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ON THE EXISTENCE OF POSITIVE DEFINITE SOLUTIONS OF A
NONLINEAR MATRIX EQUATION

Jing Li* and Yuhai Zhang

Abstract. In this paper the nonlinear matrix equation X — Y~ A X PiA; = Q

=1
with p; > 0 is investigated. Necessary and sufficient conditions for the exis-
tence of Hermitian positive definite solutions are obtained. An effective iterative
method to obtain the unique solution is established. A perturbation bound and the
backward error of an approximate solution to this solution is evaluated. Moreover,
an explicit expression of the condition number for the positive definite solution is
given. The theoretical results are illustrated by numerical examples.

1. INTRODUCTION

In this paper we consider the sensitivity analysis of the nonlinear matrix equation

m
(L.1) X =Y A;XPA=Q, pi>0,
=1
where Ay, Ay, - -+, Ay, are n x n complex matrices, @ is an n x n Hermitian positive

definite matrix, m is a positive integer and the Hermitian positive definite solution X
is required. Here, A? denotes the conjugate transpose of the matrix A;.

This type of nonlinear matrix equations arises in many practical problems, such as
ladder networks, dynamic programming, control theory, stochastic filtering, statistics
and so forth [1, 2, 3, 4, 5, 6]. When p; = py = -+ = p,, = 1, the matrix equation
(1.1) reduces to a special case of the nonlinear matrix equation

(1.2) X=Q+A(X-0)'4,
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where @ is an n x n positive definite matrix, C' is an mn x mn positive semi-definite
matrix, A is an arbitrary mn x n matrix and X is the m x m block diagonal matrix
with on each diagonal entry the n x n matrix X. In [7], the matrix equation (1.2)
is recognized as playing an important role in modelling certain optimal interpolation
problems. Let C =0, A = (AT, AT ... AT)T where 4;, i =1,2,---,m,are nxn

~ m
matrices. Then X = Q + A*(X — C)~1A can be writtenas X — Y>> A7 X 14, = Q.
i=1

m
The general nonlinear matrix equation X — Y~ A*X P A; = @Q (p; > 0) comes from
i=1
solving a system of linear equations in many physical calculations [8]. When solving
m
the nonlinear matrix equation X — " A*X 7' A; = @, we often do not know A; and
i=1
Q exactly, but have only approximations A; and @ available. Then we can solve the
m

equation X — > A*X 7i A; =  exactly which gives a different solution X. We would
=1

like to know how the errors of A; and @ influence the error in X. Motivated by this,

we consider in this paper the sensitivity analysis of X — i A*XPiA; = Q(p; > 0).

For the case m > 1, the solvability and numerical solzu:tlions to the matrix equation

X — f:lﬁff(—piﬁi = @ with 0 < p; < 1 have been studied in [9, 11, 10]. Duan et
=

al. [9] proved that the equation X — > A¥X%A; = Q (0 < |§;| < 1) always has

a unique Hermitian positive definite soiutlion. They also proposed an iterative method
for obtaining the unique Hermitian positive definite solution. Duan and Liao [10]
showed that equation X — > " A*X"A; = Q with -1 <r <0or 0 <r < 1 has
a unique Hermitian positive definite solution. Lim [11] showed that the equation X —

