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ON THE EXISTENCE OF POSITIVE DEFINITE SOLUTIONS OF A
NONLINEAR MATRIX EQUATION

Jing Li* and Yuhai Zhang

Abstract. In this paper the nonlinear matrix equation X −
m∑

i=1
A∗

i X
−piAi = Q

with pi > 0 is investigated. Necessary and sufficient conditions for the exis-
tence of Hermitian positive definite solutions are obtained. An effective iterative
method to obtain the unique solution is established. A perturbation bound and the
backward error of an approximate solution to this solution is evaluated. Moreover,
an explicit expression of the condition number for the positive definite solution is
given. The theoretical results are illustrated by numerical examples.

1. INTRODUCTION

In this paper we consider the sensitivity analysis of the nonlinear matrix equation

(1.1) X −
m∑

i=1

A∗
i X

−piAi = Q, pi > 0,

where A1, A2, · · · , Am are n× n complex matrices, Q is an n× n Hermitian positive
definite matrix, m is a positive integer and the Hermitian positive definite solution X
is required. Here, A∗

i denotes the conjugate transpose of the matrix Ai.
This type of nonlinear matrix equations arises in many practical problems, such as

ladder networks, dynamic programming, control theory, stochastic filtering, statistics
and so forth [1, 2, 3, 4, 5, 6]. When p1 = p2 = · · · = pm = 1, the matrix equation
(1.1) reduces to a special case of the nonlinear matrix equation

(1.2) X = Q + A∗(X̂ − C)−1A,
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where Q is an n× n positive definite matrix, C is an mn×mn positive semi-definite
matrix, A is an arbitrary mn × n matrix and X̂ is the m × m block diagonal matrix
with on each diagonal entry the n × n matrix X . In [7], the matrix equation (1.2)
is recognized as playing an important role in modelling certain optimal interpolation
problems. Let C = 0, A = (AT

1 , AT
2 , · · · , AT

m)T , where Ai, i = 1, 2, · · · , m, are n×n

matrices. Then X = Q + A∗(X̂ − C)−1A can be written as X −
m∑

i=1
A∗

i X
−1Ai = Q.

The general nonlinear matrix equation X −
m∑

i=1
A∗

i X
−piAi = Q (pi > 0) comes from

solving a system of linear equations in many physical calculations [8]. When solving

the nonlinear matrix equation X −
m∑

i=1
A∗

i X
−piAi = Q, we often do not know Ai and

Q exactly, but have only approximations Ãi and Q̃ available. Then we can solve the

equation X̃−
m∑

i=1
Ã∗

i X̃
−piÃi = Q̃ exactly which gives a different solution X̃. We would

like to know how the errors of Ãi and Q̃ influence the error in X̃. Motivated by this,

we consider in this paper the sensitivity analysis of X̃ −
m∑

i=1
Ã∗

i X̃
−piÃi = Q̃ (pi > 0).

For the case m > 1, the solvability and numerical solutions to the matrix equation

X̃ −
m∑

i=1
Ã∗

i X̃
−piÃi = Q̃ with 0 < pi ≤ 1 have been studied in [9, 11, 10]. Duan et

al. [9] proved that the equation X −
m∑

i=1
A∗

i X
δiAi = Q (0 < |δi| < 1) always has

a unique Hermitian positive definite solution. They also proposed an iterative method
for obtaining the unique Hermitian positive definite solution. Duan and Liao [10]
showed that equation X −∑m

i=1 A∗
i X

rAi = Q with −1 ≤ r < 0 or 0 < r < 1 has
a unique Hermitian positive definite solution. Lim [11] showed that the equation X −∑m

i=1 A∗
i X

δiAi = Q (0 < |δi| < 1) has a unique Hermitian positive definite solution.
However, these papers have not examined the sensitivity analysis about the equation
(1.1) and limited the range of pi in (0, 1]. Yin and Fang [12] obtained an explicit
expression of the condition number and also gave two perturbation estimates for the
unique Hermitian positive definite solution of X −∑m

i=1 A∗
i X

−1Ai = Q. Duan et al.
[13] gave two perturbation estimates for the Hermitian positive definite solution of the
equation X−∑m

i=1 A∗
i X

δiAi = Q with 0 < |δi| < 1. Whereas, to our best knowledge,
there have been no literatures paying attention to the sensitivity analysis for the equation
X−∑m

i=1 A∗
i X

−piAi = Q with pi > 0. The reason is that X−∑m
i=1 A∗

i X
−piAi = Q

does not always have unique Hermitian positive definite solution in the case pi > 0.
It is hard to find sufficient conditions for the existence of a unique Hermitian positive
definite solution, because the map L(X) = Q +

∑m
i=1 A∗

i X
−piAi with pi > 0 is

not monotonic. There are two difficulties for considering the sensitivity analysis for
the equation (1.1). One is how to find some reasonable restrictions on the coefficient
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matrices ensuring this equation has a unique Hermitian positive definite solution. The
other one is how to find a reasonable expression of the matrix X−pi in the case pi > 0
which is easy to handle. By using the integral representation of matrix function, the
fixed point theorem and the technique developed in [14], we derive a sufficient condition
for the existence of a unique Hermitian positive definite solution to the matrix equation
(1.1) and consider the sensitivity analysis of this equation.

