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THE SHARP LOWER BOUND FOR THE SPECTRAL RADIUS OF
CONNECTED GRAPHS WITH THE INDEPENDENCE NUMBER

Ya-Lei Jin and Xiao-Dong Zhang

Abstract. In this paper, we investigate some properties of the Perron vector of
connected graphs. These results are used to characterize all extremal connected
graphs which attain the minimum value among the spectral radii of all connected
graphs with order n = kα and the independence number α. Moreover, all extremal
graphs which attain the maximum value among the spectral radii of clique trees
with order n = kα and the independence number α are characterized.

1. INTRODUCTION

Throughout this paper, we always consider simple graphs. LetG = (V (G), E(G))
be a simple graph with vertex set V (G) = {v1, . . . , vn} and edge set E(G). Let
A(G) = (aij) be the (0, 1) adjacency matrix of G with aij = 1 for vi ∼ vj and 0
otherwise, where “ ∼ ” stands for the adjacency relation. Let NG(v) be the neighbor
set of the vertex v. The characteristic polynomial of A(G) is denoted by ψ(G, x) or
ψ(G) for short. The largest eigenvalue of A(G) is called spectral radius of G, denoted
by λ(G). The independence number (also the stability number) of G, denoted by α(G),
is the cardinality of the maximal independent sets of G, where an independent set is
the subset of V (G) such that every pair vertices of this set are not adjacent.

A classical Turán [13] theorem for the independence number stated that the Turán
graph Tn,α which consists of α disjoint balanced cliques is the unique graph having
the minimum size among all graphs of order n and the independence number α. Since
the Turán graph is disconnected, Ore [10] raised a similar problem determining the
minimum number of edges among all connected graphs with order n and the indepen-
dence number α. Recently, this problem was settled independently by Bougard and
Joret [3], and by Gitler and Valencia [5]. In spectral extremal graph theory, Nikiforov
[8] presented the following result.
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Theorem 1.1. [8]. Let G be a simple graph with order n and the independence
number α. Then

λ(G) ≥ n

α
− 1

with equality if and only if n = kα and G is Turán graph.

Since the above equality holds only if G is disconnected, it may be interesting to
give a sharp lower bound for all connected graphs of order n with the independence
number α and characterize all extremal graphs. Recently, Xu et al. [14] characterized
all extremal graphs with the minimum spectral radius among all connected graphs of
order n and the independence number α = 1, 2, �n

2�, �
n
2 � + 1, n− 3, n− 2, or n − 1.

Du and Shi [4] proved the following results.

Theorem 1.2. [4]. Let G be a connected graph of order n = kα ≥ 108 with the
independence number α. If α = 3 or 4, then

λ(G) ≥ λ(Pn,α),

where graph Pn,α is obtained from a path of order α by replacing each vertex to a
clique of order k and has exactly 2α− 2 cut vertices.

Motivated by Theorem 1.2 and the related results, we study some properties of
the extremal graphs having the minimum spectral radius among all connected graphs
with the order n and the independence number α. Before stating our main results, we
need some notations. Let Gn,α be the set of all connected graphs of order n with the
independence number α and let Tn,α be the set of all clique trees of order n obtained
from a tree of order α by replacing each vertex to a clique of order �n

α� or �n
α�. A

graph G of order n with the independence number α and n ≥ 2α is called clique path,
denoted by Pn,α, if G is obtained from a path of order α by replacing each vertex to
a clique of order �n

α� or �n
α� such that there are exactly 2α− 2 cut vertices. A graph

G of order n with the independence number α is called clique star, denoted by Sn,α,
if G is obtained from star K1,α−1 by replacing each vertex to a clique of order �n

α�
or �n

α� such that there are exactly α cut vertices. Observe that there has exactly one
clique path and exactly one clique star in Gn,α for α|n, while there are many clique
paths and clique stars for α � n. Moreover, let

λn,α = min{ρ(G) : G ∈ Gn,α},

Λn,α = max{ρ(G) : G ∈ Tn,α}.
The main results of this paper are stated as follows.