mUATX%A; = Q (0 < |6 < 1) has a unique Hermitian positive definite solution.
However, these papers have not examined the sensitivity analysis about the equation
(1.1) and limited the range of p; in (0,1]. Yin and Fang [12] obtained an explicit
expression of the condition number and also gave two perturbation estimates for the
unique Hermitian positive definite solution of X — " | A*X 14, = Q. Duan et al.
[13] gave two perturbation estimates for the Hermitian positive definite solution of the
equation X — Y7 | A¥X%A; = Q with 0 < |§;| < 1. Whereas, to our best knowledge,
there have been no literatures paying attention to the sensitivity analysis for the equation
X =" ArXPiA; = Q with p; > 0. The reason is that X — " | A*X PiA; = Q
does not always have unique Hermitian positive definite solution in the case p; > 0.
It is hard to find sufficient conditions for the existence of a unique Hermitian positive
definite solution, because the map L(X) = @ + > /%, A X P A; with p; > 0 is
not monotonic. There are two difficulties for considering the sensitivity analysis for
the equation (1.1). One is how to find some reasonable restrictions on the coefficient
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matrices ensuring this equation has a unique Hermitian positive definite solution. The
other one is how to find a reasonable expression of the matrix X ~P¢ in the case p; > 0
which is easy to handle. By using the integral representation of matrix function, the
fixed point theorem and the technique developed in [14], we derive a sufficient condition
for the existence of a unique Hermitian positive definite solution to the matrix equation
(1.1) and consider the sensitivity analysis of this equation.

The rest of the paper is organized as follows. In Section 2, we give some pre-
liminary knowledge that will be used to develop this work. In Section 3, we derive
necessary and sufficient conditions for the existence of Hermitian positive definite so-
lutions to the equation (1.1). In Section 4, we give a perturbation bound for the unique
solution to the equation (1.1), which is independent of the exact solution of the equation
(1.1). In Section 5, the backward error estimates of an approximate solution for the
unique solution to the equation (1.1) are discussed. In Section 6, applying the integral
representation of matrix function, we also discuss the explicit expression of the condi-
tion number for the Hermitian positive definite solution to the equation (1.1). Finally,
several numerical examples are presented in Section 7.

We denote by C™*™ the set of n x n complex matrices, by H™*" the set of n x n
Hermitian matrices, by I the identity matrix, by i the imaginary unit, by | -|| the spectral
norm, by || - || the Frobenius norm and by Apax(M) and Apin (M) the maximal and
minimal eigenvalues of M, respectively. For A = (a1, ..., a,) = (a;;) € C™*" and a
matrix B, A ® B = (a;; B) is a Kronecker product, and vecA is a vector defined by
vecA = (af, ... al)T. For X, Y € H™", we write X > Y (resp. X >Y)if X -V

cy Uy

is Hermitian positive semi-definite (resp. definite).
2. PRELIMINARIES

In this section we quote some preliminary lemmas that we will use later.

Lemma 2.1. [15, Lemmal]. If X, Y > I > 0and p > 0, then || X 7 -Y 7P| <
p BEHIIX Y.

Lemma 2.2. [15, Lemma 2].
(i) If X € H™ ", then |[e=|| = e Amin(X),
(i1) If X € H™™ and r > 0, then X" = gl [ e=sX 5 Lds.

(iii) If A, B € C™ ", then eAtB — 4 = fol e(1=)ABet(A+B) gt
3. NECESSARY AND SUFFICIENT CONDITIONS

In this section, we derive the properties of the Hermitian positive definite solutions
of (1.1), including uniqueness and estimates of the solutions.
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Theorem 3.1. The nonlinear matrix equation (1.1) always has Hermitian positive
definite solutions.

Proof. LetQ={X:Q <X <Q+>7", 2\ Q )A*A}. Obviously, © is a
nonempty bounded convex closed set. Let F'(X) = Q + Z ArX~PiA;. Evidently, F

is continuous. For X € €, we have X > @ > 0, WhICh implies that F(X) > Q.
It follows from X > Q > Muin(Q)I that X—Pi < X\ _Pi(Q)I, which implies that

min

F(X)< Q+Z A PH(Q)ArA;. Therefore F(2) C Q. By Brouwer fixed point theorem,
there exists X e ) satisfies F(X) = X, which means X is a solution of Eq.(1.1). m

Theorem 3. 2 If X is an Hermitian positive definite solution of (1.1), then @ <

A¥A;
¥2Qr i

Proof. That X is an Hermitian positive definite solution of (1.1) implies X >
0. Then X7P > 0 and A7 X P4, > 0, i = 1,2,---,m. Hence X = Q +

