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APPROXIMATE SOLUTIONS FOR CONTINUOUS-TIME QUADRATIC
FRACTIONAL PROGRAMMING PROBLEMS

Yung-Yih Lur, Wen-Hsien Ho, Tien-Hung Lu and Ching-Feng Wen*

Abstract. In this article, a hybrid of the parametric method and discretization
approach is proposed for a class of continuous-time quadratic fractional program-
ming problems (CQFP). This approach leads to an approximation algorithm that
solves the problem (CQFP) to any required accuracy. The analysis also shows
that we can predetermine the size of discretization such that the accuracy of the
corresponding approximate solution can be controlled within the predefined error
tolerance. Hence, the trade-off between the quality of the results and the simpli-
fication of the problem can be controlled by the decision maker. Moreover, we
prove the convergence of the searched sequence of approximate solutions.

1. INTRODUCTION

In this article, we shall pay our attention to a class of nonlinear optimal control
problems with linear state constraints. Such a problem is called the continuous-time
quadratic fractional programming problem (in short, the problem (CQFP)). The prob-
lem (CQFP), which will be defined in Section 2, is a generalization of the so-called
continuous-time linear programming problem (in short, the problem (CLP)). The theory
of the problem (CLP), which was originated from the “bottleneck problem” proposed
by Bellman [3], has received considerable attention for a long time. Tyndall [30, 31],
Levison [13] and Grinold [8] established strong duality results with varying algebraic
restrictions on the problem. Meidan and Perold [14], Papageorgiou [17] and Schechter
[26] have also obtained some interesting results of the problem (CLP). Anderson et al.
[1, 2], Fleischer and Sethuraman [6], Pullan [18, 19] and Wang et al. [32] investigated a
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subclass of continuous-time linear programming problem, which is called the separated
continuous-time linear programming problem and can be used to model the job-shop
scheduling problems. In addition, Weiss [33] proposed a simplex-like algorithm to
solve the separated continuous-time linear programming problem. Recently, Wen et al.
[38] developed a numerical method to solve the non-separated continuous-time linear
programming problem. On the other hand, the nonlinear type of continuous-time opti-
mization problems was also studied by Farr and Hanson [4, 5], Grinold [8, 9], Hanson
and Mond [12], Reiland [20, 21], Reiland and Hanson [22], Singh [27], Rojas-Medar
et al. [23], Singh and Farr [28] and Nobakhtian and Pouryayevali [15, 16].

The optimization problem in which the objective function appears as a ratio of two
real-valued function is known as a fractional programming problem. Due to its signif-
icance appearing in the information theory, stochastic programming and decomposition
algorithms for large linear systems, the various theoretical and computational issues
have received particular attention in the last decades. For more details on this topic,
we may refer to Stancu-Minasian [29] and Schaible [24, 25]. In the literature, a number
of optimality principles and duality models for fractional programming problems have
been extended to some continuous-time fractional programming problems, one can con-
sult Zalmai [42, 43, 44, 45]. However, in these works, the computational issues were
not addressed. Recently, Wen and Wu [40, 41], Wen et al. [37] and Wen [34, 35, 36]
have developed computational procedures by combining the parametric method and
discrete approximation method to solve some classes of continuous-time fractional pro-
gramming problems. To the limited knowledge of authors, the numerical methods for
solving the problem (CQFP) are not studied so far. In this paper, by extending the
methodology of [34], a hybrid of the parametric method and discretization approach is
proposed for the problem (CQFP). This approach leads to an approximation algorithm
that solves the problem (CQFP) to any required accuracy. The analysis also shows
that we can predetermine the size of discretization such that the accuracy of the corre-
sponding approximate solution can be controlled within the predefined error tolerance.
Hence, the trade-off between the quality of the results and the simplification of the
problem can be controlled by the decision maker. Moreover, we prove the convergence
of the searched sequence of approximate solutions to the problem (CQFP).

The rest of this paper is organized as follows. In Section 2, we propose the
auxiliary parametric quadratic problems, and establish many useful relations between
the parametric problems and the problem (CQFP), which will be a cornerstone for
designing a practical computational procedure. In Section 3, we propose a discrete
approximation method for solving the auxiliary parametric quadratic problems. In
Section 4, by using the different step sizes of discretization problems, we construct a
sequence of continuous and strictly decreasing upper and lower bound functions with
the unique zeros, respectively. Then, in Section 5, we use the zeros to determine a
sequence of intervals which will shrink to the optimal value of the problem (CQFP) as
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the size of discretization getting larger. Besides, we establish upper bounds of lengths
of these intervals. Especially, we can predetermine the size of discretization such that
the accuracy of the corresponding approximate solution to the problem (CQFP) can be
controlled within the predefined error tolerance. Thereby, a practical approximation
algorithm is proposed. Moreover, we prove the convergence of the searched sequence
of approximate solutions to the problem (CQFP) in Section 6. The paper ends with
conclusions in Section 7.

2. PARAMETRIC CONTINUOUS-TIME QUADRATIC PROGRAMMING PROBLEMS

Given p, q ∈ N. Let L∞([0, T ], R
p) be the space of all measurable and essentially

bounded functions from a time space [0, T ] into the p-dimensional Euclidean space R
p

and let C([0, T ], Rp) be the space of all continuous functions from [0, T ] into the Rp.
The problem (CQFP) is formulated as follows:

(CQFP) maximize
μ +

∫ T

0

{
1/2 x(t)�D(t) x(t) + f(t)�x(t)

}
dt

ξ +
∫ T

0

{
1/2 x(t)�E(t) x(t) + h(t)�x(t)

}
dt

subject to Bx(t) ≤ g(t) +
∫ t

0
Kx(s)ds for all t ∈ [0, T ]

x(t) ∈ L∞([0, T ], R
q
+),

where

• x(t) is the decision variable, T > 0 is a given time horizon, and the superscript
“�” denotes the transpose operation of matrices.

• B and K are p × q matrices, g ∈ C([0, T ], R
p
+) and R

p
+ = {(x1, · · · , xp)� :

xi ≥ 0 for i = 1, · · · , p}.
• D(t) = [ dij(t) ]q×q is a symmetric negative semi-definite matrix with dij(t) ∈

C([0, T ], R), f ∈ C([0, T ], R
q) and μ ∈ R+; E(t) = [ eij(t) ]q×q is a symmetric

positive semi-definite matrix with eij(t) ∈ C([0, T ], R), h ∈ C([0, T ], R
q
+) and

ξ > 0.

We also assume that B = [Bij]p×q and K = [Kij]p×q are p × q constant matrices
satisfying

• Kij ≥ 0 for all i = 1, · · · , p and j = 1, · · · , q;

• Bij ≥ 0 and
∑p

i=1 Bij > 0 for all i = 1, · · · , p and j = 1, · · · , q.
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Let us write

(1) λ =
μ +

∫ T

0

{
1/2 x(t)�D(t) x(t) + f(t)�x(t))

}
dt

ξ +
∫ T

0

{
1/2 x(t)�E(t) x(t) + h(t)�x(t)

}
dt

,

(2) Θ(λ)(t) = [ θ(λ)
ij (t) ]q×q = D(t)− λ E(t)

and

(3) a(λ)(t) = f(t)− λ h(t).

It is not difficult to see that the problem (CQFP) is equivalent to the following
continuous-time optimization problem:

(CP) max λ

subject to μ−λξ+
∫ T

0

{
1/2 x(t)�Θ(λ)(t) x(t)+a(λ)(t)�x(t)

}
dt=0

Bx(t) ≤ g(t) +
∫ t

0
Kx(s)ds for all t ∈ [0, T ]

x(t) ∈ L∞([0, T ], R
q
+) and λ ∈ R.

That is, if x(t) is feasible for the problem (CQFP) then (x(t), λ) is feasible for the
problem (CP), where λ is defined as in (1). Conversely, if (x(t), λ) is feasible for the
problem (CP) then x(t) is feasible for the problem (CQFP) with the objective value λ.

Remark 2.1. When we say that (x∗, λ∗) is an optimal solution of (CP), it means
that the optimal objective value of (CP) is λ∗. However, when we say that the optimal
objective value of (CP) is λ∗, it does not necessary say that the problem (CP) has
an optimal solution (x∗, λ∗), and it just means that the optimal objective value λ∗ is
obtained by taking the supremum.

For convenience, given any optimization problem (P), we denote by V (P) the
optimal objective value of the problem (P); that is, V (P) will be obtained by taking the
supremum or infimum. In the sequel, we propose an auxiliary problem associated with
the problem (CP) which will be proposed and formulated as the parametric continuous-
time quadratic programming problem.

Given λ ≥ 0, we consider the following continuous-time quadratic programming
problem (in short, the problem (CQPλ)):
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(CQPλ) maximize μ− λξ +
∫ T

0

{
1/2 x(t)�Θ(λ)(t) x(t) + a(λ)(t)�x(t)

}
dt

subject to Bx(t) ≤ g(t) +
∫ t

0
Kx(s)ds for all t ∈ [0, T ]

x(t) ∈ L∞([0, T ], R
q
+).

In the literature, the duality theorems of this kind of problems have already been
established by Hanson [11] and Gogia and Gupta [10]. Based on these works, Wen
et al. [39] provided an extended duality theorem and constructed a numerical solutions
method. The numerical solutions method will be utilized to solve the problem (CQPλ).