The rest of the paper is organized as follows. In Section 2, we give some pre-
liminary knowledge that will be used to develop this work. In Section 3, we derive
necessary and sufficient conditions for the existence of Hermitian positive definite so-
lutions to the equation (1.1). In Section 4, we give a perturbation bound for the unique
solution to the equation (1.1), which is independent of the exact solution of the equation
(1.1). In Section 5, the backward error estimates of an approximate solution for the
unique solution to the equation (1.1) are discussed. In Section 6, applying the integral
representation of matrix function, we also discuss the explicit expression of the condi-
tion number for the Hermitian positive definite solution to the equation (1.1). Finally,
several numerical examples are presented in Section 7.

We denote by Cn×n the set of n × n complex matrices, by Hn×n the set of n × n
Hermitian matrices, by I the identity matrix, by i the imaginary unit, by ‖·‖ the spectral
norm, by ‖ · ‖F the Frobenius norm and by λmax(M) and λmin(M) the maximal and
minimal eigenvalues of M , respectively. For A = (a1, . . . , an) = (aij) ∈ Cn×n and a
matrix B, A ⊗ B = (aijB) is a Kronecker product, and vecA is a vector defined by
vecA = (aT

1 , . . . , aT
n )T . For X, Y ∈ Hn×n , we write X ≥ Y (resp. X > Y ) if X − Y

is Hermitian positive semi-definite (resp. definite).

2. PRELIMINARIES

In this section we quote some preliminary lemmas that we will use later.

Lemma 2.1. [15, Lemma 1]. If X, Y ≥ βI > 0 and p > 0, then ‖X−p−Y −p‖ ≤
p β−(p+1)‖X − Y ‖.

Lemma 2.2. [15, Lemma 2].
(i) If X ∈ Hn×n, then ‖e−X‖ = e−λmin(X).

(ii) If X ∈ Hn×n and r > 0, then X−r = 1
Γ(r)

∫∞
0 e−sXsr−1ds.

(iii) If A, B ∈ Cn×n, then eA+B − eA =
∫ 1
0 e(1−t)ABet(A+B)dt.

3. NECESSARY AND SUFFICIENT CONDITIONS

In this section, we derive the properties of the Hermitian positive definite solutions
of (1.1), including uniqueness and estimates of the solutions.
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Theorem 3.1. The nonlinear matrix equation (1.1) always has Hermitian positive
definite solutions.

Proof. Let Ω = {X : Q ≤ X ≤ Q +
∑m

i=1 λ−pi
min(Q)A∗

i Ai}. Obviously, Ω is a

nonempty bounded convex closed set. Let F (X) = Q +
m∑

i=1
A∗

i X
−piAi. Evidently, F

is continuous. For X ∈ Ω, we have X ≥ Q > 0, which implies that F (X) ≥ Q.
It follows from X ≥ Q ≥ λmin(Q)I that X−pi ≤ λ−pi

min(Q)I , which implies that

F (X) ≤ Q+
m∑

i=1
λ−pi

min(Q)A∗
i Ai. Therefore F (Ω) ⊆ Ω. By Brouwer fixed point theorem,

there exists X ∈ Ω satisfies F (X) = X, which means X is a solution of Eq.(1.1).

Theorem 3.2. If X is an Hermitian positive definite solution of (1.1), then Q ≤
X ≤ Q +

m∑
i=1

A∗
i Ai

λ
pi
min(Q)

.

Proof. That X is an Hermitian positive definite solution of (1.1) implies X >
0. Then X−pi > 0 and A∗

i X
−piAi ≥ 0, i = 1, 2, · · · , m. Hence X = Q +

m∑
i=1

A∗
i X

−piAi ≥ Q ≥ λmin(Q)I. Consequently, X−pi ≤ λ−pi
min(Q)I and X ≤ Q +

m∑
i=1

λ
−pi
min(Q)A∗

i Ai.

Theorem 3.3. If

q =
m∑

i=1

pi‖Ai‖2λ−pi−1
min (Q) < 1,

then

(i) The matrix equation (1.1) has a unique Hermitian positive definite solution X.

(ii) The iteration

(3.1) X0∈
[
Q, Q+

m∑
i=1

λ−pi
min(Q)A∗

i Ai

]
, Xn =Q+

m∑
i=1

A∗
i X

−pi
n−1Ai, n = 1, 2, · · ·

converges to X . Moreover,

‖Xn − X‖ ≤ qn

1− q
‖X1 − X0‖.

Proof. Let Ω = {X : Q ≤ X ≤ Q +
∑m

i=1 λ−pi
min(Q)A∗

i Ai}. Obviously, Ω is a

nonempty bounded convex closed set. Let F (X) = Q +
m∑

i=1
A∗

i X
−piAi. Evidently, F
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is continuous. The proof of Theorem 3.1 implies that F (Ω) ⊆ Ω. According to Lemma
2.1, we obtain ∀X1, X2 ∈ Ω,

‖F (X1) − F (X2)‖ =

∥∥∥∥∥
m∑

i=1

A∗
i (X

−pi
1 − X−pi

2 )Ai

∥∥∥∥∥ ≤
m∑

i=1

∥∥∥A∗
i (X

−pi
1 − X−pi

2 )Ai

∥∥∥
≤

m∑
i=1

piλ
−(pi+1)
min (Q)‖A∗

i Ai‖‖X1 − X2‖

= q‖X1 − X2‖.
The last equality is due to the fact that ||A∗

i Ai|| = ||Ai||2 (refer to [19, Problem 11.
Page 312]). From q < 1, it follows that F is a contractive mapping. By Banach
contraction mapping principle, the theorem is proved.

