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COMMUTATORS OF MULTILINEAR SINGULAR INTEGRAL OPERATORS
ON NON-HOMOGENEOUS METRIC MEASURE SPACES

Rulong Xie, Huajun Gong* and Xiaoyao Zhou

Abstract. Let (X,d, 1) be a metric measure space satisfying both the geometri-
cally doubling and the upper doubling measure conditions, which is called non-
homogeneous metric measure space. In this paper, via a sharp maximal operator,
the boundedness of commutators generated by multilinear singular integral with
RBMO(u) function on non-homogeneous metric measure spaces in m-multiple
Lebesgue spaces is obtained.

1. INTRODUCTION

It is well known that the standard singular integral theory is constructed with the
assumption of spaces satisfying the doubling measure condition. We recall that y is
said to satisfy the doubling measure condition if there exists a constant C' > 0 such
that p(B(z,2r)) < Cu(B(z,r)) for all x € suppp and » > 0. A metric measure
space (X, d, ) equipped with a non-negative doubling measure 1 is called a space of
homogeneous type. In case of non-doubling measures, a hon-negative measure g only
need to satisfy the polynomial growth condition, i.e., for all z € R™ and » > 0, there
exist a constant Cy > 0 and & € (0, n] such that,

(1.1) u(B(z,7)) < Cork,

where B(z,r) = {y € R" : |y —z| < r}. This breakthrough brings rapid development
in harmonic analysis (see [2,5,8-9,17-23]). And the analysis on non-doubling measures
has important applications in solving the long-standing open Painlevé’s problem (see
[18]).

However, as stated by Hytonen in [11], the measure satisfying (1.1) does not in-
clude the doubling measure as special cases. To solve this problem, a kind of metric
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measure space (X, d, u) satisfying geometrically doubling and the upper doubling mea-
sure condition (see Definition 1.1 and 1.2) was introduced by Hytonen in [11]. The
space is also called non-homogeneous metric measure space. The highlight of this
kind of space is that it includes both the homogeneous space and metric space with
polynomial growth measures as special cases. From then on, some results paralled to
homogeneous spaces and non-doubling measures space are obtained (see [1,5,11-16]
and the references therein). Hytonen et al. in [14] and Bui and Duong in [1] inde-
pendently introduced the atomic Hardy space () and proved that the dual space of
H'(p) is RBMO(p). In [1], the authors also proved that Calderon-Zygmund operator
and commutators generated by Calderon-Zygmund operator with RBM O function are
bounded in LP(u) for 1 < p < oo. Recently, some equivalent characterizations are
established by Liu et al. in [16] for the boundedness of Calderon-Zygmund operators
on LP(u) for 1 < p < oo. In [4], Fu et al. established boundedness of multilinear
commutators of Calderon-Zygmund operators on Orlicz spaces on non-homogeneous
spaces.

On the other hand, the theory on multilinear singular integral operators has been
considered by many researchers. In [3], Coifman and Meyers firstly established the
theory of bilinear Calderon-Zygmund operators. Later, Grafakos and Torres [6-7] estab-
lished the boundedness of multilinear singular integral on the product Lebesgue spaces
and Hardy spaces. The properties of multilinear singular integral and commutators on
non-doubling measures spaces (R", n) were established by Xu in [21-22]. Weighted
norm inequalities for multilinear Calder6n-Zygmund operators on non-homogeneous
metric measure spaces were also constructed in [10].

In the setting of non-homogeneous metric measure spaces, it is natural to ask
whether commutators of multilinear singular integral operators is also bounded in m-
multiple Lebesgue spaces. This paper will give an affirmative answer to this question.
In this paper, commutators generated by multilinear singular integral with RBM O (1)
function on non-homogeneous metric spaces is introduced firstly. And we will prove
that it is bounded in m-multiple Lebesgue spaces on non-homogeneous metric spaces,
provided that multilinear singular integrals is bounded from m-multiple L* (1) x ... x
L) to LY™°° (1), where LP (1) and LP>°(y) denote the Lebesgue space and weak
Lebesgue space respectively. This result in this paper includes the corresponding results
on both the homogeneous spaces and (R", ) with non-doubling measures space. A
variant of sharp maximal operator M/¥, Kolmogorov’s theorem and some good properties
of the dominating function \ (see Definition 1.2) are the main tools for proving the
results of this paper.

Before stating the main results of this paper, we firstly recall some notations and
definitions.

Definition 1.1. ([11]). A metric space (X, d) is called geometrically doubling if
there exists some Ny € N such that, for any ball B(z,r) C X, there exists a finite ball
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covering { B(x;,r/2)}; of B(x,r) such that the cardinality of this covering is at most
Np.

