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SINGULAR VALUE INEQUALITIES OF LEWENT TYPE
Yun Zhang

Abstract. Let A; be strictly contractive matrices and let A; be nonnegative real

m

numbers with Z N =1, i=1,...,m. We prove that
i=1

m

I + Z)\LAL m ( <

i=1 I+]4;\™
S| ——m '<Wlog1_[5 I—|Ai| ,
I— Z)\iAi i=1
i=1

which generalizes a Lewent type determinantal inequality due to Lin [M. Lin, A
Lewent type determinantal inequality, Taiwanese J. Math. 17(2013), 1303-1309].
On the other hand, we also prove

m

IT+) MNA; ,
izzl m I+ |AL|
s| —=L— <WlogZAis<1_|A;|>.
-3 XA i=1 '
i=1

Here “<10¢” stands for weakly log-majorization. In addition, some other related
inequalities are also obtained.

1. INTRODUCTION

Let M, denote the vector space of all complex n x n matrices and let H,, be
the set of all Hermitian matrices of order n. We always denote the eigenvalues of
A € H,, in decreasing order by A1(A) > \a(A4) > --- > A\, (A4) and denote \(A) =
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(A1(A), A2(A), ..., A\n(A)). The singular values of A € M,, are defined to be the
nonnegative square roots of the eigenvalues of A*A. The absolute value of A € M,
is defined and denoted by |A| = (A*A)%. Thus the singular values of A are the
eigenvalues of |A|. We always denote the singular values of A € M,, by s;(A) >
s9(A) > -+ > s,(A) and denote s(A) = (s1(A4), s2(A),...,s,(A)). Denote by || ||oo
the spectral norm. For A € M,, | Al|~ = s1(A). For A, B € H,,, we use the notation
A < Bor B> A tomean that B — A is positive semidefinite. Clearly, “ < ” and
“>7 define two partial orders on H,,, each of which is called Lowner partial order. In
particular, B > 0 means that B is positive semidefinite. Recall that a complex matrix C
is called a contraction if ||Cl|» < 1, or equivalently C*C' < I. Moreover, C'is called
a strict contraction if ||C||- < 1. Given a real vector z = (x1, z2,...,2,) € R", we
rearrange its components as xp; > zjg > -+ > Ty

Definition 1. For x = (z1,22,..., &), ¥ = (Y1,Y2, - -, Yn) € R", if

k k
Zx[i] < Zy[i]’ k=1,2,...,n,
=1 =1

then we say that x is weakly majorized by y and denote = <y y. If z < y and
n

n
> xi =) i, then we say that « is majorized by y and denote z < .
i—1 i1

Definition 2. Let the components of z = (z1, z2,...,2,) and vy = (y1, Y2, - -, Yn)
be nonnegative. If

k k
Hx[i] < Hy[i]’ k=1,2,...,n,
=1 =1

then we say that = is weakly log-majorized by y and denote = <y y. If © <yiog ¥

and sz = Hyi’ then we say that « is log-majorized by y and denote z <o, .
i=1 i=1

In 1908, by using the power-series method Lewent [7] proved the following nu-
merical inequality:

m
1+ Z/\Zx, m
=1

>\,.
1+x;,\™
) — <1 (1)
L - xz
1-— Z/\Zx, =1
i=1
where z; € [0,1) and the nonnegative real numbers \;, i = 1,...,m, are (scalar)
m

weights with Z/\i =1
i=1
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Recently, Lin [5] proved an interesting analogue of (1) for the determinant of strict
contractions: Let A;, ¢ = 1,...,m, be strictly contractive matrices. Then

=1 < Hdet [+]A

I- i/\lAi i=1
i=1

2) det

m
where each )\; > 0 and Z/\i = 1.
i=1
Here ££4 is understood as (I +A)(I — A)~!, which is also equal to (I —A) (I +
A).
For simplicity, we state our results for matrices, but these results still hold for trace
class operators on a complex separable Hilbert space via limiting arguments.

m m
For Bj € My, i = 1,...,m, we always denote | [s(B;) := <H $1(Bj), -,
=1 i=1

m
Hsn(Bi)> . In this paper, we shall prove the following inequalities: Let A; €
i=1
M,, i = 1,...,m, be strictly contractive matrices and let \; be nonnegative real

m
numbers with >~ A; =1, i=1,...,m.. Then
i—1

B[R R ((
I=Y N4 i=1
i=1

which generalizes (2). Meanwhile, we also prove

=1 I+ A
5| ———— | <wlog Zx\is T—(4,)

I- i/\iAi i=1
i=1

Some other related results are also obtained.

