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ON THE UNIQUENESS PROBLEMS OF ENTIRE FUNCTIONS
AND THEIR DIFFERENCE OPERATORS

Huifang Liu* and Zhiqiang Mao*

Abstract. In this paper, the uniqueness problems of entire functions and their
difference operators are investigated. It is shown that if a finite order entire
function f shares 0, α CM with its difference operator Δηf(z) = f(z+η)−f(z),
then Δηf ≡ f , where α is an entire function with order less than f . The research
results also include a difference analogue of Brück conjecture, and extend some
results in Chen-Yi Results Math., 63 (2013), 557-565).

1. INTRODUCTION AND MAIN RESULTS

Let f(z) be a non-constant meromorphic function in the complex plane. We adopt
the standard notations in Nevanlinna’s value distribution theory of meromorphic func-
tions as explained in [7, 11, 16]. In addition, we use notations σ(f), λ(f) to denote
the order and the exponent of convergence of the sequence of zeros of f respectively. It
will be convenient to let E denote any set of finite logarithmic measure, not necessarily
the same at each occurrence.

Let f(z) and g(z) be two non-constant meromorphic functions, and let a be a
complex number in the extended plane. We say that f and g share a CM, provided that
f and g have the same a-points with the same multiplicities. Similarly, we say that f
and g share a IM, provided that f and g have the same a-points ignoring multiplicities.

Mues and Steinmetz [14] proved that if a non-constant entire function f shares two
distinct finite values IM with its derivative f ′, then f ≡ f ′. In general, this theorem is
false, if f and f ′ share only one value CM (see [16], p. 386). Especially, Brück posed
the well-known conjecture.
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Conjecture. [1]. Let f be a non-constant entire function of hyper-order σ2(f) <

∞, where σ2(f) is not a positive integer. If f and f ′ share one finite value a CM,
then f − a ≡ c(f ′ − a) for some nonzero constant.

The conjecture has been verified in the special cases when a = 0 or N (r, f ′ =
0) = S(r, f) ( see [1]), or when f is of finite order ( see [5], [15]). But the conjecture
is still an open question until now.

Recently, many authors [8, 9, 12] started to consider the uniqueness of meromorphic
functions sharing values with their shifts or their difference operators. Heittokangas et
al. proved the following result.

Theorem A. [8]. Let f be a meromorphic function of σ(f) < 2, and η be a
non-zero constant. If f(z) and f(z + η) share the finite value a and ∞ CM, then

f(z + η)− a

f(z) − a
= τ

for some constant τ .
In [8], Heittokangas et al. gave the example f(z) = ez2

+ 1 which shows that
σ(f) < 2 can’t be relaxed to σ(f) ≤ 2.

It is known that Δηf(z) = f(z+η)−f(z) is regarded as the difference counterpart
of f ′(z). Considering the difference analogue of the Brück conjecture, Chen and Yi
[2] obtained the following result.

Theorem B. [2]. Let f be a finite order transcendental entire function which has a
finite Borel exceptional value a, and let η be a constant such that f(z + η) �≡ f(z). If
f and Δηf share a CM, then

a = 0 and
f(z + η)− f(z)

f(z)
= c

for some non-zero constant c.
When the condition “f has a finite Borel exceptional value ” is omitted, They also

obtained the following result.

Theorem C. [2]. Let f be a transcendental entire function such that its order σ(f)
is not an integer or infinite, and let η be a constant such that f(z + η) �≡ f(z). If f
and Δηf share two distinct finite values a, b CM, then f ≡ Δηf .

Regarding Theorems B and C, it is natural to ask, what can be said if a non-constant
entire function f shares a small and finite order entire function α with Δηf? For the
case σ(α) < 1, Li and Yi obtained the following result.

Theorem D. [13]. Let f be a non-constant entire function of finite order, η be a
non-zero constant, and let α( �≡ 0) be an entire function such that σ(α) < 1 and
λ(f − α) < σ(f). Then f − α and Δn

ηf − α share 0 CM, if and only if

f(z) = α(z) + B(Δn
ηα(z) − α(z))eAz and Δ2n

η α(z) − Δn
ηα(z) ≡ 0,
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where A, B are nonzero constants and eAη = 1.
In this paper, we continue to investigate the above question and obtain the following

results, which extend Theorems B–D.

