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H-SEMI-SLANT SUBMERSIONS FROM ALMOST QUATERNIONIC
HERMITIAN MANIFOLDS

Kwang-Soon Park

Abstract. As a generalization of semi-slant submersions, h-slant submersions, and
h-semi-invariant submersions, we introduce the notions of h-semi-slant submer-
sions and almost h-semi-slant submersions from almost quaternionic Hermitian
manifolds onto Riemannian manifolds. We obtain characterizations and investi-
gate the integrability of distributions, the geometry of fibers, and the harmonicity
of such maps. We also find a condition for such maps to be totally geodesic.
Moreover, we give some examples of such maps.

1. INTRODUCTION

Given a C*°-submersion F' from a Riemannian manifold (M, gas) onto a Rie-
mannian manifold (1V, gx), according to the conditions on the map F : (M, gar) —
(N, gn), we obtain the following:

a Riemannian submersion ([10, 15, 9]), an almost Hermitian submersion [23],
an invariant submersion [22], an anti-invariant submersion [19], a slant submersion
([7, 20]), a semi-invariant submersion [21], a semi-slant submersion [18], a quaternionic
submersion [11], a h-slant submersion and an almost h-slant submersion [16], a h-semi-
invariant submersion and an almost h-semi-invariant submersion [17], etc.

As we know, Riemannian submersions were independently introduced by B. O’Neill
[15] and A. Gray [10] in 1960s. In particular, by using the notion of almost Hermitian
submersions, B. Watson [23] gave some differential geometric properties among fibers,
base manifolds, and total manifolds. After that, there are lots of results on this topic.

It is well-known that Riemannian submersions are related with physics and have
their applications in the Yang-Mills theory ([5, 24]), Kaluza-Klein theory ([4, 12]),
Supergravity and superstring theories ([13, 14]), etc. And the quaternionic Kahler
manifolds have applications in physics as the target spaces for nonlinear o —models
with supersymmetry [8].
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The paper is organized as follows. In section 2 we remind some notions, which are
needed in the following sections. In section 3 we give the definitions of h-semi-slant
submersions and almost h-semi-slant submersions and obtain some properties on them:
the characterizations of such maps, the harmonicity of such maps, the conditions for
such maps to be totally geodesic, the integrability of distributions, the geometry of
fibers, etc. In section 4 we obtain some examples of h-semi-slant submersions and
almost h-semi-slant submersions.

2. PRELIMINARIES

Let (M, gar) and (N, gn) be Riemannian manifolds, where gys and gy are Rie-
mannian metrics on C°°-manifolds M and N, respectively.

Let F: (M, gn) — (N, gn) be a C>°-map.

We call the map F' a C*°-submersion if F' is surjective and the differential (F%),
has maximal rank for any p € M.

Then the map F' is said to be a Riemannian submersion ([15], [9]) if F is a
C°°-submersion and

(Fi)p : ((ker(F*)p)L, (grm)p) (TF(p)Nv <9N>F(p)>

is a linear isometry for any p € M, where (ker(F.),)* is the orthogonal complement
of the space ker(Fy), in the tangent space 7,,M to M at p.

Let F': (M, gar) — (N, gn) be a Riemannian submersion.

For any vector field U € T'(T'M ), we have

U = VU + HU,

where VU € T'(ker F,,) and HU € T'((ker F,)™).
Define the (O’Neill) tensors 7 and A by

ApF = HVygVF + VVyHF
TpF = HVygVFEF + VVypHE

for vector fields E, F € I'(T'M), where V is the Levi-Civita connection of g, ([15],
[9D).

Define VxY := VVxY for X,Y € ['(ker F,).

Let (M, gar, J) be an almost Hermitian manifold, where J is an almost complex
structure on M.

A Riemannian submersion F' : (M, gar, J) — (N, gn) is called a semi-slant sub-
mersion if there is a distribution D; C ker F,, such that

ker F, = Dy @ Ds, J(D;) =Dy,
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and the angle § = 6(X) between JX and the space (D3), is constant for nonzero
X € (D)4 and g € M, where D; is the orthogonal complement of D; in ker F; [18].
We call the angle 6 a semi-slant angle.
Let M be a 4m—dimensional C°°-manifold and let £ be a rank 3 subbundle of
End(7T'M) such that for any point p € M with a neighborhood U, there exists a local
basis {.Ji, Jo, J3} of sections of E on U satisfying for all « € {1, 2,3}

J§ = —id, Joadatr1 = —Jat1Ja = Jat2,

where the indices are taken from {1, 2,3} modulo 3.