4. PERTURBATION BOUNDS

In this section we develop a relative perturbation bound for the unique solution of
(1.1), which does not need any knowledge of the exact solution X of (1.1) and is easy
to calculate.

Li and Zhang [16] proved the existence of a unique positive definite solution to
the equation X − A∗X−pA = Q (0 < p < 1) and also obtained a perturbation
bound for the unique solution. However, their approach becomes invalid for X −∑m

i=1 A∗
i X

−piAi = Q (pi > 0). Since the latter equation does not always have a
unique positive definite solution, there are two difficulties for a perturbation analysis
of the equation X −∑m

i=1 A∗
i X

−piAi = Q (pi > 0). One is how to find some
reasonable restrictions on the coefficient matrices of perturbed equation ensuring this
perturbed equation has a unique positive definite solution. The other one is how to
find an expression of X−pi(pi > 0) which is easy to handle.

Consider the perturbed matrix equation

(4.1) X̃ −
m∑

i=1

Ãi
∗
X̃−piÃi = Q̃, pi > 0,

where Q̃ is an Hermitian positive definite matrix.
If
∑m

i=1 pi‖Ai‖2λ
−pi−1
min (Q) < 1 and

∑m
i=1 pi‖Ãi‖2λ

−pi−1
min (Q̃) < 1. According to

Theorem 3.3, equations (1.1) and (4.1) have unique Hermitian positive definite solutions
X and X̃, respectively. Let ΔAi = Ãi − Ai, i = 1, 2, · · · , m, ΔQ = Q̃ − Q and
ΔX = X̃ − X , then we have the following theorem.

Theorem 4.1. If

(4.2)

m∑
i=1

pi‖Ai‖2Λ−pi−1 < 1 and

m∑
i=1

pi‖Ãi‖2Λ−pi−1 < 1

with Λ = min{λmin(Q), λmin(Q̃)},
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then

X −
m∑

i=1

A∗
i X

−piAi = Q and X̃ −
m∑

i=1

Ãi
∗
X̃−piÃi = Q̃

have unique Hermitian positive definite solutions X and X̃, respectively. Furthermore,

‖X̃ − X‖
‖X‖ ≤

∑m
i=1(2‖Ai‖ + ‖ΔAi‖)‖ΔAi‖Λ−pi + ||ΔQ||

Λ −∑m
i=1 pi‖Ai‖2Λ−pi

� ξ.

Proof. According to Theorem 3.3, the condition (4.2) ensures that (1.1) and (4.1)
have unique positive definite solution X and X̃, respectively. Furthermore, we obtain
that

(4.3) X ≥ λmin(Q)I ≥ ΛI, X̃ ≥ λmin(Q̃)I ≥ ΛI.

Subtracting (4.1) from (1.1) gives

(4.4)
ΔX =

m∑
i=1

(
Ãi

∗
X̃−piÃi − A∗

i X
−piAi

)
+ ΔQ

=
m∑

i=1

[
A∗

i (X̃
−pi − X−pi)Ai + ΔA∗

i X̃
−piAi + Ãi

∗
X̃−piΔAi

]
+ ΔQ.

By Lemma 2.2 and the inequalities in (4.3), we have

(4.5)

∥∥∥∥∥ΔX +
m∑

i=1

(
A∗

i X
−piAi − Ai

∗X̃−piAi

)∥∥∥∥∥
=

∥∥∥∥∥ΔX +
m∑

i=1

A∗
i

1
Γ(pi)

∫ ∞

0
(e−sX − e−sX̃ )spi−1dsAi

∥∥∥∥∥
=

∥∥∥∥∥ΔX +
m∑

i=1

A∗
i

1
Γ(pi)

∫ ∞

0

∫ 1

0

e−(1−t)sX̃ΔXe−tsXdtspidsAi

∥∥∥∥∥
≥ ‖ΔX‖ −

m∑
i=1

‖Ai‖2‖ΔX‖
Γ(pi)

∫ ∞

0

∫ 1

0

∥∥∥e−(1−t)sX̃
∥∥∥ ∥∥e−tsX

∥∥dtspids

= ‖ΔX‖ −
m∑

i=1

‖Ai‖2‖ΔX‖
Γ(pi)

∫ ∞

0

∫ 1

0
e−(1−t)sλmin(X̃)e−tsλmin(X)dtspids

≥ ‖ΔX‖ −
m∑

i=1

‖Ai‖2‖ΔX‖
Γ(pi)

∫ ∞

0

∫ 1

0
e−(1−t)sΛe−tsΛdtspids
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= ‖ΔX‖ −
m∑

i=1

‖Ai‖2‖ΔX‖
Γ(pi)

∫ ∞

0

∫ 1

0

e−sΛdtspids

= ‖ΔX‖ −
m∑

i=1

Γ(pi + 1)
Γ(pi)

· ‖Ai‖2‖ΔX‖
Λpi+1

=

(
1 −

m∑
i=1

pi‖Ai‖2

Λpi+1

)
‖ΔX‖.

Noticing the conditions in (4.2), we have

1 −
m∑

i=1

pi‖Ai‖2

Λpi+1
> 0.