Theorem 1.1. Let f be a non-constant entire function of finite order, η be a
non-zero constant, and let α( �≡ 0) be an entire function such that σ(α) < σ(f) and
λ(f − α) < σ(f). If f and Δηf share α CM, then σ(f) = 1.

From Theorem 1.1 and Theorem D, we can obtain the following corollary.

Corollary 1.1. Let f, α satisfy the hypothesis of Theorem 1.1. If f and Δηf share
α CM, then

f(z) = α(z) + B(Δηα(z) − α(z))eAz and Δ2
ηα(z) − Δηα(z) ≡ 0,

where A, B are non-zero constants and eAη = 1.

Theorem 1.2. Let f be a non-constant entire function of finite order, η be a non-
zero constant, and let α( �≡ 0) be an entire function of σ(α) < σ(f). If f and Δηf
share 0, α CM, then f ≡ Δηf .

By Lemma 2.4, we know that if a finite order non-constant entire function f shares
0 CM with its difference operator Δηf , then σ(f) ≥ 1. This deduces σ(z) < σ(f).
Hence by Theorem 1.2, we obtain the following result.

Corollary 1.2. Let f be a non-constant entire function of finite order, and let η be
a non-zero constant. If f and Δηf share 0, z CM, then f ≡ Δηf .

2. LEMMAS

Lemma 2.1. [3]. Let f be a meromorphic function of finite order σ, η be a
non-zero constant. Let ε > 0 be given, then there exists a set E ⊂ (1,∞) of finite
logarithmic measure such that for all z satisfying |z| = r �∈ E

⋃
[0, 1], we have

exp{−rσ−1+ε} ≤
∣∣∣f(z + η)

f(z)

∣∣∣ ≤ exp{rσ−1+ε}.

Lemma 2.2. [16]. Let fj(j = 1, · · · , n + 1) and gj(j = 1, · · · , n) be entire
functions such that

(i)
n∑

j=1
fj(z)egj(z) ≡ fn+1(z),

(ii) The order of fj is less than the order of egk for 1 ≤ j ≤ n + 1, 1 ≤ k ≤ n;
And furthermore, the order of fj is less than the order of egh−gk for n ≥ 2 and
1 ≤ j ≤ n + 1, 1 ≤ h < k ≤ n.
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Then fj(z) ≡ 0(j = 1, · · ·n + 1).

Lemma 2.3. [4]. Let f be a meromorphic function with σ(f) < 1, η be a non-zero
constant. Then for any given ε > 0, and integers 0 ≤ j < k, there exists a set E ⊂
(1,∞) of finite logarithmic measure, such that for all z satisfying |z| = r �∈ E

⋃
[0, 1],

we have
∣∣∣Δ

k
ηf(z)

Δj
ηf(z)

∣∣∣ ≤ |z|(k−j)(σ(f)−1)+ε.

Lemma 2.4. Let f be a non-constant entire function of finite order and η be a
non-zero constant. If f and Δηf share 0 CM, then σ(f) ≥ 1.

Proof. Since f and Δηf share 0 CM, we have

(2.1)
Δηf

f
= eP ,

where P is a polynomial. If σ(f) < 1, by (2.1) and Lemma 2.3, for any given
ε(0 < ε < 1−σ(f)), there exists a set E ⊂ (1,∞) of finite logarithmic measure, such
that for all z satisfying |z| = r �∈ E

⋃
[0, 1], we have

|eP (z)| ≤
∣∣∣Δηf(z)

f(z)

∣∣∣ ≤ rσ(f)−1+ε → 0, (r → ∞).

This is a contradiction. So σ(f) ≥ 1.

Remark 2.1. The following examples show that the result in Lemma 2.4 is the best
possible.

Example 2.1. Let f(z) = ez, η = log 2, then f and Δηf share 0 CM. Here
σ(f) = 1.

Example 2.2. Let f(z) = sin z, η = π, then f and Δηf share 0 CM. Here
σ(f) = 1.