According to Wen et al. [39], the dual problem (DCQPλ) of (CQPλ) can be defined
as follows:

(DCQPλ) minimize μ−λξ+
∫ T

0

{
−1/2 u(t)�Θ(λ)(t)u(t)+g(t)�w(t)

}
dt

subject to B�w(t)−
∫ T

t

K�w(s)ds≥Θ(λ)(t)u(t)+a(λ)(t) for t∈ [0, T ],

w(·) ∈ L∞([0, T ], Rp
+) and u(·) ∈ L∞([0, T ], R

q).

Since Θ(λ)(t) is symmetric negative semi-definite for all λ ≥ 0, by the same arguments
given in Wen et al. [39], the weak and strong duality properties can be realized below.

Theorem 2.1. (Weak Duality between (CQPλ) and (DCQPλ)). Let λ ≥ 0. Consid-
ering the primal-dual pair problems (CQPλ) and (DCQPλ), for any feasible solutions
x(0)(t) and (u(0)(t), w(0)(t)) of problems (CQPλ) and (DCQPλ), respectively, we
have

μ− λξ +
∫ T

0
{1/2 x(0)(t)�Θ(λ)(t)x(0)(t) + a(λ)(t)�x(0)(t)}dt

≤ μ− λξ +
∫ T

0
{−1/2 u(0)(t)�Θ(λ)(t)u(0)(t) + g(t)�w(0)(t)}dt;

that is, V (CQPλ) ≤ V (DCQPλ).

Theorem 2.2. (Strong Duality between (CQPλ) and (DCQPλ)). Let λ ≥ 0. There
exist optimal solutions x̄(λ)(t) and (ū(λ)(t), w̄(λ)(t)) of the primal-dual pair problems
(CQPλ) and (DCQPλ), respectively, such that x̄(λ)(t) = ū(λ)(t) and

μ− λξ +
∫ T

0

{
1/2 x̄(λ)(t)

�
Θ(λ)(t) x̄(λ)(t) + a(λ)(t)

�
x̄(λ)(t)

}
dt

= μ− λξ +
∫ T

0

{
−1/2 ū(λ)(t)

�
Θ(λ)(t) ū(λ)(t) + g(t)�w̄(λ)(t)

}
dt;

that is, V (CQPλ) = V (DCQPλ).
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In order to realize the relations between the problem (CP) and the problem (CQPλ),
we define a function F : R+ → R by F (λ) = V (CQPλ) for all λ ≥ 0. Using the
solvability of the problem (CQPλ) and by a similar argument with [29, Theorem 4.5.2],
we can obtain the following results.

Proposition 2.1. The following statements hold true.

(i) The real-valued function F (λ) is convex, hence is continuous.
(ii) If λ1 < λ2, then F (λ1) > F (λ2); that is, the real-valued function F (·) is strictly

decreasing.

Many useful relations between (CQPλ) and (CP) are given below. We omit the
proof.

Proposition 2.2. The following statements hold true.

(i) Given any λ ≥ 0, then F (λ) > 0 if and only if λ < V (CP). Equivalently,
F (λ) ≤ 0 if and only if λ ≥ V (CP).

(ii) Suppose that (x̄(t), λ∗) is an optimal solution of (CP) with V (CP) = λ∗. Then
x̄(t) is an optimal solution of (CQPλ∗) with V (CQPλ∗) = 0; that is F (λ∗) = 0.

(iii) If there exists a λ∗ ≥ 0 such that F (λ∗) = 0, then the optimal solution of the
problem (CQPλ∗) is also an optimal solution of (CQFP) and V (CQFP) = λ∗.

By the above propositions, it can be shown that the problem (CQFP) is solvable.
Let 1 = (1, 1, · · · , 1)� ∈ R

p and

ρ̂ := max
j=1,··· ,q

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p∑
i=1

Kij

p∑
i=1

Bij

,
maxt∈[0,T ] fj(t)

p∑
i=1

Bij

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ≥ 0.

We define w�(t) = ρ̂ eρ̂(T−t)1 for all t ∈ [0, T ] and

(4) η� =
1
ξ

{
μ +

∫ T

0

g(t)�w�(t)dt

}
≥ 0.

Corollary 2.1. There exists a unique λ∗ in the closed interval [μ/ξ, η�] such that
F (λ∗) = 0. That is,

• μ
ξ ≤ V (CQFP) ≤ η�, and

• if x̄(λ∗)(t) is an optimal solution of the problem (CQPλ∗), then it is also an
optimal solution of the problem (CQFP).
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Proof. It is obvious that for all λ ∈ R+ the problem (CQPλ) is feasible with the
trivial feasible solution 0(t) = 0 for all t ∈ [0, T ]. Hence,

F (
μ

ξ
) = V (CQPμ

ξ
) ≥ μ−μ

ξ
·ξ+

∫ T

0

{
1/2 · 0(t)�Θ(λ)(t) 0(t) + a(λ)(t)�0(t)

}
dt = 0.

On the other hand, we claim that (0(t), w�(t)) is feasible for (DCQPλ) for all λ ≥ 0.
To see this, it is obvious that w�(t) ≥ 0. By the definition of ρ̂, ρ̂B�1 ≥ K�1 and
for λ ≥ 0 we have

ρ̂B�1 ≥ Θ(λ)(t)0(t) + a(λ)(t) for t ∈ [0, T ],

it follows that

B�w�(t)−
∫ T

t
K�w�(s)ds

= ρ̂eρ̂(T−t)B�1−
∫ T

t
ρ̂eρ̂(T−s)dsK�1

= ρ̂eρ̂(T−t)B�1 + K�1− eρ̂(T−t)K�1

= eρ̂(T−t)(ρ̂B −K)�1 + K�1

≥ (ρ̂B −K)�1 + K�1 = ρ̂B�1

≥ Θ(λ)(t)0(t) + a(λ)(t) for t ∈ [0, T ]

and our claim is valid. Thus, by the definition of η� we have

F (η�) = V (DCQPη�) ≤ μ− η�ξ +
∫ T

0
g(t)�w�(t)dt = 0.

Therefore,F (η�)≤0≤F (μ
ξ ) and the corollary follows byPropositions 2.1 and 2.2.

From the above discussions, it follows that solving the problem (CQFP) is equiva-
lent to determine the unique root of the nonlinear equation F (λ) = 0. However, it is
notoriously difficult to find the exact solution of every (CQPλ). In the next section,
given a λ in the closed interval [μ/ξ, η�], we shall utilize the discrete approximation
procedure developed by Wen et al. [39] to find the approximate value of F (λ) and to
estimate its error bound.

3. APPROXIMATE SOLUTIONS TO THE PROBLEM (CQPλ)

Given λ ∈ [μ/ξ, η�]. For each n ∈ N, we take

Pn =
{

0,
T

n
,
2T

n
, · · · , (n− 1)T

n
, T

}
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as a partition of [0, T ], which divides [0, T ] into n subintervals with equal length T/n.
For l = 1, · · · , n, we define

(5) Θ(λ,n,l) =
[
θ
(λ,n,l)
ij

]
q×q

,

(6) a(λ,n)
l =

(
a

(λ,n)
1l , a

(λ,n)
2l , · · · , a(λ,n)

ql

)� ∈ R
q

and

(7) b(n)
l =

(
b
(n)
1l , b

(n)
2l , · · · , b(n)

pl

)� ∈ R
p
+,

where

(8)
θ
(λ,n,l)
ij = min

{
θ
(λ)
ij (t) : t ∈

[
l− 1

n
T,

l

n
T

]}
= min

{
dij(t)− λ · eij(t) : t ∈

[
l − 1

n
T,

l

n
T

]}
,

(9)
a

(λ,n)
jl = min

{
fj(t)− λhj(t) : t ∈

[
(l − 1)T

n
,
lT

n

]}
for j = 1, · · · , q and l = 1, · · · , n

and

(10) b
(n)
il = min

{
gi(t) : t ∈

[
(l− 1)T

n
,
lT

n

]}
for i = 1, · · · , p and l = 1, · · · , n.

We note that, since the parameter λ is nonnegative, the constant matrix Θ(λ,n,l) is
symmetric negative semi-definite for all n and l.

From Wen et al. [39], the discrete version of the problem (CQPλ) can be defined
as the following finite-dimensional quadratic programming problem

(Q(λ)
n ) maximize μ− λξ +

T

n

n∑
l=1

{
1/2 x�

l Θ(λ,n,l) xl + (a(λ,n)
l )�xl

}

subject to Bxl − T

n
K

l−1∑
r=1

xr ≤ b(n)
l for l = 1, · · · , n

xl ∈ R
q
+ for l = 1, · · · , n,
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where, the “empty sum”
∑0

l=1 xl is defined to be the zero vector. The dual problem
(DQ(λ)

n ) of (Q(λ)
n ) is defined by

(11)

(DQ(λ)
n ) minimize μ− λξ +

T

n

n∑
l=1

{
−1/2 u�

l Θ(λ,n,l)ul + (b(n)
l )�wl

}
subject to B�wl − T

n
K�

n∑
r=l+1

wr ≥ Θ(λ,n,l)ul + a(λ,n)
l

for l = 1, 2, · · · , n
wl ∈ R

p
+ for l = 1, · · · , n and

ul ∈ R
q for l = 1, · · · , n,

where the “empty sum”
∑n

l=n+1 yl is defined to be the zero vector.
The duality properties between (Q(λ)

n ) and (DQ(λ)
n ) can be established, one can

refer to [39].

Proposition 3.1. Let x(n) = (x1, · · · , xn) and (u(n), w(n)) with u(n) = (u1, · · · , un)
and w(n) = (w1, · · · , wn) be feasible solutions of (Q(λ)

n ) and (DQ(λ)
n ), respectively.