I+]A N\
I —|A ’

2. ResuLTs AND PrROOF

We start with several lemmas which will be used in our proof.
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The following well known result is due to Ky Fan [3, 10].

Lemma 1. Let A, B € H,,. Then A\(A+ B) < A(A) + A\(B).
Denote by H,,(2) the set of n x n Hermitian matrices with the spectra in an interval
Q. We have the following

Lemma 2. [1] Let f be a convex function on €. Then
Af(aA+ (1 —a)B)) <w AMaf(4) + (1 - a)f(B))

forall A,Be H,(2)and 0 < a < 1.

Remark. Using an idea similar to that in [1], we can generalize Lemma 2 to m
matrices:

(3) /\<f<a1A1 +-- amAm>> <w /\<a1f<A1> +-+ amf<Am>>

for Ay, ..., A, € Hy(Q) and oy, . . ., oy € [0, 1] with Zo‘i =1.
i=1
Lemma 3. [3, 10]. Let g(¢) be an increasing convex function. If z <y, y with
xz,y € R™, then
(9(x1),- - 9(wn)) =<w (9(¥1),- -+, 9(yn)) -

Let f be a real valued function defined on an interval 2. If f is positive and

flas+(1—a)t) < f(s)* (1),

forall 0 < o < 1, then f is called log-convex. The reader is referred to [8] for general
properties of convex and log-convex functions.

Lemma 4. Let A;, i = 1,...,m, be strictly contractive matrices. If A;, i =
1,...,m, are positive semidefinite, then
m

i=1 & I+ A"
(4) S| —m '<Wlog Hs <<I — Az 5
I= N =1
i=1

m
where each \; > 0 and Z/\i = 1.
i1
Proof.  First, we will show that f(t) = -t is log-convex on [0, 1). It is clear
that f(¢) is positive on [0, 1). Let

g(t) :=log f(t).
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It is equivalent to showing that g(¢) is convex on [0, 1). Since g(¢) is continuous, we
only need show ¢"(¢) > 0, for all ¢ € [0, 1). A routine calculation shows that

A S ET  PE
for all ¢ € [0,1). This shows that
1+t
t pu—
is log-convex on [0, 1). Since the spectra of Z/\iAi and A; are contained in [0,1), i =
i=1
1,...,m, it follows that each A; and Z/\iAi belong to H,,([0,1)). By the spectral
i=1
mapping theorem, the spectra of f <Z/\iAi> and f(A;) are contained in [1, +00).
i=1

m
For \; > 0 with Z/\i =1, we have
=1

log A <f <Zm:/\ZA,>>
i=1
= A <log f <Zm:/\ZAZ>> by the Spectral Mapping Theorem
A <§:/\Z log f (Az)> by Lemma 2
< Zx\ (A log f(4))) by Lemma 1
Zlog A(f by the Spectral Mapping Theorem

Then
log A <f <Z/\ZAZ>> ~w Zlog A(f(A)
i=1 i=1

Applying Lemma 3 to the above weak-majorization with the increasing convex function

et, we obtain
A <f (Zm)) <wlog | JMf(Ai)*
=1 =1
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Clearly, each f(A4;) and f <Z/\ZAZ~ are positive definite. Note that for positive

=1
definite matrices, singular values and eigenvalues are the same. Thus the inequality

(4) holds. This completes the proof. ]
Remark. In [5], Lin proved the following result: Let A;, ¢ =1, ..., m, be strictly
contractive matrices. If A;, ¢ = 1,..., m, are positive semidefinite, then

2 e ()

(5) det —
I-Y N4 | =t
i=1

m
where each \; > 0 and Z/\i = 1. The author pointed out this result was also an

i=1
application of Theorem 3.3 in [2]. Note that (5) is the special case k = n of (4) in
Lemma 4.