Definition 1.2. ([11]). A metric measure space (X, d, x) is said to be upper dou-
bling if 1 is a Borel measure on X and there exists a dominating function A : X x
(0, +00) — (0, +00) and a constant C\ > 0, such that for each € X, r — A(x,7)
is non-decreasing, and for all z € X, r > 0,

(1.2) p(B(z,r)) < Mz, r) < C\A(x,r/2)

Remark 1.3. (i) A space of homogeneous type is a special case of upper dou-
bling spaces, where one can take the dominating function \(x, ) = u(B(z,1)).
On the other hand, a metric space (X, d, u) satisfying the polynomial growth con-
dition (1.1) (in particular, (X, d, ) = (R™, |-|, u) with u satisfying (1.1) for some
k € (0,n])) is also an upper doubling measure space if we take \(x,r) = CrF.
(ii) Let(X,d, ) be an upper doubling space and A be a dominating function on
X x (0, +00) as in Definition 1.2. In [14], it was shown that there exists another
dominating function X such that for all z,y € X with d(z,y) <,

(1.3) Mz, r) < CXy, 7).

Thus, we suppose that X\ always satisfies (1.3) in this paper.

Definition 1.4. ([14]). Let o, € (1,+00). A ball B C X is called («, §)-
doubling if u(aB) < Bu(B).

As pointed in Lemma 2.3 of [1], there exist plenties of doubling balls with small
radii and with large radii. In the rest of this paper, unless « and (3 are specified
otherwise, by an («, 3) doubling ball we mean a (6, 3)-doubling with a fixed number

Bo > maX{C'i logz 6, 6"}, where n = logy Ny is viewed as a geometric dimension of
the space.

Definition 1.5. ([11]). For any two balls B C @, define

e
(1.4) Kpqg=1+ /2Q\B Mg, d(z,cp))’

where cg is the center of the ball B.
And, for two balls B C @, one defines the coefficient K7; , as follows. Let Np ¢

be the smallest integer satisfying 6V5.2rg > r(, then we set

Np,q k
1(6"B)
15 Kyry=1 E —_— 7
( ) B7Q + Pt A<CB76krB>
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Remark 1.6. In the case that A(z, ar) = a’A(z,r) for 0 < t < oo, z € X, and
a,r > 0, one knows that K5 g ~ Kj o (see [1,4]). However, in general, we only
have Kp g < CKJp (. In this paper, we always suppose that A(z, ar) = a‘\(x,r) for
0<t<oo z€X, anda,r>0. Sowe don’t differentiate K ¢ with K} , and
always write Kp ¢ for simplicity in this paper.

Definition 1.7. A kernel K(-,---,-) € L} (X)™™\{(z,y1- ,yjs -+, ym) :
rT=y =---=yj == Yn}) IS called an m-linear Calderon-Zygmund kernel if it
satisfies:

(i)

j=1

for all (x,y1---,y;, ,Ym) € (X)™! with z  y; for some j.
(i) There exists 0 < § < 1 such that

‘K(xﬂylu”'uyju"'7ym>_K<x/7y17”'7yj7"'7ym>‘

L7) < (fs'd(a:, )0
£ dww)] | £ e dlo)

m7

provided that Cd(z, 2') < nax. d(z,y;) and for each j,
K (2,91, 5 g, ym) — K (@1, 050 ym)|
(1.8) < Céd(yj, v;)°
B )| | £ e dto)]

m7

1 . / .
provided that C'd(y;, y;) < nax. d(z, yj).

A multilinear operator T is called a multilinear Calderén-Zygmund singular integral
operator with the above kernel K satisfying (1.6), (1.7) and (1.8), if for f1, -, fim
are L> functions with compact support and = ¢ ﬂ ., suppf;,

(1.9) T(f1, - fm)(x) = o K (2,91, Ym) fr(y1) -+ fn (Y ) dpe(yn) - - - dpa(ym)-

Remark 1.8. Because max d(z,y;) < Z d(z,y;) < m max d(z,y;), (i) in
1<j<m 1<j<m
Definition 1.7 is equivalent to (ii’) in the foIIowmg statement.
(ii”) There exists 0 < § < 1 such that
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‘K<xﬂy17"'7yj7"'7ym>_K<x/7y17”'7yj7"'7ym>‘

L10) < Clz, =) s
[ do) Lilw,d@,ym]

provided that C'd(x, z") < max d(z,y;) and for each j,
<j<m

‘K<xﬂy17"'7yj7"'7ym>_K<x7y17”'7y_;7"'7ym>‘

111) S Gdgyj, y;)’ _
Lr%zix d(z, y])] []le\(x,d(x,yj))]

i o) )
provided that C'd(y;, y;) < nax. d(z, y;).

