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ON THE COMPRESSIBLE BOUSSINESQ EQUATIONS
WITH PARTIAL DISSIPATION TERM

Tong Tang and Hongjun Gao*

Abstract. In this paper, we consider the strong solutions of the compressible
Boussinesq equations in R3 and prove the existence of unique local strong so-
lutions for all initial data satisfying some compatibility conditions. The initial
density need not be positive and may vanish in an open set. We use the Lax-
Milgram theorem and contraction mapping argument to get the result. Moreover,
we establish a blow-up criterion for possible breakdown of strong solutions at a
finite time in terms of the gradient of velocity.

1. INTRODUCTION

This paper is concerned with the Cauchy problem of the following compressible
Boussinesq equations with partial dissipation term,

∂tρ+ div(ρu) = 0,(1.1)

∂t(ρu) + div(ρu⊗ u) + ∇P (ρ) = μΔu+ ρθe3,(1.2)

∂tθ + u · ∇θ = 0(1.3)

with initial data

(ρ, u, θ)
∣∣
t=0

=
(
ρ0(x), u0(x), θ0(x)

)
,

where the unknown functions ρ = ρ(x, t), u(x, t) = (u1, u2, u3), θ(x, t) and e3 denotes
the density, the velocity of fluid, temperature and the vector (0, 0, 1), respectively. The
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constant viscosity coefficient μ satisfies the physical restriction μ > 0. The pressure
P is a given state equation, we assume that P (0) = 0 and:

P : [0,∞) → R is a locally Lipschitz continuous function.(1.4)

Throughout this paper, we give some notations by reason of the convenience of discus-
sions. We denote∫

fdx =
∫

R3

fdx,

∫ t

0

∫
fdxds =

∫ t

0

∫
R3

fdxds.

For 1 ≤ r ≤ ∞ and integer k ≥ 0, the standard homogeneous and inhomogeneous
Sobolev spaces are denoted by

Lr = Lr(R3), W k,r = W k,r(R3), Hk = W k,2,

Dk,r = {v ∈ L1
loc(R

3) : |∇kv|Lr <∞}, Dk = Dk,2,

D1
0 = {v ∈ L6 : |∇kv|L2 <∞, and u→ 0 as |x| → ∞}, H1

0 = D1
0 ∩ L2.

Boussinesq equations play an important role in the atmospheric science and applied
mathematics. There is a huge literatures on the incompressible Boussinesq equations
such as [1, 2, 5, 17, 21] and the references therein. More precisely, many authors
devoted to studying the following form:

(1.5)

⎧⎪⎪⎨
⎪⎪⎩

∂tu+ u∇u+ ∇P = μΔu + ρθe3,

∂tθ + u · ∇θ = κΔθ,

divu = 0.

The global well-pose of (1.5) with μ > 0 and κ > 0 is well-known ([4, 14]). While,
as far as we know, the regularity and existence of the case of (1.5) with μ = κ = 0
is an outstanding open problem. Therefore, some authors studied the global well-
posedness of (1.5) with partial viscosity cases and obtained many results, such as, the
zero diffusivity case μ = 0 and κ > 0, and the zero viscosity case μ > 0 and κ = 0
([6, 7, 15, 16]). In [7], Chae established a blow up criterion with partial viscosity cases,
analogous to the Beale-Kato-Majda blow-up criterion [3] for the incompressible flows.
In order to understand the mechanism of long-term weather prediction and climate
changes, some mathematicians begin to study the mathematical equations and models
in compressible case as the atmosphere is a specific compressible fluid. Thus, it is
interesting to consider the Boussinesq equations in the compressible case. Opposite
with respect to the incompressible case, the mathematical analysis to compressible
Boussinesq system is much more complicated, as the oscillation of the density. In
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[29], under the assumption ρ0 > 0, Xu had investigated the isentropic compressible
Boussinesq system with μ = κ = 0 and obtained the existence of classical solution and
corresponding blow-up criterion.

The aim of this paper is to prove the existence of unique local strong solutions to
(1.1)-(1.3) with inf ρ0 = 0, and investigate the blow-up mechanism. Before stating the
main theorems, we first give the definition of strong solutions.

Definition 1.1. For T > 0, (ρ, u, θ) is called a strong solution to the compressible
Boussinesq equations (1.1)− (1.4) in (0, T )× R3, if for some q ∈ (3, 6],

0 ≤ ρ ∈ C([0, T ];H1 ∩W 1,q), ρt ∈ C([0, T ];L2 ∩ Lq),

θ ∈ C([0, T ];H1∩W 1,q), θt ∈ C([0, T ];L2 ∩ Lq),

u ∈ C([0, T ];D1
0 ∩D2) ∩ L2(0, T ;D2,q),

ut ∈ L2([0, T ];D1
0),

√
ρut ∈ L∞([0, T ];L2),

and (ρ, u, θ) satisfies (1.1)− (1.4) a.e. in (0, T )× R3.

The first main result is concerned with local existence of strong solutions:

Theorem 1.1. Assume that P satisfies (1.4), for some q ∈ (3, 6]

0 ≤ ρ0 ∈W 1,q ∩H1, θ0 ∈W 1,q ∩H1,

u0 ∈ D1
0 ∩D2,

and for positive constant r0

‖ρ0‖H1∩W 1,q + ‖θ0‖H1∩W 1,q + ‖u0‖D1
0∩D2 ≤ r0.

If, in addition, the following compatibility condition holds

−μΔu0 + ∇P (ρ0) − ρ0θ0e3 = ρ
1
2
0 g(1.6)

for some g ∈ L2, then there exist a positive time T0 and a unique strong solution
(ρ, u, θ) for (1.1)− (1.4) in (0, T0) × R3.