Z AFX7PiA; > Q > Anin(Q)I. Consequently, X P¢ < A P(Q)] and X < Q +

Z Anin (Q) A7 A;. u

Theorem 3.3. If
q—szHA IPALLHQ) < 1,

then
(i) The matrix equation (1.1) has a unique Hermitian positive definite solution X.
(if) The iteration

(B.1) Xoe|Q, Q+Z/\mm AfA |, X, Q+ZA*X Pid,, n=1,2,--

converges to X. Moreover,
n

1%, - x| < -

X1 — Xoll-
q

Proof. LetQ ={X:Q <X <Q+ Y, A\ 2(Q)ArA;}. Obviously, Q is a

min

nonempty bounded convex closed set. Let F(X) = Q + > AfX PiA;. Evidently, F
i=1
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is continuous. The proof of Theorem 3.1 implies that '(2) C Q. According to Lemma
2.1, we obtain VX1, X5 € Q,

1F(X1) = F(Xo)| =

ZAI(XIM —X,")A

m
<> |l - X
i=1

i+1) %
SZMMT QAT A1 X1 — X

= qHX1 - Xaf|.

The last equality is due to the fact that || A7 A;|| = ||A4;||? (refer to [19, Problem 11.
Page 312]). From ¢ < 1, it follows that F' is a contractive mapping. By Banach
contraction mapping principle, the theorem is proved. ]

4, PERTURBATION BOUNDS

In this section we develop a relative perturbation bound for the unique solution of
(1.1), which does not need any knowledge of the exact solution X of (1.1) and is easy
to calculate.

Li and Zhang [16] proved the existence of a unique positive definite solution to
the equation X — A*XPA = @ (0 < p < 1) and also obtained a perturbation
bound for the unique solution. However, their approach becomes invalid for X —
Yo ATXPiA; = @Q (p; > 0). Since the latter equation does not always have a
unique positive definite solution, there are two difficulties for a perturbation analysis
of the equation X — """ A*X PiA; = Q (p; > 0). One is how to find some
reasonable restrictions on the coefficient matrices of perturbed equation ensuring this
perturbed equation has a unique positive definite solution. The other one is how to
find an expression of X ~P(p; > 0) which is easy to handle.

Consider the perturbed matrix equation

(4.1) X-SA'XPA=Q, pi>0,
i=1
where @ is an Hermitian positive definite matrix.

IF S il APAETHQ) < 1and S pill AdlIPAL2 Q) < 1. According to
Theorem 3.3, equations (1.1) and (4.1) have unique Hermitian positive definite solutions
X and X, respectively. Let AA; = A; — A, i =1,2,---,m, AQ = Q — Q and
AX = X — X, then we have the following theorem.

Theorem 4.1. If

m m
TPl AilPATP T < Land Y pil|AifPATP < 1
(4.2) - 2

with A = min{Amin<Q>u Amin(é)}u
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then

m m
X-YA4x7A4=Qand X - A X "A=Q
=1 =1
have unique Hermitian positive definite solutions X and X, respectively. Furthermore,

I1X — X|| Z?l1<2HAiH+HAAZ“DHAAZ‘HA_M+HAQHéf.
[/ A= 000 pillAilPAP

Proof. According to Theorem 3.3, the condition (4.2) ensures that (1.1) and (4.1)
have unique positive definite solution X and X, respectively. Furthermore, we obtain
that

(4.3) X > Auin(@Q) > AL, X > Apin(Q)I > AL
Subtracting (4.1) from (1.1) gives

AX =Y (Zi*)?—p@ - A;*X‘piAi> TAQ
(4.4) m =l

= [A;f (X~Pi = X7P)A, + AATXPiA; + A, XPIAA| + AQ.
i=1

By Lemma 2.2 and the inequalities in (4.3), we have

AX+Y (A;*X‘piAi - Ai*f(_piAi> H
=1

1 /OO —sX —sX\ .pi—1
et —e )P ds Ay
L(pi) Jo ( )