Lemma 2.5. [10]. Let ϕ(r) be a nondecreasing, continuous function on R
+, and

let 0 < ρ < limr→∞
logϕ(r)

log r and H = {r ∈ R
+ : |ϕ(r)| ≥ rρ}. Then

log densH = lim
r→∞

∫
H

⋂
[1,r]

1
t dt

log r
> 0.

Lemma 2.6. [3]. Let f be a transcendental meromorphic function of finite order,
and let η be a non-zero constant. Then

T (r, f(z + η)) = T (r, f(z)) + O(rσ(f)−1+ε) + O(log r)

as r → ∞, where ε is any given positive number.
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Lemma 2.7. [6]. Let f(z) be a transcendental meromorphic function of finite
order, k, j (k > j ≥ 0) be integers. Then for any given ε > 0, there exists a set
E ⊂ (1, +∞) of finite logarithmic measure, such that for all z satisfying |z| = r �∈
E

⋃
[0, 1], we have

∣∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣∣ ≤ |z|(k−j)(σ(f)−1+ε).

3. PROOFS OF THE RESULTS

Proof of Theorem 1.1. By the Hadamard factorization theorem and λ(f − α) <

σ(f), we get

(3.1) f(z) = α(z) + h(z)eP (z),

where h(z)( �≡ 0) is an entire function, P (z) is a polynomial such that

(3.2) σ(h) = λ(h) = λ(f − α) < σ(f) = deg P.

Since Δηf and f share α CM, we have

(3.3)
Δηf(z) − α(z)
f(z)− α(z)

= eQ(z),

where Q(z) is a polynomial. By (3.2) and (3.3), we get

(3.4) deg Q ≤ deg P.

Substituting (3.1) into (3.3), we have

(3.5) h(z + η)eP (z+η)−P (z) − h(z)eQ(z) − h(z) =
(
2α(z)− α(z + η)

)
e−P (z) .

Now we discuss the following two cases.

Case 1. 2α(z) − α(z + η) ≡ 0. If σ(α) < 1, then by Lemma 2.1, for any given
ε(0 < 2ε < 1 − σ(α)), there exists a set E ⊂ (1,∞) of finite logarithmic measure,
such that for all z satisfying |z| = r �∈ E

⋃
[0, 1], we have

2 =
∣∣∣α(z + η)

α(z)

∣∣∣ ≤ exp{rσ(α)−1+ε} → 0, (r → ∞).

This is a contradiction. Hence we have

(3.6) σ(α) ≥ 1.
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Next we discuss the following three subcases.

Subcase 1.1. 1 ≤ deg Q < deg P . By (3.5), we get

(3.7)
h(z + η)

h(z)
eP (z+η)−P (z) − 1 = eQ(z).

By (3.7), we know that h(z+η)
h(z) is a non-zero entire function. Then by Lemma 2.1,

for any given ε(0 < 2ε < deg P − σ(h)), there exists a set E ⊂ (1,∞) of finite
logarithmic measure, such that for all z satisfying |z| = r �∈ E

⋃
[0, 1], we have

(3.8)
∣∣∣h(z + η)

h(z)

∣∣∣ ≤ exp{rσ(h)−1+ε}.

Since h(z+η)
h(z) is an entire function, by (3.8), we get for all z satisfying |z| = r �∈

E2
⋃

[0, 1],

T
(
r,

h(z + η)
h(z)

)
= m

(
r,

h(z + η)
h(z)

)
≤ rσ(h)−1+ε.

Hence we get

(3.9) σ
(h(z + η)

h(z)

)
≤ σ(h)− 1 + ε < deg P − 1.

If deg Q < deg P − 1, since deg(P (z + η)− P (z)) = deg P − 1, by (3.8), we obtain
that the order of the left side of (3.7) is deg P−1, and the order of the right side of (3.7)
is deg Q, which is less than deg P −1. This is a contradiction. If deg Q = deg P −1,
by (3.9), we get

(3.10)
λ
(h(z + η)

h(z)
eP (z+η)−P (z)

)
= λ

(h(z + η)
h(z)

)
≤ σ

(h(z + η)
h(z)

)

< deg P − 1 = σ
(h(z + η)

h(z)
eP (z+η)−P (z)

)
.