Theorem 1.3. Fixed α. Then

lim
n→∞

λn,α

n
=

1
α
.
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Theorem 1.4. If n = kα and k > 17α+15
8 , then Pn,α is the only graph having the

minimum spectral radius in Gn,α. In other words, for any G ∈ Gn,α, λ(G) ≥ λ(Pn,α)
with equality if and only if G is Pn,α.

Theorem 1.5. If n = kα, then the clique star is the only graph having the maximum
spectral radius in Tn,α. In other words, for any G ∈ Tn,α, λ(G) ≤ λ(Sn,α) with
equality if and only if G is Sn,α.

Remark. Theorem 1.3 may be regarded as a spectral form of the well-known Erd"os-
Stone-Simonovits theorem [1], and Theorem 1.4 generalizes the result of Theorem 1.2.
The rest of this paper is organized as follows. In Section 2, we present the proof of
Theorem 1.3 and some relative results. In Sections 3 and 4, we present the proofs of
Theorems 1.4 and 1.5, respectively.

2. A SPECTRAL ERD "OS-STONE-SIMONOVITS TYPE THEOREM

In order to prove Theorem 1.3, we need the following lemmas.

Lemma 2.1. [4].

(1) Every nonbipartite triangle free graph of order n has at most 1+ (n−1)2

4 edges.
(2) If G is a Kr+1-free graph of order n with chromatic number at least r+ 1 > 2,

then |E(G)| ≤ (r−1)n2

2r − n
2r + 17

16 − 1
8r .

Lemma 2.2. [11]. If e = uv is a cut edge of G, then ψ(G) = ψ(G− e)−ψ(G−
u− v).

Lemma 2.3. [9]. An n × n nonnegative matrix T ∈ Rn×n is convergent, i.e.
λ(T ) < 1, if and only if (I − T )−1 exists and

(I − T )−1 =
∞∑

k=0

T k ≥ 0,

where λ(T ) is the spectral radius of T .

Lemma 2.4. If n = kα+ t, α > 1, then

λn,α ≤
{
k − 1 + 2

k−1 , t = 0,
k + 2

k , 1 ≤ t < α.

Proof. If t = 0, Pn,α is just as the following Fig.1.
Let A(Pn,α), D(Pn,α) be the adjacency matrix and degree diagonal matrix of

Pn,α. It is easy to see that A(Pn,α) and D(Pn,α)−1A(Pn,α)D(Pn,α) have the same
eigenvalues. If v ∈ V1 or Vα, then the sum of the row corresponding to v in
D(Pn,α)−1A(Pn,α)D(Pn,α) is at most max{k−1+ 1

k−1 ,
k−1
k (k−1)+1} = k−1+ 1

k−1 .



422 Ya-Lei Jin and Xiao-Dong Zhang

If v ∈ Vi and 2 ≤ i ≤ α− 1, then the sum of the row corresponding to v in the matrix
D(Pn,α)−1A(Pn,α)D(Pn,α) is at most max{k− 1 + 2

k−1 , k− 1 + 2
k} = k − 1 + 2

k−1 .
Hence λn,α < λ(Pn,α) < k − 1 + 2

k−1 . If 1 ≤ t < α, it is easy to see that Pn,α

is a subgraph of Pn+α−t,α. Hence λn,α ≤ λ(Pn,α) < λ(Pn+α−t,α) < k + 2
k , since

n+ α − t = (k + 1)α.

Fig. 1.

We are ready to prove Theorem 1.3.

Proof. Firstly we show that lim supn→∞
λn,α

n is 1
α . If n = kα, by the Lemma

2.4, λn,α < k − 1 + 2
k−1 , which implies

lim sup
n→∞

λn,α

n
≤ lim sup

n→∞

k − 1 + 2
k−1

n
=

1
α
.

If n = kα + t, 0 < t < α, by the Lemma 2.4, λn,α < k + 2
k , which implies

lim sup
n→∞

λn,α

n
≤ lim sup

n→∞
k + 2

k

n
=

1
α
.

Next we show that lim infni→∞
λn,α

n is also 1
α . Suppose

lim inf
n→∞

λn,α

n
=

1
α
− 2ε, 0 < 2ε ≤ 1

α
.