Motivated by these works on the blow-up criterion of local strong solutions to the
Navier-Stokes equations and incompressible Boussinesq equations, we will establish
the following blow-up criterion for the compressible Boussinesq equations.

Theorem 1.2. Let (ρ, u, θ) be a strong solution to (1.1)-(1.4). Assume that P
satisfies (1.4) and the initial data (ρ0, u0, θ0) satisfies (1.6). If 0 < T� < +∞ is the
maximum time of existence, then

lim
T→T�

∫ T

0
||∇u||L∞dt = ∞.
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Now, we briefly outline the main ideas of the proof, some of which are inspired by
pioneer works on the compressible Naiver-Stokes equations. To obtain the existence of
a unique local strong solution to (1.1)-(1.3), we employ the compatibility condition (1.6)
to establish the key W 2,q−estimate. Then, we use the contraction mapping argument
to obtain the existence result, in some sense simply and extend the result of [9] and
[29].

This paper is written as follows. In Section 2, we introduce the working space which
will be needed in later analysis. In Sections 3, we consider a linearized problem and
derive some local estimates for the solutions independent of the lower bound of initial
density. In Section 4, we use the contraction mapping principle to get the existence of
local strong solutions. In Section 5, we give the proof of Theorem 1.2.

2. FUNCTION SPACE

In this section, we will introduce the working function space which plays an im-
portant role in the proof of Theorem 1.1,

W ′ = {v ∈ L2(0, T ;D2), ∂tv ∈ L2(0, T ;L2)}
with norm ||v||W ′, and for q ∈ (3, 6], we define

W = {v ∈ W ′ ∩ L∞(0, T ;D1
0 ∩D2) ∩ L2(0, T ;D2,q), ∂tv ∈ L2(0, T ;D1

0)}.
Remark 2.1. Before the proof, we point out that the approach of proving Theorem

1.1 is to apply the contraction mapping principle. Since the system (1.1)-(1.3) is of
mixed hyperbolic-parabolic type and the initial density may vanish, we encounter a
well-known difficulty in the theory of symmetric quasilinear hyperbolic systems. For
these systems, contraction cannot be proved in the usual setting, that is, to consider
self-mapping and contraction in the same regularity class W . To resolve this problem,
Kato [20] and Lax [22] offered an ingenious idea by studying contraction in a larger
space. Taking up this idea, we establish the contraction in the space L (see in Section
4). Chu et. al. [11] adopted the same idea to tackle the compressible liquid crystal
system.

3. EXISTENCE FOR THE LINEARIZED EQUATIONS

In this section, we reformulate the nonlinear equation (1.1)-(1.3) such that the
left-hand becomes linear and the starting problem can be transferred to a fixed point
equation:

∂tρ+ div(ρv) = 0,(3.1)

ρ∂tu− μΔu = −ρv · ∇v −∇P (ρ) + ρθe3,(3.2)

∂tθ + v · ∇θ = 0,(3.3)
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with the given v ∈ W and the initial conditions

(ρ, u, θ)
∣∣
t=0

=
(
ρ0(x) + δ, u0(x), θ0(x)

)
.(3.4)

Here δ > 0 is a constant and ρ0 ≥ 0.
If the initial density vanishes from below, we cannot expect the density ρ is bounded

away from zero. As a result, the lack of a positive lower bound of ρ causes (3.1)
to become a degenerate linear parabolic equation. This prevents us from using the
standard argument to construct the local solutions. For this reason, we consider the
linearized problem (3.1)-(3.3) with initial density bounded away form zero and derive
some uniform bounds which are independent of the lower bounds of initial density.
Firstly, we solve out the density, and obtain estimates for density.

Lemma 3.1. For given v with ||v||W ≤ A, there exists a unique solution ρ to the
linear transport problem (3.1) and (3.4) such that

‖ρ‖L∞(0,T ;H1∩W 1,q) ≤ C‖ρ0‖H1∩W 1,q(1 + T
1
2A) exp(CT

1
2A),

‖ρt‖L∞(0,T ;L2∩Lq) ≤ C‖ρ0‖H1∩W 1,qA exp(CT
1
2A).

Here and in what follows, the notation C stands for a generic positive constant.

Proof. From the linear transport equation theory, we have

ρ(x, t) = ρ0(x) exp
( ∫ t

0
−divvds

)
.(3.5)

As a consequence,

∇ρ = ∇ρ0 exp
(∫ t

0
−divvds

)
− ρ0 exp

( ∫ t

0
−divvds

)∫ t

0
∇divvds,

ρt = −ρ0divv exp
( ∫ t

0
−divvds

)
.

From the Minkowski inequality, we get (r = 2, q)

||∇ρ||Lr ≤ C‖ρ0‖W 1,r

(
1 + ||

∫ t

0
∇2v||Lr

)
exp

(∫ t

0
||divv||L∞ds

)

≤ C‖ρ0‖W 1,r

(
1 +

∫ t

0
||∇2v||Lr

)
exp

( ∫ t

0
||divv||L∞ds

)
≤ C‖ρ0‖W 1,r (1 + T

1
2 ||v||W) exp(CT

1
2 ||v||W)

≤ C‖ρ0‖W 1,r (1 + T
1
2A) exp(CT

1
2A),
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||ρt||Lr ≤ C‖ρ0‖L∞||∇v||Lr exp
( ∫ t

0
||divv||L∞ds

)
≤ C‖ρ0‖W 1,r ||v||W exp(CT

1
2 ||v||W)

≤ C‖ρ0‖W 1,rA exp(CT
1
2A).