Combining (4.4) with (4.5), one sees that(
1−

m∑
i=1

pi‖Ai‖2

Λpi+1

)
‖ΔX‖ ≤

∥∥∥∥∥
m∑

i=1

(ΔA∗
i X̃

−piAi + Ãi
∗
X̃−piΔAi) + ΔQ

∥∥∥∥∥
≤

m∑
i=1

(‖ΔAi‖ + 2‖Ai‖) ‖ΔAi‖‖X̃−pi‖ + ||ΔQ||

≤
m∑

i=1

(‖ΔAi‖ + 2‖Ai‖)‖ΔAi‖Λ−pi + ||ΔQ||,

which implies that

‖ΔX‖
‖X‖ ≤

m∑
i=1

(2‖Ai‖ + ‖ΔAi‖)‖ΔAi‖Λ−pi + ||ΔQ||

Λ−
m∑

i=1

pi‖Ai‖2Λ−pi

.

5. BACKWARD ERROR

In this section, we obtain some estimates for the backward error of the approximate
solution of (1.1).

Let X̃ > 0 be an approximation to the unique solution X to the equation (1.1),
and let ΔAi ∈ Cn×n (i = 1, 2, · · · , m) and ΔQ ∈ Hn×n be the corresponding pertur-
bations of the coefficient matrices Ai (i = 1, 2, · · · , m) and Q in the equation (1.1).
A backward error of the approximate solution X̃ can be defined by

(5.1)
η(X̃) = min

{∥∥∥∥(ΔA1

α1
,
ΔA2

α2
, · · · ,

ΔAm

αm
,
ΔQ

ρ

)∥∥∥∥
F

:

X̃ −
m∑

i=1

(Ai + ΔAi)∗X̃−pi(Ai + ΔAi) = Q + ΔQ

}
,
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where α1, α2, · · · , αm and ρ are positive parameters. Taking αi = ||Ai||F , i =
1, 2, · · · , m and ρ = ||Q||F in (5.1) gives the relative backward error ηrel(X̃), and
taking αi = 1, i = 1, 2, · · · , m and ρ = 1 in (5.1) gives the absolute backward error
ηabs(X̃).

Let

(5.2) R = Q − X̃ +
m∑

i=1

A∗
i X̃

−piAi.

Note that

Q = X̃ −
m∑

i=1

(Ai + ΔAi)∗X̃−pi(Ai + ΔAi)− ΔQ.

It follows from (5.2) that

(5.3) −
m∑

i=1

(ΔA∗
i X̃

−piAi + A∗
i X̃

−piΔAi) − ΔQ = R +
m∑

i=1

ΔA∗
i X̃

−piΔAi.

Let (
I ⊗ (X̃−piAi)∗

)
= Ui1 + iΩi1,

(
(X̃−piAi)T ⊗ I

)
Π = Ui2 + iΩi2,

vecΔAi = xi + iyi, vecΔQ = q1 + iq2, vecR = r1 + ir2,

vec(ΔA∗
i X̃

−piΔAi) = ai + ibi, i = 1, 2, · · · , m,

g =
(

xT
1

α1
,
yT
1

α1
, · · · ,

xT
m

αm
,
yT
m

αm
,
qT
1

ρ
,
qT
2

ρ

)T

,

Ui =

(
Ui1 + Ui2 Ωi2 − Ωi1

Ωi1 + Ωi2 Ui1 − Ui2

)
,

T = [−α1U1,−α2U2, · · · ,−αmUm,−ρI2n2],

where Π is the vec-permutation. Then (5.3) can be rewritten as

(5.4) Tg =
(

r1

r2

)
+

m∑
i=1

(
ai

bi

)
.

It follows from ρ > 0 that 2n2 × 2(m + 1)n2 matrix T is full row rank. Hence,
TT † = I2n2 , which implies that every solution to the equation

(5.5) g = T †
(

r1

r2

)
+ T †

(
m∑

i=1

(
ai

bi

))
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must be a solution to the equation (5.4). Consequently, for any solution g to (5.5) we
have

(5.6) η(X̃) ≤ ||g||.

Then we can state the estimates of the backward error as follows.

Theorem 5.1. Let A1, A2, · · · , Am, Q and X̃ be given matrices. Where Ai ∈
Cn×n, X̃ and Q are Hermitian positive definite matrices. Let η(X̃) be the backward
error defined by (5.1). If

(5.7) r <
s

4
( m∑

i=1

tiα
2
i

) ,

then we have that

(5.8) U(r) ≤ η(X̃) ≤ B(r),

where

r =
∥∥∥∥T †

(
r1

r2

)∥∥∥∥ , s = ‖T †‖−1, ti =
∥∥∥X̃−pi

∥∥∥ ,(5.9)

B(r) =
2rs

s +
√

s2 − 4rs(
∑m

i=1 tiα
2
i )

, U(r) =
2r
√

s2 − 4rs(
∑m

i=1 tiα
2
i )

s +
√

s2 − 4rs(
∑m

i=1 tiα
2
i )

.(5.10)

Proof. Let

L(g) = T †
(

r1

r2

)
+ T †

(
m∑

i=1

(
ai

bi

))
.