Definition 1.9. ([1]). Let p > 1 be some fixed constant. A function b € Lloc( )
is said to belong to RBMO(p) if there exists a constant C' > 0 such that for any ball
B

(L.12) pB / 1b(z) — ms ()| dpu(z) < C,

and for any two doubling balls B C @,
(1.13) |mp(b) —mqg(b)| < CKp g,

where B is the smallest (a, /3)-doubling ball of the form 6*B with & € NJ{0}, and
mz(b) is the mean value of b on B, namely,

1
mxz(b) = —~/ b(xz)dp(x).
50 = 5 [ bedduta)
The minimal constant C' appearing in (1.12) and (1.13) is defined to be the RBM O( 1)
norm of b and denoted by ||b||..

For 1 <4 < k, we denote by C¥ the family of all finite subsets o = {o(1), 0(2), --
o(i)} of {1,2,---, k} with i different elements. For any o € C¥, the complementary
sequence ¢’ is given by ¢/ = {1,2,-- -, k}\o. Moreover, for b; € RBMO(u),i =
1,---,k let b = (b1, by, - - by) be a finite family of locally integrable function.
Foralll <i<kando = {o(1), - 0(i)} € CF, we set by = (by(1),~*  bo(i)
and the product by (z) = by(1)(®) - - - by(iy(w). Also, we denote = fn

fo=(Fotys s Fotiy) A byt for = (boriipry for(isn)s Doty forr()-
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Definition 1.10. A kind of commutators generated by multilinear singular integral
operator 7' with b; € RBMO(u),i =1,---, k is defined as follows:

(1.14) Z > (=1 b (2) T (fo, bo for) ().
i=0 O'ECk
In particular, when k& = 2, we can obtain
[b1, b2, T(f1, f2)(z) = br(2)ba(@)T (f1, f2)(2) — ba(2)T'(f1, baf2)(2)
— bo(z)T(b1f1, f2)(z) + T (b1f1, bafo) ().

Also, we define [b1,T] and [bo, T as follows respectively.

(1.16) (b1, T](f1, f2)(x) = ba(2)T(f1, f2)(x) — T(b1f1, fo)(2),

(1.15)

(1.17) (b2, T|(f1, f2)(x) = ba(x)T(f1, f2)(x) — T(f1, bafa)(x).

For the sake of simplicity and without loss of generality, we only consider the case
of k£ = 2 in this paper. Let us state the main result as follows.

Theorem 1.11. Suppose that p is a Radon measure with ||u|| = co. [b1, b, T] is
defined by (1.15). Let 1 < p1,p2 < +o0, f1 € LP*(u), fo € LP2(u), by € RBMO(u)
and by € RBMO(y). If T is bounded from L' (;1) x L'(p) to L'/%°°(p), then there
exists a constant C' > 0 such that

(1.18) b1, b2, TV(frs f) Loy < Cllfullpes ol f2ll o2 )

1 1 1
where — = — + —.
qa P11 P2

Throughout this paper, C' always denotes a positive constant independent of the
main parameters involved, but it may be different from line to line. And p’ is the

. . 1 1
conjugate index of p, namely, — + — = 1.
p P

2. Proor oF MAIN REesuLTs

To prove the main theorem, we firstly give some notations and lemmas.
Let f € L,.(1), the sharp maximal operator is defined by

Mﬁf
2.1) (Pldu() +  sup \mB(f)—mQ(f)\’

(B,Q)€A, Kpq

Baa: M
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where A, := {(B,Q) : x € B C Q and B, @ are doubling balls} and the non-
centered doubling maximal operator is denoted by

Nf(z)= sup ﬁ /B 1F()ldu(y).

B>oxz,
B doubling

For any 0 < 6 < 1, we also define that

(22) M;f(w) = {MF(1f|") (@) }/?
and

(2:3) Nsf(a) = {N () (@)}
We can obtain that for any f € L}, (),

(24) |[f (@)l < N5 f (=)

for 4 —a.e. x € X. Let us give an explanation for inequality (2.4). By the Lebesgue
differential theorem, we obtain that |f(z)| < N f(x). Hence

@) = [F @7 < AN(IF°) (2)}'/° = Nof (x).

Let p > 1, p € (1,00) and r € (1, p), the non-centered maximal operator M, (, f
is defined by

1 1/r
2.5 M, x) = sup{ / "d } .
(2.5) (@) SUP\ L B) B\f(y)\ 1(y)
When r = 1, we simply write M, () f(z) as M, f. If p > 5, then the operator M, f
is bounded on LP(y) for p > 1 and M,. (,) is bounded on LP(u) for p > r (see [1]).
From Theorem 4.2 in [1], it is easy to obtain that

Lemma 2.1. Let f € L], (p) with [, f(z)du(z) =0 if |[u]| < co. For 1 <p <

oo and 0 < 0 < 1, if inf(1, Nsf) € LP(u), then there exists a constant C' > 0 such
that

(2.6) INs(F) oy < CHIMEC) Lo (0.