Then we call E' an almost quaternionic structure on M and (M, E) an almost
quaternionic manifold [1].

Moreover, let g be a Riemannian metric on M such that for any point p € M
with a neighborhood U, there exists a local basis {.J1, J2, J3} of sections of £ on U
satisfying for all « € {1,2,3}

) J2 = —id, Jodat1 = —Jar1Ja = Jata,

(2) g<JaXa JaY> :9<X7 Y)

for all vector fields X, Y e I'(T'M), where the indices are taken from {1, 2, 3} modulo
3.

Then we call (M, E, g) an almost quaternionic Hermitian manifold [11].

Conveniently, the above basis {.Ji, Jo, J3} satisfying (1) and (2) is said to be a
quaternionic Hermitian basis.

Let (M, E, g) be an almost quaternionic Hermitian manifold.

We call (M, E, g) a quaternionic Kahler manifold if there exist locally defined
1-forms wy, wy, w3 such that for o € {1, 2, 3}

Vxda = wat2(X)Jat+1 — Wat1(X)Jat2

for any vector field X € I'(T'M), where the indices are taken from {1, 2, 3} modulo 3
[11].

If there exists a global parallel quaternionic Hermitian basis {.J;, Jo, J3} of sections
of Eon M (e, VJ, =0 for a € {1, 2,3}, where V is the Levi-Civita connection of
the metric g), then (M, E, g) is said to be a hyperkahler manifold. Furthermore, we
call (Jy, Jo, J3, g) a hyperkahler structure on M and g a hyperkahler metric [2].

Let (M, Ea, gn) and (N, En, gn) be almost quaternionic Hermitian manifolds.

Amap F: M — N is called a (Eys, En)—holomorphic map if given a point
x € M, forany J € (Ey), there exists J' € (En)p(y) such that

F.oJ=.JoF,.
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A Riemannian submersion F' : M — N which is a (E)s, Ex)—holomorphic map is
called a quaternionic submersion [11].

Moreover, if (M, Eyr, gar) is @ quaternionic Kahler manifold (or a hyperkahler
manifold), then we say that F' is a quaternionic Kahler submersion (or a hyperkahler
submersion) [11].

Then it is well-known that any quaternionic Kahler submersion is a harmonic map
[11].

Let (M, E, gar) be an almost quaternionic Hermitian manifold and (V, gn) a Rie-
mannian manifold.

A Riemannian submersion F' : (M, E, ga) — (N, gn) is said to be an almost
h-slant submersion if given a point p € M with a neighborhood U, there exists a
quaternionic Hermitian basis {I,J, K} of sections of £ on U such that for R €
{1, J, K} the angle 6 (X') between RX and the space ker(F), is constant for nonzero
X € ker(Fy)q and ¢ € U [16].

We call such a basis {1, J, K} an almost h-slant basis.

A Riemannian submersion F' : (M, E, gy) — (N, gn) is called a h-slant sub-
mersion if given a point p € M with a neighborhood U, there exists a quaternionic
Hermitian basis {1, J, K} of sections of E on U such that for R € {I, J, K} the angle
Or(X) between RX and the space ker(F), is constant for nonzero X € ker(F}), and
geU,and 0 =0;(X)=0;(X) =0r(X) [16].

We call such a basis {1, J, K} a h-slant basis and the angle 6 a h-slant angle.

And a Riemannian submersion F' : (M, E, grr) — (N, gn) is called a h-semi-
invariant submersion if given a point p € M with a neighborhood U, there exists
a quaternionic Hermitian basis {I,J, K} of sections of £ on U such that for any
R e {I,J, K}, there is a distribution D; C ker F, on U such that

ker F, = Dy @ Da, R(D;) = Dy, R(Dy) C (ker F,)*,

where D, is the orthogonal complement of D; in ker F, [17].

We call such a basis {1, J, K} a h-semi-invariant basis.

A Riemannian submersion F': (M, E, gar) — (N, gn) is called an almost h-semi-
invariant submersion if given a point p € M with a neighborhood U, there exists
a quaternionic Hermitian basis {I, J, K} of sections of E on U such that for each
R € {I, J, K}, there is a distribution DI C ker F, on U such that

ker F, = DR @ DI, R(DF) = DE, R(DE) c (ker F,)*,

where DZ is the orthogonal complement of DI in ker F, [17].

We call such a basis {1, J, K} an almost h-semi-invariant basis.