Let & : M,, — M, be a map. We say that & is 2-positive if whenever the 2 x 2

B ®(A) P(B) .
B C > 0 then < B(B) @(C) > 0. It is clear that any

Liebian function is 2-positive [9].
Lemma 5. [5] ®(¢) = }—fjﬁ is 2-positive over the strictly contractive matrices.

operator matrix

Lemma 6. [4, p.208] The partitioned block matrix is positive

B* C
semidefinite if and only if both A and C are positive semidefinite and there exists
a contraction W such that B = Az WC'z. Moreover, we have

$(B) =<uwiog 5(A2)s(B2).

Theorem 7. Let A; € M,,, i =1, ..., m, be strictly contractive matrices. Then
m
(6) s| —=L | <. Hs <I+ ‘Az‘) ’
wlog 41 I _ ‘Al‘ I

I— i/\lAi
=1

m
where each \; > 0 and Z/\i = 1.
i=1
Proof.  Note that 4; = \A;\%Ui\Ai\, i =1,...,m, with unitary U;. By Lemma

|AF]  A; , "G
? > . =
6, we have < Y > 0, for any . For each \; > 0 with El/\l 1, then we
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have
Ail A7 Aidi m
U E s )z
D NAT D oAl = o
=1 =1

Applying Lemma 5 to the above partitioned block matrix, we obtain the following 2 x 2
block matrix

I+ ZAZ‘A:‘ I+ ZAZAZ
i=1 i=1

I—- ZAZ‘A:‘ I—- ZAZAZ
i=1 i=1

I+ ZAZA: I+ ZAZ‘AZ‘
i=1 i=1

I— iAZA: I— iAz‘Az‘
=1 =1

By Lemma 6, we have

=
=

m m m
T+ XA T+ \ilAj] T+ il
=1 =1 =1
S| ——— | <wlog S —_— S

I—i/\iAi I—zm:/\i\Aﬂ I—i/\i‘Ai‘
i=1 i=1 i=1

1 1
Let 2 € R™ be an vector with nonnegative components and denote r3 = (xf,...,x8).
Then we have

i=1

I— i/\iAi
=1

=

1
2

m m
T+ A7) T+ ilAjl
<oiog § i=1 . i=1

I—i/\i\Aﬂ I—i/\i\Ai\
i=1 =1
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1
m 2 m
I+> Xil4;] T+ \ilAjl
i=1 i=1
I= il4g] I= \ilAjl
=1 =1
- 1
o ( (LAY (LA™
wlo . . L 4
< wlog Hs((l_‘Aﬂ) il_[ls T—[a] by Lemma
- 1
[ (A Y (LA
I I— A3 I— A
Li=1 ?
- (R
i=1 -4

where the last equality can be seen as follows. Using the spectral mapping theorem
and A(|A4;]) = A(JA47|) = s(JAf|) = s(|A;|) for any 4, we have

(D) (G ) (G2 ) (G

for any . This completes the proof. ]

N|—=

The following corollary is the main result [5], which follows by Theorem 7.

Corollary 8. [5]. Let A;, ¢ =1,...,m, be strictly contractive matrices. Then
m
DV |
i + . G
det | —=L || < det( Z) ,
=11 I — A

I- i/\iAi =1
i=1

where each \; > 0 and » \; = 1.
i

m

I+ Y ANA;
izl o 144, \N :

Proof. Denote M = ——— and denote M; = (1-AZ> fori=1,...,m.

