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ENTIRE FUNCTIONS AND THEIR HIGHER ORDER DIFFERENCES

Chuang-Xin Chen and Zong-Xuan Chen*

Abstract. In this paper, we prove that for a transcendental entire function f(z)
of finite order such that λ(f − a(z)) < σ(f), where a(z) is an entire function
and satisfies σ(a(z)) < 1, n is a positive integer, if Δn

ηf(z) and f(z) share entire
function b(z) ( b(z) �≡ a(z)) satisfying σ(b(z)) < 1 CM, where η (∈ C) satisfies
Δn

ηf(z) �≡ 0, then
f(z) = a(z) + cec1z,

where c, c1 are two nonzero constants.

1. INTRODUCTION AND RESULTS

In this paper, we assume that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna’s value distribution theory of meromorpic
functions (see [17, 18, 27]). In addition, we use the notation λ(f) to denote the
exponent of convergence of the sequence of zeros of a meromorphic function f , and
σ(f) to denote the order growth of f . For a nonzero constant η, the forward differences
Δn

ηf(z) are defined (see [2, 25]) by

Δηf(z) = Δ1
ηf(z) = f(z + η)− f(z) and

Δn+1
η f(z) = Δn

ηf(z + η)− Δn
ηf(z), n = 1, 2, · · · .

For a meromorphic function f(z), we use S(f) to denote the family of all mero-
morphic functions α(z) that satisfy T (r, α) = S(r, f), where S(r, f) = o(T (r, f)), as
r → ∞ outside of a possible exceptional set of finite logarithmic measure. Functions
in the set S(f) are called small functions with respect to f(z).
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Let f and g be two nonconstant meromorphic functions, and let a ∈ C. We say
that f and g share the value a CM (IM) provided that f − a and g − a have the same
zeros counting multiplicities (ignoring multiplicities), that f and g share the value ∞
CM (IM) provided that f and g have the same poles counting multiplicities (ignoring
multiplicities). Using the same method, we can define f and g share function a(z) CM
(IM), where a(z) ∈ S(f)

⋂
S(g). Nevanlinna’s four values theorem [24] says that if

two nonconstant meromorphic functions f and g share four values CM, then f ≡ g or
f is a Möbius transformation of g. The condition “f and g share four values CM” has
been weakened to “f and g share two values CM and two values IM” by Gundersen
[10, 11]. But whether the condition can be weakened to “f and g share three values
IM and another value CM” is still an open question.

In the special case, we recall a well-known conjecture by Brück [1]:

Conjecture. Let f be a nonconstant entire function such that hyper order σ2(f) <

∞ and σ2(f) is not a positive integer. If f and f ′ share the finite value a CM, then

f ′ − a

f − a
= c,

where c is a nonzero constant.
The notation σ2(f) denotes hyper-order (see [26]) of f(z) which is defined by

σ2(f) = lim
r→∞

log logT (r, f)
log r

.

The conjecture has been verified in the special cases when a = 0 [1], or when f
is of finite order [12], or when σ2(f) < 1

2 [6].
Recently, many authors [13, 15, 16, 21, 22, 23] started to consider sharing values

of meromorphic functions with their shifts. Heittokangas et al. proved the following
theorems.

Theorem A. (see [15]). Let f be a meromorphic function with σ(f) < 2, and
let c ∈ C. If f(z) and f(z + c) share the values a (∈ C) and ∞ CM, then

f(z + c)− a

f(z) − a
= τ

for some constant τ.

In [15], Heittokangas et al. give the example f(z) = ez2
+ 1 which shows that

σ(f) < 2 cannot be relaxed to σ(f) ≤ 2.

Theorem B. (see [16]). Let f be a meromorphic function of finite order, let
c ∈ C. If f(z) and f(z + c) share three distinct periodic functions a1, a2, a3 ∈ Ŝ(f)
with period c CM (where Ŝ(f) = S(f) ∪ {∞}), then f(z) = f(z + c) for all z ∈ C.
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Recently, many results of complex difference equations are rapidly obtained (see
[4, 5, 8, 14, 19, 20]). In present paper, we will utilize some results on complex
difference equations.

The main purpose of this paper is to utilize complex difference equation to study
problems on sharing values of meromorphic functions and their differences. It is well
known that Δηf(z) = f(z + η)− f(z) (where η (∈ C) is a constant satisfying f(z +
η)−f(z) �≡ 0) is regarded as the difference counterpart of f ′. So, Chen [7] considered
the problem that Δηf(z) and f(z) share one value a CM, and proved the following
theorem.

Theorem C. (see [7]). Let f be a finite order transcendental entire function
which has a finite Borel exceptional value a, and let η (∈ C) be a constant such that
f(z +η) �≡ f(z). If Δηf(z) = f(z +η)−f(z) and f(z) share the value b ( �= a) CM,
then

f(z + η)− f(z) − b

f(z) − b
= A,

where A = b
b−a is a nonzero constant.

Question 1: What can be said if we consider the forward difference Δn
ηf(z) and

f(z) share one value or one small function?
In this paper, we answer the Question 1 and prove the following theorem.