Obviously, L : C2(m+1)n2×1 → C2(m+1)n2×1 is continuous. The condition (5.7) ensures
that the quadratic equation

(5.11) x = r +
1
s
(

m∑
i=1

tiα
2
i )x

2

in x has two positive real roots. The smaller one is

B(r) =
2rs

s +
√

s2 − 4rs(
∑m

i=1 tiα
2
i )

.
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Define Ω =
{
g ∈ C2(m+1)n2×1 : ||g|| ≤ B(r)

}
. Then for any g ∈ Ω, we have

||L(g)||

≤ r +
1
s

m∑
i=1

∥∥∥∥( ai

bi

)∥∥∥∥ = r +
1
s

m∑
i=1

∥∥∥ΔA∗
i X̃

−piΔAi

∥∥∥
F
≤ r +

1
s

m∑
i=1

ti‖ΔAi‖2
F

≤ r +
1
s

(
m∑

i=1

tiα
2
i

)∥∥∥∥(ΔA1

α1
,
ΔA2

α2
, · · · ,

ΔAm

αm

)∥∥∥∥2

F

≤ r +
1
s

(
m∑

i=1

tiα
2
i

)
‖g‖2

≤ r +
1
s

(
m∑

i=1

tiα
2
i

)
B2(r) = B(r).

The last equality is due to the fact that B(r) is a solution to the quadratic equation
(5.11). Thus we have proved that L(Ω) ⊂ Ω. By the Schauder fixed-point theorem,
there exists a g∗ ∈ Ω such that L(g∗) = g∗, which means that g∗ is a solution to (5.5),
and hence it follows from (5.6) that

η(X̃) ≤ ||g∗|| ≤ B(r).

Next we derive a lower bound for η(X̃). Suppose that (ΔA1 min
α1

, · · · , ΔAm min
αm

, ΔQmin
ρ )

satisfies

(5.12) η(X̃) =
∥∥∥∥(ΔA1min

α1
, · · · ,

ΔAm min

αm
,
ΔQmin

ρ

)∥∥∥∥
F

.

Then we have

(5.13) Tgmin =
(

r1

r2

)
+

m∑
i=1

(
ai∗
bi∗

)
,

where

vec(ΔAT
i minX̃

−piΔAi min) = ai∗ + ibi∗,

vec(ΔAi min) = xi∗ + iyi∗,

vec(ΔQmin) = q1∗ + iq2∗,

gmin =
(

xT
1∗

α1
,
yT
1∗

α1
, · · · ,

xT
m∗

αm
,
yT
m∗

αm
,
qT
1∗
ρ

,
qT
2∗
ρ

)T

.

Let a singular value decomposition of T be T = W (E, 0)ZT , where W and Z are or-
thogonal matrices, E = diag(e1, e2, · · · , e2n2) with e1 ≥ · · · ≥ e2n2 > 0. Substituting
this decomposition into (5.13) and letting

ZTgmin =
(

v

∗
)

, v ∈ R
2n2

,
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we get

v = E−1WT

(
r1

r2

)
+ E−1WT

m∑
i=1

(
ai∗
bi∗

)
.

It follows from (5.12) that

η(X̃) = ‖gmin‖ =
∥∥∥∥( v

∗
)∥∥∥∥ ≥ ‖v‖

≥
∥∥∥∥E−1WT

(
r1

r2

)∥∥∥∥ −
∥∥∥∥∥E−1WT

m∑
i=1

(
ai∗
bi∗

)∥∥∥∥∥
≥
∥∥∥∥T †

(
r1

r2

)∥∥∥∥− ∥∥∥T †
∥∥∥ · m∑

i=1

∥∥∥∥( ai∗
bi∗

)∥∥∥∥
≥ r − 1

s

m∑
i=1

∥∥∥ΔA∗
i minX̃−piΔAi min

∥∥∥
F
≥ r − 1

s

m∑
i=1

ti‖ΔAimin‖2
F

≥ r − 1
s

(
m∑

i=1

tiα
2
i

)∥∥∥∥(ΔA1 min

α1
, · · · ,

ΔAm min

αm

)∥∥∥∥2

F

≥ r − 1
s

(
m∑

i=1

tiα
2
i

)
B2(r).

Here we have used the fact that∥∥∥∥(ΔA1 min

α1
, · · · ,

ΔAm min

αm

)∥∥∥∥
F

≤
∥∥∥∥(ΔA1 min

α1
, · · · ,

ΔAm min

αm
,
ΔQmin

ρ

)∥∥∥∥
F

= η(X̃) ≤ B(r).

Let

U(r) = r − 1
s

(
m∑

i=1

tiα
2
i

)
B2(r).

Since B(r) is a solution to the equation (5.11), we have

B(r) = r +
1
s
(

m∑
i=1

tiα
2
i )B

2(r),

which implies that

U(r) = r − 1
s

(
m∑

i=1

tiα
2
i

)
B2(r) = 2r − B(r) =

2r
√

s2 − 4rs(
∑m

i=1 tiα2
i )

s +
√

s2 − 4rs(
∑m

i=1 tiα
2
i )

> 0.
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Then η(X̃) ≥ U(r).

6. CONDITION NUMBER

A condition number is a measurement of the sensitivity of the Hermitian positive
definite stabilizing solutions to small changes in the coefficient matrices. In this section,
we apply the theory of condition number developed by Rice [17] to study condition
numbers of the unique solution to (1.1). The difficulty for obtaining explicit expressions
of the condition number for (1.1) is how to find expressions of ΔX and X−pi(pi > 0)
which are easy to handle. Here we consider the perturbed equation

(6.1) X̃ −
m∑

i=1

Ã∗
i X̃

−piÃi = Q̃.