Then there exists an increasing sequence {ni}∞i=1, and a sequence of graphs {Gi}∞i=1,
where Gi is a graph of order ni with size mi such that λ(Gi) ≤ ( 1

α − ε)ni. Since
λ(Gi) ≥ 2mi

ni
, we have

|E(Gc
i)| ≥

ni(ni − 1)
2

− 1
2
(
1
α
− ε)n2

i

=
α− 1
2α

n2
i +

εn2
i

2
− ni

2

>
α− 1
2α

n2
i −

ni

2α
+

17
16

− k

8ni
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for large enough i. By Lemma 2.1, the chromatic number of Gc
i is at most α if i is large

enough. Then Gi contains a clique of order �ni
α �, which implies λ(Gi) > �ni

α � − 1.
Hence lim infni→∞

λ(Gi)
ni

≥ 1
α . It is a contradiction with λ(Gi) ≤ ( 1

α − ε)ni for all i.
So

lim inf
ni→∞

λn,α

n
=

1
α
.

This completes the proof.

Remark. It follows from Theorem 1.3 that a graph of order n = kα + t with
spectral radius λ(G) ≤ ( 1

α − ε)n for positive number ε > 0 has an independent set
with size at least α for large enough n. It is an interesting question to count how many
such independent sets? Denote by is(G) the number of s-independent set of G and
ks(G) for the number of s-clique of G. It is easy to see that ks(G) = is(Gc). Bollobás
and Nikiforov [2] gave a lower bound for kr+1(G) in terms of spectral radius.

Lemma 2.5. [2]. For any graph G of order n, and r > 1,

kr+1(G) ≥
(
λ(G)
n

− 1 +
1
r

)
r(r− 1)
r + 1

(n
r

)r+1
.

By using the above lemma, we present a lower bound for is(G).

Theorem 2.6. Let G be a simple graph of order n and α > 1 be an positive
integer. If λ(G) ≤ n

α , then

iα(G) ≥
(

1
α(α − 1)

− 1
n

)
(α− 1)(α− 2)

α

(
n

α− 1

)α

.

Proof. Since 2m(G)
n ≤ λ(G), we have m(G) ≤ n2

2α , which implies m(Gc) ≥
α−1
2α n2 − n

2 . So λ(Gc) ≥ α−1
α n− 1. By the Lemma 2.5, we can get

iα(G) = kα(Gc) ≥
(
α − 1
α

− 1
n
− 1 +

1
α − 1

)
(α− 1)(α− 2)

α

(
n

α− 1

)α

=
(

1
α(α − 1)

− 1
n

)
(α− 1)(α− 2)

α

(
n

α− 1

)α

.

This completes the proof.

Remark. It follows from Theorem 2.6 that is(G) is about O(nα) if λ(G) ≤ n
α .

3. PROOF OF THEOREMS 1.4 AND 1.5

In order to prove Theorems 1.4 and 1.5, we need some lemmas.
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Lemma 3.1. Let n = kα and k > 17α+15
8 . If a connected graph G has the

minimum spectra radius among all graphs in Gn,α, then G ∈ Tn,α.

Proof. By Lemma 2.4, λ(G) = λn,α ≤ k − 1 + 2
k−1 and G does not contain

Kk+1. Further, we claim that the chromatic number of Gc is α. Suppose that the
chromatic number of Gc is at least α+ 1. By Lemma 2.1,

|E(G)| ≥ n(n− 1)
2

− (α− 1)n2

2α
+

n

2α
− 17

16
+

1
8α

=
kn

2
− n− k

2
− 17

16
+

k

8n

=
(k − 1)n

2
+
k

2
− 17

16
+

k

8n
.

By k > 17α+15
8 , we have

λ(G) ≥ 2|E(G)|
n

≥ k − 1 +
1
α
− 17

8n
+

k

4n2
> k − 1 +

2
k − 1

.

Hence the chromatic number of Gc is α, i.e., Gc is an α-partite graph. Assume that
the parts of Gc are V1, V2, ..., Vα. Since G does not contain Kk+1 and n = kα, then
|V1| = |V2| = ... = |Vα| = k. Moreover, the induced subgraph in Gc by Vi

⋃
Vj

(i 
= j) is not completely bipartite, since G is connected. Note that the spectral radius
of a connected graph is an strictly increasing function with respect to adding an edge.
Hence G ∈ Tn,α.