Let (M, gar) and (NN, gn) be Riemannian manifolds and F : (M, gar) — (N, gn)
a C°°-map.
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The second fundamental form of F' is given by
(VE)(X,Y) :=VEFRY - F,(VxY) for X,Y e I(TM),

where V1" is the pullback connection and we denote conveniently by V the Levi-Civita
connections of the metrics gas and gy [6].

Recall that F' is said to be harmonic if trace(VF,) = 0 and F is called a totally
geodesic map if (VF,)(X,Y)=0for X, Y e I'(TM) [6].

Throughout this paper, we will use the above notations.

3. H-SEMI-SLANT SUBMERSIONS

Definition 3.1. Let (M, E, g)) be an almost quaternionic Hermitian manifold
and (N, gn) a Riemannian manifold. A Riemannian submersion F' : (M, E, gpr) —
(N, gn) is called a h-semi-slant submersion if given a point p € M with a neighborhood
U, there exists a quaternionic Hermitian basis {1, J, K} of sections of E on U such
that for any R € {I, J, K'}, there is a distribution D; C ker F,, on U such that

ker Fy, = Dy @ D2, R(Dy) =Dy,

and the angle 6r = 6r(X) between RX and the space (D3), is constant for nonzero
X € (Dy)q and ¢ € U, where D; is the orthogonal complement of D; in ker Fi.

We call such a basis {7, J, K'} a h-semi-slant basis and the angles {6;,0, 0}
h-semi-slant angles.
Furthermore, if we have
0=0;=0;="0k,

then we call the map F : (M, E, gar) — (N, gn) a strictly h-semi-slant submersion,
{I, J, K} a strictly h-semi-slant basis, and the angle ¢ a strictly h-semi-slant angle.

Definition 3.2. Let (M, E, g)) be an almost quaternionic Hermitian manifold
and (N, gn) a Riemannian manifold. A Riemannian submersion F' : (M, E, gar) —
(N, gn) is called an almost h-semi-slant submersion if given a point p € M with a
neighborhood U, there exists a quaternionic Hermitian basis {I, J, K'} of sections of
E on U such that for each R € {I, J, K}, there is a distribution DF C ker F, on U
such that

ker F, = DI @ DE, R(D) = DI,

and the angle 6z = 0r(X) between RX and the space (D), is constant for nonzero
X € (DI, and ¢ € U, where DI is the orthogonal complement of Df in ker F..

We call such a basis {7, J, K} an almost h-semi-slant basis and the angles {67, 0.5, 0k }
almost h-semi-slant angles.
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Remark 3.3. Obviously, almost h-semi-invariant submersions and h-semi-invariant
submersions are almost h-semi-slant submersions with almost h-semi-slant angles 6; =
7 = 0k = % and h-semi-slant submersions with h-semi-slant angles 0; = 0; = 0y =
5, respectively [17]. As we know, the fibers of h-semi-invariant submersions from
hyperkahler manifolds onto Riemannian manifolds are quaternionic CR-submanifolds
(I3, 17]).

Remark 3.4. Clearly, almost h-slant submersions are h-semi-slant submersions
with ker F, = Dy [16]. Like Remark 2.2 of [18], there are some similarities and
differences between almost h-slant submersions and almost h-semi-slant submersions.
For the sufficient conditions for such maps to be harmonic, almost h-slant submersions
have more nice form than almost h-semi-slant submersions. But almost h-semi-slant
submersions contain much more information than almost h-slant submersions. (i.e., the
mean curvature vector field of fibers, the geometry of distributions, etc.)

Let F': (M, E, gm) — (N, gn) be an almost h-semi-slant submersion.

Given a point p € M with a neighborhood U, there exists a quaternionic Hermitian
basis {1, J, K} of sections of E on U such that for each R € {I, J, K}, there is a
distribution D C ker F, on U such that

ker F, = DI @ DE, R(DI) = DI,

and the angle 0z = 0r(X) between RX and the space (DL), is constant for nonzero
X € (D), and g € U, where DI is the orthogonal complement of DIt in ker F..
Then for X € T'(ker F,), we have

X = PpX —|—QRX,

where PrX € I'(DF) and QrX € T'(DE).
For X € I'(ker Fy), we get

RX = ¢rX +wrX,

where ¢ X € T'(ker F,) and wrX € T'((ker F,)*).
For Z € T'((ker F,)*), we obtain

RZ = BrZ + CrZ,

where BrZ € T'(ker F,) and CrZ € T'((ker F})™1).
Then
(ker F},)t = wpDE @ pg,

where up is the orthogonal complement of wrDE in (ker F,)* and is R-invariant.
Furthermore,