= AX+ZAZ / / ~(1-0sX A X et X dtsPids A;

I'(ps)

HAXH Z HA H HAXH / / H (1—t) sXH H —tsXHdtszds

A;I7I|IAX
HAXH Z H H H H/ / —(1—1)8Amin( ) tS$Amin (X )dtsplds

A% ||AX
> HAXH Z H H H H/ / —(1—t)sA —tsAdtSplds

(4.5)

v
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A7 AX
HAXH Z H H H H/ / _SAdtSpldS

F(pﬂrl) [A:PPAX] - pif Ail?
= HAXH—Z 1- JAX]|.
=1

— T'(ps) Apit1 AP+l
Noticing the conditions in (4.2), we have
- pil Aif?

Apitl
=1

Combining (4.4) with (4.5), one sees that

 pil| Aq||?
<1 B A | 18X =
=1

Z IAA + 20 Aill) [A A X 74| + [|AQ)|

> 0.

STAAX A + AT XTPAA) + AQH
=1

3

Z [AA] + 2[[ A [AA AT + [[AQ]],

which implies that

m

Do CIAl + 124D IAAIA™ + [|AQ]|
[AX]|

[/

A= il AilPAr
i=1

5. BAckwaRD ERROR

In this section, we obtain some estimates for the backward error of the approximate
solution of (1.1).

Let X > 0 be an approximation to the unique solution X to the equation (1.1),
and let A4, e C™*™ (i =1,2,---,m) and AQ € H"*™ be the corresponding pertur-
bations of the coefficient matrices A; (i = 1,2,---,m) and @ in the equation (1.1).
A backward error of the approximate solution X can be defined by

~ . {H <AA1 AAy AA,, AQ)
77(X> = min ) s "y )
aq o7 Qm p

F
X =D (Ai+ AA) X P(A + AA) = Q + AQ
=1

(5.1)
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where ay, ag, -+, a,, and p are positive parameters. Taking «; = ||4;||p, @ =

1’ 2’ S
taking «;

nabs(X>'
Let

(5.2)

Note that

m and p = ||Q||# in (5.1) gives the relative backward error 7, (X), and
=1,i=1,2,---,mand p =1 in (5.1) gives the absolute backward error

R=Q-X+) AjXPiA;
=1

Q=X - (Ai+AA4)XPi(A+AA) - AQ.
=1

It follows from (5.2) that

(5.3)

Let

where 11

(5.4)

) (AAXTPA + ALX TPAA) - AQ =R+ AAX PIAA;
i=1 =1

(1 ® ()?_piAi)*> = Uy + i, (()?—piAi)T ® 1) I = Uy + i,
vecAA; = x; +1iy;, vecAQ = q1 +1iq2, vecR =1y +iro,

vec(AA; X PIAA) = a; +ib;, i=1,2,---,m,

T T T T T T\T
(L% Pm Y G B
C\{l’al’ ’C\{m’am’ ) )

Ui+ Ui Qo — Qi
N Qa+ Qi Un—Ug )’

T = [—alUl, —QQUQ, HRIN _amUmu _pI2n2]7

is the vec-permutation. Then (5.3) can be rewritten as

o= ()2 ()

It follows from p > 0 that 2n? x 2(m + 1)n? matrix 7" is full row rank. Hence,
TTT = I,,2, which implies that every solution to the equation

(5.5)

() (1)
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must be a solution to the equation (5.4). Consequently, for any solution g to (5.5) we
have

(5.6) n(X) <1lgll-
Then we can state the estimates of the backward error as follows.