This completes the proof.

Combining the structure of (3.3) and the corresponding previous results, we can
solve the temperature θ similarly as Lemma 3.1.

Lemma 3.2. For given v with ||v||W ≤ A, there exists a unique solution θ which
satisfies (3.3) such that

‖θ‖L∞(0,T ;H1∩W 1,q) ≤ C‖θ0‖H1∩W 1,q (1 + T
1
2A) exp(CT

1
2A),

‖θt‖L∞(0,T ;L2∩Lq) ≤ C‖θ0‖H1∩W 1,qA exp(CT
1
2A).

Proof. The existence and estimates can be obtained similarly as Lemma 3.1.

The next lemma gives the estimates on the velocity.

Lemma 3.3. Under the conditions ρ|t=0 = ρ0 + δ, suppose ||v||W ≤ A, there
exists a unique solution u which satisfies (3.2), such that for T small enough,

‖u‖L∞(0,T ;D1
0∩D2) + ‖u‖L2(0,T ;D2,q) + ‖ut‖L2(0,T ;D1

0)
≤ C.

Proof. Since (3.5) and the initial condition, we get

ρ(x, t) ≥ δ exp(
∫ t

0
−||∇v||L∞ds) > 0.(3.6)

The standard theory of parabolic equations, such as a semidiscrete Galerkin method,
implies the existence of the solution to (3.2). Inspired by [26], we use the Lax-Milgram
theorem to achieve the existence. For reader’s convenience, we will roughly recall the
proof with some changes. For simplicity of the presentations, we assume μ = 1.

We consider the bilinear form E(u, ψ) and linear function L(ψ) defined by

E(u, ψ) =
∫ T

0
(ρ∂tu− Δu, ∂tψ − kΔψ)dt− (u(0),Δψ(0)),

L(ψ) = −
∫ T

0
(ρv · ∇v + ∇P (ρ) − ρθe3, ∂tψ − kΔψ)dt− (u0,Δψ(0)),

with

k = (2||ρ||L∞(0,T ;L∞))
−1
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for ψ ∈ W ′, where (·, ·) denotes the inner product in L2.
Obviously, L(ψ) is linear continuous on ψ, with respect to the norm ||ψ||W ′.

Moreover, by the Cauchy inequality, we have

E(ψ, ψ)

=
∫ T

0

(‖√ρ∂tψ‖2
L2 + k‖Δψ‖2

L2 − k(ρ∂tψ,Δψ)dt+
1
2
(||∇ψ(T )||2L2 + ||∇ψ(0)||2L2)

≥
∫ T

0
(‖√ρ∂tψ‖2

L2 + k‖Δψ‖2
L2 − 3

4
‖√ρ∂tψ‖2

L2 − 2k
3
‖Δψ‖2

L2)dt

+
1
2
(||∇ψ(T )||2L2 + ||∇ψ(0)||2L2)

≥ C||ψ||2W ′

for some C > 0.
Therefore, by the Lax-Milgram theorem, there exists a u ∈ W ′ such that

E(u, ψ) = L(ψ)(3.7)

for every ψ ∈ W ′.
If we assume that ψ is a solution of the following problem

∂tψ − kΔψ = 0, ψ(0) = h(x),

with h(x) smooth enough. Replacing in (3.7) ψ by ψ, then we have

(u(0)− u0,Δh) = 0,

which implies u(0) = u0. Similarly, let ψ̃ be a solution of the problem

∂tψ̃ − kΔψ̃ = g̃(x, t), ψ̃(0) = 0,

with g̃(x, t) smooth enough. Replacing in (3.7) ψ by ψ̃, then we get∫ T

0
(ρ∂tu− Δu+ ρv · ∇v + ∇P (ρ) − ρθe3, g̃)dt = 0.(3.8)

This implies that (ρ, u, θ) satisfies (1.1)-(1.3) a.e. in (0, T )× R3.
To ensure the higher regularity, specially as to the term ut, we need some compati-

bility condition. In order to derive estimate for ∇ut, we differentiate (3.2) with respect
to t and get

ρ∂2
ttu− μΔ∂tu

= −∂tρ∂tu− ∂tρv · ∇v − ρ∂tv · ∇v − ρv · ∇∂tv −∇∂tP + ∂t(ρθe3).(3.9)
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Multiplying the identity by ut and using integration by parts, we obtain

(3.10)

1
2
d

dt

∫
ρ|ut|2dx+

∫
μ|∇ut|2dx

= −1
2

∫
ρt|ut|2dx−

∫
ρtv∇vutdx−

∫
ρvt∇vutdx

−
∫
ρv · ∇vtutdx+

∫
Ptdivutdx

+
∫
ρtθe3utdx+

∫
θtρe3utdx =

7∑
k=1

Ik.