¢rDf = Df', wrDf' =0, ¢rDJ' C Dfi, Bg((ker F.)*) = Dff
¢%+BRQJR=—Z'CZ, C%—HURBR:—Z'CZ, wror+Crwr=0, BRCr+¢rBr=0.
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Then it is easy to have

Lemma 3.5. Let F' be an almost h-semi-slant submersion from a hyperkahler
manifold (M, I, J, K, gar) onto a Riemannian manifold (N, gn) such that (1, J, K) is
an almost h-semi-slant basis. Then we get

(1)
VxorY + TxwrY = orVxY + BrTxY

TxdrY + HVxwrY = wrVxY + CrTxY
for X,Y € T'(ker F,) and R € {I, J, K }.

(2)
VV 2 BrW + AzCpW = ¢ppAzW + BRHV ;W

Az BRW + HV zCrW = wp AzW + CrHNV zW
for Z, W € I'((ker F,)*) and R € {I, J, K}.

(3)
VxBrZ +TxCrZ = qﬁRTXZ—i— BrHV xZ

TxBrZ +HV xCrZ = wrTxZ + CrRHV xZ
for X € D(ker F}), Z € T((ker F,)*), and R € {I, J, K }.
Theorem 3.6. Let F' be a h-semi-slant submersion from a hyperkahler manifold

(M, 1,J, K, gp) onto a Riemannian manifold (N, gx) such that (1, J, K) is a h-semi-
slant basis. Then the following conditions are equivalent:

(a) the complex distribution D; is integrable.

(b) Qr(VxprY —VydprX)=0and Tx¢;Y = Ty X for XY € I(Dy).

(¢) Qs (VxdsY —Vyg;X)=0and Txp;Y = Ty¢; X for XY € I'(Dy).
(d) Qx(VxoxY — VyoxX) =0 and Tx oY = Tyox X for X,Y € I'(Dy).

Proof. Given X,Y e I'(D;) and R € {1, J, K}, we obtain
R[X,Y] = R(VxY —VyX) = VxRY — VyRX
= Vx¢rY — VyorX + TxdrY — Ty orX.
Since D is R-invariant, we have
a) = b), a)ec), a)sd).
Therefore, we get the result. ]

Theorem 3.7. Let F' be a h-semi-slant submersion from a hyperkahler manifold
(M, I,J, K, gp) onto a Riemannian manifold (V, gx) such that (1, J, K) is a h-semi-
slant basis. Then the following conditions are equivalent:
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(a) the slant distribution Ds is integrable.

(b) Pr(VxdrY —VyorX + TxwrY — TywrX) =0 for X,Y e T(Dy).

(¢) Py(VxdsY —VydpsX + TxwsY —Tyws;X) =0 for X,Y € T(Dy).
(d) Px(VxorY —Vyor X + TxwgY — TywgX) =0 for XY € T(Dy).

Proof. Given X,Y € I'(D), Z € I'(Dy), and R € {I, J, K}, we obtain
m([X, Y], RZ) = —gu(R[X, Y], Z) = —gu(VxRY — VyRX, Z)
= —gu(VxOrY + TxdrY + TxwrY + HV xwrY — VyorX
— Ty ¢prX — Tywr X — HVywrX, Z)

= —gu(Vx¢rY + TxwrY — Vy¢prX — TywrX, Z).

Since [X, Y] € I'(ker F), we have

(a) & (), (a) = (c), (a)<= (d)
Therefore, the result follows. |

Proposition 3.8. Let F' be an almost h-semi-slant submersion from an almost
quaternionic Hermitian manifold (M, E, gas) onto a Riemannian manifold (N, gn).
Then we get

phX = —cos’OpX for X e (DY) and R e {I,J, K},

where {I, J, K} is an almost h-semi-slant basis with the almost h-semi-slant angles
{01,05,0k}.

Proof. Since
_ gu(RX,¢rX)  —gu(X, ¢%X)
cosfr = =
|RX| - |prX| | X+ [¢rX]
|prX| -
= , btain
and cos 0r RX] we 0
X, %X

cos® O = —% for X € T(DY).
Hence,

P%X = —cos?’OpX for X € I'(DE). |

Remark 3.9. In particular, it is easy to see that the converse of Proposition 3.8 is
also true.
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Assume that the almost h-semi-slant angle 6z < [0,%) for some R € {I,J, K}
and define an endomorphism R of ker F, by
1

R:= RPp +
cosOr

PRQR.
Then,
?3) R?>=—id on kerF,.