Lemma 3.2. Let G be a non-bipartite connected graph of order n and x =
(x1, x2, ..., xn)T be the Perron vector of A(G). If σs(vi) is the number of the closed
walks of length s starting at vertex vi, i = 1, · · · , n, then

lim
s→∞

σs(vi)
σs(vj)

≥ 1

with equality if and only if xi = xj .

Proof. By spectral decomposition theorem, there exist normal eigenvectors
ξ2, · · · , ξn corresponding to eigenvalues λ2, · · · , λn such that

A = λ(A)xxT + λ2ξ2ξ
T
2 + ...+ λnξnξ

T
n .

Then
As = λ(A)sxxT + λs

2ξ2ξ
T
2 + ...+ λs

nξnξ
T
n .
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Let ei be the column vector whose i-th component is 1 and 0 otherwise, i = 1, . . . , n.
Then σs(vi) = eTi A

sei. Moreover λ(G) > |λi| for i = 2, . . . , n, since G is non-
bipartite and connected. Hence

lim
s→∞

σs(vi)
σs(vj)

= lim
s→∞

eTi A
sei

eTj A
sej

= lim
s→∞

eTi xx
T ei + λs

2
λ(A)s e

T
i ξ2ξ

T
2 ei + · · ·+ λs

n
λ(A)s e

T
i ξnξ

T
n ei

eTj xx
T ej + λs

2
λ(A)s eTj ξ2ξ

T
2 ej + · · ·+ λs

n
λ(A)s eTj ξnξ

T
n ej

=
x2

i

x2
j

.

This completes the proof.

Lemma 3.3. Let n = kα > 2α and G ∈ Tn,α be a graph obtained by joining an
edge from a non-cut vertex of a graph H ∈ Tn−k(l+p),α−(l+p) and a non-cut vertex
of Pk(l+p),l+p (see Fig.2). Let G′ be the graph obtained from G by deleting the edge
v3v4 and adding edge v1v4. If H has an induced subgraph Pkl,l containing v1, then
λ(G′) > λ(G).

Fig. 2.

Proof. Let x = (x(u), u ∈ V (G))T be the Perron vector of G ∈ T (n, α) and let
W(s, vi) be the set of all closed walks of length s starting at vi, i = 1, 2, 3. We claim
that there exists an injective mapping ϕ from W(s, v3) to W(s, v2). In fact, if W is a
closed walk of length s starting at v3 and containing v2, let ϕ(W ) = W and the starting
is the first time that v3 goes through v2. If W is a closed walk of length s starting at
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v3 and containing no v2, then there exists a corresponding closed walk W ′ = ϕ(W ) of
length s starting at v2 and containing no v3 in the subgraph Pk(2l+1),2l+1 in G, since we
can consider Pk(2l+1),2l+1 as symmetry on the middle which is an edge or some vertices.
Hence σs(v3) ≤ σs(v2). Similarly, there exists an injective mapping φ from W(s, v2)
to W(s, v1), which implies σs(v2) ≤ σs(v1). By Lemma 3.2, x(v3) ≤ x(v2) ≤ x(v1).
Hence λ(G) = xTA(G)x = xTA(G′)x − 2(x(v1) − x(v3))x(v4) ≤ xTA(G′)x ≤
λ(G′). Moreover, if λ(G) = λ(G′), then x(v1) = x(v3) and x is an eigenvector of
A(G′) corresponding to λ(G). It is a contradiction, since λ(G)x 
= A(G′)x. Therefore
λ(G) < λ(G′).

Lemma 3.4. Let n = kα > 2α and G ∈ Tn,α be a graph with two vertices
u and v which are in clique of order k. If u is adjacent with u1,u2,..., ut which
belong to t vertex disjoint clique paths Pkl1,l1 ,Pkl2,l2,..., Pklt,lt(t > 1) respectively,
and dG(u) − t = dG(v) = k − 1. Let G′ be the graph obtained from G by deleting
the edge u1u and adding edge u1v. Then λ(G′) < λ(G).