Theorem 1.1. Let f(z) be a finite order transcendental entire function such that
λ(f − a(z)) < σ(f), where a(z) is an entire function and satisfies σ(a) < 1, let
n be a positive integer. If Δn

ηf(z) and f(z) share entire function b(z) ( b(z) �≡
a(z) and σ(b) < 1) CM, where η (∈ C) satisfies Δn

ηf(z) �≡ 0, then

f(z) = a(z) + cec1z,

where c, c1 are two nonzero constants.

In the special case, if we take b(z) ≡ b and a(z) ≡ a in Theorem 1.1, we can get
the following Corollary.

Corollary 1.1. Let f(z) be a finite order transcendental entire function which has
a finite Borel exceptional value a, let n be a positive integer. If Δn

ηf(z) and f(z)
share value b (b �= a) CM, where η (∈ C) satisfies Δn

ηf(z) �≡ 0, then

f(z) = a + cec1z,

where c, c1 are two nonzero constants.

Remark 1.1. From Corollary 1.1, we can see that under the hypothesis of Theorem
C , f(z) has the expression f(z) = a + cec1z. And Corollary 1.1 shows that if a �= 0,
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then, for any constant η satisfies ec1η �= 1, b = 0 is not shared CM by Δn
ηf(z)

and f(z); if a = 0, then, for any constant η satisfies (ec1η − 1)n = 1, we have
Δn

ηf(z) = (ec1η −1)ncec1z = cec1z = f(z). Thus, any constant b ( �= a) is shared CM
by Δn

ηf(z) and f(z). See the following Example 1.1-1.2.

Example 1.1. Suppose that f(z) = e2z + 5. Then f has a Borel exceptional value
5. For any η �= 2kπi, k ∈ Z, the value 0 ( �= 5) is not shared CM by Δn

ηf(z) and f(z).
Observe that

Δn
ηf(z) =

n∑
j=0

(−1)jCj
nf(z + (n − j)η),

where Cj
n are the binomial coefficients. Thus, for any η �= kπi, k ∈ Z, we have

Δn
ηf(z) = (e2(z+nη) + 5)− C1

n(e2(z+(n−1)η) + 5) + · · ·+ (−1)n(e2z + 5)

=
(
e2nη − C1

ne2(n−1)η + · · ·+ (−1)n
)
· e2z + 5 ·

n∑
j=0

(−1)jCj
n

= (e2η − 1)n · e2z.

Thus, we can see that f(z)−0 = e2z +5 has infinitely many zeros, but Δn
ηf(z)−0 =

(e2η−1)ne2z has no zeros. Hence, the value 0 is not shared CM by Δn
ηf(z) and f(z).

Example 1.2. Suppose that f(z) = ez . Then f has a Borel exceptional value
a = 0. If we take η = log 2, then, using the same method as Example 1.1, we can get
that Δn

ηf(z) = (eη − 1)nez = ez , that is Δn
ηf(z) ≡ f(z). Hence, Δn

ηf(z) and f(z)
share every nonzero constant b CM or every nonzero function b(z) ( σ(b(z)) < 1) CM.

2. LEMMAS FOR THE PROOF OF THEOREM

Lemma 2.1. (see [8]). Let f be a meromorphic function with a finite order σ, η
be a nonzero constant. Let ε > 0 be given, then there exists a subset E ⊂ (1,∞) with
finite logarithmic measure such that for all z satisfying |z| = r �∈ E ∪ [0, 1], we have

exp{−rσ−1+ε} ≤
∣∣∣∣f(z + η)

f(z)

∣∣∣∣ ≤ exp{rσ−1+ε}.

Lemma 2.2. (see [9, 26]). Suppose that n ≥ 2 and let f1(z), · · · , fn(z) be
meromorphic functions and g1(z), · · · , gn(z) be entire functions such that

(i) Σn
j=1fj(z) exp{gj(z)} = 0;

(ii) when 1 ≤ j < k ≤ n, gj(z) − gk(z) is not constant;
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o {T (r, exp{gh − gk})} (r → ∞, r �∈ E),

where E ⊂ (1,∞) has finite linear measure or logarithmic measure.
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Then fj(z) ≡ 0, j = 1, · · · , n.

ε-set. Following Hayman [17], we define an ε-set to be a countable union of
open discs not containing the origin and subtending angles at the origin whose sum is
finite. If E is an ε-set then the set of r ≥ 1 for which the circle S(0, r) meets E has
finite logarithmic measure, and for almost all real θ the intersection of E with the ray
arg z = θ is bounded.

Lemma 2.3. (see [2]). Let f be a function transcendental and meromorphic in
the plane of order < 1. Let h > 0. Then there exists an ε-set E such that

f(z + c)− f(z) = cf ′(z)(1 + o(1)) as z → ∞ in C\E,

uniformly in c for |c| ≤ h.

In what follows, we shall establish a Lemma which will play an important role in
our proof of Theorem. To this end, we will introduce some notations. The difference
polynomial U(z, f) is defined by

U(z, f) =
∑
λ∈J

αλ(z)Uλ(z, f) =
∑
λ∈J

αλ(z)

⎛
⎝ τλ∏

j=1

f(z + δλ,j)μλ,j

⎞
⎠ ,

where J is a finite index set, δλ,j are distinct complex constants, μλ,j are nonnegative
integers, and αλ(z) ( �≡ 0) are small meromorphic functions of f(z). The degree of
Uλ(z, f) and U(z, f) in f(z) and the shifts of f(z) are defined by

degf Uλ(z, f) =
τλ∑

j=1

μλ,j and degf U(z, f) = max
λ∈J

{degf Uλ(z, f)}

respectively. In what follows, we assume that the coefficients of difference polynomials
are, unless otherwise stated, small functions in the usual Nevanlinna theory sense, i.e.
their characteristic is of type S(r, f).