Remark 3.10. Let F' be an almost h-semi-slant submersion from an almost quater-
nionic Hermitian manifold (M, E, gas) onto a Riemannian manifold (V, gn). Assume
that dim M = 4m, dim N = n, and {0r,0;,0x} N[0, %) # @. From (3), we obtain

dim(ker(F.),) = 2k and dim((ker(F.),)) = 4m — 2k for p € M,

where k is a non-negative integer.
Hence, n should be even.

Theorem 3.11. Let F' be an almost h-semi-slant submersion from an almost quater-
nionic Hermitian manifold (M, E, g5s) onto a Riemannian manifold (N, gn) such that
{01,07,0} N[0,5) # @, where {01,0;,0x} are almost h-semi-slant angles. Then
N is an even-dimensional manifold.

Proposition 3.12. Let F' be an almost h-semi-slant submersion from a hyperkahler
manifold (M, I, J, K, gas) onto a Riemannian manifold (V, gx) such that (I, J, K) is
an almost h-semi-slant basis. Then the following conditions are equivalent:

(a) the distribution (ker F,)* defines a totally geodesic foliation.
(b) or(VVxB1Y + AxCrY) + Bi(AxB;Y + HVxC;Y) = 0 for X|Y €

[((ker F,)4).

(¢) 6;(VVxBJY + AxC;Y) + Bj(AxB;Y + HVxC;Y) = 0 for X,V €
[((ker F,)4).

(d) ¢K<VVXBKY + .AXC'KY) + BK<.AXBKY + HVXCKY> =0 for X, Y €
[((ker F,)1).

Proof. Given X,Y € I'((ker F,)*) and R € {I, J, K}, we get
VxY = —RVxRY = —R(VVxBRrY + AxBrY + AxCRrY + HVxCRY)
= —(¢prVV xBRrY +wrVVxBRrY + BrAx BRY +CrAx BRY +¢pAxCrY
+ wrAxCRY + BRHV xCRrY + CRHV xCRY).
Thus,

VxY e I((ker F,)') < ¢r(VVxBrY +Ax CrY)+Br(AxBrY +HV xCrY) = 0.
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Hence, we have
a) = b), a)ec), a)ed).

Therefore, we get the result. ]
In a similar way, we have

Proposition 3.13. Let F' be an almost h-semi-slant submersion from a hyperkahler
manifold (M, I, J, K, gas) onto a Riemannian manifold (V, gx) such that (I, J, K) is
an almost h-semi-slant basis. Then the following conditions are equivalent:

—

a) the distribution ker F defines a totally geodesic foliation.

b) wi(VxorY +TxwiY)+Cr(TxdrY +HVxwiY) =0 for XY € T'(ker F,).

c) WJ<$X¢JY+TXWJY>+CJ<TX¢JY+HVXWJY> =0 for X,Y el (ker F}).
)

d) wr (VxoxY + TxwrY) + Cx(TxdxY + HVxwrY) = 0 for X,V €
I'(ker Fy).

A~~~

Proposition 3.14. Let F' be a h-semi-slant submersion from a hyperkahler manifold
(M, 1,J, K, gp) onto a Riemannian manifold (N, gx) such that (1, J, K) is a h-semi-
slant basis. Then the following conditions are equivalent:

(a) the distribution D, defines a totally geodesic foliation.

(b) R
Pr(¢r(VxorY + TxwiY) + Bi(Tx¢rY + HVxwY)) =0

wr(VxorY + TxwrY) + Cr(TxérY + HV xwY) =0

for X,Y € I'(Dy).
(c)

Py(¢5(VxdsY + TxwsY) + By(Tx ;Y + HVxwsY)) =0
WJ<$X¢JY + TXwJY> + CJ(T)(¢JY + HVXWJY> =0

for X,Y € I'(Dy).
(d)

Pr(r(VxorY + TxwrY) + Bi(Tx¢xY +HV xwrY)) =0
wi (VxorY + TxwrY) + Cr(Tx ¢ Y +HVxwrY) =0
for X,Y € I'(Dy).

Proof. Given X,Y € I'(Dq) and R € {I, J, K}, we get
VxY = —RVxRY = —R(Vx¢rY + Tx¢rY + TxwrY + HV xwrY)
= —(¢prVxORY +wrV xdRrY + BrTxorY + CrTx¢rY + ¢rTxwrY

+ wrTxwrY + BRHV xwrY + CRHV xwRrY).
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Thus,

PR<¢R<$X¢RY+TXwRY>+BR<Tx¢RY+HVXwRY>> =0,

VXY€F<D2><=> =N
WR(VX¢RY+TXwRY>+CR<Tx¢RY+HVXwRY> =0.