Using the continuity equation and the previous Gagliardo-Nirenberg inequality, we get

|I1| = | − 1
2

∫
ρv∇|∂tu|2dx| = |

∫
ρv∂tu∇∂tudx|

≤
∫
ρ|ut|2(ρ|v|2)dx+ ε

∫
|∇ut|2dx

≤ ε||∇ut||2L2 +CA2 exp(CT
1
2A)||√ρut||2L2,

|I2| = |
∫

div(ρv)v · ∇v∂tudx| = |
∫
ρv∇(v · ∇v∂tu)dx|

≤
∫
ρ|v||∇v|2|∂tu| + ρ|v|2|∇2v||∂tu|+ ρ|v||∇v||∇∂tu|dx

≤ ε||∇ut||2L2 +A6||√ρut||2L2 + C exp(CT
1
2A) +C(ε)A4 exp(CT

1
2A),

|I3| ≤
∫
ρ|vt||∇v||ut|dx

≤ A6

∫
ρ|ut|2dx+ A−6

∫
ρ|vt|2|∇v|2dx

≤ A6||√ρut||2L2 +CA−4 exp(CAT
1
2 )||vt||2L2,

|I4| ≤
∫
ρ|v||∇vt||ut|dx

≤ A6||√ρut||2L2 +CA−4 exp(CAT
1
2 )||∇vt||2L2,

|I5| ≤ ||Pt||L2||∇ut||L2 ≤ ||P ′||L∞||ρt||L2||∇ut||L2

≤ ε||∇ut||2L2 +C(ε)A2 exp(CT
1
2A),

|I6| = |
∫
ρv∇θut · e3dx+

∫
ρvθ∇ute3dx|

≤ (||ρ||L3||v||L∞||∇θ||L2 + ||ρ||L∞||v||L∞||θ||L2)||∇ut||L2

≤ ε||∇ut||2L2 +C(ε) exp(CT
1
2A),

|I7| ≤ ε||∇ut||2L2 +C(ε) exp(CT
1
2A).
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Substituting I1 − I7 into (3.10), choosing ε sufficiently small and integrating with
respect to t, we have

(3.11)

∫
ρ|ut|2dx+

∫ T

0

∫
|∇ut|2dxdt ≤

∫
ρ0|u0t|2dx+ CA4T exp(CT

1
2A)

+CA6 exp(CT
1
2A)

∫ T

0

∫
ρ|ut|2dxdt.

To estimate ||√ρu0t||2L2 , we observe from (3.2) and the compatibility condition (1.6)∫
|√ρ0u0t|2dx≤C

∫
ρ0|v0|2|∇v0|2+

1
ρ0

|μΔu0−∇P (ρ0)+ρ0θ0e3|2dx≤C.(3.12)

Adding (3.11) and (3.12), we obtain the following estimates by Growall’s inequality:∫
ρ|ut|2dx+

∫ T

0

∫
|∇ut|2dxdt ≤

(
C+CA4T exp(CT

1
2A)

)
A6T exp(CT

1
2A).(3.13)

Finally, we have to estimate

u ∈ L∞([0, T ];D2) ∩ L2([0, T ];D2,q), q ∈ (3, 6].

To obtain futher estimates, we rewrite (3.2) as

μΔu = ρ∂tu+ ρv · ∇v + ∇P (ρ)− ρθe3,

which is a strongly elliptic system. By the classical elliptic regularity theory, we deduce

||u||D2 ≤ C(||ρut||L2 + ||∇P ||L2 + ||ρv∇v||L2 + ||ρθe3||L2) +C.(3.14)

From the previous lemmas, we get

(3.15)

||ρut||L2 ≤ C exp(CT
1
2A)||√ρut||L2,

||∇P ||L2 ≤ C exp(CT
1
2A) + CT

1
2A exp(CT

1
2A),

||ρθe3||L2 ≤ C exp(CT
1
2A) + CT

1
2A exp(CT

1
2A),

and

(3.16)

||ρv∇v||L2

≤ ||ρ||2L∞

∫
|v|2|∇v|2dx

≤ C exp(CT
1
2A)

(∫
|v−u0|2|∇v|2dx+||u0||2L∞

∫
|∇v−∇u0|2dx+C

)
≤ C exp(CT

1
2A)

(∫
|
∫ t

0
vt |2| ∇v |2 dx+ C

∫
|
∫ t

0
∇vt |2 dx+ C

)
≤ C exp(CT

1
2A)(A4T +CA2T +C).
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In a similar way, we can obtain

||u||L∞(0,T ;D2) + ||u||L2(0,T ;D2,q) ≤ C + Tα (α > 0).(3.17)

Gathering (3.13)-(3.17) and choosing T small enough, we get u ∈ W .
Hence, the proof is finished.

Combining all the lemmas, we get the existence for the linearized equations (3.1)−
(3.4).

Lemma 3.4. There exists a unique strong solution (ρ, u, θ) to the linearized system
(3.1)− (3.4) in [0, T0]× Ω with the regularity

ρ ∈ C([0, T0];H1 ∩W 1,q), ρt ∈ C([0, T0];L2 ∩ Lq),

θ ∈ C([0, T0];H1 ∩W 1,q), θt ∈ C([0, T0];L2 ∩ Lq),

u ∈ C([0, T0];D1
0 ∩D2) ∩ L2(0, T0;D2,q),

ut ∈ L2([0, T0];D1
0),

√
ρut ∈ L∞([0, T0];L2),

where T0 ∈ (0, T ).

4. PROOF OF THEOREM 1.1

This section is devoted to proving the existence of a unique local solution of (1.1)-
(1.3) via the contraction mapping principle.

By virtue of Lemma 3.4, there exist a time T0 ∈ (0, T ) and a unique solution
(ρδ, uδ, θδ) of (3.1)− (3.3) with initial data ρ(x, 0) = ρ0 + δ. Let δ → 0, we obtain
a unique solution u of the linearized system (3.1)− (3.3) with ρ(x, 0) = ρ0 such that
||u||W ≤ C. So we can define a map

J : M → M,J (v) = u,

where M = W ∩L = W , with

L = {u : ‖u‖L2(0,T ;H1(Ω)) <∞}.