Lemma 2.4. (see [20]). Let f be a transcendental meromorphic solution of finite
order ρ of a difference equation of the form

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, f), Q(z, f) are difference polynomials such that the total degree
deg U(z, f) = n in f(z) and its shifts, and deg Q(z, f) ≤ n. Moreover, we assume
that U(z, f) contains just one term of maximal total degree in f(z) and its shifts.
Then, for each ε > 0,

m (r, P (z, f)) = O(rρ−1+ε) + S(r, f),

possibly outside of an exceptional set of finite logarithmic measure.
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Remark 2.1. From the proof of the Lemma 2.4 in [20], we can see that if the
coefficients of U(z, f), P (z, f), Q(z, f), namely αλ(z), satisfy m(r, αλ) = S(r, f),
then the same conclusion still holds.

Lemma 2.5. (see [3]). Let Pn(z), · · · , P0(z) be polynomials such that PnP0 �≡
0 and satisfy

Pn(z) + · · ·+ P0(z) �≡ 0.(2.1)

Then every finite order transcendental meromorphic solution f(z)( �≡ 0) of the equation

Pn(z)f(z + n) + Pn−1(z)f(z + n − 1) + · · ·+ P0(z)f(z) = 0(2.2)

satisfy σ(f) ≥ 1, and f(z) assumes every nonzero value a ∈ C infinitely often and
λ(f − a) = σ(f).

Remark 2.2. If the equation (2.2) satisfies the condition (2.1) and Pj(z) ( j =
0, 1, · · · , n) are constants, we can see that the equation (2.2) does not possess any
nonzero polynomial solution. In fact, suppose that P (z) = akz

k + ak−1z
k−1 + · · ·+

a0 (k ≥ 0, ak �= 0) is a solution of equation (2.2). Then we have

ak (Pn(z) + · · ·+ P0(z)) · zk + (Pn(z) + · · ·+ P0(z)) ·O(zk−1) ≡ 0.(2.3)

From (2.1) and ak �= 0, we can see that (2.3) is a contradiction.

Lemma 2.6. (see [3]). Let F (z), Pn(z), · · · , P0(z) be polynomials such that
FPnP0 �≡ 0. Then every finite order transcendental meromorphic solution f(z)( �≡ 0)
of the equation

Pn(z)f(z + n) + Pn−1(z)f(z + n − 1) + · · ·+ P0(z)f(z) = F(2.4)

satisfy λ(f) = σ(f) ≥ 1.

Remark 2.3. From the proof of the Lemma 2.5 in [3], we can see that if we
replace equation (2.2) by

Pn(z)f(z + nη) + Pn−1(z)f(z + (n − 1)η) + · · ·+ P0(z)f(z) = 0

or equation (2.4) by

Pn(z)f(z + nη) + Pn−1(z)f(z + (n − 1)η) + · · ·+ P0(z)f(z) = F,

then the corresponding conclusion still holds.
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Lemma 2.7. Suppose that n is a positive integer, f(z) is a finite order transcen-
dental entire function such that λ(f − a(z)) < σ(f), where a(z) is an entire function
and satisfies λ(a) < 1. If Δn

ηf(z) �≡ 0 for some constant η (∈ C), and

Δn
ηf(z) − b(z)
f(z) − b(z)

= A(2.5)

holds, where A is a nonzero constant and b(z) ( �≡ a(z)) is an entire function satisfying
σ(b) < 1, then

A =
Δn

ηa(z) − b(z)
a(z)− b(z)

= (ec1η − 1)n and f(z) = a(z) + cec1z,

where c, c1 are two nonzero constants.

Proof. Since f(z) is a transcendental entire function of finite order and satisfies
λ(f − a(z)) < σ(f), we can write f(z) in the form

f(z) = a(z) + H(z)eh(z),(2.6)

where H( �≡ 0) is an entire function, h is a polynomial with deg h = k (k ≥ 1), H and
h satisfy

λ(H) = σ(H) = λ(f − a(z)) < σ(f) = deg h.(2.7)

Substituting (2.6) into (2.5), we can get that

(2.8)
Δn

ηf(z) − b(z)
f(z) − b(z)

=

n∑
j=0

(−1)jCj
nH(z + (n − j)η)eh(z+(n−j)η) + d(z)

H(z)eh(z) + t(z)
= A,

where d(z) = Δn
ηa(z)− b(z), t(z) = a(z) − b(z).

Obviously, since σ(Δn
ηa(z)) ≤ σ(a(z)) < 1, we have

(2.9)
σ(d(z)) ≤ max{σ(Δn

ηa(z)), σ(b(z))} < 1,

σ(t(z)) ≤ max{σ(a(z)), σ(b(z))} < 1.

