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A NOTE ON ENNOLA RELATION

Jae Moon Kim and Jado Ryu*

Abstract. Ennola gives an example of a relation among the cyclotomic units
which is not a combination of elementary relations. He also proves that twice
any relation among the cyclotomic units is a consequence of elementary relations.
In the sense of the distribution, the torsion part of the universal even punctured

distribution (A?L)Jr is a 2-torsion group. In particular, when n has three distinct
prime divisors, (A?L)Jr has a unique 2-torsion element. The aim of this paper is

to find an algorithm to produce the unique 2-torsion element when n has three
distinct odd prime divisors.

1. INTRODUCTION

For a positive integer n (n #Z 2 mod 4), let ¢, = ¢*™/" be a primitive n'" root
of 1 in C. For an integer k with n { k, put a; = log |1 — ¢¥|, which is (the logarithm
of) a cyclotomic number. It is well known that there are two types of relations among
the cyclotomic numbers:

(1.1) ar = an—  forntk
n/m—1
(1.2) An/m)k = Z ak+mi for m | nand m,nt k.
i=0

We call these relations the elementary relations. In [2], Ennola gives a relation for
n = 105 which is not a combination of elementary relations:

a1 + az + a17 + a43 + a44 + ag6 — a3 + ag + aze + ags + asp + asg = 0.
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We call such a relation an Ennola relation.
Let (A2)" be the universal even punctured distribution. Namely, (49)" is the
abelian group generated by

(D)< zrmz 20}

with the relations:

= () o)
(1.4) g(%) :n/;j;g(x Jrnm’) for m | n and %% £0.

The structure of (AQL)”L is known to be ([4, Theorem 12.18])
(Ag)"" ~ Z%’(")/2+r—1 ® (Z/QZ)TA_I_T

where r is the number of distinct prime divisors of n. Moreover, the map g(z/n) — a,
induces an isomorphism

(A0) "/ (z/22)”" 7 = (log]1 = G3)
Thus from the 2-torsion elements of (A%)™, we can obtain Ennola relations. In par-
ticular, (AQL)Jr has a unique 2-torsion element when n = pi'p5?p5* has three distinct
prime divisors.
The aim of this paper is to find an algorithm to produce an Ennola relation when
n has three distinct odd prime divisors. Namely, we will find the 2-torsion element of
the universal even punctured distribution. Although there is another algorithm to find

Ennola relations ([1]), it seems that our result is more explicit and efficient once the
generators of (Z/p{'Z)™ are given.

)

2. PRELIMINARIES AND NOTATIONS

Let n = p{'p52ps® be the prime factorization of » which is odd. For each i = 1,2
and 3, put ¢; = p5*, n; = n/q; and m; = (g;)/2, where ¢ is the Euler-phi function.
We have

(Z)nZ)" ~ (Z]@Z)" x (Z]q@Z)* x (Z]qsZ)™ .

We fix a generator o; of the cyclic group (Z/q;Z)™. The unique integer z mod n
satisfying x = 0; mod ¢; and z = 1 mod n; is also denoted by o;. With these
notations, the relations (2.1) and (2.2) below can be obtained from the relations (1.3)
and (1.4), where p; ! is an integer satisfying p; 'p; =1 mod n;:

i1+mi1 __io+ma _i3+ms3
2 0-

o o ool gls
2.1) g(l 3 >:g(1 2 3)
n n
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2mi—1

@2) 3 (28 = g (L) = o() for ged (v, ) = 1.
t=0

n n; i

Throughout this paper we assume {1,2,3} = {«,3,v}. We define I,(53) and
I.,(B) by

Io(B) = the index of pj" for the base oo, ie., o' =ps" mod g,.
I,(PB) if 0 < I,(8) < ma,
{0
Ia(ﬂ) —mgy  iFmg < Ia(ﬂ) < (P(Qa>~

We also define o by

-1 if Ig(e) # ().
Let
I (a)—1 " t,—1 Iy(a)—1 ¢ t+1(B)
5= 2 <g(2—:) —g(gﬁﬁ )) =2 <9(Z_:> —g(qu: ))
and
N mey—1 t,—1 my—1 t+1(8)
= 3 (0 -07) - 3 (6)-57)
t=I!(a) t=I(a)