Theorem 5.1. Let Ay, Ay, -+, Ap, Q and X be given matrices. Where A; €
C™*™, X and @ are Hermitian positive definite matrices. Let n(X) be the backward
error defined by (5.1). If

(5.7) r<— %

4 Ztia?
(te)
then we have that
(5.8) U(r) <n(X) < B(r),

where

)

(5.9) r:HTT<:1 )H s= T, b= | X
2

s 2r\/32 —4rs(3o, tialz)

, U(r) =
s+ \/32 —drs(30 tia?)

s+ \/32 —4rs(d" tia?).
Proof. Let
7t " (s (@
L(g)=T <r2)+T <Z;< b ))

Obviously, L : ¢2(m+1n*x1 _, c2(m+1)n*x1 js continuous. The condition (5.7) ensures
that the quadratic equation

(5.10) B(r) =

m

1
5.11 =r+ =0 ta?)?
(5.11) r=r-+ S(; ag)x

in x has two positive real roots. The smaller one is

2rs

B(r) = ’
s+ \/32 —drs(3 tia?)
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Define Q = { € C2m+n*x1 . |1g/| < B(r )}. Then for any g € 2, we have
IL(9)I]

1 i a; 1 T S —ps 1 m
r—l—;ZH( bi )H :r—i—gZHAAiX pzAAiHFSrJr;ZtiHAAiH%

IN

<r (Zm>H<MI,M2 Acim) I <Zta>\!g\!2
< +;<Ztia?> B2(r) = B(r).

The last equality is due to the fact that B(r) is a solution to the quadratic equation
(5.11). Thus we have proved that L(2) C Q. By the Schauder fixed-point theorem,
there exists a g. € Q such that L(g.) = g., which means that g.. is a solution to (5.5),
and hence it follows from (5.6) that

n(X) < llg4l| < B(r).

Next we derive a lower bound for 7(X). Suppose that (841mix ... Sdmmin AGuin)
satisfies
ad AA min AA min A min
(5.12) 77(X>:H< min e, e ) .
O P F
Then we have
r i a
- 1 i%
(513) Tgmln < ro ) +Z < bz* ) )
=1
where
VGC(AAZTmmX_piAAi min) = ;5 + ibjs,
vec(AAimin) = Tix + Wi,
VeC(AQmin> =qx + iCI2*,
T
min a17a17 7am7am7p7p

Let a singular value decomposition of 7" be T = W (E,0)Z”, where W and Z are or-
thogonal matrices, E = diag(ey, ea, -, ey,2) With eg > - -+ > ey,2 > 0. Substituting
this decomposition into (5.13) and letting

ZTgmiH — < : )’ v €R2n2’
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we get
_ =l T [ T —113/T - Qjx
v=E"'W <r2)—|—E W Z;(b)
It follows from (5.12) that

> v
o) = lawnll = | (2] 2 et

1T T . -1 Tm Qi
= e ()] (5|
)=
()1

v

1 & . S 1 ¢ 2
T > HAAiminX PAAimin|| 27— D il A A min[7
i=1 i=1
> 1 it@2 AAI min L A147)’Lmin 2
- s - Ckl bl ) am
i=1 F

1 % 2 2
o t:a? | BX(r).

Here we have used the fact that
AAI min A147)1 min
C\{l ) )

Om

F
AA min A147)’Lmin A min oy
SH( . sty ) Q ) :n(X>SB(r>
o751 Qm p F

Let
1 m
Ulr)y=r—- tia? | B%(r).
(r)=r-- (Z az> (r)
Since B(r) is a solution to the equation (5.11), we have

B(r)y=r+ %(Z t;a?)B2(r),

which implies that

1/ 2ry/s? — drs(3o0 tia?)
Ulr)=r—- <Ztia?> B%(r)=2r — B(r) = \/ ! > 0.
s\S s+ \fs2 = 4rs(S tia?)
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Then 7(X) > U(r). [
6. ConDITION NUMBER

A condition number is a measurement of the sensitivity of the Hermitian positive
definite stabilizing solutions to small changes in the coefficient matrices. In this section,
we apply the theory of condition number developed by Rice [17] to study condition
numbers of the unique solution to (1.1). The difficulty for obtaining explicit expressions
of the condition number for (1.1) is how to find expressions of AX and X ~?i(p; > 0)
which are easy to handle. Here we consider the perturbed equation