Proof. Let x be the Perron vector of A(G′), then x(u) ≤ x(v) or x(u) ≥ x(v).
If x(u) ≤ x(v), then deleting edges uu2, ..., uut and adding edges vu2, ..., vut get the
graph G, then λ(G) ≥ xTA(G)x ≥ xTA(G′)x = λ(G′) with equality if and only if x
is the eigenvector of A(G), but it is easy to see that x is not the eigenvector of A(G),
so λ(G′) < λ(G); If x(u) ≥ x(v), then deleting edges vu1 and adding edges uu1

get the graph G, then λ(G) ≥ xTA(G)x ≥ xTA(G′)x = λ(G′) with equality if and
only if x is an eigenvector of A(G) corresponding to λ(G). It is also easy to see that
x is not an eigenvector of A(G), which implies λ(G′) < λ(G). This completes the
proof.

Lemma 3.5. Let n = kα > 2α and Hp,l ∈ Tn,α be a graph obtained by joining
two edges from two non-cut vertices of a graph H ∈ Tn−k(l+p),α−(l+p) with a non-cut
vertex of Pkp,p and a non-cut vertex of Pkl,l, H 
= Kk and p ≥ l ≥ 1(see Fig.3). Then
ψ(Hp,l, x) < ψ(Hp+1,l−1, x) for x ≥ λ(Hp+1,l−1). Furhter λ(Hp,l) > λ(Hp+1,l−1).

Fig. 3.
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Proof. Let H1
p,l be the graph obtained from Hp,l by deleting the vertex vpk and

the edges incident with vpk, H2
p,l be the graph obtained from Hp,l by deleting the vertex

vl+p,k and the edges incident with vl+p,k in Hp,l and H3
p,l be the graph obtained from

Hp,l by deleting the vertices vpk and vl+p,k and the edges incident with them. Using
Lemma 2.2, we can get

ψ(Hp,l, x)− ψ(Hp+1,l−1, x) = ψ(Hp,l−1, x)ψ(Kk, x)− ψ(H2
p,l−1, x)ψ(Kk−1, x)

− ψ(Hp,l−1, x)ψ(Kk, x) + ψ(H1
p,l−1, x)ψ(Kk−1, x)(1)

= (ψ(H1
p,l−1, x)− ψ(H2

p,l−1, x))ψ(Kk−1, x).

Using Lemma 2.2 again, we have

(2)

ψ(H1
p,l−1, x)− ψ(H2

p,l−1, x)

= ψ(Hp−1,l−1, x)ψ(Kk−1, x)− ψ(H1
p−1,l−1, x)ψ(Kk−2, x)

s. − ψ(Hp,l−2, x)ψ(Kk−1, x) + ψ(H2
p,l−2, x)ψ(Kk−2, x)

= (ψ(Hp−1,l−2, x)ψ(Kk, x)− ψ(H2
p−1,l−2, x)ψ(Kk−1, x))ψ(Kk−1, x)

−(ψ(Hp−1,l−2, x)ψ(Kk, x)− ψ(H1
p−1,l−2, x)ψ(Kk−1, x))ψ(Kk−1, x)

−ψ(H1
p−1,l−2, x)ψ(Kk, x)ψ(Kk−2, x)

+ψ(H3
p−1,l−2, x)ψ(Kk−1, x)ψ(Kk−2, x)

+ψ(H2
p−1,l−2, x)ψ(Kk, x)ψ(Kk−2, x)

−ψ(H3
p−1,l−2, x)ψ(Kk−1, x)ψ(Kk−2, x)

= (ψ(H1
p−1,l−2, x)− ψ(H2

p−1,l−2, x))(ψ(Kk−1, x)2 − ψ(Kk−2, x)ψ(Kk, x))

= (ψ(H1
p−1,l−2, x)− ψ(H2

p−1,l−2, x))(x+ 1)2k−4.