In the summation above and for the rest of this paper, >} () or >, (x) should
be understood to be zero. Note that

2mg—11,(a)—1 ]
g /0
g% % ()
=0 j=0 b
and that :
I'/y(a -1 t t 1
o o.p
ci= 3 |o(2)-9(575)
=0 d~ d~
since @
Ly a)—1 t t 1
o o.p
((2) o)) o
t=I (a al al

Lemma 2.1. For integers «, 3 and ~, we have
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(i) L5 =—-Lg,
(i) £ = cﬁ

Proof. (i) It is not hard to check that

N (2 7 for all
> [g(a)_g(z)] o forai -

- ) .
Thus LS + LS :0WIthT:pﬁ .

Eng'v (a)— 1<g(g_§ ( t+I'v >>
8 t+8+1
qu >>
+t 8+t+1
g qu ))
8+I
(e >)

3. A 2-TorsION ELEMENT IN THE UNIVERSAL EVEN PUNCTURED DISTRIBUTION

(if) We have

)

t+
g
oS

)
. X (o
% (o
)

S
@

o

I
-
v} ~—~ V)
Il E
=)
,_.
N
<

= L5

This section is devoted to finding the 2-torsion element in (A9) . Put

2mi1—1mo—1 m3—

D 3 3h SC )

=0 j=0 k=0

27711 127712 1m3 1

My = — Z ]Z; Z:: (01020 )7

i=m1

27711 127712 127713 1

M= S 3 3o

i=my j=ma

We also define B, by



A Note on Ennola Relation 1657

++ FoSa a
Bit ifey=1,60=1
+— FoSa a _
Bi~ ifeg=1,60=-

B, =
—+ i — —
Bﬁv if (5‘3‘ =-1,05=1
B, if (5% =-1,07=-1,
where
Ig(e) =1 I (a)+my—1 s -t mg—1 I} (a)=1 s -t
o0 o0
B+ ( B v) ( B 7),
[Y e + / [Y e
s=0 t=0 Szlﬁ (a) t=0
I(a)—11 (a)—1 mg—1 I (a)+m,—1
s ¥ oS0t 8 ¥ g oo
—+ B~y B~
By = o2+ X ()
s=0  t=0 @ s=I}(a) t=0 @
Ip(a)=1 [my—1 2m~—1 mg—1 m~—1
B Y USUt Y B Y oS U
+—_ B B~
Bj, = o(=)+ X 9( ) > Z o(=),
5=0 t=0 @ t=m~+1 (o) s=If(a) t=I4(
Ig(e)=1 my—1 s t mg—1 [my—1 s t 2m—1 s t
o0 o0 o0
B — (ﬁv) (ﬁv) (ﬁv)
CED I NIC NS Sl PE ST S
s=0 t=I/(a) s=Ij(a) | t=0 t=my+I.(a)

Lemma 3.1. For integers «, 8 and ~, we have
Mo + 65LG + 65LT = 2B,
Proof. First, we consider the case when o = 1. Note that

2mi1—1mo—1 mg—

My = Z Z Z (010203>

=0 j=0 k=0
050 Ujakp_l
-5 8 (e ()
=0 k=0 1
Suppose that 83 = 1 and §} = 1. Then we have
Ml—i-ﬁ%—i-ﬁé
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050 050
= M+ Z 9(2_3> + g( 2 3)
ny ny
j=0 k=0 k=0  j=0
I(1)—1 m3+I4(1)—1 . me—1 I4(1)—1 .
_ 2 3 , (0%03> . 2 3 29(0%03>
=0 k=0 "SR k=0 "

For 0} = 01 = —1, we have
My — L5 — L = My + LY+ £ — 205 — 20} = 2B + L5 — £3) = 2855

since the meaning of M; for 6} = J} = 1 and that for 41 = 63 = —1 agree. When
63 =1 and 63 = —1, we have