Then

μ− λξ +
T

n

n∑
l=1

{1/2 x�
l Θ(λ,n,l)xl + (a(λ,n)

l )�xl}

≤ μ− λξ +
T

n

n∑
l=1

{−1/2 u�
l Θ(λ,n,l)ul + (b(n)

l )�wl}.

That is, V (Q(λ)
n ) ≤ V (DQ(λ)

n ).

Proposition 3.2. There exist a feasible solution x̄ = (x̄1, · · · , x̄n) of primal
problem (Q(λ)

n ) and a feasible solution (ū, w̄) of dual problem (DQ(λ)
n ) with ū =

(ū1, · · · , ūn) and w̄ = (w̄1, · · · , w̄n) such that x̄ = ū and

μ− λξ +
T

n

n∑
l=1

{1/2 x̄�
l Θ(λ,n,l)x̄l + (a(λ,n)

l )�x̄l}

= μ− λξ +
T

n

n∑
l=1

{−1/2 ū�
l Θ(λ,n,l)ūl + (b(n)

l )�w̄l}.

That is, x̄ and (ū, w̄) are optimal solutions of problems (Q(λ)
n ) and (DQ(λ)

n ), respec-
tively.

By straightforward modifications of Lemma 3.1 and Lemma 3.2 in [39], we can
see the boundedness of optimal solutions to the problems (Q(λ)

n ) and (DQ(λ)
n ). To see

this, let

(12) σ = min{Bij : Bij > 0} ,
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(13) ν = max
j=1,··· ,q

{
p∑

i=1

Kij

}
,

(14) ζ = max {gi(t) : i = 1, · · · , p and t ∈ [0, T ]} ,

(15) τ(λ) = max
j=1,··· ,q

max
t∈[0,T ]

max { fj(t)− λhj(t), 0 } ,

(16) π(λ) = max
i=1,··· ,q

max
j=1,··· ,q

max
t∈[0,T ]

{dij(t)− λ eij(t), 0},

(17) M1 =
qζ

σ
· exp

(
qνT

σ

)
and

(18) M2(λ) =
1
σ
{M1 π(λ) + τ(λ)} exp

(
νT

σ

)
.

Lemma 3.1. Given any n ∈ N, if (x(λ,n)
1 , x(λ,n)

2 , · · · , x(λ,n)
n ) is a feasible solution

of the primal problem (Q(λ)
n ), where x(λ,n)

l = (x(λ,n)
1l , x

(λ,n)
2l , · · · , x(λ,n)

ql )� ∈ R
q
+, then

(19) 0 ≤ x
(λ,n)
jl ≤ M1

q
for all j = 1, · · · , q and l = 1, · · · , n

and

(20) μ− λξ ≤ V (Q(λ)
n ) ≤ μ− λξ + M1τ(λ)T.

This says that the feasible sets of the problems (Q(λ)
n ) are uniformly bounded in the

sense that the bounds of x
(λ,n)
jl are independent of n and λ.

Lemma 3.2. The dual problem (DQ(λ)
n ) has an optimal solution (ũ(λ,n), ŵ(λ,n))

with ŵ(λ,n) = (ŵ(λ,n)
1 , · · · , ŵ(λ,n)

n ) such that ũ(λ,n) is also an optimal solution of
(Q(λ)

n ) and

(21) 0 ≤ ŵ
(λ,n)
il ≤M2(λ)

for all i = 1, · · · , p and l = 1, · · · , n. Moreover, we have

(22) μ− λξ ≤ V (DQ(λ)
n ) ≤ μ− λξ +

(
1
2
π(λ) M2

1 + p ζ M2(λ)
)

T.
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Besides, the optimal solutions of the problems (Q(λ)
n ) and (DQ(λ)

n ) can be utilized to
construct the feasible solutions of the problems (CQPλ) and (DCQPλ), respectively. To
see this, let x̄(λ,n) = (x̄(λ,n)

1 , x̄(λ,n)
2 , · · · , x̄(λ,n)

n ), where x̄(λ,n)
l = (x̄(λ,n)

1l , · · · , x̄(λ,n)
pl )�

for l = 1, · · · , n, be an optimal solution of the problem (Q(λ)
n ); and let (x̄(λ,n), w̄(λ,n))

be an optimal solution of dual problem (DQ(λ)
n ), where w̄(λ,n) = (w̄(λ,n)

1 , · · · , w̄(λ,n)
n )

and w̄(λ,n)
l = (w̄(λ,n)

1l , · · · , w̄(λ,n)
pl )� for l = 1, · · · , n, such that Lemma 3.2 holds true.

For j = 1, · · · , q, we define the step functions x̄
(λ,n)
j : [0, T ]→ R as follows:

(23) x̄
(λ,n)
j (t) =

⎧⎨⎩ x̄
(λ,n)
jl , if

(l− 1)T
n

≤ t <
lT

n

x̄
(λ,n)
jn , if t = T,

where l = 1, · · · , n. Then we can form a vector-valued function x̄(λ,n) : [0, T ]→ Rq

by
(24) x̄(λ,n)(t) =

(
x̄

(λ,n)
1 (t), x̄(λ,n)

2 (t), · · · , x̄(λ,n)
q (t)

)�
.

In this case, we say that x̄(λ,n)(t) is a natural solution of (CQPλ) constructed from
x̄(λ,n).

In order to construct a feasible solution of the problem (DCQPλ) by virtue of
(x̄(λ,n), w̄(λ,n)), we need some notations. For i = 1, · · · , p and j = 1, · · · , q, we
define the step functions as follows

(25) a
(λ,n)
j (t) =

⎧⎨⎩ a
(λ,n)
jl , if

(l− 1)T
n

≤ t <
lT

n

a
(λ,n)
jn , if t = T

and

(26) g
(n)
i (t) =

⎧⎨⎩ b
(n)
il , if

(l− 1)T
n

≤ t <
lT

n

b
(n)
in , if t = T ,

where l = 1, · · · , n, and a
(λ,n)
jl and b

(n)
il are defined in (9) and (10), respectively.

We also define the function Θ(λ,n) : [0, T ] �→ R
q×q by

Θ(λ,n)(t) =
[
θ
(λ,n)
ij (t)

]
q×q

,

where

(27) θ
(λ,n)
ij (t) =

⎧⎨⎩ θ
(λ,n,l)
ij , if t ∈ [ l−1

n T, l
nT ) for some 1 ≤ l ≤ n,

θ
(λ,n,n)
ij , if t = T

and θ
(λ,n,l)
ij is defined in (8).



1802 Yung-Yih Lur, Wen-Hsien Ho, Tien-Hung Lu and Ching-Feng Wen

Remark 3.1. Since each fj(t)−λ hj(t) is continuous on the compact interval [0, T ]
for j = 1, · · · , q, it follows that each fj(t) − λ hj(t) is also uniformly continuous
on the compact interval [0, T ] for all j. Therefore, the sequence of step functions
{a(λ,n)

j (t)}∞n=1 converges to fj(t)− λ hj(t) on [0, T ] for all j. Similarly, we can also
conclude that the sequence of step functions {θ(λ,n)

ij (t)}∞n=1 converges to θ
(λ)
ij (t) on

[0, T ] for all i, j, and the sequence {g(n)
i (t)}∞n=1 converges to gi(t) on [0, T ] for all i.

For further discussion, we also adopt the following notations:

(28)
εn(λ) = max

j=1,··· ,q
sup

t∈[0,T ]

{
fj(t)− λhj(t)− a

(n,λ)
j (t)

}
+M1 max

i=1,··· ,q
max

j=1,··· ,q
sup

t∈[0,T ]

{
θ
(λ)
ij (t)− θ

(λ,n)
ij (t)

}
,

ε̄n = max
i=1,··· ,p

sup
t∈[0,T ]

{
gi(t)− g

(n)
i (t)

}
(29)

δn(λ) = max
i=1,··· ,p

max
l=1,··· ,n

{
T

n
w̄

(λ,n)
il

}
.(30)

By Remark 3.1 and Lemma 3.2, we see that for all λ ≥ 0,

εn(λ)→ 0, ε̄n → 0, and δn(λ)→ 0, as n→∞.

Now, we are going to construct a feasible solution of the problem (DCQPλ) by
virtue of (x̄(λ,n), w̄(λ,n)). We define a function ŵ(λ,n)(t) : [0, T ] �→ Rp as follows:

(31) ŵ(λ,n)(t) = w̄(λ,n)
l + δn(λ)ρeρ(T−t)1 for t ∈

[
l − 1

n
T,

l

n
T

)
and

ŵ(λ,n)(T ) = w̄(λ,n)
n + δn(λ)ρ1,

where 1 = (1, 1, · · · , 1)� ∈ R
p and

(32) ρ = max
j=1,··· ,q

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p∑
i=1

Kij

p∑
i=1

Bij

,
1

p∑
i=1

Bij

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Moreover, we define

(33) w̃(λ,n)(t) = ŵ(λ,n)(t) + εn(λ)ρeρ(T−t)1
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for all t ∈ [0, T ], where εn(λ) is defined as in (28). If x̄(λ,n)(t) is the natural so-
lution of (CQPλ) constructed from x̄(λ,n) defined as in (24), then we also say that
(x̄(λ,n)(t), w̃(λ,n)(t)) is a natural solution of problem (DCQPλ) constructed from the
optimal solution (x̄(λ,n), w̄(λ,n)) of problem (DQ(λ)

n ).
After some algebraic calculations, it is easy to show the feasibility of natural solu-

tions of (CQPλ).