Hence, we have
a) = b), a)ec), a)sd).

Therefore, the result follows. ]
Similarly, we get

Proposition 3.15. Let F' be a h-semi-slant submersion from a hyperkahler manifold
(M, 1,J, K, gp) onto a Riemannian manifold (N, gx) such that (1, J, K) is a h-semi-
slant basis. Then the following conditions are equivalent:

(a) the distribution D; defines a totally geodesic foliation.

(0) R _
Q[(¢]VX¢]Y + B]Tx¢]Y> =0 and w]vX¢]Y + C]Tx¢]Y =0

for X, Y e I'(Dy).

(¢)

Qi(¢sVxsY + ByTx¢;Y) =0and w;Vxd,Y + CyTx¢sY =0

for X, Y e I'(Dy).

(d)

Qr(pxVxorY + BxTx¢xY) = 0 and wiVxorY + CxTx dxY = 0
for X, Y e I'(Dy).
Now, we obtain a condition for such maps to be totally geodesic.

Theorem 3.16. Let F' be an almost h-semi-slant submersion from a hyperkahler
manifold (M, I, J, K, gar) onto a Riemannian manifold (N, gn) such that (1, J, K) is
an almost h-semi-slant basis. Then the following conditions are equivalent:

(a) F is a totally geodesic map.

(0) R
wI<VX¢]Y + TXw]Y> + C](Tx¢jy + HV)QU]Y) =0

w]<$XB]Z+ TXc’]Z> —|—C]<TxB]Z —i—HVXC]Z) =0
for X,Y € I'(ker F}) and Z € T'((ker F.)™).
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WJ($X¢JY + TXwJY> + CJ(T)(¢JY “l‘HVXWJY) =0
QJJ(%)(BJZ%-T)(CJZ) —‘FC’J(TXBJZ +HVXCJZ> =0

for X,Y € I'(ker F,) and Z € T'((ker F.)™).
(d) _
wK(VXqﬁKY + ’TXwKY) + CK(T)(¢KY + HVXQJKY> =0

WK(%XBKZ‘F ’TXC’KZ) —i—CK(TxBKZ—i-HVXCKZ) =0
for X,Y € I'(ker F,) and Z € T'((ker F.)™).

Proof.  Since F' is a Riemannian submersion, we get
(VE)(Z1,Z9) =0 for Z1, Zo € T((ker F,)1).
Given X, Y € I'(ker F), we have
(VE)(X,Y) = —F,(VxY) = F,(IVx(¢1Y + wrY))
= F*(¢I$X¢IY +wiVxérY + BiTxo1Y + CrTxorY + ¢rTxwrY
+wiTxwrY + BfHV xwiY + CrHV xwrY).

Thus,

(VE)(X,Y) =0 wi(VxorY + TxwrY) + Cr(TxdrY +HV xwrY) = 0.

For X € I'(ker F},) and Z € I'((ker F})*4), since (VF.) (X, Z) = (VF.)(Z,X), itis
sufficient to consider the following:

(VE)(X,Z) = —F,(VxZ) = F,(IVx(B1Z + C;1Z))
= F.(¢;VxB1Z+wNxB1 Z+BiTxBi Z+CiTxBi Z+¢1Tx C1 Z
+wiTxC1Z + BifHV xC1Z + CrHV xC1 Z).
Thus,
(VE)X,Z)=0< w(VxB1Z +TxC1Z) + Ci(TxB1 Z + HV xC1Z) = 0.

Hence,

Similarly, we get
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Therefore, the result follows. ]

Let F' be an almost h-semi-slant submersion from a hyperkahler manifold
(M, 1,J, K, gp) onto a Riemannian manifold (N, g) such that (1, J, K) is an almost
h-semi-slant basis. Given a complex structure R € {I,J, K}, we can choose a local
orthonormal frame {v1, - - -, v;} of DL and a local orthonormal frame {e;, - - -, eax} Of
DI such that eg; = Reg; 1 for 1 < i < k. If D is integrable, then we easily obtain

