)S(s)z = 0 and
S(s)Ko(t)Cx = Ko(t)CS(s)z = 0. By Theorem 2.2, we have K(s)S(t)Cz =
Ko(s)CS(t)z = 0. Hence, S(t)Cz = 0. Since 0 < ¢t < Ty is arbitrary, we have
CS(t)x = S(t)Cx =0 forall 0 <t < Tp. In particular, S(t)x =0 forall 0 < ¢ < Ty
if the injectivity of C' is added.

Theorem 2.9. Let S(-) be a local K-convoluted C-semigroup on X, and 0 €
suppKo. Assume that C' is injective. Then S(-) is nondegenerate if and only if it has
a subgenerator.

Proof. By Theorem 2.5, we need only to show that A is a subgenerator of S(-)
when S(-) is a nondegenerate local K -convoluted C-semigroup on X with generator A
and 0 € suppK. Observe (2.10)-(2.11) and the definition of A, we need only to show
that (2.10) holds. Let 0 <ty < Ty be fixed. Then for each z € X and 0 < s < Ty,
we set y = S(to)x. By Theorem 2.2, we have

S(r)[S(s) — Ko(s)Cly
=[S(r) — Ko(r)C]S(s)y
[S(r) = Ko(r)Cly
(

(

=5(s)
=5(5)([S(r) — Ko(r)C)S(to)x)
=S(s)(S(r)[S(t0) — Ko(to)C)x)

forall 0 <r < Tp with r + s, 7 + t9 < Tp or equivalently, S(r)[S(s) — Ko(s)Cly =
S(r)S(s)[S(to) — Ko(to)Clz for all 0 < r < Ty with 7 + 5,7 + to < Tp. It follows
from Lemma 2.8 and the nondegeneracy of S(-) that we have [S(s) — Ko(s)Cly =
S(s)[S(to) — Ko(to)Clz. Since 0 < s < Ty is arbitrary, we have y € D(A) and
Ay = [S(to) — Ko(to)C)z. Since 0 < ty < Ty is arbitrary, we conclude that (2.10)
holds.

By slightly modifying the proof of Theorem 2.9, we can apply (1.2) to obtain the
next result concerning nondegenerate K'-convoluted C-semigroups.

Theorem 2.10. Let S(-) be a nondegenerate K-convoluted C-semigroup on X.
Then C is injective, and S(-) has a subgenerator.

Combining Theorem 2.10 with Theorem 2.7, the next result concerning nondegen-
erate K -convoluted C-semigroups is also obtained.
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Theorem 2.11. Let S(-) be a nondegenerate K -convoluted C-semigroup on X with
generator A. Then A is the maximal subgenerator of S(-), and each subgenerator of
S(-) is closable and its closure is also a subgenerator of S(-). Moreover, (1.5)-(1.8)
hold.

Since 0 € suppK implies that K is a kernel on [0, T), we can apply Theorems
2.7 and 2.9 to obtain the next corollary.

Corollary 2.12. Let S(-) be a nondegenerate local K-convoluted C-semigroup
on X with generator A, and 0 € suppK,. Assume that C' is injective. Then A is
the maximal subgenerator of S(-), and each subgenerator of S(-) is closable and its
closure is also a subgenerator of S(-). Moreover, (1.5)-(1.8) hold.

Theorem 2.13. Let A be a closed subgenerator of a strongly continuous family
S(-)inL(X), and K, akernel on [0, Tj). Assume that C'is injective. Then CA C AC,
and S(-) is a nondegenerate local K-convoluted C-semigroup on X with generator
C~1AC. In particular, C~1AyC is the generator of S(-) for each subgenerator Ag
of S(-).

Proof. To show that S(-) is a nondegenerate local K-convoluted C-semigroup
on X. By Theorem 2.5, we need only to show that C'S(-) = S(-)C or equivalently,
C’S() S(QC’. Just as in the proof of Theorem 2.7, we have CA C AC and
[S(-)Cx — CS()z] =Ajo * [S(-)Cx — C'S(-)z] on [0, Tp). By Lemma 2.6, we also
have S(-)Cz = CS(-)x on [0,Tp). We will prove that C~*AC is the generator of
S(-). Let B denote the generator of S(-). By Theorem 2.7, we have A C B. By (1.5),
we also have~C‘1AC’ C C~'BC = B. Conversely, let z € D(B) be given, then
Ki(t)Cx = S(t)x — jo * S(t)Bx € D(A) for all 0 < t < Tp, so that Cz: € D(A) and

AK,(-)Cx =AS(-)x — Ajy * S(-)Bx
=AS(-)z — [S(-) Bz — K1(-)CBa]
A§<>w [BS()x — K1(-)CBal

on [0,Tp). Hence, ACz = CBx € R(C), which implies that z € D(C~1AC) and
C~'ACz = Bz. Consequently, B c C~1AC.