(6.1) XY AX 1A =Q.
i=1

Suppose that Z pill Ai|IPA2H(Q) < 1and ZpZHA I2A-P71(Q) < 1. According to

min min

Theorem 3.3, equatlons (1.1) and (6.1) have unlque Hermitian positive definite solutions
X and X, respectively. Let AA; = = A; — A, AQ =Q-Qand AX = X — X.
Subtracting (6.1) from (1.1) gives

AX = i (Ap?—piﬁi - A;*X‘piAi> +AQ
=1

I
i)

(A;f (X7Pi = X7P)A, + AATXPiA; + Xi*f(_piAAi> +AQ

Fz(‘g /Ooo(e_sx _6—8)2>8pi_1d314i +ii1 (AA:)?_piAi-i-gp?_piAAi) +AQ

* 00 1 ~
i / / e~ (1-1)sX (X — X) e X dtsPids A;
(pz‘) 0 0

AAU?—WA v A;)?—piAAi> TAQ

Ms :\Ms Ms H Ms INNERNNGE

—

/N

= / / — e DS A X et X dtsPids A;
+ A (X +AX)PAA;
r? / / —(=t)sX A X e 15X gsPids A; — ZA*X PiAA;
Di)

—_

i= i=1
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+3ATXTPAA =D (AATX A - AAN(X + AX)TPA))
=1 =1

+ Z AAIXPA + AQ

S [ [

AXe M=K A X etX g (1 — t)dtsPiHds A, +AQ

Z s / / —(A=0sX A X e 15X JtsPids A; +ZAA*X PiAA;

sz =1
m
—Z
=1

Z (ATXPIAA; + AAIXPiA;)

S

00 1
/ / e~ I-Ds(XHAX) A x o=t X g1 5Pi s A A,

/ / —(A=Ds(X+AX) A X et5X J5Pids A;.

Therefore

m A* o) 1
62 AX+) = (];) / / e~ DX AX e X dtsPidsA; = E + h(AX),
i=1 0

where
B, = X7 A;,

E=AQ+ i BfAA; + AAfB;) + iAA;*X‘piAAi,

SR T

AX —m=)sX A X e~t5X (1 — t)dtsP ds A;

/ / e~ I-Ds(XHAX) A X ot X g1 sPids A A;

- ZZ: ['(p:)
CLAAY
"2

00 1
L / / e~ I=Ds(XHAX) A x ot X g1 aPidg A,
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Lemma 6.3. If
(6.3) ZmA PAni (@) <

then the linear operator V : H"*" — H"*" defined by

m 1 0o rl
64) VIW=W+>" T(p:) / /O Are= =Xy e=tsX giqtsPids, W e H™*"
i=1

is invertible.

Proof. Defining the operator R, : H"*" — H"*" by

it follows that

ol
/ / Arem 0K Zo=tX AL qrsPids, Z € H™
; 0

VW =W +RW.

Then V is invertible if and only if 7 + R is invertible.
According to Lemma 2.2 and the condition (6.3), we have

m 1 00 1
IRWII< 3 IAPIW I, L[ om0 e atsras
ZHA H HWH / / 1 t mzn ) >\7nin(X)dtSpid8

I“( )/OO/ 6_(1_t)8>\mi"(Q)€_t8>\mi"(Q)dtSpid8
bi)Jo Jo
m 1 00
= A 2 - _5>\min(Q) pid
>l Wleg [ e @sras

pil| Al
—Z PR gy <y,
Amln (Q>

which implies that ||R|| < 1 and I + R is invertible. Therefore, the operator V is
invertible. u

IN

Based on the arguments above, we can rewrite (6.2) as

AX=VTAQ+V™IY (BIAA+AA BHV ™Y (AA;X PIAA WV (A(AX)).
=1 =1
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Obviously,

AX = VIAQ+ VYD (BfAA, + AA'B;

