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JESMANOWICZ’ CONJECTURE WITH FERMAT NUMBERS
Min Tang* and Jian-Xin Weng

Abstract. Let a, b, c be relatively prime positive integers such that a2 + b2 = ¢2.
In 1956, JeSmanowicz conjectured that for any positive integer n, the only solution
of (an)® + (bn)¥ = (en)? in positive integers is (z,y,z) = (2,2,2). Letk > 1
be an integer and F;, = 22" 1+ 1 be k-th Fermat number. In this paper, we
show that JeSmanowicz’ conjecture is true for Pythagorean triples (a,b,c) =
(Fy — 2,22 '+ ).

1. INTRODUCTION

Let a, b, ¢ be relatively prime positive integers such that a® + % = ¢? with b even.
Clearly, for any positive integer n, the Diophantine equation

(1.1) (na)® + (nb)Y = (nc)?, z,y,z€N

has the solution (x,y, z) = (2,2, 2). In 1956, Sierpifski [8] showed there is no other
solution when n = 1 and (a,b,c) = (3,4,5). JeSmanowicz [3] proved that when
n=1and (a,b,c) = (5,12,13),(7,24,25), (9,40,41), (11,60, 61), Eq.(1.1) has only
the solution (z, y, z) = (2, 2, 2). Moreover, he conjectured that for any positive integer
n, Eq.(1.1) has no solution other than (z,y, z) = (2,2,2). Let £ > 1 be an integer
and Fj, = 22" + 1 be k-th Fermat number. Recently, the first author of this paper and
Yang [9] proved that if 1 < k& < 4, then JeSmanowicz’ conjecture is true, that is, the
Diophantine equation

(1.2) ((Fy —2)n)" + (22k_1+1n)y = (Fyn)*, z,y,z€N

has no solution other than (z,y, z) = (2,2, 2). For related problems, see for example
[1, 6] and [7].
In this paper, we extend this result as follows.
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Theorem 1. For any positive integers n and &, Eq.(1.2) has only the solution
(z,y,2)=(2,2,2).

Throughout this paper, for positive integers a and m with a prime to m, we denote
by ord,,(a) the least positive integer & such that a” =1 (mod m).

2. LEMmAS

In this section, we prepare several lemmas.

Lemma 1. ([5]). For any positive integer m, the Diophantine equation (4m? —
1)* + (4m)¥ = (4m? + 1) has only the solution (z,y, 2) = (2,2, 2).

Lemma 2. (See [1, Lemma 2]). Let a, b, c be positive integers such that a? + b2 =
. If z > max{x,y}, then the Diophantine equation a® + b¥ = c¢* has only the
positive solution (z,y, z) = (2,2,2).

Lemma 3. (See [4, Corollary 1]). If Eq.(1.1) has a solution (z,y, z) # (2,2,2),
then z, y, z are distinct.

Lemma 4. (See [2, Lemma 2.3]). Let a, b, c be any primitive Pythagorean triple
such that a® + b> = ¢2. Assume that the Diophantine equation a® + oY = ¢* has
only the trivial solution in positive integers =,y and z. Then Eq.(1.1) has no solution
satisfyingz <y <z orz <z <uy.

Lemma 5. Let k be a positive integer. If (x,y, z) is a solution of Eq.(1.2) with
(z,y,2) #(2,2,2), then z < z < .

Proof. By Lemmas 2-4, it is sufficient to prove that Eq.(1.2) has no solution
(z,y, z) satisfying y < z < . By Lemma 1, we may assume that n > 2. Suppose
that Eq.(1.2) has a solution (z,y, z) with y < z < . Then, dividing Eq.(1.2) by nY,
we find

2.1 9@y _ v (pE (B, — 2)TpeF),
k

By (2.1) we may write n = 2" with » > 1. Since the second factor on the right-hand
side of (2.1) is odd, it has to be 1, that is,

(2.2) Ff — (Fp —2)%2r@=2) = 1,
Since Fj, = 2 (mod 3), equation (2.2) implies 2* = 1 (mod 3), hence z = 0
(mod 2). Write z = 2z;. Then

k—1
(2.3) ( I1 Fi>m27“<f—z) — (F —1)(F7 +1).
=0
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t
Let Fi,_1 = [] pj" be the standard prime factorization of Fj,_; with p; < ... < ps.
i=1
By the known Fermat primes, we know that there is the possibility of ¢t = 1. Moreover,
(2.4) ord,, (2) =2%, i=1,...,t

Since ged(F' —1, F' +1) = 2, by (2.3) we know that p; divides only one of F;* —1
and ;' + 1.

Case 1. p; | F;' — 1. Then 2 —1 = F;* —1 =0 (mod p;). Hence, we have
21 =0 (mod 2¥) by (2.4). It follows from (2.4) that

F'—1=2"-1=0 (modp;), i=1,...,t
Since ged(F;' — 1, F;' + 1) = 2, by (2.3) we have
F'—=1=0 (modp*), i=1,...,t

Hence F?_, divides F;' — 1.