Suppose that
m∑

i=1
pi‖Ai‖2λ−pi−1

min (Q) < 1 and
m∑

i=1
pi‖Ãi‖2λ−pi−1

min (Q̃) < 1. According to

Theorem 3.3, equations (1.1) and (6.1) have unique Hermitian positive definite solutions
X and X̃, respectively. Let ΔAi = Ãi − Ai, ΔQ = Q̃ − Q and ΔX = X̃ − X .
Subtracting (6.1) from (1.1) gives

ΔX =
m∑

i=1

(
Ã∗

i X̃
−piÃi − A∗

i X
−piAi

)
+ ΔQ

=
m∑

i=1

(
A∗

i (X̃
−pi − X−pi)Ai + ΔA∗

i X̃
−piAi + Ãi

∗
X̃−piΔAi

)
+ ΔQ

= −
m∑

i=1

A∗
i

Γ(pi)

∫ ∞

0

(
e−sX−e−sX̃

)
spi−1dsAi+

m∑
i=1

(
ΔA∗

i X̃
−piAi+Ã∗

i X̃
−piΔAi

)
+ΔQ

= −
m∑

i=1

A∗
i

Γ(pi)

∫ ∞

0

∫ 1

0
e−(1−t)sX̃

(
X̃ − X

)
e−tsXdtspidsAi

+
m∑

i=1

(
ΔA∗

i X̃
−piAi + Ã∗

i X̃
−piΔAi

)
+ ΔQ

= −
m∑

i=1

A∗
i

Γ(pi)

∫ ∞

0

∫ 1

0
(e−(1−t)sX̃ − e−(1−t)sX)ΔXe−tsXdtspidsAi

+
m∑

i=1

Ã∗
i (X + ΔX)−piΔAi

−
m∑

i=1

A∗
i

Γ(pi)

∫ ∞

0

∫ 1

0
e−(1−t)sXΔXe−tsXdtspidsAi −

m∑
i=1

Ã∗
i X

−piΔAi
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+
m∑

i=1

Ãi
∗
X−piΔAi −

m∑
i=1

(
ΔA∗

i X
−piAi − ΔA∗

i (X + ΔX)−piAi

)
+

m∑
i=1

ΔA∗
i X

−piAi + ΔQ

=
m∑

i=1

A∗
i

Γ(pi)

∫ ∞

0

∫ 1

0

∫ 1

0
e−(1−m)(1−t)sX

ΔXe−m(1−t)sX̃ΔXe−tsXdm(1− t)dtspi+1dsAi + ΔQ

−
m∑

i=1

A∗
i

Γ(pi)

∫ ∞

0

∫ 1

0

e−(1−t)sXΔXe−tsXdtspidsAi +
m∑

i=1

ΔA∗
i X

−piΔAi

−
m∑

i=1

Ãi
∗

Γ(pi)

∫ ∞

0

∫ 1

0
e−(1−t)s(X+ΔX)ΔXe−tsXdtspidsΔAi

+
m∑

i=1

(A∗
i X

−piΔAi + ΔA∗
i X

−piAi)

−
m∑

i=1

ΔA∗
i

Γ(pi)

∫ ∞

0

∫ 1

0

e−(1−t)s(X+ΔX)ΔXe−tsXdtspidsAi.

Therefore

(6.2) ΔX +
m∑

i=1

A∗
i

Γ(pi)

∫ ∞

0

∫ 1

0

e−(1−t)sXΔXe−tsXdtspidsAi = E + h(ΔX),

where

Bi = X−piAi,

E = ΔQ +
m∑

i=1

(B∗
i ΔAi + ΔA∗

i Bi) +
m∑

i=1

ΔA∗
i X

−piΔAi,

h(ΔX) =
m∑

i=1

A∗
i

Γ(pi)

∫ ∞

0

∫ 1

0

∫ 1

0
e−(1−m)(1−t)sX

ΔXe−m(1−t)sX̃ΔXe−tsXdm(1 − t)dtspi+1dsAi

−
m∑

i=1

Ãi
∗

Γ(pi)

∫ ∞

0

∫ 1

0

e−(1−t)s(X+ΔX)ΔXe−tsXdtspidsΔAi

−
m∑

i=1

ΔA∗
i

Γ(pi)

∫ ∞

0

∫ 1

0
e−(1−t)s(X+ΔX)ΔXe−tsXdtspidsAi.
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Lemma 6.3. If

(6.3)
m∑

i=1

pi‖Ai‖2λ−pi−1
min (Q) < 1,

then the linear operator V : Hn×n → Hn×n defined by

(6.4) VW = W +
m∑

i=1

1
Γ(pi)

∫ ∞

0

∫ 1

0
A∗

i e
−(1−t)sXWe−tsXAidtspids, W ∈ Hn×n

is invertible.

Proof. Defining the operator R : Hn×n → Hn×n by

RZ =
m∑

i=1

1
Γ(pi)

∫ ∞

0

∫ 1

0
A∗

i e
−(1−t)sXZe−tsXAidtspids, Z ∈ Hn×n,

it follows that
VW = W + RW.

Then V is invertible if and only if I + R is invertible.
According to Lemma 2.2 and the condition (6.3), we have

||RW || ≤
m∑

i=1

||Ai||2||W || 1
Γ(pi)

∫ ∞

0

∫ 1

0

∥∥∥e−(1−t)sX
∥∥∥ ∥∥e−tsX

∥∥ dtspids

=
m∑

i=1

||Ai||2||W || 1
Γ(pi)

∫ ∞

0

∫ 1

0
e−(1−t)sλmin(X)e−tsλmin(X)dtspids

≤
m∑

i=1

||Ai||2||W || 1
Γ(pi)

∫ ∞

0

∫ 1

0

e−(1−t)sλmin(Q)e−tsλmin(Q)dtspids

=
m∑

i=1

||Ai||2||W || 1
Γ(pi)

∫ ∞

0
e−sλmin(Q)spids

=
m∑

i=1

pi||Ai||2
λ

pi+1
min (Q)

||W || < ||W ||,

which implies that ||R|| < 1 and I + R is invertible. Therefore, the operator V is
invertible.