Thus, there are essentially two main tasks we have to prove, the self-mapping and
contraction. The former has been done due to Lemma 3.3, which guarantees the self-
mapping. As mentioned in Remark 2.1, we need to prove a contraction estimate in the
lager space L. The following lemma implies that the map J is contracted in the sense
of weaker norm for v ∈ M.
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Lemma 4.1. There exists a constant 0 < λ < 1 such that for any vi ∈ M, i = 1, 2,

‖J (v1) − J (v2)‖L ≤ λ‖v1 − v2‖L
for some small T > 0. Proof. Suppose (ρi, ui, Fi) are the solutions to (3.1)− (3.3)
corresponding to given vi ∈ M. Define ρ = ρ2 − ρ1, v = v2 − v1, θ = θ2 − θ1 and
u = u2 − u1. Then

∂tρ+ div(ρ2v) = −div(ρ1v),(4.1)

∂tθ + v · ∇θ2 + v1 · ∇θ = 0,(4.2)

ρ2∂tu − μΔu = (ρ1 − ρ2)u1t + ρ1v1 · ∇v1 − ρ2v2 · ∇v2
+ ∇P (ρ1) −∇P (ρ2) + ρ2θ2e3 − ρ1θ1e3.(4.3)

Multiplying (4.1) by ρ and integrating over R3, we get

(4.4)

d

dt

∫
1
2
|ρ|2dx

= −1
2

∫
|ρ|2divv2dx−

∫
ρ(∇ρ1 · v + ρ1divv)dx

≤ C‖∇v2‖L∞‖ρ‖2
L2 +C‖ρ‖L2‖∇ρ1‖L3‖v‖L6 +C‖ρ‖L2‖ρ1‖L∞‖∇v‖L2

≤ E1(t)‖ρ‖2
L2 + ε‖∇v‖2

L2,

where E1(t) = C(‖∇v2‖L∞ + ‖ρ1‖2
L∞ + ‖∇ρ1‖2

L3).

Similarly, multiplying (4.1) by sgnρ|ρ| 12 and integrating, we have

(4.5)

d

dt

∫
|ρ| 32 dx ≤ C

∫
|∇v2||ρ|

3
2 + (|∇ρ1||v|+ |ρ1||∇v|)|ρ|

1
2dx

≤ ‖∇v2‖L∞‖ρ‖
3
2
3
2

+C‖ρ1‖H1‖∇v‖L2‖ρ‖
1
2
3
2

.

Multiplying (4.5) by ||ρ||
1
2

L
3
2
, and using Cauchy’s inequality, one has

d

dt
‖ρ‖2

3
2
≤ E2(t)‖ρ‖2

3
2

+ ε‖∇v‖2
L2,(4.6)

where E2(t) = C(‖∇v2‖L∞ + ‖ρ‖2
H1).

In a similar way, we obtain

d

dt

∫
1
2
|θ|2dx ≤ E3(t)‖θ‖2

L2 + ε‖∇v‖2
L2,(4.7)
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where E3(t) = C(‖∇v2‖L∞ + ‖θ1‖2
L∞ + ‖∇θ1‖2

L3).
Multiplying (4.3) by u and integrating, we deduce

(4.8)

1
2
d

dt

∫
ρ2|u|2dx+ μ

∫
|∇u|2dx

≤
∫
ρ2v2u∇u+ (ρ1 − ρ2)u1t · u + (p2 − p1)divu

+(ρ1v1∇v1 − ρ2v2∇v2) · u+ ρ2θ2e3u− ρ1θ1e3udx

=
∫
ρ2v2u∇u+ (ρ1 − ρ2)(u1t + v1∇v1)u− ρ2(v∇v2 + v1∇v)u

+(p2 − p1)divu + ρθ2e3u + ρ1θe3udx

≤ ‖√ρ2‖L∞‖√ρ2u‖L2‖v2‖L∞‖∇u‖L2+‖ρ‖
L

3
2
‖u1t+v1∇v1‖L6‖u‖L6

+‖√ρ2‖L∞‖√ρ2u‖L2‖v‖L6‖∇v2‖L3+‖√ρ2‖L∞‖√ρ2u‖L2‖v1‖L∞‖∇v‖L2

+|P ′|‖ρ‖L2‖∇u‖L2 + ‖ρ‖L2‖θ2‖L∞‖u‖L2 + ‖ρ1‖L∞‖θ‖L2‖u‖L2

≤ ε‖∇u‖2
L2 + ε‖∇v‖2

L2 +E4(t)(‖√ρ2u‖2
L2 + ‖ρ‖2

L2 + ‖ρ‖2

L
3
2

+ ‖θ‖2
L2),

where

E4(t) = C(‖√ρ2u‖2
L∞‖v2‖2

L∞ + ‖√ρ2‖2
L∞‖∇v2‖2

L3 + ‖∇u1t||2L2 + ||v1‖2
D2

+ ‖θ2‖2
L∞ + ‖ρ1‖2

L∞).

Summing inequalities (4.4)− (4.8), we obtain

(4.9)

d

dt
(‖√ρ2u‖2

L2 + ‖ρ‖2
L2 + ‖ρ‖2

L
3
2

+ ‖θ‖2
L2) +

∫
|∇u|2dx

≤ ε

∫
|∇v|2dx+ E(t)(‖√ρ2u‖2

L2 + ‖ρ‖2
L2 + ‖ρ‖2

L
3
2

+ ‖θ‖2
L2),

where E(t) = E1(t) + E2(t) +E3(t) +E4(t) satisfies

∫ T

0

E(s)ds ≤ K,

where K is a constant dependent on initial data, thanks to Lemma 3.1-3.3.
Let T small enough, we obtain the following by Gronwall’s inequality

‖ρ‖L∞(0,T ;L2) + ‖θ‖L∞(0,T ;L2) + ‖√ρ2u‖L∞(0,T ;L2) ≤ C
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and ∫ T

0

∫
|∇u|2dxdt ≤ λ

∫ T

0

∫
|∇v|2dxdt, with 0 < λ < 1.