F*<VR62i_1R€2i—l> = _F*<v62i_162i—1> for 1 S i S k
so that we have z
trace(VFy) =0 & ZF*(ijvj) = 0.
j=1
Theorem 3.17. Let F' be an almost h-semi-slant submersion from a hyperkahler
manifold (M, I, J, K, gas) onto a Riemannian manifold (V, gx) such that (I, J, K) is
an almost h-semi-slant basis. Then each of the following conditions implies that F' is
a harmonic map:
(a) DI is integrable and trace(VF.) =0 on Di.
(b) Df is integrable and trace(VF,) =0 on Dy.
(c) DX is integrable and trace(VF,) =0 on DE.
Corollary 3.18. Let F' be an almost h-semi-slant submersion from a hyperkahler
manifold (M, I, J, K, gyr) onto a Riemannian manifold (N, gn) such that (1, J, K)

is an almost h-semi-slant basis. Assume that ker F, = DI for some R € {I,J, K}.
Then F' is a harmonic map.

Let F': (M, gn) — (N, gnv) be a Riemannian submersion. The map F' is called a
Riemannian submersion with totally umbilical fibers if

(4) TxY = gu(X,Y)H for X,V € I'(ker F,),
where H is the mean curvature vector field of the fiber.

Lemma 3.19. Let F' be an almost h-semi-slant submersion with totally umbili-
cal fibers from a hyperkahler manifold (M, I, J, K, gas) onto a Riemannian manifold
(N, gn) such that (I, J, K) is an almost h-semi-slant basis. Then we obtain

H e T(wpDL) for Re {I,J,K}.
Proof. Given X,Y € T'(DF), W € T'(ug), and R € {I, J, K}, we get

TxRY + VxRY = VxRY = RVxY = BpTxY + CrTxY + 6pVxY +wrVxY
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so that
gM<TxRY, W) = gM<CRTX}/, W)

By (4), we easily have
gm (X, RY ) gu(H, W) = —gu (X, Y)gn (H, RW).
Interchanging the role of X and Y, we get
gm (Y, RX)gni(H, W) = —gu (Y, X)gu(H, RW).
Using the above two equations, we obtain
g (X, Y)gn(H, RW) =0,

which implies H € T'(wgrD%L), since ug is R-invariant.

Therefore, we have the result. ]
4. EXAMPLES
Note that given an Euclidean space R*™ with coordinates (1, o, -, T4m), We
can canonically choose complex structures I, .J, K on R*™ as follows:
& N__d & N___0d & \__ 9 & N___0d
I< 0Ty i1 ) T Omyp2’ I< 8ﬂl?4k+2> T Omgpyr1’ I< 8ﬂl?4k+3> T I< 8ﬂl?4k+4> T Omgpys?
& \__d & N___0d & \___9 & _\y__9
J< 0Ty i1 ) T Ovar43”’ J< 0Ty y2 ) T Omgpya’ J< 8ﬂl?4k+3> OTgpy1’ J< 8ﬂl?4k+4> OTygpy2’
& \__ 9 & N__d & N___d & N___0d
K< 0T 4k41 ) T Omgpga” K< 8ﬂl?4k+2> T Ozgp3’ K< 8ﬂl?4k+3> T Omgpy2”? K< 8ﬂl?4k+4> T Ozypy

for k € {0,1,---,m —1}.

Then we easily check that (1, J, K, {, )) is a hyperkahler structure on R*™, where
(, ) denotes the Euclidean metric on R*™. Throughout this section, we will use these
notations.

Example 4.1. Let F' be an almost h-slant submersion from an almost quaternionic
Hermitian manifold (M, E, gas) onto a Riemannian manifold (N, gn7). Then the map
F:(M,E,gu) — (N,gn) is a h-semi-slant submersion with Dy = ker F.. [16].

Example 4.2. Let F' be an almost h-semi-invariant submersion from an almost
quaternionic Hermitian manifold (M, E, gas) onto a Riemannian manifold (N, gn).
Then the map F': (M, E, gar) — (N, gn) is an almost h-semi-slant submersion with
the almost h-semi-slant angles 0y = 0; = 0x = 5. [17].

Example 4.3. Let (M, E, g) be an almost quaternionic Hermitian manifold. Let
m: TM — M be the natural projection. Then the map = is a strictly h-semi-slant
submersion such that D; = ker 7, and the strictly h-semi-slant angle 6 = 0 [11].
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Example 4.4. Let (M, Exr, gn) and (N, En, gn) be almost quaternionic Hermi-
tian manifolds. Let /' : M — N be a quaternionic submersion. Then the map F' is
a strictly h-semi-slant submersion such that D; = ker F, and the strictly h-semi-slant
angle 6 = 0 [11].