Based on the arguments above, we can rewrite (6.2) as

ΔX=V−1ΔQ+V−1
m∑

i=1

(B∗
i ΔAi+ΔA∗

i Bi)+V−1
m∑

i=1

(ΔA∗
i X

−piΔAi)+V−1(h(ΔX)).
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Obviously,

(6.5)
ΔX = V−1ΔQ + V−1

m∑
i=1

(B∗
i ΔAi + ΔA∗

i Bi)

+O(||(ΔA1, ΔA2, · · · , ΔAm, ΔQ)||2F)

as (ΔA1, ΔA2, · · · , ΔAm, ΔQ) → 0.

By the condition number theory developed by Rice [17], we define the condition
number of the Hermitian positive definite solution X to (6.5) by

(6.6) c(X) = lim
δ→0

sup
||(ΔA1

η1
,
ΔA2
η2

,··· ,ΔAm
ηm

,ΔQ
ρ

)||F≤δ

||ΔX ||F
ξδ

,

where ξ, ρ and ηi, i = 1, 2, · · · , m are positive parameters. Taking ξ = ηi = ρ = 1 in
(6.6) gives the absolute condition number cabs(X), and taking ξ = ||X ||F , ηi = ||Ai||F
and ρ = ||Q||F in (6.6) gives the relative condition number crel(X).

Substituting (6.5) into (6.6), we get

c(X) =
1
ξ

max(
ΔA1
η1

, ΔA2
η2

, · · · , ΔAm
ηm

, ΔQ
ρ

)
�= 0

ΔAi ∈ Cn×n, ΔQ ∈ Hn×n

∥∥∥∥V−1

(
m∑

i=1
(B∗

i ΔAi + ΔA∗
i Bi) + ΔQ

)∥∥∥∥
F∥∥∥(ΔA1

η1
, ΔA2

η2
, · · · , ΔAm

ηm
, ΔQ

ρ

)∥∥∥
F

=
1
ξ

max
(E1, E2, · · · , Em, H) �= 0
Ei ∈ Cn×n, H ∈ Hn×n

∥∥∥∥V−1

(
m∑

i=1
ηi(B∗

i Ei + E∗
i Bi + ρH)

)∥∥∥∥
F

‖ (E1, E2, · · · , Em, H)‖F
.

Let V be the matrix representation of the linear operator V. It follows from Lemma
4.3.2 in [18] that

vec(VW ) = V · vecW.

By Lemma 4.3.1 in [18], we have

vec(VW )=

(
I ⊗ I +

m∑
i=1

1
Γ(pi)

∫ ∞

0

∫ 1

0
(e−tsXAi)T ⊗(A∗

i e
−(1−t)sX)dtspids

)
·vecW.

Then

(6.7) V = I ⊗ I +
m∑

i=1

1
Γ(pi)

∫ ∞

0

∫ 1

0
(e−tsXAi)T ⊗ (A∗

i e
−(1−t)sX)dtspids.
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Let

V −1 = S + iΣ, V −1(I ⊗ B∗
i ) = Ui1 + iΩi1, V −1(BT

i ⊗ I)Π = Ui2 + iΩi2,(6.8)

Sc =
[

S −Σ
Σ S

]
, Ui =

[
Ui1 + Ui2 Ωi2 − Ωi1

Ωi1 + Ωi2 Ui1 − Ui2

]
, i = 1, 2, · · · , m,(6.9)

vecH = x + iy, vecEi = ai + ibi, g = (aT
1 , bT

1 , · · · , aT
m, bT

m, xT , yT )T ,
M = (E1, E2, · · · , Em, H),

where x, y, ai, bi ∈ Rn2
, S, Σ, Ui1, Ui2, Ωi1, Ωi2 ∈ Rn2×n2

, i = 1, 2, · · · , m, i =√−1, Π is the vec-permutation matrix, such that

vec AT = Π vec A.

Then we obtain that

c(X)

=
1
ξ

max
M �= 0

∥∥∥∥V−1

(
m∑

i=1
ηi(ρH + B∗

i Ei + E∗
i Bi)

)∥∥∥∥
F

||(E1, E2, · · · , Em, H)||F

=
1
ξ

max
M �= 0

∥∥∥∥ρV −1vecH +
m∑

i=1

ηiV
−1
(
(I ⊗ B∗

i )vecEi + (BT
i ⊗ I)vecE∗

i

)∥∥∥∥
‖vec (E1, E2, · · · , Em, H)‖

=
1
ξ

max
M �= 0

∥∥∥∥ρ(S + iΣ)(x + iy) +
m∑

i=1

ηi[(Ui1 + iΩi1)(ai + ibi) + (Ui2 + iΩi2)(ai − ibi)]
∥∥∥∥

‖vec (E1, E2, · · · , Em, H)‖

=
1
ξ

max
g �= 0

||(ρSc, η1U1, η2U2, · · · , ηmUm)g||
‖g‖

=
1
ξ
|| (ρSc, η1U1, η2U2, · · · , ηmUm)||, Ei ∈ Cn×n.