Rewrite (2.8) in the form
n−1∑
j=0

(−1)jCj
nH(z+(n−j)η)eh(z+(n−j)η)+((−1)n−A)H(z)eh(z)=At(z)−d(z),

that is,

(2.10)

n−1∑
j=0

(−1)jCj
nH(z + (n − j)η)eh(z+(n−j)η)−h(z) + ((−1)n − A)H(z)

= (At(z) − d(z))e−h(z).



718 Chuang-Xin Chen and Zong-Xuan Chen

First, we assert that At(z) − d(z) ≡ 0. On the contrary, we suppose that At(z) −
d(z) �≡ 0. Then, by (2.9), we have max{σ(d(z)), σ(t(z))} < 1 ≤ k. Hence, σ(At(z)−
d(z)) < 1 ≤ k. From σ(H(z)) < deg h(z) = k and deg(h(z + (n − j)η)− h(z)) =
k − 1 ( j = 0, 1, · · · , n − 1), we can see that the order of growth of the left side of
(2.10) is less than k, but the order of growth of the right side of (2.10) is equal to k.
This is a contradiction. Hence, At(z) − d(z) ≡ 0, that is

A =
d(z)
t(z)

=
Δn

ηa(z) − b(z)
a(z)− b(z)

.(2.11)

Thus, (2.10) can be written as

(2.12)
n−1∑
j=0

(−1)jCj
nH(z + (n − j)η)eh(z+(n−j)η)−h(z) + ((−1)n − A)H(z) = 0.

Secondly, we prove that σ(f) = k = 1. On the contrary, we suppose that σ(f) =
k ≥ 2. Thus, we will deduce a contradiction for cases A = (−1)n and A �= (−1)n

respectively.
Case 1. Suppose that A = (−1)n. Thus, for the positive integer n, there are three

subcases: (1) n = 1; (2) n = 2; (3) n ≥ 3.

Subcase 1.1. Suppose that n = 1. Then, by A = −1, we can obtain from (2.12)
that

eh(z+η)−h(z) = (1 + A) · H(z)
H(z + η)

= (1− 1) · H(z)
H(z + η)

≡ 0,

a contradiction.
Subcase 1.2. Suppose that n = 2. Then we can obtain from (2.12) that

H(z + 2η)
H(z)

eh(z+2η)−h(z) − 2H(z + η)
H(z)

eh(z+η)−h(z) + (1− A) = 0.

Noting that A = (−1)2 = 1, the equation above can be rewritten as

eh(z+2η)−h(z+η) =
2H(z + η)
H(z + 2η)

.(2.13)

Set Q1(z) = 2H(z+η)
H(z+2η) . Then we can know from (2.13) that Q1(z) is a nonconstant

entire function. Set σ(H) = σ1. Then σ1 < σ(f) = k. By Lemma 2.1, we see that for
any given ε1 (0 < 3ε1 < k − σ1), there exists a set E1 ⊂ (1,∞) of finite logarithmic
measure, such that for all z satisfying |z| = r �∈ [0, 1]∪ E1, we have

(2.14) exp{−rσ1−1+ε1} ≤
∣∣∣∣ H(z + η)
H(z + 2η)

∣∣∣∣ ≤ exp{rσ1−1+ε1}.



Entire Functions and Their Higher Order Differences 719

Since Q1(z) is an entire function, by (2.14), we have

T (r, Q1(z)) = m(r, Q1(z)) ≤ m

(
r,

H(z + η)
H(z + 2η)

)
+ O(1) ≤ rσ1−1+ε1 ,

so that,

σ(Q1(z)) ≤ σ1 − 1 + ε1 < k − 1.

Thus, by deg(h(z + η)− h(z)) = k − 1, we can see that (2.13) is a contradiction.
Subcase 1.3. Suppose that n ≥ 3. Then we can obtain from (2.12)

H(z + nη)eh(z+nη) − C1
nH(z + (n − 1)η)eh(z+(n−1)η)

+ · · ·+ (−1)n−1Cn−1
n H(z + η)eh(z+η) = 0,

that is,

(2.15)

H(z + nη)
H(z + η)

eh(z+nη)−h(z+η) − C1
n

H(z + (n − 1)η)
H(z + η)

eh(z+(n−1)η)−h(z+η)

+ · · ·+ (−1)n−2Cn−2
n

H(z + 2η)
H(z + η)

eh(z+2η)−h(z+η) + (−1)n−1Cn−1
n = 0.

Set Q2(z) = eh(z+2η)−h(z+η) . Then Q2(z) is a transcendental entire function since
σ(Q2(z)) = k − 1 ≥ 1. For j = 3, 4, · · · , n, we have

eh(z+jη)−h(z+η)

= eh(z+jη)−h(z+(j−1)η)eh(z+(j−1)η)−h(z+(j−2)η) · · ·eh(z+2η)−h(z+η)

= Q2(z + (j − 2)η)Q2(z + (j − 3)η) · · ·Q2(z).

Thus, (2.15) can be rewritten as

U2(z, Q2(z)) ·Q2(z) = (−1)nCn−1
n ,(2.16)

where

U2(z, Q2(z)) =
H(z + nη)
H(z+η)

Q2(z+(n−2)η)Q2(z+(n−3)η) · · ·Q2(z + η)

−C1
n

H(z+(n− 1)η)
H(z+η)

Q2(z+(n−3)η)Q2(z+(n−4)η) · · ·Q2(z + η)

+ · · ·+ (−1)n−2Cn−2
n

H(z + 2η)
H(z + η)

.