For x ≥ λ(Hp+1,l−1), (x+ 1)2k−4 > 0 and ψ(Kk−1, x) > 0, since Kk−1 is a proper
subgraph of Hp+1,l−1. So, for x ≥ λ(Hp+1,l−1), ψ(Hp,l, x) − ψ(Hp+1,l−1, x) has
the same sign as ψ(H1

p,l−1, x)− ψ(H2
p,l−1, x), ψ(H1

p−1,l−2, x) − ψ(H2
p−1,l−2, x), ... ,

ψ(H1
p−l+1,0, x)− ψ(H2

p−l+1,0, x), by formula (1) and (2). In addition,

ψ(H1
p−l+1,0, x) = det(xI − A(H1

p−l+1,0)) = det

⎛
⎜⎜⎜⎝xI −

( v01

A1 B1

v01 BT
1 0

)⎞
⎟⎟⎟⎠ ,

ψ(H2
p−l+1,0, x) = det(xI − A(H2

p−l+1,0)) = det

⎛
⎜⎜⎜⎝xI −

(vp−l+1,k

vp−l+1,k 0 BT
2

B2 A1

)⎞
⎟⎟⎟⎠ ,
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where A1 is the adjacent matrix of the graph H ′ obtained from Hp−l+1,0 by deleting
the vertices v01, vp+1−l,k and the edges which are incident with them. Then

ψ(H1
p−l+1,0, x) = det(xI −A1)(x−BT

1 (xI −A1)−1B1),

ψ(H2
p−l+1,0, x) = det(xI −A1)(x−BT

2 (xI −A1)−1B2),

and ψ(H1
p−l+1,0, x)−ψ(H2

p−l+1,0, x) = det(xI−A1)(BT
2 (xI−A1)−1B2 −BT

1 (xI−
A1)−1B1). λ(Hp+1,l−1) > λ(H ′), since H ′ is a proper subgraph of Hp+1,l−1. Thus
(xI − A1)−1 = 1

x(I + A1
x + A2

1
x2 + A3

1
x3 + ...), for x ≥ λ(Hp+1,l−1), by using Lemma

2.3 and λ(Hp+1,l−1) > λ(H ′). It is sufficient to prove that BT
2 A

t
1B2 ≤ BT

1 A
t
1B1, t =

0, 1, 2, ... with at least one strictly inequality for some t. For t = 0, BT
2 B2 ≤ BT

1 B1

holds, since k − 1 = BT
2 B2 ≤ BT

1 B1; For t = 1, BT
2 A1B2 ≤ BT

1 A1B1 holds, since
(k − 1)(k − 2) = BT

2 A1B2 ≤ BT
1 A1B1; For t > 1, BT

2 A
t
1B2, B

T
1 A

t
1B1 ares the

number of walks in W2(t),W1(t), respectively, where W2(t),W1(t) are the sets of
walks of length t in H ′ from the vertices NHp+1−l,0

(vp+l−1,k) to NHp+1−l,0
(vp+l−1,k)

and from vertices NHp+1−l,0
(v01) to NHp+1−l,0

(v01), respectively. Hence BT
2 A

2
1B2 <

BT
1 A

2
1B1, since H 
= Kk. For t > 2, there exists a injective map ϕt from W2(t)

to W1(t). In fact, let W ∈ W2(t). If V (W ) ∩ V (H) = φ, then there exists a walk
W ′ in H ′[∪p−l+1

i=0 Vi − {v01, vp−l+1,k}] such that W ′ ∈ W1(t), since we can consider
the graph H ′[∪p−l+1

i=0 Vi − {v01, vp−l+1,k}] as symmetry on the middle which is an
edge or some vertices, and let ϕk(W ) = W ′. If V (W ) ∩ V (H) 
= φ, let W =
uP1vp−l+1,1P2v0kP3v0kP4vp−l+1,1P5v, where u, v ∈ NHp+1−l,0

(vp+l−1,k), V (P2) ∩
Vp−l+1 = φ, V (P2) ∩ V0 = φ, V (P4) ∩ Vp−l+1 = φ and V (P4) ∩ V0 = φ. Then there
is a walk W ′ = u′P ′

1v0kP3v0kP4vp−l+1,1P2v0kP
′
5v

′ such that ϕt(W ) = W ′ ∈ W1(t),
where P ′

1, P
′
5 are obtained by the symmetry of the graphH ′[∪p−l+1

i=0 Vi−{v01, vp−l+1,k}].
By the definition, ϕt is an injective map for t = 3, 4, · · · . Then ψ(H1

p−l+1,0, x) −
ψ(H2

p−l+1,0, x) < 0 for x ≥ λ(Hp+1,l−1). This completes the proof.