Lemma 2.2. ([4,19]). Let 1 <p<oocand 1l < p < oo. Thenb € RBMO(p) if
and only if for any ball B C X,

1 » 1/p
@ {5 [ 1o = mpPana) | < cipil.

and for any two doubling balls B C Q,
(2.8) imp(b) —mq(b)| < CKp ql[b|+
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Lemma 2.3. ([4]).

(2.9) M55 (b) = mz ()] < Cjb]].
5

Lemma 2.4. ([10]). Suppose that 4 is a Radon measure with ||u|| = co. Let T’
be defined by (1.9) with m = 2. Let 1 < p1,pa < 400, f1 € LP'(u) and fo € LP2(p).
If T is bounded from L' () x L*(p) to L'/2:°°(1), then there exists a constant C' > 0
such that

(2.10) T (fr, f2)llzauy < Cllfilleegoll f2llLee )
1

1 1
where — = — + —.
qa p1 P2

Lemma 2.5. Suppose that [by,be, T is defined by (1.15), 0 < § < 1/2, 1 <
p1,p2,q <00, 1 <r < qandby,by € RBMO(u). If T is bounded from L' (u) x
L'(p) to L'/%°°(p), then there exists a constant C' > 0 such that for any z € X,
fr e LPr(p) and fy € LP2(p),

ME[br, ba, T)(f1, fo) () < C[br|[:][b2l 1M, 6)(T(f1, f2)) ()
(211) 4 C|[b1|[ My o) ([b2, T)(f1, f2)) (@) + C|[ba] My 6) ([b1, T](f1, f2)) (@)
+ Cl[b1|[4][b2| [« My, (5)f1(2) My, (5) f2(),

ME[b1, T)(f1, f2)(x) < COllbr]|< M, 6)(T(f1, f2)) ()

(2.12)

+ Ollba[[« My, (5) f1(2) My, 5 f2 (),
and
(2.13) M b, T)(f1, fo) (@) < Cllba| M, 6)(T(f1, f2)) (@)

+ C||b2|[« My, (5)f1(x) My, (5)f2(z).

Proof. Because L°°(u) with compact support is dense in LP(u) for 1 < p < oo,
we only consider the situation of fi, fo € L°(u) with compact support. Also, by
Corollary 3.11 in [4], without loss of generality, we can assume that by, by € L (u).

As in the proof of Theorem 9.1 in [19], to obtain (2.11), it suffices to show that

(w1, )
(2.14)

< Cl[ba [l [b2| [« My 6) (T (f1, f2))(x) + C|[b1[|« M, 6) ([b2, T1(f1, f2)) ()
+ Cl[b2| [« M. 6) ([b1, TV(f1, f2)) (@) + Cl|ba| ] [b2]|« My, (5) f1(2) Mp, (5) f2(2),

|[b1: b2, T1(f1, f2)(2)|° = |hsl
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holds for any = and ball B with x € B, and
|hp = hq

215 < OKBa|IIalllibell: Mooy (T £20)(w) + [1]]- Moy (b2, T f2) @)

+ 162« My 6) ((b1, T(f15 f2)) () + [[ball<lb2] [« My, (5) 1 (2) M, (5) fa () | -

for any balls B ¢ @ with x € B, where B is an arbitrary ball and @ is a doubling
ball. For any ball B, we denote

hp = mp(T((b1 —mz01)) fixx\ep: (b2 = mp(b2)) faxx\6 )
and
hq = mq(T((br — mQ(b1)) fixx\sq: (b2 = m@(b2)) f2xx\80))-
Write
[b1, b2, T] = T((b1 — b1(2)) f1, (b2 — b2(2)) f2),

and
T((br — mp(b1))f1, (b2 — mp(b2)) f2)
=T((br — b1(2) + b1(2) —mp(b1)) f1, (b2 — b2(2) + b2(z) — mp(b2))f2)

(2.16) = (b1(2) = mp(b1))(b2(2) — mp(b2))T'(f1, f2)

— (b1(z) = mp(b1))T(f1, (b2 — b2(2)) f2)

= (b2(2) = mp(b2))T((b1 — b1(2)) 1, f2)

+T((br — b1(2)) f1, (b2 — b2(2)) f2)
Then

|[b1: b2, T1(f1, f2)(2)I° = |hsl

(s /, )
SC(ﬁ [ b 7151, ) - hBPdu(z))w

1/5
<c(u 5 [ 10046:) = mg (o) (z)—mi;(bg))T(fl,f2><z>|5du<z>)