I— iAzAz
i=1

Suppose the eigenvalues of M is A (M), ..., (M) with [(A (M) > -+ > | A (M)]
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and denote |A(M)| = (|]A1(M)], ..., | \(M)]). Using Weyl’s Theorem [10, p.81] and
Theorem 7, we have

M) <1og 5(M) <wiog [ [ 5 (M)

Note that M;, j =1,...,m, are positive definite. Letting k£ = n, we have
n n m m n m m

det M| = [TInGA0| < TTTTs:(M5) = T[] [s:(M)) = [ Idet M;| = ] [det ;.
i=1 i=1j=1 j=li=1 j=1 j=1

This completes the proof. ]

Setting £ = 1 in (6) of Theorem 7, we deduce an analogue of (1) for the spectral
norm of strictly contractions:

Corollary 9. Let A;, i =1,...,m, be strictly contractive matrices. Then

I — 4]

(7) <I]

I- i/\iAi =1
i=1

o0

where each A; > 0 and » \; = 1.

i=1
Next, we derive another weak log-majorization involving contractive matrices and
singular values.

Theorem 10. Let A;, i =1,...,m, be strictly contractive matrices. Then
m
A 5" 14
T I + .
i=1 7

I- i/\iAi i=1
i=1

where each ; > 0 and » \; = 1.
i

I+ iAzAz

Proof. Denote M = —=1—— and denote M; = (?_LIZ‘I
S
i=1

A
) fori=1,...,m.
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m m m

Note that Hs (M;) = <H31 (M), .. "HS" (MZ)> .Letxq,...,zpand wy, ..., wy
i=1 i=1
n

-1
be the nonnegative real numbers with » “w; = 1. Then the weighted arithmetic-

i=1
geometric mean inequality says that

n n
Hac:” < E Wi 5.
i=1 i=1

For each given j, we have

o oo T ((24)" < oo ((21).

=1

where the first equality holds by the spectral mapping theorem and the last inequal-
ity holds by the weighted arithmetic-geometric mean inequality. Combining (9) and
Theorem 7, we have

S I+ A S I+ A
s(M) <wlog <ZZ;/\Z$1 <I—Ai\)"”’;/\lsn <I—Ai\ ,

i.e.,
s | | e o (A
™m wlog : 7 T_ ‘Az‘ .
I= N4 =1
i=1
This completes the proof. ]

Denote by R”} | the set of vectors in R whose components are nonnegative and
are decreasingly ordered.

Lemma 11. [10, p. 74]. Let x,y,z € R™ with their components in decreasing
order. If x <, y and z € R"} |, then

(10) (z,2) < {y,2),
where (-, -) denotes the standard Euclidean inner product.

Corollary 12. Let A;, i = 1,...,m, be strictly contractive matrices. Then

i—1 < Z/\i

I- i/\iAi i=1
i=1

I+ A
I — A

(11)
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m

for every unitarily invariant norm, where each \; > 0 and Z/\i =1.
i=1

n
Proof.  Leta = (a1,02,...0n) € RY |, Define || X[l := > a;s;(X) for
=1

j=
X € M, In other words, || X ||o = (s(X), a). It is known [10, p.56] that this || - ||, is
a unitarily invariant norm.

Note that for nonnegative vectors, weak log-majorization implies weak majorization
[10, p.67]. By Theorem 10, we have

=1 (1A
s — <WZ/\ZS<I—\AZ~\ .

By Lemma 11, we have

<s = ,a> < <Z/\is (ﬁfm) ,a>,
-3 "N ‘ '
=1

i—1 < Z/\i

I— Zm:/\iAi =1
i=1

a

I+ |4
I — A

a

As « was arbitrarily chosen, the inequality (11) follows from Corollary 3.5.9 in [4,
p.206]. This completes the proof. ]

Remark. Note that the spectral norm is a unitarily invariant norm. Then we have

i1 < Z/\i

I- i/\iAi i=1
i=1

o0

I+ |4
I — A

(12)

o0

where each \; > 0 with ) "\; = 1.
=1
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For A € M, we denote by tr A the trace of A. We have

Corollary 13. Let A;, ¢ =1,..., m, be strictly contractive matrices. Then
m
eyl "
— I+ A;
13 tr| —=L [ <Y\t .
= ' - _ZZY<I—A1‘\ ’

I= N4 =1
i=1

where each )\; > 0 such that Z/\i = 1.

i=1
Proof.  Applying Corollary 12 to the trace norm and using Weyl’s theorem, we
have the inequality (13). This completes the proof. ]

Remark. By Corollary 13, we have

i=1

S e 22}
=Y N4 '
=1
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