Corollary 3.6. Let n = kα > 2α and Hp,l ∈ Tn,α be a graph satisfied the
condition of Lemma 3.5. Then λ(Hp,l) > λ(Hp+l,0).

Proof. By Lemma 3.5, λ(Hp,l) > λ(Hp+1,l−1) > ... > λ(Hp+l,0).

Now we are ready to prove the Theorem 1.4.

Proof. It is sufficient to prove that Pn,α is the unique graph with the minimum
spectral radius in Tn,α. Suppose λ(G) = λn,α, by Lemma 3.1, G ∈ Tn,α. Next
consider the following cases to prove the assertion:

Case 1. If there are two vertices u and v each of which has at least two pendent
clique paths adjacent with. Suppose that u is adjacent with pendent clique paths P1,
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P2 and v is adjacent with pendent clique paths P3, P4. Let l1, l2, l3, l4 be the lengths
of the pendent clique paths P1, P2, P3, P4, respectively. Without loss of generality, let
l1 ≥ l3 ≥ l4. Then deleting the edge incident with P4 and v, and adding it to the end
of P3 get a new graph G′. By Lemma 3.3, λ(G) > λ(G′), which is a contradiction
with λ(G) = λn,α.

Case 2. If there is a vertex u which has at least two pendent clique paths adjacent
with, and there is not another vertex which has at least two pendent clique paths
adjacent with. Suppose that u is adjacent with pendent clique paths P1, P2,..., Pt.
Assume u is in the clique G1 the size of which is k. The degree of V (G1)\{u} is
k− 1, suppose v ∈ V (G1)\{u}. Then deleting some edge uw which is not in G1 and
adding edge vw gets the new graph G′. It is easy to see that G′ ∈ G(n, α). By Lemma
3.4, λ(G) > λ(G′), which contradicts with λ(G) = λn,α.

Case 3. If there is not a vertex which has at least two pendent clique paths adjacent
with. By Corollary 3.6, G must be a clique path.

By Cases 1, 2 and 3, the assertion holds. This completes the proof.

4. PROOF OF THEOREMS 1.5

Proof. Let G ∈ T (n, α) and x be the Perron vector of G. Then we consider the
following cases:

Case 1. There is a clique G1 of order k in G which has two vertices u and v
whose degrees are both larger than k. Without loss of generality, let x(u) ≥ x(v).
Then deleting the edges incident with wk not in G1 and adding them to u to get a
new graph G′, then λ(G′) ≥ xTA(G′)x ≥ xTA(G)x = λ(G), by Rayleigh quotient
principle, with equality holding if and only if x is the eigenvector of A(G′). It is easy
to see that x is not the eigenvector of A(G′), which implies λ(G′) > λ(G).

Case 2. For each clique G1 of order k in G, there is only one vertex in G1

whose degree is larger than k − 1. For any graph H , let E1(H) = {e = uv ∈
E(H)|d(u) > k, d(v) > k} and n(H) = |E1(H)|. Let uv ∈ E1(G), without loss
of generality, suppose x(u) ≥ x(v) and vu, vv1, ..., vvt are all the edges incident
with v which are not in any clique of order k. Then deleting the edges vv1, ..., vvt

and adding edges uv1, ..., uvt to get a new graph G′, obviously G′ ∈ T (n, α) and
λ(G′) ≥ xTA(G′)xT ≥ xTA(G)xT = λ(G) with equality holding if and only if x is
an eigenvector of A(G′). It is easy to find that x is not the eigenvector of A(G′), so
λ(G′) > λ(G) and n(G′) < n(G).

Since G ∈ T (n, α), then by Cases 1 and 2, it is easy to see that λ(G) ≤ λ(Sn,α)
with equality holding if and only if G = Sn,α.
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