So we finish the proof.

Proof of Theorem 1.1. By the contractibility of J and utilizing the iteration
methods used in [22] and [24], we can obtain a unique fixed point u. This proves the
existence of a strong solution.

Thus, we complete the proof of Theorem 1.1.

5. PROOF OF THEOREM 1.2

Let 0 < T� <∞ be the maximum time for the existence of strong solution (ρ, u, θ)
to (1.1) − (1.3). In other words, (ρ, u, θ) is a strong solution to (1.1) − (1.3) in
R3 × (0, T ] for any 0 < T < T�, but not a strong solution in R3 × (0, T�]. Motivated
by work of Huang et al. [19], Huang, Wang and Wen [18], we will prove Theorem
1.2 by a contradiction argument. To this end, we suppose that for any 0 < T < T�,
there is a positive constant M such that∫ T

0
||∇u||L∞dt ≤M < +∞.(5.1)

The goal is to show under assumption (5.1), there is a bound C > 0 depending only
on initial data and T , such that (r = 2, q)

(5.2) sup
0≤t≤T

(||ρ||W 1,r + ||θ||W 1,r +||ρt||Lr +||θt||Lr +||√ρut||L2 +||∇u||H1) ≤ C,

and ∫ T

0
(||ut||2D1 + ||u||2D2,r) ≤ C.(5.3)

With (5.2) and (5.3), we will deduce a contradiction to the maximality of T�.
It is well-known that the bound of ∇u yields that ρ is bounded from the mass

equation (1.1). More precisely, we have

Lemma 5.1. Under the assumption (5.1), for any 0 < T < T�, we have

sup
0≤t≤T

(||ρ||L∞ + ||θ||L∞) ≤ C.(5.4)

Proof. We first show that the density ρ is bounded due to the assumption (5.1),
which was proved in [19]. Multiplying (1.1) by p|ρ|p−2ρ in L2(2 ≤ p ≤ ∞) and using
integration by parts, we obtain that
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∂t||ρ||Lp ≤ p− 1
p

||∇u||L∞||ρ||Lp,

which, together with Gronwall’s inequality, leads to

sup
0≤t≤T

||ρ||Lp ≤ C.

Letting p→ ∞, we get

sup
0≤t≤T

||ρ||L∞ ≤ C.

In a similar way, we can obtain the estimate for θ. This completes the proof.

By virtue of Lemma 5.1, we establish the global energy inequality for strong solu-
tions.

Lemma 5.2. Under the assumption (5.1), for any 0 < T < T� , we have

sup
0≤t≤T

||√ρu||2L2 + μ

∫ T

0
||∇u||2L2dt ≤ C.(5.5)

Proof. Since P is locally Lipschitz by (1.4) and Lemma 5.1, we obtain the
following

|P (ρ)| ≤ ||P ′(ρ)||L∞ρ ≤ Cρ ≤ C,

|∇P (ρ)| ≤ ||P ′(ρ)||L∞|∇ρ| ≤ C|∇ρ|.
Multiplying (1.2) by u and integrating by parts, we have

d

dt

∫
ρ|u|2dx+

∫
μ|∇u|2dx =

∫
Pdivudx+

∫
ρθe3 · udx.

Utilizing (5.4) and the conservation of mass equation, we get∫
ρ2dx ≤ ||ρ||L1||ρ||L∞ ≤ C.

By Cauchy’s inequality, we have

|
∫
Pdivudx| ≤

∫
|P (ρ)||divu|dx ≤ C

∫
ρ|∇u|dx ≤ ε||∇u||2L2 + C

and

|
∫
ρθe3 · udx| ≤ ||θ||L3||ρ||L2||u||L6 ≤ ε||∇u||2L2 +C.

Putting these inequalities into the energy identity, we complete the proof.
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The following lemma will play a key role in Lemma 5.4 and Lemma 5.7.

Lemma 5.3. Under the assumption (5.1), for any 0 < T < T� and p ∈ [2, 6], we
have

sup
0≤t≤T

(||∇ρ||Lp + ||∇θ||Lp) ≤ C(1 +
∫ T

0
||∇2u||Lpdt).(5.6)

Proof. By a straightforward computation of (1.1), we get

∂t(|∇ρ|p) + div(|∇ρ|pu) + (p− 1)|∇ρ|pdivu

+ p|∇ρ|p−2∇tρ∇u · ∇ρ+ pρ|∇ρ|p−2∇ρ · ∇divu = 0,

which yields that

d

dt
||∇ρ||Lp ≤ C||∇u||L∞||∇ρ||Lp +C||∇2u||Lp.

Hence, we get

||∇ρ||Lp ≤ C(1 +
∫ t

0

||∇2u||Lpds).

In a similar way, we can get the estimate for θ.

By virtue of Lemma 5.3, we are ready to obtain the L2−estimate of the first
derivatives (ρ, u, θ), which are important for estimating other quantities.

Lemma 5.4. Under the assumption (5.1), for any 0 < T < T�, we have

(5.7) sup0≤t≤T (||∇ρ||2
L2 + ||∇θ||2

L2 + ||∇u||2
L2) +

∫ T
0
||∇u||2

H1dt ≤ C.

