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A REMARK ON WEIGHTED REPRESENTATION FUNCTIONS

Zhenhua Qu

Abstract. Let G be a finite abelian group, and k1, k2 be two integers. For any
subset A ⊂ G, let rk1,k2(A, n) denote the number of solutions of n = k1a1+k2a2

with a1, a2 ∈ A. In this paper, we generalize a result of Q.-H. Yang and Y.-G.
Chen to finite abelian groups. More precisely, we characterize all subsets A ⊂ G
such that rk1,k2(A, n) = rk1,k2(G\A, n) for all n ∈ G.

1. INTRODUCTION

Let N be the set of nonnegative integers. For any subset A ⊂ N and n ∈ N,
let R1(A, n), R2(A, n) and R3(A, n) denote the number of solutions of n = a + a′

with a, a′ ∈ A, n = a + a′ with a, a′ ∈ A, a < a′, and n = a + a′ with a, a′ ∈ A,
a ≤ a′ respectively. These representation functions are studied by Erd"os, Sárközy and
Sós in a series of papers [7, 8, 11, 9, 10]. Since then, representation functions have
been extensively studied by many authors.

Sárközy asked, for each i = 1, 2, 3, whether there exist sets A and B with infinite
symmetric difference such that Ri(A, n) = Ri(B, n) for all sufficiently large integers
n. Dombi [5] observed that the answer is negative for i = 1, and is affirmative
for i = 2. Chen and Wang [3] gave an example of a subset A ⊂ N such that
R3(A, n) = R3(N\A, n) for all n ≥ 1. For i = 2, 3, Lev, Sándor and Tang [6, 12, 13]
characterized all subsets A with the property that Ri(A, n) = Ri(N\A, n) for all
n ≥ 2N + 1. Some asymptotic results of the representation functions of these sets are
obtained in [1, 2].

For any two positive integers k1 ≤ k2, A ⊂ N and n ∈ N, one can also define the
weighted representation function rk1,k2(A, n) as the number of solutions of the equation
n = k1a1 + k2a2 with a1, a2 ∈ A. If k2 ≥ k1 ≥ 2, Cillruelo and Rué [4] proved
that rk1,k2(A, n) can not be eventually constant. Yang and Chen [14] proved that there
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exists a set A ⊂ N such that rk1,k2(A, n) = rk1,k2(N\A, n) for all sufficiently large
n if and only if k1 | k2 and k1 < k2.

In a recent paper [15], Yang and Chen studied weighted representation functions on
Zm, the cyclic group of order m. For any two integers k1, k2, A ⊂ Zm and n ∈ Zm,
define rk1,k2(A, n) to be the number of solutions of the equation n = k1a1 +k2a2 with
a1, a2 ∈ A. For d | m, A is said uniformly distributed modulo d if

|{x : x ∈ A, x ≡ i (mod d)}| = |A|/d

for all i = 0, 1, · · · , d− 1. They proved the following theorem.

Theorem A. Let m, k1, and k2 be three integers with m ≥ 2, A ⊆ Zm. Then
rk1,k2(A, n) = rk1,k2(Zm\A, n) for all n ∈ Zm if and only if |A| = m/2 and A is
uniformly distributed modulo d′1 and d′2, respectively, where d′1 = (k1, m)/(k1, k2, m)
and d′2 = (k2, m)/(k1, k2, m).

In this paper, we generalize their results to finite abelian groups. We fix some
notation first. Let G be a finite abelian group of order m. For any two integers
k1, k2, A ⊂ G and n ∈ G, we define similarly the weighted representation function
rk1,k2(A, n) to be the number of solutions of the equation n = k1a1 + k2a2 with
a1, a2 ∈ A. For any integer k, let kG denote the subgroup kG = {kg : g ∈ G}, and
Gk denote the subgroup Gk = {g : g ∈ G, kg = 0}. For i = 1, 2, let di = (ki, m),
d3 = (d1, d2) = (k1, k2, m), di = d′id3. Then d′1 and d′2 are coprime. Let Hi =
d′iG + Gd3 , i = 1, 2. For a subgroup H < G, we say that A is uniformly distributed
modulo H if |A∩ (g +H)| is independent of g ∈ G. The following results are proved.

Theorem 1. Let G be a finite abelian group of order m, and k1, k2 be two integers,
A ⊂ G. With other notations introduced as above, then rk1,k2(A, n) = rk1,k2(G\A, n)
for all n ∈ G if and only if |A| = m/2 and A is uniformly distributed modulo H1 and
H2, respectively.

Corollary 1. Notations as in Theorem 1. Then there exists a set A ⊂ G such that
rk1,k2(A, n) = rk1,k2(G\A, n) for all n ∈ G if and only if |H1| and |H2| are both
even.