Lemma 3.3. Let x̄(λ,n) be an optimal solution of (Q(λ)
n ). Then the natural solution

x̄(λ,n)(t) of problem (CQPλ) constructed from x̄(λ,n) is a feasible solution of (CQPλ).
Moreover, we have

(34) F (λ) = V (CQPλ) ≥ V (Q(λ)
n )

for all n ∈ N.

By a similar argument with the proof of [39, Lemma 4.2], we can establish the
following results.

Lemma 3.4. Let x̄(λ,n) and (x̄(λ,n), w̄(λ,n)) be optimal solutions of (Q(λ)
n ) and

(DQ(λ)
n ), respectively. Let x̄(λ,n)(t) and w̃(λ,n)(t) be defined as in (24) and (33),

respectively. Then the following statements hold true.

(i) The natural solution (x̄(λ,n)(t), w̃(λ,n)(t)) is a feasible solution of dual problem
(DCQPλ).

(ii) We have

(35) 0 ≤ Ôbj
(
x̄(λ,n)(t), w̃(λ,n)(t)

)
− V (DQ(λ)

n ) ≤ δn(λ)
∫ T

0
ρeρ(T−t)g(t)�1dt,

where Ôbj
(
x̄(λ,n)(t), w̃(λ,n)(t)

)
is the objective value of (DCQPλ) at (x̄(λ,n)(t),

w̃(λ,n)(t)); that is,

Ôbj
(
x̄(λ,n)(t), w̃(λ,n)(t)

)
= μ− λξ +

∫ T

0

{
−1/2 x̄(λ,n)(t)�Θ(λ)(t)x̄(λ,n)(t) + g(t)�w̃(λ,n)(t)

}
dt.

Lemma 3.3 says that the natural solution x̄(λ,n)(t) of problem (CQPλ) constructed
from an optimal solution of (Q(λ)

n ) is an approximate solution of (CQPλ). Based on
Lemma 3.4, we can establish the estimation of its error bound by slightly modifying
the arguments given in [39, Theorem 4.1].

Proposition 3.3. The following statements hold true.
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(i) We have

(36) 0 ≤ F (λ)− V (Q(λ)
n ) ≤ εn(λ),

where

(37)
εn(λ) := ε̄n p δn(λ) (n + exp (ρT )− 1)

+(εn(λ) + δn(λ))
∫ T

0
ρ exp (ρ(T − t)) (g(t))�1dt.

(ii) We have
lim

n→∞ V (DQ(λ)
n ) = lim

n→∞ V (Q(λ)
n ) = F (λ).

(iii) Let x̄(n,λ)(t) be the natural solution of (CQPλ). Then the error between the
optimal objective value of (CQPλ) and the objective value at x̄(λ,n)(t) is less
than or equal to εn(λ).

4. LOWER AND UPPER BOUND FUNCTIONS FOR F (λ)

Due to the difficulty of finding the exact value of F (λ), we shall construct lower
and upper bound functions for F (λ). To see this, we define

(38) â(λ,n)
l =

(
â

(λ,n)
1l , â

(λ,n)
2l , · · · , â(λ,n)

ql

)� ∈ R
q

and

(39) Θ̂(λ,n,l) =
[
θ̂
(λ,n,l)
ij

]
q×q

,

where, for i, j = 1, · · · , q and l = 1, · · · , n,

(40) â
(λ,n)
jl =

∫ l
n

T

l−1
n

T
(fj(t)− λ hj(t))dt

and

(41) θ̂
(λ,n,l)
ij =

∫ l
n

T

l−1
n

T
{dij(t)− λ eij(t)} dt.

We note that since λ ≥ 0, the matrix Θ̂(λ,n,l) is also symmetric nonnegative semi-
definite for all n and l.
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Instead of the problems (Q(λ)
n ) and (DQ(λ)

n ), we consider the following relaxed
problem:

(ΨQ(λ)
n ) maximize μ− λξ +

n∑
l=1

{
1/2 x�

l Θ̂(λ,n,l) xl + (â(λ,n)
l )�xl

}
subject to Bxl − T

n
K

l−1∑
r=1

xr ≤ b(n)
l for l = 1, · · · , n

xl ∈ R
q
+ for l = 1, · · · , n.

Remark 4.1. We have the following observations.

(i) Since the matrix Θ̂(λ,n,l) is symmetric nonnegative semi-definite for all n and l,
by the same arguments in [39], we see that (ΨQ(λ)

n ) is also solvable.

(ii) By the mean value theorem for definite integrals, for i = 1, 2, · · · , p, j =
1, 2, · · · , q, and l = 1, 2, · · · , n, there exist t

(λ,n)
jl and t̄

(λ,n)
ijl in [ l−1

n T, l
nT ] such

that

â
(λ,n)
jl =

∫ l
n

T

l−1
n

T
{fj(t)− λ hj(t)}dt =

T

n
{fj(t

(λ,n)
jl )− λ hj(t

(λ,n)
jl )}

and

θ̂
(λ,n,l)
ij =

∫ l
n

T

l−1
n

T
{dij(t)− λ eij(t)} dt =

T

n
{dij(t̄

(λ,n)
ijl )− λ eij(t̄

(λ,n)
ijl )}.

These imply that T
n a

(λ,n)
jl ≤ â

(λ,n)
jl and T

n θ
(λ,n,l)
ij ≤ θ̂

(λ,n,l)
ij for all i, j and l.

Hence, V (Q(λ)
n ) ≤ V (ΨQ(λ)

n ) for all λ and n.

(iii) Let x̄(λ,n) = (x̄(λ,n)
1 , x̄(λ,n)

2 , · · · , x̄(λ,n)
n ) be an optimal solution of (ΨQ(λ)

n ). Then
the natural solution x̄(n,λ)(t), constructed from x̄(λ,n) and defined as in (24), is
also a feasible solution of problem (CQPλ). Since the objective value of (CQPλ)
at x̄(λ,n)(t) is equal to V (ΨQ(λ)

n ), it follows that

V (ΨQ(λ)
n ) ≤ V (CQPλ) = F (λ).

Moreover, since the problems (ΨQ(λ)
n ) and (Q(λ)

n ) have the same feasible domain
and by Lemma 3.1, we see that every component x̄

(n,λ)
j (t) of x̄(n,λ)(t) satisfying

0 ≤ x̄
(n,λ)
j (t) ≤ M1

q .
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In order to derive a lower bound function of F (λ), given any n ∈ N, we define
the function Ln : R+ → R by

(42) Ln(λ) = V (ΨQ(λ)
n ) for λ ≥ 0.

By the same arguments for proving Lemma 3.1, we can obtain

(43) μ− λξ ≤ V (ΨQ(λ)
n ) = Ln(λ) ≤ μ− λξ + M1τ(λ)T for all λ ≥ 0.

For further discussion, we define

(44) c1 = max
j=1,··· ,q

max
t∈[0,T ]

max
{

fj(t)− μ

ξ
hj(t), 0

}
and

(45) c2 = c1M1T.

Since hij(t) ≥ 0, we have

(46) τ(λ) ≤ max
j=1,··· ,q

max
t∈[0,T ]

max
{

fj(t)− μ

ξ
hj(t), 0

}
= c1 for all λ ≥ μ/ξ.

Let

(47) αd = max
i=1,··· ,q

max
j=1,··· ,q

max
t∈[0,T ]

dij(t)

and

(48) αe = min
i=1,··· ,q

min
j=1,··· ,q

min
t∈[0,T ]

eij(t).

Then we have
dij(t)− λ eij(t) ≤ αd − λ αe for all λ ≥ 0,

and this implies

(49) π(λ) ≤ max{αd − λ αe, 0} for all λ ≥ 0.

Besides, by (43), (45) and (46), we have

(50) Ln(λ) ≤ μ− λξ + c2 for all λ ≥ μ/ξ.

In the sequel, we shall provide some useful lemmas for further study.

Lemma 4.1. Let λ1 and λ2 be two real numbers with 0 ≤ λ1 < λ2. Then

(51) Ln(λ1)− Ln(λ2) ≥ (λ2 − λ1) ξ.
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Proof. We note that Ln(λ) = maxx∈S(n) Ĝ(x, λ), where S(n) is the feasible
region of problem (ΨQ(λ)

n ) and

Ĝ(x, λ) = μ− λξ +
n∑

l=1

{
1/2 xl

�Θ̂(λ,n,l) xl + (â(λ,n)
l )�xl

}
.

Let x(n,1) and x(n,2) be feasible for (ΨQ(λ)
n ) such that

(52) Ln(λi) = Ĝ(x(n,i), λi) for i = 1, 2.

By the definition of x(n,1), we have Ĝ(x(n,1), λ1)−Ĝ(x(n,2), λ1) ≥ 0, and this implies

(53)

Ln(λ1)− Ln(λ2)

= Ĝ(x(n,1), λ1)− Ĝ(x(n,2), λ1) + Ĝ(x(n,2), λ1)− Ĝ(x(n,2), λ2)

≥ Ĝ(x(n,2), λ1)− Ĝ(x(n,2), λ2).

We define

(54) Ê(n,l) =
[
ê
(n,l)
ij

]
q×q

, where ê
(n,l)
ij =

∫ l
n

T

l−1
n

T
eij(t)dt

and

(55) ĥ(n,l) = (ĥ(n,l)
1 , · · · , ĥ(n,l)

q )�, where ĥ
(n,l)
j =

∫ l
n

T

l−1
n

T
hj(t)dt for j = 1, · · · , q.