Noting that (−1)nCn−1
n �= 0, we can see that U2(z, Q2(z)) �≡ 0. Set σ(H) = σ2.

Then σ2 < k. Since Q2(z) is of regular growth and σ(Q2(z)) = k − 1, for any given
ε2 (0 < 3ε2 < k − σ2) and all r > r0 (> 0), we have

T (r, Q2(z)) > rk−1−ε2 .(2.17)
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By Lemma 2.1, we see that for ε2, there exists a set E2 ⊂ (1,∞) of finite logarithmic
measure, such that for all z satisfying |z| = r �∈ [0, 1]∪ E2, we have

(2.18) exp{−rσ2−1+ε2} ≤
∣∣∣∣H(z + jη)

H(z + η)

∣∣∣∣ ≤ exp{rσ2−1+ε2} (j = 2, 3, · · · , n).

Thus, from (2.17) and (2.18), we can get that for j = 2, 3, · · · , n

m
(
r, H(z+jη)

H(z+η)

)
T (r, Q2(z))

≤ rσ2−1+ε2

rk−1−ε2
→ 0 ( r → ∞ and r �∈ [0, 1]∪ E2),

that is,

m

(
r,

H(z + jη)
H(z + η)

)
= S(r, Q2) (j = 2, 3, · · · , n).(2.19)

Noting that degQ2
U2(z, Q2) = n − 2 ≥ 1 and applying Lemma 2.4 and Remark 2.1

to (2.16), we have

T (r, Q2) = m(r, Q2) = S(r, Q2),

a contradiction.

Case 2. Suppose that A �= (−1)n. Thus, for the positive integer n, there are two
subcases: (1) n = 1; (2) n ≥ 2.

Subcase 2.1. Suppose that n = 1. Thus, (2.12) can be rewritten as

H(z + η)
H(z)

= (A + 1)eh(z)−h(z+η).

Noting that A + 1 �= 0, we can use the same method as in the proof of Subcase 1.2 to
deduce a contradiction.

Subcase 2.2. Suppose that n ≥ 2. Then we can obtain from (2.12)

(2.20)

H(z + nη)
H(z)

eh(z+nη)−h(z) − C1
n

H(z + (n − 1)η)
H(z)

eh(z+(n−1)η)−h(z)

+ · · ·+ (−1)n−1Cn−1
n

H(z + η)
H(z)

eh(z+η)−h(z) + (−1)n − A = 0.

Set Q3(z) = eh(z+η)−h(z) . Then Q3(z) is a transcendental entire function since
σ(Q3(z)) = k − 1 ≥ 1. For j = 2, 3, · · · , n, we have

eh(z+jη)−h(z)

= eh(z+jη)−h(z+(j−1)η)eh(z+(j−1)η)−h(z+(j−2)η) · · ·eh(z+η)−h(z)

= Q3(z + (j − 1)η)Q3(z + (j − 2)η) · · ·Q3(z).
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Thus, (2.20) can be rewritten as

U3(z, Q3(z)) · Q3(z) = A − (−1)n,(2.21)

where

U3(z, Q3(z)) =
H(z + nη)

H(z)
Q3(z + (n − 1)η)Q3(z + (n − 2)η) · · ·Q3(z + η)

−C1
n

H(z+(n−1)η)
H(z)

Q3(z+(n−2)η)Q3(z+(n−3)η) · · ·Q3(z+η)

+ · · ·+ (−1)n−1Cn−1
n

H(z + η)
H(z)

.

We can see that U3(z, Q3(z)) �≡0 since A−(−1)n �=0. Noting that degQ3
U3(z, Q3(z))

= n − 1 ≥ 1, we can use the same method as in the proof of Subcase 1.3 to deduce a
contradiction.

Thus, we have proved that σ(f) = k = 1. And f(z) can be written as

f(z) = a(z) + H(z)ec1z,(2.22)

where c1 ( �= 0) is a constant and H(z) ( �≡ 0) is an entire function and satisfies

σ(H(z)) = λ(H(z)) = λ(f(z)− a(z)) < σ(f).

Thirdly, we will prove that H(z) ( �≡ 0) is a constant. To this end, we only need
to prove H ′(z) ≡ 0. Thus, substituting (2.22) into (2.12), we obtain

enc1ηH(z + nη)− C1
ne(n−1)c1ηH(z + (n − 1)η) + · · ·

+(−1)n−1Cn−1
n ec1ηH(z + η) + ((−1)n − A)H(z) = 0.(2.23)

We assert that the sum of all coefficients of (2.23) is equal to zero, that is

enc1η − C1
ne(n−1)c1η + · · ·+ (−1)n−1Cn−1

n ec1η + ((−1)n − A) = 0.

On the contrary, we suppose that

enc1η − C1
ne(n−1)c1η + · · ·+ (−1)n−1Cn−1

n ec1η + ((−1)n − A) �= 0.

Then (2.23) indicate H(z) ( �≡ 0) is an entire solution of equation

enc1ηg(z + nη)− C1
ne(n−1)c1ηg(z + (n − 1)η) + · · ·

+(−1)n−1Cn−1
n ec1ηg(z + η) + ((−1)n − A)g(z) = 0.