Proof. Multiplying (1.2) by ρ−1(μΔu + ρθe3 −∇P ) in L2 and integrating the
result over R3, one has after integration by parts

(5.8)

μ

2
d

dt

∫
|∇u|2dx+

∫
ρ−1|μΔu−∇P + ρθe3|2dx

= μ

∫
u∇uΔudx−

∫
u∇u · ∇Pdx−

∫
ut · ∇Pdx

+
∫
ut · ρθe3dx+

∫
u∇u · ρθe3dx.

The first term in the right hand of (5.8) can be estimated as follows,
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(5.9)

μ|
∫
u∇uΔudx|

= μ|
∫
ui∂iu

j∂kku
jdx| = μ|

∫
∂ku

j∂iu
j∂ku

j + uj∂iku
j∂ku

jdx|

= μ|
∫
∂ku

j∂iu
j∂ku

jdx− 1
2

∫
(∂ku

j)2divudx|
≤ C||∇u||L∞||∇u||2L2.

In order to estimate the second term in the right hand of (5.8), we utilize the Sobolev
inequality

(5.10)

| ∫ u∇u · ∇Pdx| ≤ C||u||L6||divu||L3||∇P ||L2

≤ C||∇u||L2||divu||L3||∇ρ||L2

≤ C||∇u||
5
3

L2||∇u||
1
3
L∞||∇ρ||L2

≤ C||∇ρ||2L2||∇u||2L2 +C||∇u||L∞||∇u||2L2 +C.

The remaining terms can be estimated as follows. Since (1.5) and (1.1) imply

|P (ρ)t| ≤ ||P ′(ρ)||L∞|ρt| ≤ ||P ′(ρ)||L∞(ρ|∇u|+ |∇ρ||u|) ≤ C(|∇u| + |u||∇ρ|),
we have

(5.11)

−
∫
ut · ∇Pdx

=
d

dt

∫
P (ρ)divudx−

∫
(P (ρ))tdivudx

≤ d

dt

∫
P (ρ)divudx+C

∫
(|u||∇ρ||divu| + |∇u|2)dx

≤ d

dt

∫
P (ρ)divudx+C||∇u||L2||divu||L3||∇ρ||L2 + C||∇u||2L2

≤ d

dt

∫
P (ρ)divudx+C||∇ρ||2L2||∇u||2L2+C(||∇u||L∞ + 1)||∇u||2L2+C.

Similarly, we get

(5.12)

∫
ut · ρθe3dx

=
d

dt

∫
ρθue3dx−

∫
ρtθue3dx−

∫
θtρue3dx

=
d

dt

∫
ρθue3dx−

∫
ρu∇θue3dx−

∫
ρuθ∇ue3dx+

∫
ρu∇θue3dx

≤ d

dt

∫
ρθue3dx+C||∇u||2L2
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and ∫
u∇uρθe3dx ≤ C||ρ||L3||θ||L∞||u||L6||∇u||L2 ≤ C||∇u||2L2.(5.13)

On the other hand, by the theory of elliptic system and due to ρ−1 ≥ C > 0, we obtain

||∇2u||2L2 ≤ C||μΔu||2L2

≤ C

∫
ρ−1(μΔu−∇P + ρθe3)2dx+C||∇ρ||2L2 + C||θ||2L2.(5.14)

Putting (5.8)− (5.14) together, we have

d

dt

∫
(
μ

2
|∇u|2 + ρθue3 − Pdivu)dx+C−1||∇2u||2L2

≤ C||∇ρ||2L2||∇u||2L2 +C(1 + ||∇u||L∞)||∇u||2L2 +C.(5.15)

By Young’s inequality, we get
∫
ρθue3 − Pdivudx ≤ ε||∇u||2L2 +C(ε)(||ρ||2L3||θ||2L2 + ||ρ||2L2)

≤ ε||∇u||2L2 +C.(5.16)

Integrating (5.15) over (0, t) and substituting (5.16) into the result, we deduce the
following after choosing ε sufficiently small

||∇u||2L2 +
∫ t

0
||∇u||2H1ds

≤ C

∫ t

0
(1 + ||∇u||L∞ + ||∇u||2L2)(||∇u||2L2 + ||∇ρ||2L2)ds+C.

Since

[1 + ||∇u||L∞ + ||∇u||2L2] ∈ L1(0, T ),

the Gronwall’s inequality and the mass equation imply that

||∇ρ||2L2 + ||∇θ||2L2 + ||∇u||2L2 ≤ C.

The proof of Lemma 5.4 is completed.

As an immediate consequence of Lemma 5.4, we get
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Lemma 5.5. Under the assumption (5.1), for any 0 < T < T�, we have

∫ T

0
||ρt||2L2 + ||θt||2L2dt ≤ C.(5.17)

Proof. It is easy to see that L2
tL

2
x−estimate of ∇2u follows from (5.14). The

mass equation (1.1) and Lemma 5.1 imply that L2
tL

2
x−estimate of ρt

|ρt| ≤ |∇ρ||u|+ ρ|divu| ≤ |∇ρ||u|+C|∇u|.

By Sobolev’s embedding, we obtain u ∈ L2(0, T ;L∞). Thus,

|||u|∇ρ||L2(0,T ;L2) ≤ ||u||L2(0,T ;L∞)||∇ρ||L∞(0,T ;L2) ≤ C.

This clearly implies ρt ∈ L2(0, T ;L2). By a similar method, we can obtain the estimate
of θt. So we complete the proof of Lemma 5.5.