Theorem 6.1. If
m∑

i=1
pi‖Ai‖2λ−pi−1

min (Q) < 1 and
m∑

i=1
pi‖Ai + ΔAi‖2λ−pi−1

min (Q +

ΔQ) < 1, the condition number c(X) defined by (6.6) has the explicit expression

(6.10) c(X) =
1
ξ
|| (ρSc, η1U1, η2U2, · · · , ηmUm)||,

where the matrices Sc, Ui are defined as in (6.8).

Remark 6.1. From (6.10) we have the relative condition number

crel(X) =
|| (||Q||FSc, ||A1||F U1, ||A2||F U2, · · · , ||Am||FUm)||

||X ||F .
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7. NUMERICAL EXAMPLES

To illustrate the theoretical results of the previous sections, in this section several
simple examples are given, which were carried out using MATLAB 7.1. For the

stopping criterion we take εk+1(X) = ‖Xk −
m∑

i=1
A∗

i X
−pi

k Ai − Q‖ < 1.0e− 10.

Example 7.1. In this example, we study the matrix equation

X − A∗
1X

−2A1 − A∗
2X

−3A2 = I,

with

Ak =
1

k+2 + 2 × 10−2

||A|| A, k = 1, 2, A =

⎛⎜⎜⎜⎜⎝
2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

⎞⎟⎟⎟⎟⎠ .

By computation, q = 2‖A∗
1A1‖ + 3‖A∗

2A2‖ = 0.4673 < 1. Let X0 = 1.1I ∈ [I, I +
A∗

1A1 + A∗
2A2]. The conditions in Theorem 3.3 are satisfied. Algorithm (3.1) needs

17 iterations to obtain the unique positive definite solution

X =

⎛⎜⎜⎜⎜⎝
1.0578 0.0426 0.0073 −0.0013 0.0001
0.0426 1.0651 0.0413 0.0074 −0.0013
0.0073 0.0413 1.0652 0.0413 0.0073
−0.0013 0.0074 0.0413 1.0651 0.0426
0.0001 −0.0013 0.0073 0.0426 1.0578

⎞⎟⎟⎟⎟⎠
with the residual ‖X − A∗

1X
−2A1 − A∗

2X
−3A2 − I‖ = 5.6312e− 011.

Example 7.2. In this example, we consider the corresponding perturbation bound
for the solution X in Theorem 4.1.

We consider the matrix equation

X − A∗
1X

−2A1 − A∗
2X

−3/2A2 = I,

with

A1 =
1
3 + 2 × 10−2

||A|| A, A2 =
1
6 + 3 × 10−2

||A|| A, A =

⎛⎜⎜⎜⎜⎝
2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

⎞⎟⎟⎟⎟⎠ .
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In this case, the matrix equation (1.1) has a unique positive definite solution X . Suppose
that the coefficient matrices A1, A2 and Q are respectively perturbed to Ãi = Ai +
ΔAi, i = 1, 2 and Q̃ = I + ΔQ, where

ΔA1 =
10−j

‖CT + C‖ (CT + C), ΔA2 =
3 × 10−j−1

‖CT + C‖ (CT + C), ΔQ = 10−j × A

and C is a random matrix generated by MATLAB function randn.

By Theorem 4.1, we can compute the relative perturbation bound ξ. The results
averaged as the geometric mean of 20 randomly perturbed runs. Some results are listed
in Table 1.

Table 1: Perturbation bounds for Example 7.2 with different values of j
j 4 5 6 7

‖X̃−X‖
‖X‖ 2.8216× 10−4 2.6097× 10−5 2.8774× 10−6 2.7732× 10−7

ξ 7.4788× 10−4 6.9630× 10−5 7.4725× 10−6 7.5760× 10−7

The results listed in Table 1 show that the perturbation bound ξ given by Theorem
4.1 is sharp.

Example 7.3. In this example, we consider the backward error of an approximate
solution for the unique solution X to the equation (1.1) in Theorem 5.1. We consider

X − A∗
1X

−1/2A1 − A∗
2X

−3/2A2 = Q,

with the coefficient matrices

A1 =
1
5

⎛⎝ 1 0 1
−1 1 1
−1 −1 1

⎞⎠ , A2 =
2
√

3
45

A1, Q = X − A∗
1X

−1/2A1 − A∗
2X

−3/2A2,

where X = diag(1, 2, 3), which ensures that there exists a unique positive solution in
equation (1.1).

Let

X̃ = X +

⎛⎝ 0.5 −0.1 0.2
−0.1 0.3 0.6
0.2 0.6 −0.4

⎞⎠× 10−j

be an approximate solution to (1.1). Take α1 = ||A1||F , α2 = ||A2||F and ρ = ||Q||F
in Theorem 5.1. Some results on lower and upper bounds for the backward error η(X̃)
are displayed in Table 2.

The results listed in Table 2 show that the backward error of X̃ decreases as the
error ||X̃ − X ||F decreases.
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Table 2: Backward error for Example 7.3 with different values of j
j ||X̃ − X ||F r U(r) B(r)

1 0.2298 0.0636 0.0632 0.0639
3 2.3× 10−3 6.3587× 10−4 6.3583× 10−4 6.3591× 10−4

5 2.2978× 10−5 6.3587× 10−6 6.3587× 10−6 6.3587× 10−6

7 2.2978× 10−7 6.3587× 10−8 6.3587× 10−8 6.3587× 10−8

9 2.2978× 10−9 6.3587×10−10 6.3587×10−10 6.3587×10−10
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