We note that since E(t) is positive semi-definite, so is Ê(n,l) for all n and l. Then

Ĝ(x(n,2), λ1)− Ĝ(x(n,2), λ2)

= (λ2 − λ1)
n∑

l=1

{
1/2 x(n,2)

l

�
Ê(n,l) x(n,2)

l + (ĥ(n,l))�x(n,2)
l

}
+ (λ2 − λ1)ξ

≥ (λ2 − λ1)ξ ( since Ê(n,l) is positive semi-definite and ĥ(n,l) ≥ 0.)

Thus, by (53), we obtain (51).

Lemma 4.2. The following statements hold true.
(i) For each n ∈ N, Ln(λ) is a continuous, convex and strictly decreasing function

of λ.

(ii) For each n ∈ N and λ ≥ 0, we have V (Q(λ)
n ) ≤ Ln(λ) ≤ F (λ).
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(iii) Let

(56) ηL =
μ + c2

ξ
.

Then ηL ≥ μ/ξ and there exists a unique λL
n ∈ [μ/ξ, ηL] such that Ln(λL

n) = 0
for each n ∈ N.

Proof. It is easy to obtain (i), we omit the proof. The part (ii) follows by
Remark 4.1 (ii) and (iii).

To prove part (iii), it is obvious that ηL ≥ μ/ξ. Since ηL = μ+c2
ξ and by (50), we

have
Ln(ηL) ≤ μ− ηLξ + c2 = 0.

On the other hand, by (43), we also have Ln(μ/ξ) ≥ 0. The continuity of Ln(λ)
says that there exists λL

n ∈ [μ/ξ, ηL] such that Ln(λL
n) = 0. Finally, by part (i), the

strictly decreasing property of Ln shows the uniqueness of root λL
n . This completes the

proof.
In order to derive the upper bound function of F (λ), let

(57) δ̂n(λ) =
T

n
M2(λ),

where M2(λ) is defined as in (18), and let

(58)
ε̂n(λ) = ε̄n · p · δ̂n(λ) · (n + exp (ρT )− 1)

+
(
εn(λ) + δ̂n(λ)

)∫ T

0
ρ · exp (ρ(T − t)) (g(t))�1dt.

Using (30) and (37), we immediately have

(59) δn(λ) ≤ δ̂n(λ) and εn(λ) ≤ ε̂n(λ).

Moreover, using (46) and (49), we obtain

(60) δ̂n(λ) ≤ T

nσ
· (M1 · π̃(λ) + c1) · exp

(
νT

σ

)
for all λ ≥ μ

ξ
,

where π̃ : R+ → R+ is a piecewise linear function defined as follows:

(61) π̃(λ) = max{αd − λ αe, 0} for all λ ≥ 0.

We also note that π̃(·) is increasing if αe < 0, and π̃(·) is decreasing if αe ≥ 0.
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Lemma 4.3. Suppose that the functions fj , hj , dij and eij are Lipschitz continuous
for 1 ≤ i ≤ q and 1 ≤ j ≤ q. Then, for all n ∈ N and λ ≥ μ

ξ , there exist d ≥ 0,
rn ≥ 0 and sn ≥ 0 such that

(62) 0 ≤ ε̂n(λ) ≤ d

n
· (1 + λ) + π̃(λ) rn + sn

and rn → 0, sn → 0 as n→∞.

Proof. From (28), we have

(63)
εn(λ) = max

j=1,··· ,q
max

l=1,··· ,n

{
max
t∈I

(n)
l

{fj(t)− λhj(t)} − a
(λ,n)
jl

}

+M1 max
i=1,··· ,q

max
j=1,··· ,q

max
l=1,··· ,n

{
max
t∈I

(n)
l

θ
(λ)
ij (t)− θ

(λ,n,l)
ij

}
,

where
I

(n)
l =

[
l− 1

n
T,

l

n
T

]
.

Therefore, there exist jα ∈ {1, · · · , q} and t1, t2 ∈ I
(n)
l for some l such that

(64)
max

j=1,··· ,q
max

l=1,··· ,n

{
max
t∈I

(n)
l

{fj(t)− λhj(t)} − a
(λ,n)
jl

}
= fjα(t1)− λhjα(t1)− [fjα(t2)− λhjα(t2)] .

Similarly, there exist iβ, jγ ∈ {1, · · · , q} and t3, t4 ∈ I
(n)
l for some l such that

(65)
max

i=1,··· ,q
max

j=1,··· ,q
max

l=1,··· ,n

{
max
t∈I

(n)
l

θ
(λ)
ij (t)− θ

(λ,n,l)
ij

}
= diβjγ (t3)− λeiβjγ (t3)−

[
diβjγ (t4)− λeiβjγ (t4)

]
.

Let c3 be a common Lipschitz constant of the functions fj(t), hj(t), dij(t) and eij(t)
(i = 1, · · · , q and j = 1, · · · , q.) Then, by (64) and (65), we have

εn(λ) = fjα(t1)− fjα(t2)− λ [hjα(t1)− hjα(t2)](66)

+M1

{
diβjγ (t3)− diβjγ (t4)− λ

[
eiβjγ (t3)− eiβjγ (t4)

]}
≤ c3 |t1 − t2|+ λc3 |t1 − t2|+ M1{c3 |t3 − t4|+ λc3 |t3 − t4|}

≤ (1 + λ) (1 + M1) · c3 · T
n

.(67)
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Now, we define

c4 =
∫ T

0
ρ · exp (ρ(T − t)) (g(t))�1dt(68)

rn =
T

nσ
M1 exp

(
νT

σ

)
[p + ε̄n(n + exp(ρT )− 1) + c4](69)

sn =
T

nσ
c1 exp

(
νT

σ

)
[p + ε̄n(n + exp(ρT )− 1) + c4](70)

d = c3c4(1 + M1)T.(71)

Then, for all λ ≥ μ
ξ , we have

ε̂n(λ) = ε̄n · p · δ̂n(λ) · (n + exp (ρT )− 1)

+
(
εn(λ) + δ̂n(λ)

)∫ T

0
ρ · exp (ρ(T − t)) (g(t))�1dt.

= δ̂n(λ) {p · ε̄n [n + exp (ρT )− 1] + c4}+ c4 · εn(λ)

≤ π̃(λ) rn + sn + c4 · εn(λ) (by (60), (69) and (70) )

≤ π̃(λ) rn + sn + c3c4(1 + λ)(1 + M1) · T
n

(by (67) )

=
d

n
· (1 + λ) + π̃(λ) rn + sn.

It is easy to see that ε̂n(λ) ≥ 0 and d ≥ 0. Finally, since ε̄n → 0 as n → ∞, it says
that rn → 0 and sn → 0 as n→∞. This completes the proof.

Let η◦ be a positive number such that

(72) η◦ ≥ η� and ξ · η◦ − μ− c2 > 0,

where η� and c2 are defined as in (4) and (45), respectively. Define

(73) π̃e =

{
π̃(μ/ξ) = max{αd − μ

ξ · αe, 0}, if αe ≥ 0,

π̃(η◦) = max{αd − η◦ · αe, 0}, if αe < 0.

For n ∈ N, we define the function Un(·) : R+ → R as follows:

(74) Un(λ) = Ln(λ) +
d

n
(1 + λ) + π̃e · rn + sn,

where d, rn and sn are defined in (71), (69) and (70), respectively.

Lemma 4.4. Suppose that the functions fj , hj , dij and eij are Lipschitz continuous
for 1 ≤ i ≤ q and 1 ≤ j ≤ q. The following statements hold true.
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(i) For each n ∈ N, Un(λ) is a continuous and convex function of λ. Moreover, if
n > d/ξ then Un(λ) is strictly decreasing.

(ii) For each n ∈ N, if αe ≥ 0 then Ln(λ) ≤ F (λ) ≤ Un(λ) for all λ ≥ μ
ξ ; on the

other hand, if αe < 0 then Ln(λ) ≤ F (λ) ≤ Un(λ) for all μ
ξ ≤ λ ≤ η◦.

(iii) For each n ∈ N with n > d/ξ, we define

(75) ηU
n =

π̃e · rn + μ + c2 + (d/n) + sn

ξ − (d/n)
.

Then μ
ξ ≤ ηU

n and there exists a unique λU
n ∈ [μ/ξ, ηU

n ] such that Un(λU
n ) = 0.

Moreover, we have

(76) ηU
n →

μ + c2

ξ
as n→∞.

Proof. By part (i) of Lemma 4.2, it is easy to see that Un(λ) is continuous and
convex. Now, we are going to show that Un(λ) is strictly decreasing for n sufficiently
large. To see this, let λ1 < λ2, then by Lemma 4.1 we have

Un(λ1)− Un(λ2) = Ln(λ1)− Ln(λ2) +
d

n
(λ1 − λ2)

≥ (λ2 − λ1)ξ +
d

n
(λ1 − λ2)

= (λ2 − λ1)
(

ξ − d

n

)
,

and this implies that Un(λ) is strictly decreasing for n > d
ξ .

To prove part (ii), we have

(77)

F (λ) ≤ V (Q(λ)
n ) + εn(λ) (by part (i) of Proposition 3.3)

≤ Ln(λ) + ε̂n(λ) (by (59) and part (ii) of Lemma 4.2)

≤ Ln(λ) +
d

n
· (1 + λ) + π̃(λ) rn + sn for all λ ≥ μ

ξ
(by (62))

We note that if αe < 0 then

π̃(λ) ≤ π̃(η◦) for all
μ

ξ
≤ λ ≤ η◦.