Next, we improve the regularity of the density ρ and the velocity u, using the
compatibility condition (1.6).

Lemma 5.6. Under the assumption (5.1), for any 0 < T < T�, we have

sup
0≤t≤T

(||√ρut||2L2 + ||∇u||H1) +
∫ T

0
||∇ut||2L2dt ≤ C.(5.18)

Proof. Differentiating (1.2) with respect to t, we get

ρ∂2
ttu+ ρu · ∇ut − μΔ∂tu = −∇∂tP − ∂tρ∂tu− ρ∂tu · ∇u− ρtu · ∇u+ ∂t(ρθe3).

Taking the inner product of the above equation with ut in L2 and integrating by parts,
one gets

(5.19)

1
2
d

dt

∫
ρ|ut|2dx+

∫
μ|∇ut|2dx

=
∫
∂tPdivutdx−

∫
ρu · ∇(u · ∇u · ut)dx−

∫
ρu · ∇|ut|2dx

−
∫
ρut · ∇u · utdx+

∫
(ρθe3)t · utdx =

5∑
k=1

Jk.
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We estimate the terms one by one

|J1| ≤ C||ρt||L2||divut||L2 ≤ ε||∇ut||2L2 + C(ε)||ρt||2L2,

|J2| ≤
∫
ρ|u||∇u|2|ut|dx+

∫
ρ|u|2|∇u||∇ut|dx+

∫
ρ|u|2|∇2u||ut|dx

≤ C||u||L6||∇u||2L3||ut||L6 +C||u||2L6||∇u||L6||∇ut||L2

+ C||u||2L6||∇2u||L2||ut||L6

≤ C||∇u||H1||∇ut||L2

≤ ε||∇ut||2L2 + C(ε)||∇u||2H1,

|J3| ≤ C||u||L∞||√ρut||L2||∇ut||L2 ≤ C||∇u||H1||√ρut||L2||∇ut||L2

≤ ε||∇ut||2L2 + C(ε)||∇u||2H1||√ρut||2L2,

|J4| ≤ C||∇u||L2||√ρut||2L4 ≤ C||√ρut||
3
2

L6||√ρut||
1
2

L2

≤ C||∇ut||
3
2

L2||√ρut||
1
2

L2

≤ ε||∇ut||2L2 + C(ε)||√ρut||2L2,

|J5| ≤ C

∫
|ρt||ut||θ|+ |θt||ut||ρ|

≤ ε||∇ut||2L2 + C(ε)(||ρt||2L2||θ||2L3 + ||θt||2L2||ρ||2L3).

Substituting J1 − J5 into (5.19), we get

d

dt

∫
ρ|ut|2dx+

∫
|∇ut|2dx ≤ C||√ρut||2L2(1 + ||∇u||2H1) + C||∇u||2H1 +C.

Employing Gronwall’s inequality and using (1.6) and Lemma 5.4, we obtain

sup
0≤t≤T

∫
ρ|ut|2dx+

∫ T

0

∫
|∇ut|2dxdt ≤ C.

To see ∇2u ∈ L∞(0, T ;L2), we rewrite (1.2) as an elliptic system as follows

μΔu = ρut + ρu · ∇u+ ∇P − ρθe3.(5.20)

From the standard L2−estimates for the elliptic system, we get

||∇2u||L2 ≤ C(||ρut||L2 + ||ρu∇u||L2 + ||∇P ||L2 + ||ρθe3||L2)

≤ C + C||u||L∞||∇u||L2 + C||∇ρ||L2

≤ C +
1
2
||∇2u||L2,
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which immediately implies sup0≤t≤T ||∇u||H1 ≤ C.

The proof of Lemma 5.6 is completed.

The final step is to obtain the Lp−estimates of the first derivatives of (ρ, θ) and
the second derivatives of the velocity u.

Lemma 5.7. Under the assumption (5.1), for any 0 < T < T� and some q ∈ (3, 6],
we have

sup
0≤t≤T

(||ρ||W 1,q + ||θ||W 1,q + ||ρt||Lq + ||θt||Lq) +
∫ T

0
||∇2u||2Lqdt ≤ C.(5.21)

Proof. From Lemma 5.3, we have

||∇ρ||Lq + ||∇θ||Lq ≤ C(1 +
∫ t

0
||∇2u||Lqds).(5.22)

Applying the standard Lq−estimates to elliptic system (5.20) and Gagliardo-Nirenberg
inequality, we find

(5.23)

||∇2u||Lq ≤ C(||ρut||Lq + ||ρu∇u||Lq + ||∇P ||Lq + ||ρθe3||Lp)

≤ C||√ρut||
6−q
2q

L2 ||ut||
3q−6
2q

L6 + C||u||L∞||∇u||Lq + C||∇ρ||Lq

≤ C||∇ρ||Lq + C||∇ut||L2 + C.

Substituting (5.23) into (5.22), and using the Gronwall’s inequality, we get
||∇ρ||Lq + ||∇θ||Lq ≤ C.

For r = 2 or q, (1.1) implies that

||ρt||Lr ≤ ||u||L∞||∇ρ||Lr + ||ρ||L∞||divu||Lr

≤ ||∇u||H1||∇ρ||Lr + ||ρ||L∞||∇u||H1 ≤ C.

In a similar way, we can get estimates for θt.

Proof of Theorem 1.2. All the estimates in Lemma 5.1-Lemma 5.7 will be enough
to extend the strong solution (ρ, u, θ) beyond the maximal time of existence T�, which
contradicts the definition of T�. Therefore, (5.1) is false. The proof of Theorem 1.2 is
now complete.
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