(6B
&0 (5 / (1(2) = s (0) <f1,<b2—b2<z>>f2><z>|5du<z>)1/é
(s

s 1/6
o w(6B) /l = mp(b2))T((br — b1(2)) f1, f2)(2)] d,u(z))

1/5
( 357 L 1T (=m0} s, (a2 1) ()~ ()
B+ By + Es+ By
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. . 1 1 1 1
We firstly estimate F;. Let r1,r9 > 1 such that — + — 4+ — = 5 By Holder’s
r1 r2
inequality and Lemma 2.2, we obtain

1/m
JAICE g(bl)\”du(Z))

- / o)~ maban(a))

6

1/r
i /\ (e Rl du))
ool M ) (T, £2)) )

<( i
(2.18) (
e

1 1
For Fs, let s > 1 such that — + - =
S

1
r 1)
we deduce

E, < C(ﬁ /B |b1(2) — mgbl\sdu(z))l/s

(2.19) 1 , v
<(aag [ 1027 )
< C|ba|[«M;. 6 ([b2, T](f1, f2)) ().

Similar to estimate F5, we immediately get

, by Holder’s inequality and Lemma 2.2,

(2.20) E3 < O|bo[« M 6)([b1, T](f1, f2)) (2)-

Let us turn to estimate £,. Denote fj = fixep and f7 = f; — f; for j = 1,2.
5
Then

1/5
< (s [ T~ mb) 21 2) 02 = mgha) ) ()Pt

1/5

+(m / (b1 = mgh) (2. (2 — b)) (2) )

2.21 1/6
G (s [ @ maR G mab )

1/6
i C(W /B (T ((br=mpb1) f7 (2), (ba=mpb2) f3)(2) =Dz |5d,u(z)>
=: F41 + E42 + F43 + Eyq.

To estimate E4;, we need the classical Kolmogorov’s theorem: Let (X, i) be a
probability measure space and let 0 < p < ¢ < oo, then there exists a constant C' > 0,
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such that |[f]|ze(u) < C||fl[za(u) for any measurable function f. Let p = ¢ and
g = 1/2 such that 0 <d<1/2. Usmg Kolmogorov’s theorem, the boundedness of T,
Lemma 2.2 and Holder’s inequality, we obtain

Eq1 <CO||T((by — mgby) f1, (b2 — m§b2)f21)HL1/z,oo(gB dnte)
z

1
<O / 11 = mb) () ld(2)
1
< / (b2 = mgbo) f2(2) du(2)

(2.22)

gC’Hblu*HbgH*M ) [1(2) My, (5) f2().

To compute E4o, using (i) of Definition 1.7, Lemma 2.1, Lemma 2.2, Holder’s
inequality and the properties of A\, we know

b1 (y1) — mpbal| 1 (y1)]
B < GB / / /X\ B Z d Z y1>>+/\<27d<zuy2>>]2
X [ba(y2) — mpball £3 (y2)|dp(yr)dp(y2) dp(z)

u(éB) /B/QB‘bl(y1> — mpbil[f1(y1)|dp(yr)

y / |ba(y2) — m§b2\\f2(y2)\du(y2)du(z>
X\&8B A(2, d(z,y2))]?

(2.23) »
51
< C(@ /%B 1b1(y1) — mgbl\pldﬂ(yﬁ)

: <® /QB ‘f1(y1)‘p1du(yl>> 1/p1

0 |b2(y2) — msba|| f2(y2)]
7 ;/6’“23 [/\(Z,Gk—lgrB”Q du(y2)
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< Ol by )3+ D
’ = uEB)A= )
1

X M/m 1ba(y2) — m zba|| fo(ya)|dps(yo)

em 1
< C|ba]|«M,, (5 f1 (= Zka

x/Gk%B\bg(yz) mm(bg)er@/(bQ) msbal| fa(yo) | dp(yo)

. —km 1
< Cllba | My, 5,1 (2) D 6 [(m

k=1

1/p5
— P2
X /GW%B 102(y2) = me (b2)l du(w))

1 P2y 1/p2
(T [,y P2 )

1
(5 % 6°0B) /Gk%B \f2(y2)\du(y2)]

< C1b1|[«[b2] [+ My, (5 f1(2) My, (5)f2 ().
Similarly, we get
(2.24) Eyz < C|ba[|[b2] [« My, (5)f1(2) My, (5) f2(2).