Corollary 2.14. Let S(-) be a nondegenerate local K-convoluted C-semigroup on
X, and 0 € suppKy. Assume that C is injective. Then C—1A,C is the generator of
S(-) for each subgenerator Ay of S(-).
Remark 2.15. Let S(-) be a local K-convoluted C-semigroup on X. Then
(i) S(-) is nondegenerate if and only if S(.) is;
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(i) A is the generator of S(-) if and only if it is the generator of S(-);
(iii) A is a closed subgenerator of S(-) if and only if it is a closed subgenerator of

S().

Remark 2.16. A strongly continuous family in L(X') may not have a subgenerator;
a local K-convoluted C-semigroup on X is degenerate when it has a subgenerator but
does not have a maximal subgenerator; and a closed linear operator in X generates at
most one nondegenerate local K'-convoluted C-semigroup on X when C' is injective
and K a kernel on [0, Tp).

3. ABSTRACT CAUCHY PROBLEMS

In the following, we always assume that C' € L(X) is injective, K a kernel on
[0,Tp), and A a closed linear operator in X such that CA ¢ AC. We also note some
basic properties concerning the strong solutions of ACP(A, f, x) just as results in [14]
when A is the generator of a nondegenerate (local) a-times integrated C-semigroup on
X.

Proposition 3.1. Let A be a subgenerator of a nondegenerate local K-convoluted
C-semigroup S(-) on X. Then for each x € D(A) S(-)z is the unique solution of
ACP(A, Ko(-)Cz,0) in C([0,Tp), [D(A)]). Here [D(A)] denotes the Banach space
D(A) equipped with the graph norm |z|4 = ||z|| + ||Az| for = € D(A).

Proposition 3.2. Let A be a subgenerator of a nondegenerate local K-convoluted
C-semigroup S(-) on X and C! = {z € X | S(-)z is continuously differentiable on
(0,Tp)}. Then

(i) for each z € C!  S(t)z € D(A) for a.e. t € (0, Tp);
(i) for each z €C! S(-)z is the unique solution of ACP(A, K(-)Cz,0);
(iii) for each x € D(A) S(-)z is the unique solution of ACP(A, K(-)Cz,0)
in C([0, 7o), [D(A)]).

Proposition 3.3. Let A be the generator of a nondegenerate local K -convoluted C-
semigroup S(-) on X and x € X. Assume that S(¢)z € R(C) for all 0 < ¢ < Tp, and
C~15(-)x € C([0,Tp), X) is differentiable a.e. on (0,Ty). Then C~1S(t)z € D(A)
for a.e. t € (0,Tp), and C~1S(-)z is the unique solution of ACP(A, K(-)z,0).

Proof. Clearly, S(-)z = CC~'S(-)x is differentiable a.e. on (0, 7T). By Theorem
2.11, we have C’%C’_lS(t)x = %S(m = AS(t)x + K(t)Cx = ACC'S(t)x +
K(t)Cx for ae. t € (0,Tp). Hence, for ae. t € (0,Tp), C~1S(t)x € D(C~TAC) =
D(A) and %c—ls(m = (C7'AC)CTIS(t)x + K(t)z = ACTIS(t)x + K(t)z,
which implies that C~1S(-)z is a solution of ACP(A, K(-)z,0).
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Applying Theorem 2.13, we can prove an important result concerning the relation
between the generation of a nondegenerate local K -convoluted C-semigroup on X with
subgenerator A and the unique existence of strong solutions of ACP(A, f, x), which
has been established in [18] when K = j,_1, in [15] when K = j,_1 with T = c©
and in [26] when K = j_; with Tp = oo

Theorem 3.4. The following statements are equivalent:

(i) A is a subgenerator of a nondegenerate local K -convoluted C-semigroup S(-)
on X;

(i) for each 2 € X and g € L},.([0, Tp), X) the problem ACP(A, Ko(-)Cz + Ky *
Cyg(-),0) has a unique solution in C'([0, Tp), X) N C([0, Ty), [D(A)]);

(iii) for each = € X the problem ACP(A, Ky(-)Cz,0) has a unique solution in
C([0, o), X) N C([0, To), [D(A)));

(iv) for each 2 € X the integral equation v(-) = Ajo * v(-) + Ko(-)Cx has a unique
solution v(-; z) in C([0, Tp), X).