Example 4.5. Define a map F : R® — R3 by
F(xq, - ,28) = (z5sina — x7 cos o, g, Xg),

where « is constant. Then the map F' is a strictly h-semi-slant submersion such that

i i i i > and Dy =< cosai —i—sinai >
8$1’ 8$2’ 8$3’ 8$4 2 8$5 8$7

with the strictly h-semi-slant angle 6 = 7.

D1 =<

Example 4.6. Let (M, I, J, K, gy) be a 4m—dimensional hyperkahler manifold
and (IV, gn) a (4m — 1)—dimensional Riemannian manifold. Let F : (M, I, J, K, gas)
— (N, gn) be a Riemannian submersion.

Define amap F : (M, I,J, K, grr) x R* — (N, gn) by

F(z,y) = F(z) forz e M and y € R*.
Then the map F' is a strictly h-semi-slant submersion such that
Dy =0 x R* and Dy = ker F, x 0
with the strictly h-semi-slant angle 6 = 7.

Example 4.7. Define a map F : R'? — R* by

L5 — T7 r L9 — T11 10)
\/5 s L8y \/5 ) 0)-

Then the map F' is a h-semi-slant submersion such that

9 90 9 9 dp- 2 9 90 9 0 9
8$1’ 8$2’ 8$3’ 8$4 2= 8$6’ 8$12’ 8$5 8$7’ 8359 83511

with the h-semi-slant angles {0; = 5,0; = 5,0k = 7}

F<$17"' ,$12> :<

D1 =<

Example 4.8. Define a map F : R'?2 — R? by
F(xq,- - ,x12) = (r5c08 @ — x7sina, xgsin f — xg cos 3),

where « and § are constant. Then the map F' is a h-semi-slant submersion such that

D 0 0 0 0 0 9 0
L= 8$1’ 8$2’ 8$3’ 8$4’ 8359’ 83510’ 8$11’ 83512
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and

0 0 0 0
Dy =< sina— — -— infB—
2 <smaax5 —i—cosozaaw,cosﬂaa66 —i—smﬁaxS >

with the h-semi-slant angles {6;,0; = 7,0k} such that cosf; = |sin(a + )| and
cosfx = | cos(a + ()]

Example 4.9. Define a map F : R'2 — RS by

F([L’l,"' ,IE12> == (333,"' 7x8>'
Then the map F' is an almost h-semi-slant submersion such that

pl_.0 9 0 08 0 9
1= 8$1’ 8$2’ 8$9’ 8$10’ 8$11’ 8$12
0 0 0 0
D] =DF =< —
1 < 8309’ 8x10’ 8$11’ O0x12
N
8$1’ 8$2 '

Dy =0, Dy =Dy =<

with the almost h-semi-slant angles {6; = 0,6; = 5,0k = T}.
By Corollary 3.18, F' is also harmonic.

Example 4.10. Define a map F : R'2 — R* by

F(xy,---,m12) = (27, T5, 71, T2).
Then the map F' is an almost h-semi-slant submersion such that

pl_. 0 0 0 0 0 8
1= 8$3’ 8$4’ 8$9’ 8$10’ 8$11’ 8$12
o o0 0 0 0 0
D =« — — —
1 < 8$6’ 8$8’ 8$9’ 8$10’ 8$11’ 8$12 >
X o o9 9 9

DN —
1 <8x9’8x1078$11’8$12 ’

o 0 0o 0
D= — — D) =< —, —
2 < 8$6’ 8$8 > 2 < 8$3’ 8$4 >
pKk_. 9 9 0 0

7 0wy’ Oy’ Oz’ O
with the almost h-semi-slant angles {0; = 7,0; = 5,0k = 5}.

Example 4.11. Let F' be an almost h-slant submersion from an almost quater-
nionic Hermitian manifold (M/;, E1, gar,) onto a Riemannian manifold (XN, gn) and
(Ma, E9, gar,) an almost quaternionic Hermitian manifold.
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Define a map F : (My, By, gas) x5 (Ma, B, gar,) — (N, gn) by

F(z,y)=F(z) forxze M andy e My,

where (M, E1, gu,) % ¢ (Ma, Ea, gur,) is the warped product of (M, Eq, gas,) and
(Ms, Es, gur,) With the warping function f : My — RY. ie., g = gur, + 2901,
Then the map F' is a h-semi-slant submersion such that

Dy = TM, and Dy = ker F,

with the h-semi-slant angles {67, 0, 0k}, where {I, J, K'} is an almost h-slant basis
of the map F' with the slant angles {0;,0, 0k} [16].
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