M1+c;—£1:M1+£5+Eé

127713 1 0_0_ m3— 1 27712 1 0_0_
_ 203 203
S > o) 2 Y (%)
Jj=0 k=I4(1) j=0
L,(1)=1 [mz—1 ook 2mg—1 oo ma—1 mg—1 oo
= > 29(7% )+ Y 29(”) DI 29(”)
=0 | k=0 " k=ms+1}(2) J=15(1) k=I}(2)

Finally, for 1 = —1 and 63 = 1, we have
My — L3+ L8 = My + L + £} = 285"

The cases when o = 2 or 3 can be similarly proved by using the identities

27711 1 m3—

s Z < (alag> g(a{agfp;l))

n2
i=m1

(o(7I)  g(7ikra")

mi— 1m3 1

=0 k=0

and

n3

NS (L otdy  oiodg!
=SS (o7Ih) o) ). -
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Theorem 3.2. Put

mi1—1mo—1msz—1 U U o
1
M = g( 2 3)

i=0 j7=0 k=0

Then

is the 2-torsion element in (49)"

Proof. Observe that

mi— 1m2 27711 127712 127713 1

M1+M2+M3_Z 01219(010203> Z Z Z (010203>

i=0 j= 1=mi j=mg k=mgs

mi1—1lma—

=2

' s 010203
> 2 2o
=2M.
On the other hand, by Lemma 3.1, we have
M0 LY+ 0L+ Mo+ 02 L2 402 L2+ M3 +63L3 4+ 05 L5 = 281 +2B5 +28B3.
Since £2 = £3, £ = £3 and £} = £, we have

2M + (63 + 03)L3 + (83 + 63)LL + (67 + 63)L2 — 2By — 2By — 2B3 = 0

Hence
2R, =0
Finally, note that R,, # 0 since the coefficient of g(%) in the expansion of R,, with
respect to the basis of (AQJJr given in [3, Theorem 1] equals 1. [
4. EXAMPLE

When n = 105, the theorem given in the previous section enables us to obtain the
following Ennola relation.

Let g(&) = gy, for simplicity. Put p; = q1 = 7, p2 = @2 = 5 and p3 = g3 = 3.
Then with o = 3(31 mod 105), o2 = 3(43 mod 105) and o3 = 2(71 mod 105),
we have

M = glos + 9105 + 9ios T 9ios + 9105 + 9105
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Since
5 =1,6=—
oy =1,05 = —
63 =1,02=—
we have
S5+ )03 =
1 1 3 1
5(52 +03)L5 = 0,
1 1 2 1
5(53 +03)L3 =0
and
By = By = 935 + 93 + 935 + 935 + 935,
By = Bf5 = ga1 + g5 + 931 + 935,
B = B35 = gl
Thus

R105 = (9105 + 9105 + 9305 + 9105 + 9505 + 9io5)
—(955 + 935 + 935 + 935 + 935) — (921 + 951 + 931 + 920) — (915)-
To compare above relation with the one given by Ennola, we note that
R105 = 9ios + 9305 + 9105 + 9ios + 9105 + 9105
—935 + 935 + 935 + 931 + 951 + g5 + Ri + Ry,
where R; and Ry are sums of elementary relations (1.3) and (1.4):
R = —(gios + o5 + 9105 + 9505 + 921 — 91)

23 58 31 923
9165 + 9305 + 9305 + 9108 + 930 — 931) + (9305 + 9705 + 9a — 935)

—(
+(9305 + 9105 + 935 — 935) + (905 + 9105 + 935 — 933)

+(9105 + 9505 + 935 — 938) — (931 + 951 + 951 + 91 + 925 + 931)

+(921 + 930 + 95 — 99) — (931 + 951 + 97 — 97) — (915 + 95 + 913 — 93)

—(955 + 935 + 935 + 932 + 935 + 932 + 95 — 63),

and
(935 — 935) + (935 — 933) + (935 — 935)
(921 — 931) + (931 — 931) + (921 — 931)
(97 — 97)-

Rs = (9705 — 9105) + (935 — 932)
+(93% — 931) + (931 — 951)
+(915 = 915) + (97 = 97) +

+
+
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