Hence, by Lemma 4.2 (ii), (74) and (77), we see that Ln(λ) ≤ F (λ) ≤ Un(λ) for all
μ
ξ ≤ λ ≤ η◦. Similarly, if αe ≥ 0 then

π̃(λ) ≤ π̃(
μ

ξ
) for all λ ≥ μ

ξ
,

and this implies that Ln(λ) ≤ F (λ) ≤ Un(λ) for all λ ≥ μ
ξ .

Finally, we prove part (iii) by the following two cases:



1812 Yung-Yih Lur, Wen-Hsien Ho, Tien-Hung Lu and Ching-Feng Wen

• αe ≥ 0. Since n > d/ξ, i.e., ξ − (d/n) > 0, it follows that

ηU
n ≥

π̃(μ/ξ) · rn + μ + c2 + (d/n) + sn

ξ
≥ μ

ξ
.

We claim that Un(μ/ξ) ≥ 0 and Un(ηU
n ) ≤ 0. To see this, we first obtain, from

(43) and (62), that Ln(μ/ξ) ≥ 0 and d
n · (1+ λ)+ π̃(μ/ξ) · rn + sn ≥ 0. Hence,

by (74), we have Un(μ/ξ) ≥ 0. On the other hand, by (50) and (74), we have

Un(λ) ≤ μ− λξ + c2 +
d

n
· (1 + λ) + π̃(μ/ξ) · rn + sn for all λ ≥ μ

ξ
.

Hence, by (75), we have

Un(ηU
n ) ≤ μ− ηU

n ξ + c2 +
d

n
· (1 + ηU

n ) + π̃(μ/ξ) · rn + sn = 0.

Therefore, by our claim and the continuity of Un(λ), there exists λU
n ∈ [μ/ξ, ηU

n ]
such that Un(λU

n ) = 0. Besides, by part (i), the strictly decreasing property of
Un shows that there exists a unique λU

n ∈ [μ/ξ, ηU
n ] such that Un(λU

n ) = 0.
Moreover, since rn→ 0 and sn → 0 as n→∞ and by (75), we can obtain (76).

• αe < 0. By a similar argument with the case that αe ≥ 0.

Moreover, from (75), it is easy to see ηU
n → μ+c2

ξ as n → ∞. We complete this
proof.

Remark 4.2. Let λL
n and λU

n be the roots of equations Ln(λ) = 0 and Un(λ) = 0,
respectively.

(i) Since μ
ξ ≤ λL

n ≤ η◦ and by Lemma 4.4 (ii), we have Ln(λL
n) ≤ F (λL

n) ≤ Un(λL
n)

for all n ∈ N.
(ii) By the following two cases, we see that Ln(λU

n ) ≤ F (λU
n ) ≤ Un(λU

n ) for all n
large enough.
Given n ∈ N with n > d/ξ.

• For the case of αe ≥ 0, since μ/ξ ≤ λU
n and by Lemma 4.4 (ii), we have

Ln(λU
n ) ≤ F (λU

n ) ≤ Un(λU
n ).

• For the case of αe < 0, since π̃e · rn + d
n · (1 + η◦) + sn → 0 as n → ∞

and ξ · η◦ − μ− c2 > 0 by (72), it follows that, for all n large enough,

(78) π̃e · rn +
d

n
· (1 + η◦) + sn ≤ ξ · η◦ − μ− c2.

Hence, if n ∈ N satisfies the inequalities n > d/ξ and (78), then, by (75),
we have
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μ

ξ
≤ ηU

n ≤ η◦,

and this implies Ln(λU
n ) ≤ F (λU

n ) ≤ Un(λU
n ) by Lemma 4.4 (ii).

For the remainder of this paper, we adopt the following notation:

(79) Ne =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

{
n ∈ N : n > d

ξ

}
, if αe ≥ 0

min
{
n ∈ N : n > d

ξ and π̃e · rn + d
n · (1 + η◦)

+sn ≤ ξ · η◦ − μ− c2

}
, if αe < 0.

Therefore, we see that Ln(λU
n ) ≤ F (λU

n ) ≤ Un(λU
n ) for all n ∈ N with n ≥ Ne.

(iii) We have μ
ξ ≤ λL

n ≤ λU
n for all n ∈ N with n ≥ Ne. To see this, since

Ln(λL
n) = Un(λU

n ) = 0 and by part (ii), we have

Ln(λU
n ) ≤ Un(λU

n ) = Ln(λL
n).

This implies λU
n ≥ λL

n , since Ln(λ) is strictly decreasing.

5. APPROXIMATE SOLUTIONS TO (CQFP)

In this section, we are going to show that it is possible to generate an approximate
solution of (CQFP) according to a pre-determined error bound.

Lemma 5.1. Given n ∈ N with n ≥ Ne. Let λL
n and λU

n be the roots of equations
Ln(λ) = 0 and Un(λ) = 0, respectively. Then the following statements hold true.

(i) The sequences {λL
n}∞n=1 and {λU

n }∞n=1 are bounded and

(80)
d

n

(
1 + ηU

n

)
+ π̃e · rn + sn → 0 as n→∞,

where ηU
n and π̃e are given in (75) and (73), respectively.

(ii) We have

(81) 0 ≤ λU
n − λL

n ≤
1
ξ

[
d

n

(
1 + ηU

n

)
+ π̃e · rn + sn

]
and λU

n − λL
n → 0 as n→∞.
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Proof. To prove part (i), since λL
n ∈ [μ/ξ, ηL] for all n and ηL is independent on

n by Lemma 4.2, the sequence {λL
n}∞n=1 is bounded. Similarly, since λU

n ∈ [μ/ξ, ηU
n ]

and the sequence {ηU
n } is convergent by Lemma 4.4, the sequence {λU

n }∞n=1 is also
bounded. Since rn → 0 and sn → 0 as n → ∞ by Lemma 4.3 and the sequence
{ηU

n }∞n=1 is bounded by (76), we obtain (80).
For proving part (ii), from Remark 4.2, we have λU

n ≥ λL
n . Since

(82) Ln(λL
n) = 0

and

(83) Un(λU
n ) = Ln(λU

n ) +
d

n
(1 + λU

n ) + π̃e · rn + sn = 0,

by subtracting (83) from (82), we obtain

0 = Ln(λL
n)− Ln(λU

n )− d

n
(1 + λU

n )− π̃e · rn − sn

≥ (λU
n − λL

n)ξ − d

n
(1 + λU

n )− π̃e · rn − sn (by Lemma 4.1)

and this implies

(84) 0 ≤ λU
n − λL

n ≤
1
ξ

[
d

n
(1 + λU

n ) + π̃e · rn + sn

]
.

Thus we obtain (81), since λU
n ≤ ηU

n . Finally, from (80), we have λU
n − λL

n → 0 as
n→∞. This completes the proof.

The following results are very useful for designing a practical algorithm.

Theorem 5.1. Suppose that the functions fj , hj , dij and eij are Lipschitz contin-
uous for 1 ≤ i ≤ q and 1 ≤ j ≤ q. Let λ∗ = V (CQFP). Given any n ∈ N with
n ≥ Ne, then the following statements hold true.

(i) We have

(85) − d

n
(1+λU

n )− π̃e · rn − sn≤F (λU
n )≤0≤F (λL

n)≤ d

n

(
1+λL

n

)
+π̃e · rn + sn.

This also implies λL
n ≤ λ∗ ≤ λU

n .

(ii) For the given n, we take a number λ∗
n from the interval [λL

n , λU
n ]. Let x̄(λ∗

n)(t) be
the natural solution of problem (CQPλ∗

n
) constructed from the optimal solution

of problem (ΨQ(λ∗
n)

n ) and defined as in (23). Then x̄(λ∗
n)(t) is feasible for the

problems (CQPλ∗
n
) and (CQFP). Let
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(86)
ϕ̂
(
x̄(λ∗

n)(t)
)

= μ− λ∗
nξ +

∫ T

0

{
1/2 x̄(λ∗

n)(t)�Θ(λ∗
n)(t) x̄(λ∗

n)(t) + a(λ∗
n)(t)�x̄(λ∗

n)(t)
}

dt

be the objective value of (CQPλ∗
n
) at the feasible solution x̄(λ∗

n)(t), and let

ϕ
(
x̄(λ∗

n)(t)
)

=
μ +

∫ T

0

{
1/2 x̄(λ∗

n)(t)�D(t) x̄(λ∗
n)(t) + f(t)�x̄(λ∗

n)(t)
}

dt

ξ +
∫ T

0

{
1/2 x̄(λ∗

n)(t)�E(t) x̄(λ∗
n)(t) + h(t)�x̄(λ∗

n)(t)
}

dt

be the objective value of (CQFP) at the feasible solution x̄(λ∗
n)(t). Then

(87) 0 ≤ V (CQFP)− ϕ
(
x̄(λ∗

n)(t)
)
≤ Er

(
x̄(λ∗

n)(t)
)

,

where

(88)

Er
(
x̄(λ∗

n)(t)
)

= λU
n − λL

n +

∣∣ϕ̂ (
x̄(λ∗

n)(t)
)∣∣

ξ +
∫ T

0

{
1/2 x̄(λ∗

n)(t)�E(t) x̄(λ∗
n)(t) + h(t)�x̄(λ∗

n)(t)
}

dt

.

Moreover, we have

(89) 0 ≤ Er
(
x̄(λ∗

n)(t)
)
≤ 2

ξ

[
d

n

(
1 + ηU

n

)
+ π̃e · rn + sn

]
and Er

(
x̄(λ∗

n)(t)
)→ 0 as n→∞. In other words, the natural solution x̄(λ∗

n)(t)
is an approximate solution of (CQFP) with error bound Er

(
x̄(λ∗

n)(t)
)
.