Let us turn to estimate Fyy. For zg € B, by (ii) of Definition 1.7, Lemma 2.1,
Lemma 2.2, Holder’s inequality and the properties of A\, we obtain

[T ((b1 — mpb1) [T, (b2 — mpb) f35)(2)
—T((b1 — mpb1) f7, (b2 — mzbs) f3)(20)|

SC'/ / | K (2,91, y2) — K (20, Y1, 92)]
xX\¢BJ/x\¢B

(2.25) X \H(bi(yz‘) — mbi) fi(ys) | dp(y1) dp(y2)

12[ (bi(yi) — mgbi) fi(yi)|dp(yr)dp(yz2)

Z Z()
<C’/ / = 2
X\EBIX\EB (g2, y1)+d(z,yz))é[gk(z,d(z,yﬁﬂQ

+ Ck|[by|
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d(z, 20)% [bi(ys) — mpbill fi(yi) ldps(ys)
SCZHI /X\QB Az, 0Nz, Az 30)

2 oo k6
s (b x6"2B) 1
<C 6o 5 bi(yi) — mzbil| fi(ys)|dp(y;
<]y /[, 3.5 85 15 6RO ) )~ matll i) ()

2 oo
1
<C'|| E 6k 7/
o - <M(5 X 6k63> Sp

1
<C’ 6_’“51M 7/ bi(yi) — m———(b;

, l/pi
\Mw—mymwwo

l/pi
—l—mN(b) m gb; | ldu(yz))

2
SCHZF*%mmm$mw

i=1 k=1
<Cl[ba[«][b2] [« Mp, (5) f1(2) Mp,,(5) f2 ().
where §1, 02 > 0 and 6, + o2 = 6.
Taking the mean over z, € B, we deduce
(2.26) Eag < Cl[ba]|4][ba] |« My, (5) f1 () Mp, (5) f2()-

So (2.14) can be obtain from (2.17) to (2.26).

Next we prove (2.15). Consider two balls B ¢ @ with x € B, where B is an
arbitrary ball and @ is a doubling ball. For any ball B, let N = Np o + 1, then we
obtain

ImpT((b1 — mgb1) f1, (b2 — mpba) f3)]

- mgT(b1 = mqh) . (02~ mahn) )|
<ImpT((b1 —mpb1) fixx\ev B (b2 — mpb2) faxx\6~ B)
(2.27) —mQT((b1 — mgb) fixx\e6~¥ B: (b2 — mpb2) faxx\6V )|
+ ImQT (b1 — m@b1) fixx\e~ s (b2 — M@b2) fax x\6~ B)
—m@T((br — mgb1) fixx\e~ B> (b2 — mpba) faxx\6~ B)|
+ [mpT((b1 — m§b1>f1X6NB\gBa (b2 — m§b2>f2XX\%B>‘
((

+mpT((br = mpb1) fixx\ e p» (b2 = mpb2) foxen g\ 5|



716 Rulong Xie, Huajun Gong and Xiaoyao Zhou

+ mQT((br = m@b1) fixgn g8+ (b2 = m@ba) faxx\6~ B)]
+[mQT ((br —m@bi) fixxsq» (b2 = m@b2) faXgy g 8o)|
= + Fy + F3 + Fy + F5 + Fs.
Using the method to estimate E44, We get
(2.28) Fy < CKg olby[+lb2l[+ My, (5) f1(2) My, (5) fo ().
Let us estimate F5. At first, we compute
T((b1 — me1>f1XX\6NB7 (b2 — me2>f2XX\6NB>(Z>
—T((b1 - m§b1>f1XX\6NB7 (b2 — m§b2)f2XX\6NB)(Z>
(2.29) =(mqbz — m§b2)T((b1 - me1>f1XX\6NB7 f2XX\6NB>(Z>
+ (mqby — m§b1>T(f1XX\6NB7 (b2 — me2>f2XX\6NB>(Z>
+ (m@b1 — mébl)(me2 - m§b2>T(f1XX\6NB7 f2XX\6NB>(Z>'
Hence
(2.30)

Fy <|[(mgbs — m§b2>@ /QT((bl — me1>f1XX\6NB7 f2XX\6NB>(Z>dM(Z>‘
+ | (mabi - mgba@ /Q T((Fixx\ov s (b2 — mabs) foxx v s) (2)du(2)]

1
+ ‘(mel_m§b1>(me2_m§b2>M/QT(fIXX\GNBafZXX\GNB>(Z>dﬂ(z>‘
=:F5 + Fos + Fhs.
To estimate Fy;, for 2Q c 6B, we write

T((b1 — me1>f1XX\6NB7 fZXX\GNB>(Z>
=T((b1 — mabi) f1, f2)(2) = T((by = mabi) fixer 5Xsqr f2x80) (%)

(2.31) ((b1 mel>f1XX\gQa foxen ) (2)
(b = moby) frxes s foxx 50) (2
T((br me1>f1X6NB\gQ7 f2X6NB\gQ>(Z)
::Hl(z) + Hy(z) + H3(z) + Ha(2) + Hs(2).