By Lemma 2.5 and Remark 2.2-2.3, we have σ(H) ≥ 1, a contradiction. Hence,

enc1η − C1
ne(n−1)c1η + · · ·+ (−1)n−1Cn−1

n ec1η + ((−1)n − A) = 0.
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Thus,

A − (−1)n = enc1η − C1
ne(n−1)c1η + · · ·+ (−1)n−1Cn−1

n ec1η.

Substituting the expression above into equation (2.23) and we have

(2.24)
enc1η(H(z + nη)− H(z))− C1

ne(n−1)c1η(H(z + (n − 1)η)− H(z))

+ · · ·+ (−1)n−1Cn−1
n ec1η(H(z + η)− H(z)) = 0.

By Lemma 2.3, we can see that, there exists an ε-set E such that for j = 1, 2, · · · , n

(2.25)
H(z + jη)− H(z) = jηH ′(z)(1 + oj(1))

= jηH ′(z) + oj(1)H ′(z) as z → ∞ in C\E.

Substituting (2.25) into (2.24), we can get that

ηH ′(z) · K1 + H ′(z) · K2 = 0 as z → ∞ in C\E,(2.26)

where K1 is a constant and satisfies

K1 = nenc1η−(n−1)C1
ne(n−1)c1η + · · ·+(−1)n−22Cn−2

n e2c1η+(−1)n−1Cn−1
n ec1η,

and

K2 = enc1ηon(1)− C1
ne(n−1)c1ηon−1(1) + · · ·+ (−1)n−1Cn−1

n ec1ηo1(1)
= o(1) as z → ∞ in C\E.(2.27)

We assume that K1 �=0. If n = 1, then K1 = ec1η is a nonzero constant; If n≥2,
on the contrary, we suppose that K1 = 0. Then, for j = 0, 1, · · · , n − 1, noting that

Cj
n · (n − j)

n
=

n! · (n − j)
n(n − j)!j!

=
(n − 1)!

(n − 1 − j)!j!
= C

j
n−1,

we have

nenc1η − C1
n(n − 1)e(n−1)c1η + · · ·+ (−1)n−2Cn−2

n 2e2c1η + (−1)n−1Cn−1
n ec1η

= nec1η
(
e(n−1)c1η + (−1)C1

n−1e
(n−2)c1η + · · ·+ (−1)n−2Cn−2

n−1 ec1η + (−1)n−1
)

= nec1η(ec1η − 1)n−1 = 0.

Then we can obtain from the equality above that ec1η = 1 since n−1 ≥ 1 . Substituting
ec1η = 1 into (2.23), we have

H(z + nη)− C1
nH(z + (n − 1)η) + · · ·+ (−1)n−1Cn−1

n H(z + η)
+((−1)n − A)H(z) = 0.
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Thus, we can find that H(z) is a nontrivial entire solution of equation

(2.28)
g(z + nη) − C1

ng(z + (n − 1)η)

+ · · ·+ (−1)n−1Cn−1
n g(z + η) + ((−1)n − A)g(z) = 0.

Noting that A �= 0 and the sum of all coefficients of equation (2.28) is

1 − C1
n + · · ·+ (−1)n−1Cn−1

n + (−1)n−1Cn−1
n + ((−1)n − A) = −A,

by Lemma 2.5 and Remark 2.2-2.3, we have σ(H) ≥ 1, a contradiction. Hence
K1 �= 0. By (2.27), (2.26) implies H ′(z) ≡ 0. Thus, we can know that H(z) is a
nonzero constant. Hence, f(z) can be written as

f(z) = a(z) + cec1z,(2.29)

where c, c1 are two nonzero constants.
Finally, we prove that A = (ec1η − 1)n. Substituting (2.29) into (2.5), we have

Δn
ηa(z) − b(z) + Δn

η(cec1z) = A(a(z)− b(z)) + Acec1z.

By (2.11), we have

A · cec1z = Δn
η(cec1z)

= cec1(z+nη) − C1
ncec1(z+(n−1)η) + · · ·+ (−1)nCn

ncec1z

= enc1η · cec1z − C1
ne(n−1)c1η · cec1z + · · ·+ (−1)nCn

n · cec1z

= (ec1η − 1)n · cec1z.

Hence, A = (ec1η − 1)n.

Thus, Lemma 2.7 is proved.

3. PROOF OF THEOREM 1.1

By the hypotheses of the Theorem 1.1, we can write f(z) in the form (2.6), and
(2.7) holds. Since Δn

ηf(z) and f(z) share entire function b(z) CM, then

(3.1)
Δn

ηf(z) − b(z)
f(z) − b(z)

=

n∑
j=0

(−1)n−jCj
nH(z + jη)eh(z+jη) + d(z)

H(z)eh(z) + t(z)
= eP (z),

where P (z) is a polynomial and

d(z) = Δn
ηa(z) − b(z) =

n∑
j=0

(−1)jCj
na(z + (n − j)η)− b(z), t(z) = a(z)− b(z).
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Obviously, we have

(3.2) σ(d(z))≤max{σ(a(z)), σ(b(z))}< 1, σ(t(z))≤max{σ(a(z)), σ(b(z))}< 1.