By (3.10), we know that 0 is a Borel exceptional value of h(z+η)
h(z) eP (z+η)−P (z) . But by

(3.7), we know that 1 is also a Borel exceptional value of h(z+η)
h(z) eP (z+η)−P (z) . This

contradicts that h(z+η)
h(z) eP (z+η)−P (z) is an entire function.

Subcase 1.2. deg Q = deg P ≥ 1. By (3.7) and (3.9), we obtain that the order
of the left side of (3.7) is deg P − 1, and the order of the right side of (3.7) is deg P .
This is a contradiction.

Subcase 1.3. Q is a constant. Then by (3.7) we get
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(3.11)
h(z + η)

h(z)
eP (z+η)−P (z) = c + 1,

where c(= eQ) is a non-zero constant. Since h(z+η)
h(z) is a non-zero entire function, we

get c �= −1. If deg P > 1, then by (3.9) and deg(P (z + η)−P (z)) = deg P − 1 ≥ 1,
we know that σ

(
h(z+η)

h(z) eP (z+η)−P (z)
)
≥ 1, but σ(c + 1) = 0. This is a contradiction.

So deg P ≤ 1. Then combining (3.2) and (3.6), we get σ(f) ≤ σ(α). This contradicts
the hypothesis of Theorem 1.1.

Case 2. 2α(z)−α(z+η) �≡ 0. If deg Q < deg P , then by (3.2) we obtain that the
order of the left side of (3.5) is less than deg P , and the order of the right side of (3.5) is
deg P . This is a contradiction. Hence by (3.4) and (3.2), we get deg Q = deg P ≥ 1.
Set

P (z) = amzm + · · ·+ a0, Q(z) = bmzm + · · ·+ b0,

where am( �= 0), · · · , a0, bm( �= 0), · · · , b0 are constants, m ≥ 1 is an integer. Next we
discuss the following two subcases.

Subcase 2.1. am + bm �= 0. By (3.5), we get

(3.12)
(
2α(z) − α(z + η)

)
e−P (z) + h(z)eQ(z) = h(z + η)eP (z+η)−P (z) − h(z).

Since

deg(P (z + η)− P (z)) = m − 1, σ(h) < m, σ(α) < m,

we obtain that

σ(2α(z)− α(z + η)) < m, σ(h(z + η)eP (z+η)−P (z) − h(z)) < m.

Note that e−P (z), eQ(z) and eQ(z)+P (z) are of regular growth, by Lemma 2.2 and (3.12),
we obtain that

2α(z) − α(z + η) ≡ 0, h(z) ≡ 0.

This is absurd.

Subcase 2.2. am + bm = 0. By (3.12), we get

(3.13) e−P (z)
(
2α(z)−α(z +η)+h(z)eQ(z)+P (z)

)
= h(z +η)eP (z+η)−P (z) −h(z).

If 2α(z) − α(z + η) + h(z)eQ(z)+P (z) �≡ 0, then by

σ(α) < m, σ(h) < m, deg(P (z + η)− P (z)) = m − 1,
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we know that the order of the left side of (3.13) is m, and the order of the right side of
(3.13) is less than m. This is a contradiction. If 2α(z)−α(z+η)+h(z)eQ(z)+P (z) ≡ 0,
then by (3.13), we get

(3.14)
h(z + η)

h(z)
eP (z+η)−P (z) ≡ 1.

By (3.14), we know that h(z+η)
h(z)

is a non-zero entire function. Then using the same
argument as that of subcase 1.1, we get

σ
(h(z + η)

h(z)

)
< m − 1.

Since deg(P (z + η)− P (z)) = m − 1, we get

σ
(h(z + η)

h(z)
eP (z+η)−P (z)

)
= m − 1.

Then by (3.14), we get m = 1. Hence by (3.2) we get σ(f) = 1.