In this case, S(-)z+Sxg(-) is the unique solution of ACP(A, Ko(-)Cx+Ko*Cg(-),0)
and v(-;z) = S(-)z.

Proof. We will prove that (1 ) implies (ii). Letz € X and g € L}, ([0, Tp), X ) be
given. We set u(-) = S(-)z + S = g(-), then u € C1([0, Tp), X) N C([0, Tp), [D(A)]),
u(0) =0, and

Au(t) = AS(t)z + A/Ot St — s)g(s)ds

= S(t)r — Ko(t)Cx + /t[S(t —s) — Ko(t — s)Cg(s)ds

x—i—/St—s s)ds — [Ko(t)Cx + Ko * Cg(t)]
= u/(t) — [Ko(t)Cz + Ko * Cg(t)]

for all 0 <t < Ty. Hence, u is a solution of ACP(A, Ko(-)Cxz + Ky * Cg(-),0) in
CL([0, Tv), X)NC([0, Ty), [D(A)]). The uniqueness of solutions for ACP(A, Ko(-)Cx
+ Ko+ Cg(-),0) follows directly from the uniqueness of solutions for ACP(A, 0, 0).
Clearly, ”(ii)=-(di7)” holds, and (iiz) and (iv) both are equivalent. We remain only
to show that ”(iv)=-(4)” holds. Let S(¢) : X — X be defined by S(t)z = v(t;x)
forall z € X and 0 < ¢ < Ty. Clearly, S(-) is strongly continuous, and satisfies
(2.11). Combining the uniqueness of solutions for the integral equation v(-)=Ajg *
v(-)+ Ko(-)Cz with the assumption CA C AC, we have v(-; Cx) = Cv(-; x) for each
x € X, which implies that S(t) for 0 < t < Tj are linear, and commute with C. Let
{tr}32, be an increasing sequence in (0,7p) such that ¢, — Tp, and C([0, 7o), X)
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o0

, , , lvllk
a Frechet space with the quasi-norm | - | defined by |v| = —_
; 25(1+ [[olln)

C([0,Ty), X). Here ||v|jx = II[IOaX] |lv(t)|| for all £ € N. To show that S(-) is a family
te

sl

in L(X), we need only to show that the linear map n : X — C([0,Tp), X) defined
by n(z) = v(-;z) for x € X, is continuous or equivalently, n : X — C([0,Tp), X)
is a closed linear operator. Let {x;}7°, be a sequence in X such that z; — x in
X and n(zx) — v in C([0,Tp), X), then v(-;zx) = Ajo *x v(+;zx) + Ko(-)Cxg On
[0, Tp). Combining the closedness of A with the uniform convergence of {n(xx)}72,
on [0, ], we have v(-)=Ajp * v(-) + Ko(-)Cz on [0,Tp). By the uniqueness of
solutions for integral equations, we have v(-)=v(-;z)=n(x). Consequently, n : X —
C([0,Ty), X) is a closed linear operator. To show that A is a subgenerator of S(-),
we remain only to show that S(t)A C AS(t) for all 0 < t < Tp. Let z € D(A) be
given, then §(t)a:~— K1(t)Cax=Ajo x S(t)r=jo * AS(t)x for all 0 < ¢ < Tp, and so
S(t)Azx — Ajo x S(t) Az = K1(t)CAx = AK,(t)Cx = AS(t)x — Ajo * S(t) Az for
all 0 < ¢ < Ty. Hence, Ajo  [S(-) Az — A§(~)x]=§(~)§x — Ag(')'?i on [0,Ty). By
the uniqueness of solutions for ACP(A,0,0), we have S(-)Azx = AS(-)z on [0, Tp).
Applying Theorem 2.5, we get that S(-) is a nondegenerate local K-convoluted C-
semigroup on X with subgenerator A.

for v €

By slightly modifying the proof of [15, Corollary 2.5], we can apply Theorem 3.4
to obtain the next result.