First step. We prove

Δn
ηf(z) − b(z)
f(z) − b(z)

= A,

where A is a nonzero constant. If P (z) ≡ 0, then, by (3.1), we obtain

Δn
ηf(z) − b(z)
f(z)− b(z)

= eP (z) ≡ 1.

Now we suppose that P (z) �≡ 0 and deg P (z) = s. Set

(3.3) h(z) = akz
k + ak−1z

k−1 + · · ·+ a0, P (z) = bsz
s + bs−1z

s−1 + · · ·+ b0,

where k = σ(f) ≥ 1, ak( �= 0), ak−1, · · · , a0, bs( �= 0), bs−1, · · · , b0 are constants. By
(3.1), we see that

0 ≤ deg P = s ≤ deg h = k.

In this case, we prove P (z) is a constant, that is s = 0. To this end, we will deduce
a contradiction for cases s = k and 1 ≤ s < k respectively.

Case 1. Suppose that 1 ≤ s = k. Thus, there are three subcases: (1) bk =
ak; (2) bk = −ak; (3) bk �= ak and bk �= −ak .

Subcase 1.1. Suppose that bk = ak . Then (3.1) is rewritten as

g11(z)eP (z) + g12e
−h(z) + g13e

h0(z) = 0,(3.4)

where h0(z) ≡ 0 and
⎧⎪⎪⎨
⎪⎪⎩

g11(z) = −H(z);
g12(z) = d(z);

g13(z) =
n∑

j=0
(−1)n−jCj

nH(z + jη)eh(z+jη)−h(z) − t(z)eP (z)−h(z) .

By bk = ak, we have deg(P (z)−h(z)) ≤ k−1. Since σ(H) < k, max{σ(d), σ(t)} <
1 ≤ k and deg(h(z + jη)− h(z)) = k − 1( j = 1, 2, · · · , n), we can see that

σ(g1m(z)) < k ( m = 1, 2, 3).

On the other hand, by bk = ak , we have

deg(P − (−h)) = k, deg(P − h0) = k; deg(−h − h0) = k.
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Since eP−(−h), eP−h0 and e−h−h0 are of regular growth, and σ(g1m) < k ( m =
1, 2, 3), we can see that for m = 1, 2, 3

(3.5)

⎧⎪⎪⎨
⎪⎪⎩

T (r, g1m) = o
(
T

(
r, eP−(−h)

))
;

T (r, g1m) = o
(
T

(
r, eP−h0

))
;

T (r, g1m) = o
(
T

(
r, e−h−h0

))
.

Thus, applying Lemma 2.2 to (3.4), by (3.5), we obtain

g1m(z) ≡ 0 (m = 1, 2, 3).

Hence, g11(z) ≡ −H(z) ≡ 0. A contradiction.
Subcase 1.2. Suppose that bk = −ak. Then (3.1) is rewritten as

g21(z)e−h(z) + g22(z)eP (z)−h(z) + g23(z)eh0(z) = 0.(3.6)

where h0(z) ≡ 0 and
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g21(z) =d(z)− H(z)eP (z)+h(z);

g22(z) =−t(z);

g23(z) =
n∑

j=0
(−1)n−jCj

nH(z + jη)eh(z+jη)−h(z).

By bk = −ak , we have deg(P (z)+h(z)) ≤ k−1. Since σ(H) < k, max{σ(d), σ(t)}<

1 ≤ k and deg(h(z + jη)− h(z)) = k − 1( j = 1, 2, · · · , n), we can see that

σ(g2m(z)) < k ( m = 1, 2, 3).

On the other hand, by bk = −ak , we have

deg(−h − (P − h)) = k, deg(−h − h0) = k; deg((P − h) − h0) = k.

Since e−h−(P−h) , e−h−h0 and e(P−h)−h0 are of regular growth, and σ(g2m) < k ( m =
1, 2, 3), we can see that for m = 1, 2, 3

(3.7)

⎧⎪⎪⎨
⎪⎪⎩

T (r, g2m) = o
(
T

(
r, e−h−(P−h)

))
;

T (r, g2m) = o
(
T

(
r, e−h−h0

))
;

T (r, g2m) = o
(
T

(
r, e(P−h)−h0

))
.

Thus, applying Lemma 2.2 to (3.6), by (3.7), we obtain

g2m(z) ≡ 0 (m = 1, 2, 3).
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Hence, g22(z) ≡ −t(z) ≡ b(z)− a(z) ≡ 0, which contradicts b(z) �≡ a(z).
Subcase 1.3. Suppose that bk �= ak and bk �= −ak . Then (3.1) is rewritten as

g31(z)e−h(z) + g32(z)eP (z) + g33(z)eP (z)−h(z) + g34(z)eh0(z) = 0.(3.8)

where h0(z) ≡ 0 and
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g31(z) =d(z);

g32(z) =−H(z);

g33(z) =−t(z);

g34(z) =
n∑

j=0
(−1)n−jCj

nH(z + jη)eh(z+jη)−h(z).

Since σ(H) < k, max{σ(d), σ(t)} < 1 ≤ k and deg(h(z + jη)− h(z)) = k − 1( j =
1, 2, · · · , n), we can see that

σ(g3m(z)) < k ( m = 1, 2, 3, 4).