Proof of Theorem 1.2. Since Δηf and f share 0, α CM, we have

(3.15)
Δηf(z)
f(z)

= eP (z),

(3.16)
Δηf(z) − α(z)
f(z)− α(z)

= eQ(z),

where P (z), Q(z) are polynomials of degree max{deg P, deg Q} ≤ σ(f). By (3.15),
Lemma 2.1 and Lemma 2.4, for any given ε > 0, there exists a set E ⊂ (1,∞) of
finite logarithmic measure, such that for all z satisfying |z| = r �∈ E

⋃
[0, 1], we have

|eP (z)| ≤
∣∣∣f(z + η)

f(z)

∣∣∣ + 1 ≤ 2 exp{rσ(f)−1+ε}.

Hence we get

(3.17) deg P ≤ σ(f)− 1 < σ(f).

By (3.15) and (3.16), we get

(3.18) (eP − eQ)f = (1− eQ)α.

Now we discuss the following two cases.
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Case 1. deg Q < σ(f). If eP (z)−eQ(z) �≡ 0, by (3.17), we get σ(eP −eQ) < σ(f).
So σ((eP − eQ)f) = σ(f). But σ((1 − eQ)α) < σ(f). This is a contradiction. If
eP (z) − eQ(z) ≡ 0, by (3.18), we get eQ(z) ≡ 1. Then by (3.16), we get Δηf ≡ f .

Case 2. deg Q = σ(f). Then by (3.17), we get

(3.19) deg P ≤ deg Q − 1.

Differentiating (3.18) we get

(3.20) eP (P ′f + f ′) − eQ(Q′f + f ′ − Q′α − α′) − α′ = 0.

Set F = Δηf , then by (3.15), (3.16) and (3.20), we get

(3.21) (P ′−Q′)Ff +αQ′(F +f)+α′(F −f)−αFP ′ −αF
f ′

f
+αf ′−α2Q′ = 0.

By (3.15) we get

(3.22) F ′f − Ff ′ − fFP ′ = 0.

Then combining (3.21) and (3.22), we get

(3.23) (P ′ − Q′)Ff + αQ′(F + f) + α′(F − f) − α(F ′ − f ′) − α2Q′ = 0.

For any given ε(0 < 2ε < min{1, σ(f)− σ(α)}), let

H = {r : logM(r, f) ≥ rσ(f)−ε},

then by Lemma 2.5, we have log densH > 0. Hence for the point zr satisfying
|zr| = r ∈ H and |f(zr)| = M(r, f), we have

(3.24) |f(zr)| ≥ exp{rσ(f)−ε}.
By Lemma 2.6 and Lemma 2.7, for the above given ε > 0, there exists a set E ⊂ (1,∞)
of finite logarithmic measure, such that for all z satisfying |z| = r �∈ E

⋃
[0, 1], we

have

(3.25)
∣∣∣F

′(z)
F (z)

∣∣∣ ≤ rσ(f)−1+ε,
∣∣∣f

′(z)
f(z)

∣∣∣ ≤ rσ(f)−1+ε.

On the other hand, for the above given ε > 0, there exists r1 > 0, such that for all z

satisfying |z| = r > r1, we have
(3.26) |α(z)| ≤ exp{rσ(α)+ε}, |α′(z)| ≤ exp{rσ(α)+ε}, |α2(z)| ≤ exp{rσ(α)+ε},

(3.27) |e−P (z)| ≤ exp{rdegP+ε} ≤ exp{rσ(f)−1+ε},
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(3.28) |Q′(z)| ≤ rσ(f).

By (3.19), (3.23)–(3.28), for the point zr satisfying |zr| = r ∈ H − [0, 1] − E and
|f(zr)| = M(r, f), we have

0 < |P ′(zr)− Q′(zr)| ≤
(
|α(zr)||Q′(zr)| + |α′(zr)|

)( 1
|f(zr)| +

1
|F (zr)|

)

+ |α(zr)|
(∣∣∣F

′(zr)
F (zr)

∣∣∣ 1
|f(zr)| +

∣∣∣f
′(zr)

f(zr)

∣∣∣ 1
|F (zr)|

)

+ |α2(zr)||Q′(zr)| 1
|F (zr)||f(zr)|

≤ Mrσ(f) exp{rσ(α)+ε + rσ(f)−1+ε − rσ(f)−ε}
→ 0, (r → ∞),

where M > 0 is a constant. This is a contradiction.
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