Let us estimate H;(z) firstly. Since

/\T 2 s ) (2)|dia(z) < OM, ) (bu, TV v, f2)(2)
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and by Holder’s inequality, we have
/ |(01(2) = m@(b1)T'(f1, £2)(2)|du(z) < Cllba||+ M 6) (T (f1, f2)) (),

then we obtain

ImQ(H1)| < [ma(T (b1 = b1(2) f1, f2))| + [m@((b1(2) — m@(b1))T(f1, f2))]

(232) < OMy () (b1, T1 1. f2)(@) + b1 1M (T (fr, £2) ().

1 1 1 1
For Hy(z), let r > 1 and 1 < s; < p; such that — = — + —. Denote — =
r S1 D2 59

1 1 . . . . .

— — —, using the fact of @ is a doubling ball, Kolmogorov’s inequality, Holder’s
51 p1

inequality and Lemma 2.4, we have

(2.33)
maUFa)| <CIHl, . g
1 51 Vo 1 D2 1/p2
sc(m /%Qubl—mel)m du(Z)) o /%Q\m (=)

1 S9 /e 1 1 i
SC(m /%Q\In — m@bi| dﬂ(z)) <m /%Q\fl\p dﬂ(@)

x (@ / \fzwmdm)l/m

<CI[br[+ M, (5)f1 () Mp,,(5) f2()-

For Hs, since z € @, by (i) of Definition 1.7, Lemma 2.1, Lemma 2.2, Holder’s
inequality and @ is a doubling ball, we deduce

1b1(y1) — m@bi|| f1(yo)|| f2(y2)|dp(yr)du(y2)
[Hale)l < € /NB /X\ Q 71 Az, d(z, y))))?

- [b1(y1) — mabi[f1(y1)]
<c [ Ihm)dn > / o GG e

37Q))?
= —km
(2.34) <c [ \nGmdate) >
x/ 1 1b1(y1) — mqbi|| f1(y1)|du(yr)
6k6Q A(Z, gT’Q> A( 6k— 1§ Q)

1

1
<C—r—— ) dp 6—Fm
= Az, 6rq) /N | F2(v2)ldulv: ; (2,5 x 6F8rg)
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X [/GkGQ 1b1(y1) — m@(bl)\\fl(yl)\du(yﬁ

. o - gl () du)|

652Q
1 o0
<(C—— d 6 hm
el ML)

1/p}

1 ’
X b — ——(b,)|P1d
|:<A(Z,5X 616%,,,(2) /Gk%Q‘ 1(y1> mGk% ( 1)‘ M(y1>)

1
) Pid 1/p1
(A(z,5x6kgm> /Gk%Q\Jﬂ(yl)\ w(y1))

1
k||b1]]« d
Mg gy g 00

1
SYET) /GNB | fa(y2)ldp(y2) b1 [« My, (5)f1 ()

< C|ba]|« My, 5y f1(2) My, (5) fo().

Then it yields

(2.35) Imq(Hs)| < C|[b1|[«M,, (5)f1(x) My, (5) f2().

In the similar way to estimate mq(H2), we also obtain

(2.36) ImQ(Ha)| + [mQ(Hs)| < C[|b1][«My, (5)f1(x) My, (5) fa().
From (2.8) in Lemma 2.2, we deduce
Fyy CKp o{[[b1][+1[b2][« My (6) (T (f1, f2)) ()
+ [[ba][« M, 6 ([b2, T](f1, f2)) (2
+ [[b2l[« My 6) ([b1, T](f1, £2))(
+ [[ba] <] b2l [ My, 5) 1 (2) My, (5 f2 () }-

F59 and Fy3 also have similar estimate of Fyq, therefore,

(2.37) )

2 scKB,Q{Hblu*ubzu*Mr@ (T, 2)(@)

+ 1]+ M, (6) ([b2, T1(f1, f2))(x)
+ [|b2l[ M. 6)([b1, T](f1, f2)) ()

; anm\bz\\*Mpl,@fl<x>Mp2,(5>f2<x>}.

(2.38)
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From F3 to Fg, using the similar method to estimate F;, we conclude
(2.39) Fy + Fy + Fs + Fg < C||ba][+]|bal[ My, (5)f1(2) M, (5) f2(2)-

Thus (2.15) holds from (2.27) to (2.39).
Next, let us show how to obtain (2.11) from (2.14) and (2.15). From (2.14), if B
is doubling ball and x € B, it follows that

Img(|[b1, b2, TV(f1, f2)]°) — [hs[°['/°

1 1/5

s(@ [ b1t 71 2(2) - hBPdu<z>)

<Clo |12l My ) (T (s £2))(@) + Cllballs My o (b2 T1( i £2)) (@)
- Ollball My (b1, TV, £2)) ()
+ Cba[«[b2] [« My, (5).f1(2) Mp, (5)f2(x)-

Also, for any ball B > = (B may be non-doubling), K , 5 < C. With the help of
(2.14), (2.15) and (2.40), then ’