Theorem 3.5. Assume that R(C') € R(A—A) for some A € F, and ACP(A, K(+)x,
0) has a unique solution in C([0,Ty), [D(A)]) for each z € D(A) with (A — A)x €
R(C). Then A is a subgenerator of a nondegenerate local K-convoluted C-semigroup
on X.

Proof. Clearly, it suffices to show that for each = € X the integral equation
(3.1) o(-) = A/ o(r)dr + Ko()Cx
0

has a (unique) solution v(-;z) in C([0,Ty), X ) for each = € X. Indeed, if x € X
is given, then there exists a y, € D(A) such that (A — A)y, = Cz. By hypothesis,
ACP(A, K(-)y., 0) has a unique solution u(-;y,) in C([0,Tp),[D(A)]). In particu-
lar, w'(;y.) = Au(;yz) + K(-)y. € L} ([0,Tp), X). By the closedness of A and

loc
t

t
the continuity of Au(-;y,), we have / u(r; y,)dr € D(A) and A/ u(r; yy)dr =
0 0

t
/ Au(r; yz)dr = u(t; y.) — Ko(t)y. € D(A) for all 0 <t < T, so that
0
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t
(A= At ) = = A [ ulrigo)dr + Ko(t)ya]
(3.2) ‘ 0
_ A/ (A — Ayu(r; ya)dr + Ko(t)Ca
0

for all 0 < t < Ty. Hence, v(;;z) = (A — A)u(-;y,) is a solution of (3.1) in
C([0,Tp), X).

Since C~'AC = A and R((A— A)~1C) = C(D(A)) if p(A) # 0, we can apply
Proposition 3.1 and Theorem 3.5 to obtain the next corollary.

Corollary 3.6. Assume that the resolvent set of A is nonempty. Then A is the
generator of a nondegenerate local K-convoluted C-semigroup on X if and only if
for each z € D(A) ACP(A, K(-)Cz,0) has a unique solution in C([0, Tp), [D(A)]).

Just as results in [15] for the case of a-times integrated C-semigroup, we can
apply Theorem 3.4 to obtain the next theorem. The wellposedness of abstract frac-
tional Cauchy problems and abstract Cauchy problems associated with various classes
of Volterra integro-differential equations in locally convex spaces have been recently
considered in [10].

Theorem 3.7. Assume that A is densely defined. Then the following are equivalent:

(i) A is a subgenerator of a nondegenerate local K -convoluted C-semigroup S(-)
on X;

(i) for each z € D(A) ACP(A, K(-)Cz,0) has a unique solution u(-;Cz) in
C([0,Tp), [D(A)]) which depends continuously on z. That is, if {x,}?2, is
a Cauchy sequence in (D(A), || - ||), then {u(-; Cx,)}22, converges uniformly
on compact subsets of [0, 7p).

Proof. (i)=-(i7). It is easy to see from the definition of a subgenerator of S(-)
that S(-) is the unique solution of ACP(A, K(-)C«,0) in C([0,Tp), [D(A)]) which
depends continuously on z € D(A). (it)=(i). In view of Theorem 3.4, we need
only to show that for each € X (3.1) has a unique solution v(-; z) in C([0, Tp), X).
Let € X be given. By the denseness of D(A), we have z,,, — = in X for some
sequence {zn,,}>>_; in D(A). We set u(-;Czy,) to denote the unique solution of
ACP(A, K(-)Cxy,,0) in C([0,Tp), [D(A)]). Then u(-; Czp,) — wu(-) uniformly on

compact subsets of [0,7}) for some u € C([0,7p), X), and so / u(r; Cxp)dr —
0

u(r)dr uniformly on compact subsets of [0, Tp). Since u/(+; Cxy,) = Au(-; Cayy)+
0
K(-)Cxy, ae. on (0,Tp), we have

(3.3) A/. u(r; Cayy)dr = / Au(r; Czp,)dr = u(; Cxy) — Ko(1)Cay
0 0
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on [0,7Tp) for all m € N. Clearly, the right-hand side of the last equality of (3.3)

converges uniformly to u(-) — Ko(-)Cz on compact subsets of [0, 7). It follows from
t .

the closedness of A that/ u(r)dr € D(A) forall 0 <t < Tpand A/ u(r)dr=u(-)—

0 0
Ky(-)Cz on [0, Tp), which implies that «(-) is a (unique) solution of (3.1) in C([0, Tp),
X).