Proof. To prove part (i), since Ln(λL
n) = 0, by (36), (59), (62) and by remark 4.1-

(iii), it follows that

(90)
0 ≤ F (λL

n) = F (λL
n)− Ln(λL

n) ≤ F (λL
n)− V (Q(λL

n)
n )

≤ εn(λL
n) ≤ ε̂n(λL

n) ≤ d

n
(1 + λL

n) + π̃e · rn + sn.

Similarly, we also have

0 ≤ F (λU
n )− Ln(λU

n ) ≤ ε̂n(λU
n ) ≤ d

n
(1 + λU

n ) + π̃e · rn + sn,
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which implies

(91) Ln(λU
n ) ≤ F (λU

n ) ≤ Ln(λU
n ) +

d

n
(1 + λU

n ) + π̃e · rn + sn.

Since Ln(λU
n ) + d

n (1 + λU
n ) + π̃e · rn + sn = Un(λU

n ) = 0, from (91), we have

−d

n
(1 + λU

n )− π̃e · rn − sn ≤ F (λU
n ) ≤ 0.

Therefore, from (90), we obtain the desired inequalities (85).
To prove part (ii), it is obvious that x̄(λ∗

n)(t) is a feasible solution of (CQFP). From
(86), we obtain

μ +
∫ T

0

{
1/2 x̄(λ∗

n)(t)�D(t) x̄(λ∗
n)(t) + f(t)�x̄(λ∗

n)(t)
}

dt

= ϕ̂
(
x̄(λ∗

n)(t)
)

+ λ∗
n

(
ξ +

∫ T

0

{
1/2 x̄(λ∗

n)(t)�E(t) x̄(λ∗
n)(t) + h(t)�x̄(λ∗

n)(t)
}

dt

)
,

which implies

μ +
∫ T

0

{
1/2 x̄(λ∗

n)(t)�D(t) x̄(λ∗
n)(t) + f(t)�x̄(λ∗

n)(t)
}

dt

ξ +
∫ T

0

{
1/2 x̄(λ∗

n)(t)�E(t) x̄(λ∗
n)(t) + h(t)�x̄(λ∗

n)(t)
}

dt

= λ∗
n +

ϕ̂
(
x̄(λ∗

n)(t)
)

ξ +
∫ T

0

{
1/2 x̄(λ∗

n)(t)�E(t) x̄(λ∗
n)(t) + h(t)�x̄(λ∗

n)(t)
}

dt

,

i.e.,

ϕ
(
x̄(λ∗

n)(t)
)

= λ∗
n +

ϕ̂
(
x̄(λ∗

n)(t)
)

ξ +
∫ T

0

{
1/2 x̄(λ∗

n)(t)�E(t) x̄(λ∗
n)(t) + h(t)�x̄(λ∗

n)(t)
}

dt

.

Since λ∗ ≥ ϕ
(
x̄(λ∗

n)(t)
)

and λL
n ≤ λ∗ ≤ λU

n , we obtain

0 ≤ λ∗ − ϕ
(
x̄(λ∗

n)(t)
)

= (λ∗ − λ∗
n)−

ϕ̂
(
x̄(λ∗

n)(t)
)

ξ +
∫ T

0

{
1/2 x̄(λ∗

n)(t)�E(t) x̄(λ∗
n)(t) + h(t)�x̄(λ∗

n)(t)
}

dt
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≤ |λ∗ − λ∗
n|+

∣∣∣ϕ̂(
x̄(λ∗

n)(t)
)∣∣∣

ξ +
∫ T

0

{
1/2 x̄(λ∗

n)(t)�E(t) x̄(λ∗
n)(t) + h(t)�x̄(λ∗

n)(t)
}

dt

≤ λU
n − λL

n +

∣∣ϕ̂ (
x̄(λ∗

n)(t)
)∣∣

ξ +
∫ T

0

{
1/2 x̄(λ∗

n)(t)�E(t) x̄(λ∗
n)(t) + h(t)�x̄(λ∗

n)(t)
}

dt

= Er
(
x̄(λ∗

n)(t)
)

.

Furthermore, since Ln(λL
n) = 0, λ∗

n ≥ λL
n and by remark 4.1-(iii), we have

Ln(λ∗
n) ≤ Ln(λL

n) = 0 and

(92) ϕ̂
(
x̄(λ∗

n)(t)
)

= V (ΨQ(λ∗
n)

n ) = Ln(λ∗
n) ≤ 0.

Hence,

Er
(
x̄(λ∗

n)(t)
)

≤ λU
n − λL

n +
1
ξ

[
−ϕ̂

(
x̄(λ∗

n)(t)
)]

(by (88) and (92))

≤ 1
ξ

[
d

n
(1 + λU

n ) + π̃e · rn + sn

]
+

1
ξ
[−Ln(λ∗

n)] (by (84) and (92))

≤ 1
ξ

[
d

n
(1 + λU

n ) + π̃e · rn + sn − Ln(λU
n )

]
(since λ∗

n ≤ λU
n and Ln(·) is strictly decreasing.)

=
2
ξ

[
d

n
(1 + λU

n ) + π̃e · rn + sn

]
(since Ln(λU

n ) +
d

n
(1 + λU

n ) + π̃e · rn + sn = 0)

≤ 2
ξ

[
d

n

(
1 + ηU

n

)
+ π̃e · rn + sn

]
(since λU

n ≤ ηU
n ).

Finally, using (80) and (89), we have Er
(
x̄(λ∗

n)(t)
) → 0 as n →∞. This completes

the proof.

According to Theorem 5.1, we are in a position to provide a computational proce-
dure to obtain the approximate solution of (CQFP). For n ≥ Ne, we define

(93) ωn =
2
ξ

[
d

n

(
1 + ηU

n

)
+ π̃e · rn + sn

]
,

where d, rn, sn, π̃e and ηU
n are defined in (71), (69), (70), (73) and (75), respectively.

By (89), we have
0 ≤ Er

(
x̄(λ∗

n)(t)
)
≤ ωn.



1818 Yung-Yih Lur, Wen-Hsien Ho, Tien-Hung Lu and Ching-Feng Wen

Suppose that the error tolerance ε is pre-determined by the decision-makers. By calcu-
lating ωn according to (93), we can determine the natural number n ∈ N such that

ωn ≤ ε and n ≥ Ne,

which also says that
0 ≤ Er

(
x̄(λ∗

n)(t)
)
≤ ε.

This also means that the corresponding approximate solution x̄(λ∗
n)(t) is acceptable,

since the error tolerance ε is attained. Now, the computational procedure is given
below.

Computational Procedure:

• Step 1.1. Set the error tolerance ε and the initial number n such that n ≥ Ne,
where Ne is defined in (79).
• Step 1.2. Evaluate ωn as defined in (93).
• Step 1.3. If ωn > ε then set n← n+1 and go to Step 1.2; otherwise go to Step

1.4.
• Step 1.4. Find a number λ∗

n from the interval [λL
n , λU

n ], where λL
n and λU

n are
the roots of equations Ln(λ) = 0 and Un(λ) = 0, respectively.
• Step 1.5. Find the optimal solution of finite-dimensional quadratic programming

problem (ΨQ(λ∗
n)

n ) using well-known efficient algorithms. Use this optimal so-
lution to construct the natural solution x̄(λ∗

n)(t) according to (24). Evaluate the
error bound Er

(
x̄(λ∗

n)(t)
)

defined in (88).

• Step 1.6. Return x̄(λ∗
n)(t) as an approximate optimal solution of the original

problem (CQFP) with error bound Er
(
x̄(λ∗

n)(t)
) ≤ ε.

For Step 1.4, by using the convexity of Ln(λ) and inequality (51), we can utilize
the regula falsi method to find a number λ∗

n ∈ [λL
n, λU

n ]. Note that λ∗
n ∈ [λL

n, λU
n ] is

equivalent to that λ∗
n satisfies one of the following conditions:

• Ln(λ∗
n) = 0;

• Un(λ∗
n) = 0;

• Ln(λ∗
n) < 0 and Un(λ∗

n) > 0.

This method starts with two given numbers βL and βU , where

βL =
μ

ξ
and βU = βL +

1
ξ
· Ln(βL).

It is obvious that Ln(βL) ≥ 0. By Lemma 4.1, we have
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Ln(βU) ≤ Ln(βL)− ξ · (βU − βL) = Ln(βL)− ξ ·
{

βL +
1
ξ
· Ln(βL)− βL

}
= 0.

Calculate Un(βU ). If Un(βU) ≥ 0 then βU ∈ [λL
n, λU

n ], since, in this case, Ln(βU) ≤
0 and Un(βU) ≥ 0. Otherwise, a straight line is drawn between the two points
(βL, Ln(βL)) and (βU , Ln(βU)). The intersection between this line and the λ-axis
defines a new βU , calculated according to the following expression

βU ← βL +
βL − βU

Ln(βU)− Ln(βL)
· Ln(βL).

Thus, we have the following subroutine for finding λ∗
n ∈ [λL

n, λU
n ].

Subroutine for finding λ∗
n ∈ [λL

n, λU
n ]:

• Step 2.1. Let βL = μ
ξ and βU = βL + 1

ξ · Ln(βL). Calculate Ln(βL).