=1
+O([[(AA1, Ads, -, AA, AQ)|[7)

as (AA;, AAy, -+ AAL, AQ) — 0.
By the condition number theory developed by Rice [17], we define the condition
number of the Hermitian positive definite solution X to (6.5) by

AX
(6.6) ¢(X) = lim sup w,
00| Ak ady | sdn a0y o5 &

where &, p and n;, i = 1,2,--- ,m are positive parameters. Taking { =n; = p=11n
(6.6) gives the absolute condition number cq;5(X), and taking £ = || X ||, ni = ||Ail|F
and p = ||Q||r in (6.6) gives the relative condition number ¢;..;(X).

Substituting (6.5) into (6.6), we get

Hv—1 (Z (BfAA; + AASB;) + AQ)

1 2
oX) == max ¢ F
§ (a4, A4, Adm AQ AN A4y . AA, AQ
e Ada 8Q) e
nmo’om2 MmO p m 72 Nm P la

AA; € C™" AQ € H™M"
. HV_I <Z m(BfEiJrEi*BierH))
== max =1

$(B, By B H)£0  (BiEae B H) ||
Ei c Cnxn’ H c Hnxn

F

Let V' be the matrix representation of the linear operator V. It follows from Lemma
4.3.2 in [18] that
vec(VIW) =V - vecW.

By Lemma 4.3.1 in [18], we have

m 1 oo 1
vec(VIV) = <I ® I+ Z F(p‘>/0 /0 <€_tSXAi>T®(Afe_(l_t)sx)dtspids> ~vecWV.
i=1 t

Then

1
L'(pi)

m o) 1
(6.7) V=I®l+ Z / / <€_tSXAi>T & (Afe_(l_t)sx)dtspids.
i=1 0 0
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Let
(6.8) vi=5 + 33, V_I(I & B:) = U + i1, V_I(BZT ® I)H = Up + 190,

_| 8 = | Un+Uip 2 —Qa .
(69) SC - |: Z S :| 9 U’L - |: Qil + Qi2 Uz _ Uz 9 = 17 27 7m7
vecH = x + Iyu VeCEi =a; + Ibzu g = (a?a b{u e 7a%7 b%a xTu yT>T7

M:<E17E27"' 7ETI’L7H>7

where z,y,a;,b; € R™, S, %, Un, Uiz, Qi1, Qo € RYX 4 = 1,2, ,m, i =
v/—1, II is the vec-permutation matrix, such that

vec AT =TI vec A.

Then we obtain that

o(X)
1 HV‘1 (Z ni(pH + BfE; + E;‘Bi)>
i=1 F

= - max

5 M;éo ||(E1?E27"'aEmaH)||F

L HpV‘lvecH + > iV ((I @ By )vecE; + (Bl @ IvecEy)
= — max i=1

§M7é0 HveC(El?EQ?"' 7EmaH)H

L s e ¢ E i i+ ) + @ + i) - )

i=1

= -~ max

§M 0 HVGC (El?EQ?"' 7EmaH)H
_ 1 ||(pSC?771U1?772U2a"' anmUm)gH
= — max

g0 gl

1

¢ || (PSc,771U1, noUsa, - - - anmUm)H, E; € C"%™,

Theorem 6.1 If 3 pi || Ai[°A,5 " (Q) < Land 3 pill A; + AP0 H(Q +
A >

min

=1 =
AQ) < 1, the condition number ¢(X') defined by (6.6) has the explicit expression

(610) C(X> = (pS& 771U1; 772U2; T 7nmUm>H7

o
£
where the matrices S, U; are defined as in (6.8).