Case2. p; | F'+1. Then2* +1 = F*+1 = 0 (mod py), SO 2221 = 1 (mod py).
Hence, z; = 0 (mod 2F71), but z; Z 0 (mod 2¥). By (2.4), fori = 1,...,t, we have

221 —1#£0 (mod p;),
(27 +1)(2 1) =21 —1=0 (mod p;).

Thus
Fr+1=0 (modp;), i=1,...,t

Similarly to the preceding case, the above yields F}7_, divides F;' + 1.
However, by the assumption z < z, we have

_ _ 2
FP = (22’“ Ly 1)$ > (22’“ Ly 1) Rt
which is absurd. This completes the proof of Lemma 5. ]

3. ProoF oF THEOREM 1

By Lemma 1, we may assume that n > 2. Suppose that there exists a solution of
Eq.(1.2) with (z,y, 2) # (2,2, 2). It suffices to observe that this leads to a contradic-
tion. By Lemma 5, we may assume = < z < y. Then, dividing Eqg.(1.2) by n*, we
find

(3.1) ( H F)I

n?—* (Fl: o 2(2’“_1+1)yny—z> )
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It is clear from (3.1) that » is prime to the second factor of the right-hand side of

k-1 ¢ k-1

(3.1). Let [] F; = [] p;" be the standard prime factorization of [] F; and write
i=0 i=1 i=0

n=1]] pfj, where 5; > 1, S C {1,...,t}. Let T ={1,...,t}\'S. If T =0, then

jES
let P(k,n) =1. If T # 0, then let

P(k,n) = Hpgi.
€T
By (3.1), we have
(3-2) P(k,n)* = Ff — 22" 0v T pli =),
JES

If P(k,n) =1,then S =T = {1,...,t}, and p; = 3. So, as seen in the proof of
Lemma 5, taking the equation in (3.2) modulo 3 implies that z is even. Write z = 22;.
By (3.2), we have

92" 1+1)y Hpjj(y—z) — (F7 = 1)(F 4 1).
jeS

Since ged(Ff* —1, F21 +1) = 2, we find that 22" +1v=1 divides only one of F* +1

and F*' — 1. Thus 22 7'+Dy—1 < F2 4 1. However, by the assumption z < y, we
k k y p

have

2"yl 5 9NN -1 5 9D S (Fy B — 2)7 > FA 41,

which is a contradiction.
Now we assume that P(k,n) > 1. First, we shall show that = is even.
Since y > 2, it follows from (3.2) that

(3.3) P(k,n)* =1 (mod 22").

If 3| P(k,n), then P(k,n) = —1 (mod 4). This together with (3.3) implies that =
is even. Hence, we may assume P(k,n) # 0 (mod 3). Then P(k,n) =1 (mod 4).
We can write P(k,n) = 1+ 2°W, where v, W are positive integers such that v > 2
and W is odd. Suppose that x is odd, then

P(k,n)* =142°W', 24W'.

Thus v > 2¥ by (3.3), and so P(k,n) > Fj, which is a contradiction with

k—1
P(k,n) <[] Fi = F, — 2.
=0
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Therefore, z is even. We can write z = 2“N, where u, N are positive integers such
that NV is odd.
Second, we shall prove that z is even.

Case 1. P(k,n) = —1 (mod 4). We can write P(k,n) = 2¢M — 1, where d, M
are positive integers such that d > 2 and M is odd. Then

P(k,n)® =1+2"Yy, 24V,

By (3.3) we have u + d > 2*.
Since S # (), we can choose a v € S, and we put p, = 2"t' + 1 withr > 1, 2+t ¢.
Then

28t < (29M — 1)(2"t' + 1) = P(k,n) - p, < lﬁ F=2"_1
i=0
Thus d + r < 2. Hence u > r. By (3.2) we have
P(k,n)*=2* (mod p,).
Noting that p,, — 1 | 2%¢/, we have
2"* = P(k,n)>*"N =1 (mod p,).
Since ord,, (2) is even and ¢ is odd, we have z = 0 (mod 2).

Case 2. P(k,n) =1 (mod 4). Similarly to the preceding case, we can show that
z is even.
Write z = 221,z = 2x1. By (3.2), we have

(3.4) 2(2’“_1+1)y Hpjj(y—z) _ (FI:I _ P(k,n)m) (Flfl —i—P(k,n)m).
jES
Since
ged (2 = P(k,n)™, Bt + Pk, n)™") =2,

we find from (3.4) that 2(2"'+1v~1 divides only one of F/* + P(k,n)"* and F;* —
P(k,n)*t. Thus 22" "+Dy=1 < F& 4 P(k, n)*t. However, by the assumption = <
z <y, we have

2@yl S (B 4 By — 2)7 > F2 4 P(k,n)™,

which is a contradiction. This completes the proof of Theorem 1.
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