(2.40)

; TR 5 . 1/5

(,u(GB) /B‘Hbl’b%T](fl,ﬁ)( )| gU[b1, b2, T](f1, f2)] )‘d,u( )>
1/6

<y J, 1ot 10 20N = (=)

1/6
- C(@/B 1h5l° = mz(T(f1, f2>|6>|du(z>>

1/5
w0 (i [ It~ st
<C [l 10170 (T 1))+ 0] 00 (o TV s 1) 0

(2.41)

+ 102« My (6) ([01, T](f1, f2)) (@) + [[ba]|«[|b2]|« My, (5) f1(2) M, (5) f2(2) |-

On the other hand, for all doubling balls B C Q with = € B such that Kz o < F,
where Py is the constant in Lemma 9.3 in [19], by (2.15), we get

|hp = hql < CPF (|[ball||b2] M, 6) (T (f1, f2)) (@)

+ 1]+ M, 6y ([b2, T](f1, f2))(x)
+ |62l M. (6)([b1, T](f1, f2)) ()

+ 161l |« |b2[+ My, (5)f1(2) My, (5) f2(2) |-

(2.42)



720 Rulong Xie, Huajun Gong and Xiaoyao Zhou

Therefore, by Lemma 2.7 in [14], it follows that
\hp = hql < CKp,q [|[ba] l«[|b2][+M; 6) (T (f1, f2)) (2)

+ b1l [+ M. () ([b2, T](f1, f2)) (@)
+ 1ba] [ My 6 ([b1, T](f1, f2)) ()

+ 161162+ My, (5) f1(2) My, (5) f2(2) |-
For all doubling balls B C @ with = € B and using (2.40) again, we obtain
ms(|[b1, b2, TY(fr, f2)I°) = ma(|[br, b2, TI(fr. fo)|*)°
<Clmp(|[b1, ba, T)(f1, f2)I°) = [hp|°['/°
+Clhgl’ = mq(|[b1, ba, T)(f1, f2)°)['/° + Cllhs|’ — [hgl’°
<C|mpl[by, b, T)(f1, f2)I° = |hs[’]"/°
+Cllhql® = mq(|[br, ba, TI(fr, f2)|")[V/° + Clhs — hq)

<SCKB.q|l1b1l+[b2][«My,6) (T (f1, f2)) ()

+ [[ba] [« My 6) ([b2, T](f1, f2)) ()
+ [[b2] [« My 6) ([b1, T](f1, f2)) ()

+ |01 |« |b2|[+ My, (5) f1(2) My, (5) f2() |-

Thus we obtain (2.11) from (2.41) and (2.44).
With the same method to prove (2.11), we also obtain that (2.12) and (2.13) also
hold. Here we omit the details. Thus Lemma 2.5 is proved. |

1 1 1
Proof of Theorem 1.11. Let 0 < § < 1/2, 1 < p1,p2,q < 00, — = — + —

p1 o po
1<r<gq, fi € LP(u), fo € LP2(u), by € RBMO(p) and by € RBMO( ). By

|f(z)| < Nsf(z), Lemma 2.1, Lemma 2.4, Lemma 2.5, Horder’s inequality and the
boundedness of M,y and M,. ) for p > 5 and ¢ > r, we obtain
[[[b1, b2, T)(f1: fo)llLaquy < [[Ns([by, b2, TV(f1s f2))ll Lagu)
<C|| M ([br, b2, TI(f1, f2)ll o
SCOY[ba] e[ b2 ||| 6) (T (f15 f2)) Il Ly
(2.45) + Clb1[[+][ M. 6)([b2, T](fr, f2))l Lo
+ Cllba[+][ M. 6)([b1, T](fr, f2))ll Lo
+ Cl[ba [+ [b2 [ ][ M, (5).f1(2) Mp,(5) f2(2) ] La(u
Clba[ Ll B2l < L1 (@) o1 | f2 (@) ] Lp2 )

(2.43)

(2.44)
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<+ Clba |4/ [([b2, T 1, £2))l o)
+ Cbal [+ (b1, (1, £2)] 2o
<Clbull b2l 2 (@) o1 (|| £2(2) o2 0
+ C[b ||| [ME (b, TN frs f2))l] Ly
+ Clbal 4| M ([b1, T1(fr, f2))]| Lo
<[[Ballel B2l £1 @) 2o ) | 2 () 220
+ C|lb | [bal [+ M 6)(T(f1, £2)) (@) Lagu
+ C[b ||+ [Bal [+ [ My, (5) f1 () My (5 f2 ()| a0
<C[ba]:/[Bal[4]1 1 @) ] 221 ()| f2 ()| o2 -

Thus the proof of Theorem 1.11 is completed. |
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