• Step 2.2. Calculate Ln(βU ) and Un(βU).
• Step 2.3. If Un(βU) ≥ 0 then STOP and return λ∗

n = βU . Otherwise, set

βU ← βL +
βL − βU

Ln(βU)− Ln(βL)
· Ln(βL),

and go to Step 2.2.

We have to mention that the evaluations of Step 1.2 are independent of Step 1.4
and Step 1.5, i.e., we can estimate the rough error bound ωn of the desired approximate
solution x̄(λ∗

n)(t) without using the results of Step 1.4 and Step 1.5. It also means that
we can save the computational time, since the main successive iterations occur in Steps
1.1-1.3, where the workload does not need the heavy computation.

6. THE CONVERGENCE OF APPROXIMATE SOLUTIONS

Finally, we shall demonstrate the convergent property of the sequence {x̄(λ∗
n)(t)}

that are natural solutions of (CQPλ∗
n
) constructed from the optimal solutions of problems

(ΨQ(λ∗
n)

n ). We recall that the dual space of the separable Banach space L1[0, T ] can be
identified with L∞[0, T ]. The following lemmas are very useful for further discussion.

Lemma 6.1. (Friedman [7]). Let {fk} be a sequence in L∞([0, T ], R). If the
sequence {fk} is uniformly bounded with respect to ‖ · ‖∞, then there exists a subse-
quence {fkj} which weakly-star converges to f0 ∈ L∞([0, T ], R). In other words, for
any g ∈ L1([0, T ], R), we have

lim
kj→∞

∫ T

0
fkj (t)g(t)dt =

∫ T

0
f0(t)g(t)dt.
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Lemma 6.2. If the sequence {fk}∞k=1 is uniformly bounded on [0, T ] with respect
to ‖ · ‖∞, and weakly-star converges to f0 ∈ L∞([0, T ], R), then

f0(t) ≤ lim sup
k→∞

fk(t) a.e. in [0, T ]

and
f0(t) ≥ lim inf

k→∞
fk(t) a.e. in [0, T ].

Proof. The results follow from the similar arguments of Levinson [13, Lemma
2.1].

Theorem 6.1. We consider the sequence {x̄(λ∗
n)(t)} that is obtained according to

part (ii) of Theorem 5.1. Then the sequence {x̄(λ∗
n)(t)} has a subsequence {x̄(λ∗

nν
)(t)}

which weakly-star converges to an optimal solution x̄(∗)(t) of (CQFP).

Proof. According to Remark 4.1 (iii), we see that the sequence {x̄(λ∗
n)(t)} of

vector-valued functions are uniformly bounded with respect to ‖ · ‖∞ in which the
bounds are independent of n. Using Lemma 6.1, there exists a subsequence {x̄(λ∗

nν )(t)}
which weakly-star converges to x(∗)(t). Since x̄

(λ∗
nν

)

j (t) ≥ 0 for all t ∈ [0, T ] and
j = 1, · · · , q, using Lemma 6.2, it follows that

x
(∗)
j (t) ≥ lim inf

nv→∞ x̄
(λ∗

nν )

j (t) ≥ 0 a.e. in [0, T ],

i.e., x(∗)(t) ≥ 0 a.e. in [0, T ]. Considering the feasibility of x̄(λ∗
nν )(t), we have

(94) Bx̄(λ∗
nν

)(t) ≤ g(t) +
∫ t

0
Kx̄(λ∗

nν
)(s)ds for all t ∈ [0, T ]

From (94), since B is nonnegative, by taking the limit superior and applying Lemma 6.2,
it follows that

Bx(∗)(t) ≤ lim sup
nv→∞

Bx̄(λ∗
nν )(t) ≤

∫ t

0
Kx(∗)(s)ds + g(t) a.e. in [0, T ](95)

Let N0 be the subset of [0, T ] such that the inequality of (95) is violated and let N1

be the subset of [0, T ] such that x(∗)(t) 
≥ 0. Then, we define N = N0 ∪ N1 and

x̄(∗)(t) =
{

x(∗)(t) if t 
∈ N
0 if t ∈ N ,

where the set N has measure zero. We see that the subsequence {x̄(λ∗
nν )(t)} is also

weakly-star converges to x̄(∗)(t). We remain to show that x̄(∗)(t) is an optimal solution
of (CQFP). It is obvious that x̄(∗)(t) ≥ 0 for all t ∈ [0, T ] and x̄(∗)(t) = x(∗)(t) a.e.
in [0, T ]. We consider the following cases.



Approximate Solutions for Continuous-time Quadratic Fractional Programming Problems 1821

• For t 
∈ N , from (95), we have

Bx̄(∗)(t) = Bx(∗)(t) ≤ g(t) +
∫ t

0
Kx(∗)(s)ds = g(t) +

∫ t

0
Kx̄(∗)(s)ds.

• For t ∈ N , since B is nonnegative, using (94) and weak-star convergence, we
also have

Bx̄(∗)(t) = 0 ≤ lim sup
nv→∞

Bx̄(λ∗
nν

)(t)

≤ g(t) +
∫ t

0
Kx(∗)(s)ds = g(t) +

∫ t

0
Kx̄(∗)(s)ds.

Therefore, we obtain

Bx̄(∗)(t) ≤ g(t) +
∫ t

0
Kx̄(∗)(s)ds for all t ∈ [0, T ],

which says that x̄(∗)(t) is a feasible solution of (CQFP).
Now we are going to show that x̄(∗)(t) is an optimal solution of (CQFP). To

see this, for given t ∈ [0, T ], we let the function φD(t)(·) : R
q → R be defined by

φD(t)(x) = 1
2x

�D(t)x+f(t)�x for all x ∈ Rq. Since D(t) is a negative semi-definite
matrix for all t, φD(t)(·) is concave. Hence, we have

φD(t)

(
x̄(λ∗

nν
)(t)

)
≤ φD(t)

(
x̄(∗)(t)

)
+∇φD(t)(x̄

(∗)(t))
� (

x̄(λ∗
nν )(t)− x̄(∗)(t)

)
a.e. in [0, T ],

where ∇φD(t) is the gradient of φD(t). This implies

(96)

∫ T

0
φD(t)

(
x̄(λ∗

nν )(t)
)

dt

≤
∫ T

0
φD(t)

(
x̄(∗)(t)

)
dt+

∫ T

0

[
∇φD(t)(x̄

(∗)(t))
� (

x̄(λ∗
nν )(t)−x̄(∗)(t)

)]
dt.

Since {x̄(λ∗
nν )(t)} weakly-star converges to x̄(∗)(t) and∇φD(t)(x̄(∗)(t)) ∈ L1([0, T ], Rq),

we have

(97) lim
nν→∞

∫ T

0

[
∇φD(t)(x̄

(∗)(t))
� (

x̄(λ∗
nν )(t)− x̄(∗)(t)

)]
dt = 0.

Therefore, by (96) we obtain

(98)
lim

nν→∞μ +
∫ T

0

{
1/2 x̄(λ∗

nν)(t)�D(t) x̄(λ∗
nν )(t) + f(t)�x̄(λ∗

nν )(t)
}

dt

≤ μ +
∫ T

0

{
1/2 x̄(∗)(t)�D(t) x̄(∗)(t) + f(t)�x̄(∗)(t)

}
dt.
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Similarly, we can also show that

(99)
lim

nν→∞ ξ +
∫ T

0

{
1/2 x̄(λ∗

nν)(t)�E(t) x̄(λ∗
nν)(t) + h(t)�x̄(λ∗

nν )(t)
}

dt

≥ μ +
∫ T

0

{
1/2 x̄(∗)(t)�E(t) x̄(∗)(t) + h(t)�x̄(∗)(t)

}
dt.

Furthermore, by (87), we have

(100) 0 ≤ V (CQFP)− ϕ
(
x̄(λ∗

nν
)(t)

)
≤ Er

(
x̄(λ∗

nν
)(t)

)
,

where

(101)

ϕ
(
x̄(λ∗

nν )(t)
)

=
μ +

∫ T

0

{
1/2 x̄(λ∗

nν
)(t)�D(t) x̄(λ∗

nν
)(t) + f(t)�x̄(λ∗

nν
)(t)

}
dt

ξ +
∫ T

0

{
1/2 x̄(λ∗

nν)(t)�E(t) x̄(λ∗
nν)(t) + h(t)�x̄(λ∗

nν )(t)
}

dt

.

Since Er
(
x̄(λ∗

nν )(t)
)
→ 0 as nν →∞, we obtain

V (CQFP) = lim
nν→∞ ϕ

(
x̄(λ∗

nν
)(t)

)
.

By considering the weak-star convergence on (101), we obtain that

V (CQFP) = lim
nν→∞ϕ

(
x̄(λ∗

nν
)(t)

)
≤ ϕ

(
x̄(∗)(t)

)
(by (98) and (99))

≤ V (CQFP) (since x̄(∗)(t) is a feasible solution of (CQFP)),

which also says that x̄(∗)(t) is an optimal solution of (CQFP), and the proof is
complete.

7. CONCLUSIONS

Based on the theoretical properties and computational method presented in [34, 39],
an interval-type algorithm has been successfully proposed to solve a class of continuous-
time quadratic fractional programming problems. The proposed computational proce-
dure is a hybrid of the parametric method and discretization approach. Fortunately,
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the estimate for the size of discretization and the error bound of approximate solutions
have also been obtained. Thereby, we can predetermine the size of discretization such
that the accuracy of the corresponding approximate solution can be controlled within
the predefined error tolerance. Hence, the trade-off between the quality of the results
and the simplificaton of the problem can be controlled by the decision-makers.
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