We end this paper with several illustrative examples.

Example 1. Let X = C,(R), and S(t) for ¢ > 0 be bounded linear operators on X
defined by S(t) f(z) = f(z+t) for all z € R. Then for each K € L}, ([0, Tp), F) and
B>—1, KgxS(-)={Kg=S(t)|0 <t < Tp} is local a K g-convoluted semigroup on

X which is also nondegenerate with a closed subgenerator — acting with its maximal

X
distributional domain when K is not the zero function on [0,7}) (or equivalently,
K is not the zero in L} ([0, Tp), F)), but K % S(-) may not be a local K-convoluted

loc

semigroup on X except for K € L} ([0, Ty), F) so that K +S(-) is a strongly continuous

loc

family in L(X') for which T is a closed subgenerator of K * S(-) when Kj is not
X
. d . .
the zero function on [0,7y). Moreover, (1.5)-(1.8) hold and T is its generator and

maximal subgenerator when K is a kernel on [0, Tp). In this case, di = Ay for each
X
subgenerator Ay of S(-).

Example 2. Let k be a fixed nonnegative integer and K a kernel on [0, cc), and
let S(¢) for t > 0 and C' be bounded linear operators on ¢, (the family of all convergent
t

sequences in F with limit 0) defined by S(¢)z = {z,(n—k)e™" / K(t—s)e"ds}oy

and Cz = {zp(n — k)e ™}22, for all z = {z,}22, € ¢y, thenO{S(t)\O <t<1}is
a local K-convoluted C-semigroup on ¢y which is degenerate except for £ = 0 and
generator A defined by Ax = {nx,}5°, for all x = {z,}°2, € c¢o with {nz, }5°; €
co, and for each » > 1 {S(¢)|0 < ¢ < r} is not a local K-convoluted C-semigroup on
co. Suppose that £ € N. Then A, : ¢y — ¢o for a € F defined by A,z = {ny,}o>,
forall z = {x,}22, € co with {nz,, }5°, € co, are subgenerators of {S(¢)|0 <t < 1}
which do not have proper extensions that are still subgenerators of {S(¢)|0 <t < 1}.
Here y,, = akxy if n =k, and y,, = nx,, otherwise. Consequently, {S(¢)|0 <t < 1}
does not have a maximal subgenerator when & € N.

Example 3. Let X = C,(R)(or L>°(R)), and A be the maximal differential operator
k
in X defined by Au = Zaiju on R for all w € D(A), then UC,(R) (or Cy(R))

=0
= D(A). Here ag,ay,---,a, € C and Diu(z) = u9) () for all z € R. It is shown
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in [2.19] that {S(1)|0 < ¢ < Ty} defined by (S(t)f)(z) = \/%/t /OO K(t -
m™J0 J—co

S)E;(ac —y)f(y)dyds for all f € X and 0 <t < Ty, is a norm continuous local K-

convoluted semigroup on X with closed subgenerator A if the real-valued polynomial
k

plx) = Y a;(iz)’ satisfies supp(z) < oo, and K € L}
§=0 z€R

([0,Tp), F) is not the

loc

zero function on [0,T,). Here ¢; denotes the inverse Fourier transform of ¢; with
t
oy(z) = / eP@)sds for all ¢t > 0. Suppose that K is a kernel on [0, Tp). Then A is
0
its generator and maximal subgenerator. Applying Theorem 3.4, we get that for each
t

f € X and continuous function g on [0, 7Tj) x R with / sup |g(s, z)|ds < oo for all
0 x€eR

: , I
0 <t < Ty, the function w on [0, Tp) x R defined by u(¢, z) = \/—_/ / Ko(t —

3)%(35—@]0( )dyds + —— / /t T/ K, t—r—s)qﬁs(ac— y)g(r,y)dydsdr for

alo<t<Tpand z € R |s the unique solutlon of

Z% u(t, z) + K1 (t) f (x)

+/ Ki(t —s)g(s,x)ds for t € (0,Tp) and a.e. = € R,
0

u(0,2) =0 forae zeR
in C1([0, Tp), X) N C([0, Tp), [D(A)]).
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