Remark. For G = Zm, Gd3 = m
d3

Zm. Since d′i = di/d3 is a divisor of m/d3,
m
d3

Zm ⊂ d′iZm, hence Hi = d′iZm + m
d3

Zm = d′iZm for i = 1, 2. Theorem 1 is
consistent with Theorem A in this case. In general, d′iG may be a proper subset of Hi.
For example, G = Z60 ⊕ Z2, m = 120, k1 = d1 = 12, k2 = d2 = 10. Then d3 = 2,
d′1 = 6, d′1G = 6Z60 ⊕ 2Z2, Gd3 = 30Z60 ⊕Z2, and Gd3 is not a subset of d′1G, thus
d′1G is a proper subset of H1 = d′1G + Gd3 .
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2. PROOF OF THE RESULTS

For any subsets S, T ⊂ G and n ∈ G, let rk1,k2(S, T, n) denote the number of
solutions of n = k1s+k2t with s ∈ S and t ∈ T . Let Φi(n) = {g : g ∈ G, n−k3−ig ∈
kiG} for i = 1, 2. We need the following lemma.

Lemma 1. Let i = 1, 2. If n 
∈ d3G, then Φi(n) = ∅. If n ∈ d3G, then Φi(n) is
a coset of Hi and |Φi(n)| = |Hi|. For any A ⊂ G and n ∈ G,

rk1,k2(G, A, n) = |A ∩ Φ1(n)| · |Gd1|,
and

rk1,k2(A, G, n) = |A ∩ Φ2(n)| · |Gd2|.

Proof. If Φi(n) 
= ∅, say g ∈ Φi(n), then n ∈ k3−ig + kiG ⊂ d3G since
d3 | (k1, k2). Thus n 
∈ d3G implies Φi(n) = ∅.

Suppose n ∈ d3G. Since d3 = (k1, k2, m), write d3 = k1u + k2v + mw for some
u, v, w ∈ Z. For any g ∈ G,

d3g = (k1u + k2v + mv)g = k1(ug) + k2(vg) ∈ k1G + k2G,

therefore k1G + k2G ⊃ d3G. On the other hand, k1G + k2G ⊂ d3G, thus we
conclude that k1G + k2G = d3G. In particular, n = k1g1 + k2g2 for some g1, g2 ∈ G,
therefore g3−i ∈ Φi(n) and Φi(n) 
= ∅. Assume g ∈ Φi(n), then h ∈ Φi(n) if
and only if (g − h)k3−i ∈ kiG = diG. Since (k3−i, di) = d3, it is equivalent to
g − h ∈ d′iG + Gd3 = Hi, thus Φi(n) is a coset of Hi. In particular, |Φi(n)| = |Hi|.

If a ∈ A and g ∈ G satisfy n = k1a+k2g, then n−k1a ∈ k2G, thus a ∈ A∩Φ2(n).
On the other hand, for any a ∈ A∩Φ2(n), there exists g0 ∈ G such that n = k1a+k2g0

by the definition of Φ2(n). Since

{g : g ∈ G, n = k1a + k2g} = g0 + Gk2 = g0 + Gd2,

which is a coset of Gd2 , we have |{g : g ∈ G, n = k1a + k2g}| = |Gd2|. Therefore

rk1,k2(A, G, n) = |{(a, g) : a ∈ A, g ∈ G, k1a + k2g = n}|

=
∑

a∈A∩Φ2(n)

|{g : g ∈ G, n = k1a + k2g}| = |A∩ Φ2(n)| · |Gd2|.

Similarly,
rk1,k2(G, A, n) = |A ∩ Φ1(n)| · |Gd1|.

This completes the proof of the lemma.

Proof of Theorem 1. Let B = G\A. We first note that

(1) rk1,k2(A, n) = rk1,k2(B, n)
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is equivalent to
(
rk1,k2(A, A, n) + rk1,k2(B, A, n)

)
+

(
rk1,k2(A, A, n) + rk1,k2(A, B, n)

)

=
(
rk1,k2(A, B, n) + rk1,k2(B, B, n)

)
+

(
rk1,k2(B, A, n) + rk1,k2(B, B, n)

)
,

that is,

(2) rk1,k2(G, A, n) + rk1,k2(A, G, n) = rk1,k2(G, B, n) + rk1,k2(B, G, n).

By Lemma 1, equality (2) is equivalent to

(3)
2∑

i=1

|A ∩ Φi(n)| · |Gdi| =
2∑

i=1

|B ∩ Φi(n)| · |Gdi|.