On the other hand, by bk �= ak and bk �= −ak , we have

deg(−h − P ) = k, deg(−h − (P − h)) = k, deg(−h − h0) = k;

deg(P − (P − h)) = k, deg(P − h0)) = k, deg((P − h) − h0) = k.

Since e−h−P , e−h−(P−h) , · · · , e(P−h)−h0 are of regular growth, and σ(g3m) < k ( m =
1, 2, 3, 4), we can see that for m = 1, 2, 3, 4

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T (r, g3m) = o
(
T

(
r, e−h−P

))
;

T (r, g3m) = o
(
T

(
r, e−h−(P−h)

))
;

... =
...

T (r, g3m) = o
(
T

(
r, e(P−h)−h0

))
.

(3.9)

Thus, applying Lemma 2.2 to (3.8), by (3.9), we obtain

g3m(z) ≡ 0 (m = 1, 2, 3, 4).

Clearly, this is a contradiction.

Case 2. Suppose that 1 ≤ s < k. Then, (3.1) is rewritten as

(3.10) [t(z)eP (z)−d(z)]e−h(z) =
n∑

j=0

(−1)n−jCj
nH(z+jη)eh(z+jη)−h(z)−H(z)eP (z).
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By t(z) = a(z) − b(z), (3.2), (3.3), we have σ(teP − d) = s < k. Thus, since
deg h = k, deg(h(z + jη) − h(z)) = k − 1 (j = 1, 2, · · · , n), deg P = s < k and
σ(H) < k, we can see that the order of growth of the left side of (3.10) is equal to k,
but the order of growth of the right side of (3.10) is less than k. This is a contradiction.

Thus, we have proved that P is only a constant ( including P (z) ≡ 0), that is

Δn
ηf(z) − b(z)
f(z) − b(z)

= A,(3.11)

where A is a nonzero constant.

Second step. Applying Lemma 2.7 to (3.11), we can obtain

A =
Δn

ηa(z) − b(z)
a(z) − b(z)

= (ec1η − 1)n, and f(z) = a(z) + cec1z,

where c, c1 are two nonzero constants.
Thus, Theorem 1.1 is proved.
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difference Painlevé equations, J. Math. Anal. Appl., 364 (2010), 556-566.

6. Z. X. Chen and K. H. Shon, On conjecture of R. Brück, concerning the entire function
sharing one value CM with its derivative, Taiwan. J. Math., 8(2) (2004), 235-244.

7. Z. X. Chen, On the difference counterpart of Brück’s conjecture, Acta Math. Sci. (English
Ser.), to appear, ID: E12-436.

8. Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z + η) and difference
equations in the complex plane, Ramanujan J., 16 (2008), 105-129.



728 Chuang-Xin Chen and Zong-Xuan Chen

9. F. Gross, Factorization of Meromorphic Functions, U.S. Government Printing Office,
Washington, D.C., 1972.

10. G. Gundersen, Meromorphic functions that share four values, Trans. Amer. Math. Soc.,
277 (1983), 545-567.

11. G. Gundersen, Correction to Meromorphic functions that share four values, Trans. Amer.
Math. Soc., 304 (1987), 847-850.

12. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of
their derivatives, J. Math. Anal. Appl., 223(1) (1998), 88-95.

13. R. G. Halburd and R. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad.
Sci. Fenn. Math., 31 (2006), 463-478.

14. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and K. Tohge, Complex difference
equations of Malmquist type, Comput. Methods Funct. Theory, 1 (2001), 27-39.

15. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and J. Zhang, Value sharing results for
shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal.
Appl., 355 (2009), 352-363.

16. J. Heittokangas, R. Korhonen, I. Laine and J. Rieppo, Uniqueness of meromorphic func-
tions sharing values with their shifts, Complex Var. Elliptic Equ., 56(1-4) (2011), 81-92.

17. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

18. I. Laine, Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin,
1993.

19. I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad.,
83A (2007), 148-151.

20. I. Laine and C. C. Yang, Clunie theorems for difference and q-difference polynomials, J.
Lond. Math. Soc., 76(3) (2007), 556-566.

21. K. Liu, Meromorphic functions sharing a set with applications to difference equations, J.
Math. Anal. Appl., 359 (2009), 384-393.

22. S. Li and Z. S. Gao, Entire functions sharing one or two finite values CM with their shifts
or difference operators, Arch. Math., 97 (2011), 475-483.

23. X. M. Li, C. Y. Kang and H. X. Yi, Uniqueness theorems of entire functions sharing
a nonzero complex number with their difference operators, Arch. Math., 96 (2011),
577-587.

24. R. Nevanlinna, Einige Eindentigkeitssätze in der Theorie der meromorphen Funktionen,
Acta Math., 48 (1926), 367-391.

25. J. M. Whittaker, Interpolatory Function Theory, Cambridge Tract No. 33, Cambridge
University Press, 1935.

26. C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Aca-
demic Publishers Group, Dordrecht, 2003.



Entire Functions and Their Higher Order Differences 729

27. L. Yang, Value Distribution Theory, Science Press, Beijing, 1993.

Chuang-Xin Chen and Zong-Xuan Chen
School of Mathematical Sciences
South China Normal University
Guangzhou 510631
P. R. China
E-mail: chenchxin@126.com

chzx@vip.sina.com