Remark 6.1. From (6.10) we have the relative condition number

erar(X) = L UIQIFSe; [[AllrUs, [|A2][rUs, - -, [[Aml|[FUn)l|
" 1 X]|F '
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7. NuMERICAL EXAMPLES

To illustrate the theoretical results of the previous sections, in this section several
simple examples are given, which were carried out using MATLAB 7.1. For the

m
stopping criterion we take ;11 (X) = || X} — > AXX, "' A; — Q|| < 1.0e — 10.
i=1

Example 7.1. In this example, we study the matrix equation

X —ATX72A - A3X 34y =1,

with
21000
1 2 12100
L 4+2x10
p = £E2 A k=12 A=]01 210
|| Al 00121
0001 2

By computation, ¢ = 2||A7 A1 || + 3||A5As|| = 0.4673 < 1. Let Xo = 1.11 € [I,I +
At A; + A5 As]. The conditions in Theorem 3.3 are satisfied. Algorithm (3.1) needs
17 iterations to obtain the unique positive definite solution

1.0678  0.0426 0.0073 —0.0013 0.0001
0.0426  1.0651 0.0413 0.0074 —0.0013
X = 0.0073  0.0413 1.0652 0.0413  0.0073
—0.0013 0.0074 0.0413 1.0651  0.0426
0.0001 —0.0013 0.0073 0.0426  1.0578

with the residual || X — A} X 2A; — A5X 3Ay — I]| = 5.6312¢ — 011.

Example 7.2. In this example, we consider the corresponding perturbation bound
for the solution X in Theorem 4.1.
We consider the matrix equation

X —ATX 724 — A5X 324, =1,

with
2100 0
1 -2 1 —2 1 21 00
1412x10 113x10
Alz%/x, AQ:%,A 01210
|| Al || Al 00 1 2 1
00012
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In this case, the matrix equation (1.1) has a unique positive definite solution X. Suppose
that the coefficient matrices A;, A and @ are respectively perturbed to A; = A; +
AA;i=1,2and Q = I + AQ, where

1077 3x 10771
et +a 1T +Cl

and C' is a random matrix generated by MATLAB function randn.

AA (CT +0), AAy = (CT +0), AQ=1077 x A

By Theorem 4.1, we can compute the relative perturbation bound £. The results
averaged as the geometric mean of 20 randomly perturbed runs. Some results are listed
in Table 1.

Table 1: Perturbation bounds for Example 7.2 with different values of j

J 4 5 6 7
”)ﬁ)}f” 2.8216 x 10~%  2.6097 x 1075 2.8774x 1076 2.7732 x 107
£ 7.4788 x 107*  6.9630 x 1075 7.4725x 1076  7.5760 x 10~7

The results listed in Table 1 show that the perturbation bound £ given by Theorem
4.1 is sharp.

Example 7.3. In this example, we consider the backward error of an approximate
solution for the unique solution X to the equation (1.1) in Theorem 5.1. We consider

X —ATX71V24 — A5X 324, = Q,

with the coefficient matrices

1 0 1
1 2V/3

A=t 201 1), 4=BBa Q- x - Aix VA, — AX 24,
S 45 ! 2

where X = diag(1,2,3), which ensures that there exists a unique positive solution in
equation (1.1).
Let
0.5 —-0.1 0.2
X=X+| -01 03 06 |x107
0.2 0.6 —-04

be an approximate solution to (1.1). Take a; = |[A1|r, a2 = [|Az]|F and p = [|Q||F
in Theorem 5.1. Some results on lower and upper bounds for the backward error 1 (X)
are displayed in Table 2.

The results listed in Table 2 show that the backward error of X decreases as the
error || X — X || decreases.
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Table 2: Backward error for Example 7.3 with different values of j

IX - X||F r U(r) B(r)
0.2298 0.0636 0.0632 0.0639
2.3x 1073 6.3587 x 10~*  6.3583 x 10~* 6.3591 x 10~*

22078 x 107°  6.3587 x 1070 6.3587 x 1076  6.3587 x 10~
22978 x 1077  6.3587 x 1078  6.3587 x 10~%  6.3587 x 108
2.2978 x 1072 6.3587x 10710 6.3587 x 1010 6.3587 x 1010

OV U W[ | .
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