If n 
∈ d3G, then Φi(n) = ∅ by Lemma 1, hence both sides of (3) are zero. Assume
now n ∈ d3G, by Lemma 1, |Φi(n)| = |Hi|, hence

|A ∩ Φi(n)|+ |B ∩ Φi(n)| = |Φi(n)| = |Hi|.
Adding both sides of equation (3), we see that (3) is equivalent to

(4)
2∑

i=1

|A ∩ Φi(n)| · |Gdi | =
1
2

2∑
i=1

|Hi| · |Gdi|

for all n ∈ d3G.
We now prove the sufficiency part. Assume |A| = m/2, and A is uniformly

distributed modulo H1 and H2, respectively. We shall show that equality (4) holds for
all n ∈ d3G. By Lemma 1, Φi(n) is a coset of Hi, therefore |A ∩ Φi(n)| = |Hi|/2,
and

2∑
i=1

|A∩ Φi(n)| · |Gdi | =
1
2

2∑
i=1

|Hi| · |Gdi |.

Next we prove the necessity part. Assume that equalities (1)-(4) are satisfied. Since

(5) |A|2 =
∑
n∈G

rk1,k2(A, n) =
∑
n∈G

rk1,k2(B, n) = |B|2,

we have |A| = |B|, hence |A| = m/2. Note that the right hand side of equality (4) is
fixed. If n ∈ k1G, then

Φ1(n) = {g : g ∈ G, k2g ∈ k1G} = H1,

which is independent of n ∈ k1G. Consequently, |A ∩ Φ2(n)| is independent of
n ∈ k1G. When n runs through all elements of k1G, Φ2(n) runs through all cosets of
H2 as we immediately see that g ∈ Φ2(k1g) for all g ∈ G. It follows that |A∩(g+H2)|
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is independent of g ∈ G, hence A is uniformly distributed modulo H2. By similar
arguments, A is also uniformly distributed modulo H1.

Proof of Corollary 1. Assume there exists a subset A ⊂ G such that

rk1,k2(A, n) = rk1,k2(G\A, n)

for all n ∈ G. By Theorem 1, |A| = m/2 and A is uniformly distributed modulo H1

and H2 respectively. Therefore |A ∩ Hi| = |Hi|/2, hence |Hi| is even for i = 1, 2.
Conversely, assume |Hi| is even for i = 1, 2. Since

H1 + H2 ⊇ d′1G + d′2G = (d′1, d
′
2, m)G = G,

we have H1 + H2 = G. Let X1, X2, · · · , Xs and Y1, Y2, · · · , Yt denote the cosets of
H1 and H2 respectively. Put H = H1∩H2. By Chinese Remainder Theorem, we have
G/H ∼= G/H1 × G/H2. Therefore

Xi ∩ Yj , 1 ≤ i ≤ s, 1 ≤ j ≤ t

are all the cosets of H , and |Xi| = |H1| = t|H |, |Yj| = |H2| = s|H | for 1 ≤ i ≤ s,
1 ≤ j ≤ t.

Case 1. |H | is even. We take

A =
⋃

1≤i≤s

1≤j≤t

Aij ,

where Aij ⊂ Xi ∩ Yj is any subset with |Aij| = |H |/2. Then

|A ∩ Xi| =

∣∣∣∣∣∣
⋃

1≤j≤t

(A ∩ Xi ∩ Yj)

∣∣∣∣∣∣
=

t∑
j=1

|Aij| = t|H |/2 = |H1|/2,

that is, A is uniformly distributed modulo H1. Similarly, A is uniformly distributed
modulo H2.

Case 2. |H | is odd. Since |H2| is even and |H2| = s|H |, we see that s is even.
Similarly, t is also even. Write s = 2k, t = 2l, and we take

A =

⎛
⎜⎜⎜⎝

⋃
1≤i≤k

1≤j≤l

(Xi ∩ Yj)

⎞
⎟⎟⎟⎠

⋃
⎛
⎜⎜⎜⎝

⋃
k+1≤i≤2k

l+1≤j≤2l

(Xi ∩ Yj)

⎞
⎟⎟⎟⎠ .

For 1 ≤ i ≤ k,

|A ∩ Xi| =
l∑

j=1

|Xi ∩ Yj| = l|H | = |Xi|/2.
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For k + 1 ≤ i ≤ 2k,

|A ∩ Xi| =
2l∑

j=l+1

|Xi ∩ Yj| = l|H | = |Xi|/2.

Thus A is uniformly distributed modulo H1. Similarly, A is uniformly distributed
modulo H2. By Theorem 1, we have

rk1,k2(A, n) = rk1,k2(G\A, n)

for all n ∈ G. This completes the proof of the corollary.
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