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RULED SUBMANIFOLDS WITH HARMONIC GAUSS MAP

Dong-Soo Kim1, Young Ho Kim2 and Sun Mi Jung

Abstract. Ruled submanifolds of Minkowski space with harmonic Gauss map are
studied. Apart from ruled submanifolds in Euclidean space, ruled submanifolds
with degenerate rulings in Minkowski space draw our attention. In particular,
we completely classify ruled submanifolds with harmonic Gauss map and we
also characterize minimal ruled submanifolds with degenerate rulings by means
of harmonic Gauss map.

1. INTRODUCTION

In eighteenth century, the so-called minimal surfaces were introduced when the
graph of a certain function minimizes the area among surfaces with the fixed boundary.
Since then, the theory of minimal submanifolds has been one of the most interesting
topics in differential geometry.

In 1966, T. Takahashi showed: Let x : M → E
m be an isometric immersion of

a Riemannian manifold M into the Euclidean space E
m and Δ the Laplace operator

defined on M . If Δx = λx (λ �= 0) holds, then M is a minimal submanifold in a
hypersphere of Euclidean space ([17]). Extending this point of view, in the late 1970’s
B.-Y. Chen introduced the notion of finite type immersion of Riemannian manifolds into
Euclidean space ([4, 5]). In particular, minimal submanifolds of Euclidean space can
be considered as a spacial case of submanifolds of finite type or those with harmonic
immersion. The notion of finite type immersion was extended to submanifolds in
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pseudo-Euclidean space in 1980’s: A pseudo-Riemannian submanifold M of an m-
dimensional pseudo-Euclidean space E

m
s with signature (m−s, s) is said to be of finite

type if its position vector field x can be expressed as a finite sum of eigenvectors of the
Laplacian Δ of M , that is, x = x0 + Σk

i=1xi, where x0 is a constant map, x1, · · · , xk

non-constant maps such that Δxi = λixi, λi ∈ R, i = 1, 2, · · · , k ([4, 5]).
Such a notion can be naturally extended to a smooth map defined on submanifolds

of pseudo-Euclidean space. A smooth map φ on an n-dimensional pseudo-Riemannian
submanifold M of E

m
s is said to be of finite type if φ is a finite sum of E

m
s -valued

eigenfunctions of Δ. We also similarly define a smooth map of k-type on M as that
of immersion x. A very typical and interesting smooth map on the submanifold M of
Euclidean space or pseudo-Euclidean space is the Gauss map. In particular, we say
that a differentiable map φ is harmonic if Δφ = 0.

A ruled surface is one of the most natural geometric objects in the classical dif-
ferential geometry and has been dealt with some geometric conditions ([1, 2, 6, 7, 11,
12, 13, 14, 15, 16]). Due to Beltrami equation, the submanifolds of Euclidean space
or Minkowski space with harmonic immersion are the minimal ones.

We now have a question: Can we completely classify ruled submanifolds in
Minkowski space with harmonic Gauss map?

In this article, we study ruled submanifolds in the Minkowski space L
m with

harmonic Gauss map and we characterize minimal ruled submanifolds with degenerate
rulings by means of harmonic Gauss map.

All of geometric objects under consideration are smooth and submanifolds are
assumed to be connected unless otherwise stated.

2. PRELIMINARIES

Let E
m
s be an m-dimensional pseudo-Euclidean space of signature (m − s, s). In

particular, for m ≥ 2, E
m
1 is called a Lorentz-Monkowski m-space or simply Minkowski

m-space, which is denoted by L
m. A curve in L

m is said to be space-like, time-like
or null if its tangent vector field is space-like, time-like or null, respectively. Let
x : M → E

m
s be an isometric immersion of an n-dimensional pseudo-Riemannian

manifold M into E
m
s . From now on, a submanifold in E

m
s always means pseudo-

Riemannian, that is, each tangent space of the submanifold is non-degenerate.
Let (x1, x2, · · · , xn) be a local coordinate system of M in E

m
s . For the components

gij of the pseudo-Riemannian metric 〈·, ·〉 on M induced from that of E
m
s , we denote

by (gij) (respectively, G) the inverse matrix (respectively, the determinant) of the matrix
(gij). Then, the Laplacian Δ on M is given by

Δ = − 1√|G|
∑
i,j

∂

∂xi
(
√
|G|gij ∂

∂xj
).
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We now choose an adapted local orthonormal frame {e1, e2, · · · , em} in E
m
s such

that e1, e2, · · · , en are tangent to M and en+1, en+2, · · · , em normal to M . The Gauss
map G : M → G(n, m) ⊂ E

N (N = mCn), G(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p), of x

is a smooth map which carries a point p in M to an oriented n-plane in E
m
s which

is obtained from the parallel translation of the tangent space of M at p to an n-
plane passing through the origin in E

m
s , where G(n, m) is the Grassmannian manifold

consisting of all oriented n-planes through the origin of E
m
s .

An indefinite scalar product 
 ·, · � on G(n, m) ⊂ E
N is defined by


 ei1 ∧ · · · ∧ ein , ej1 ∧ · · · ∧ ejn �= det(〈eil , ejk
〉).

Then, {ei1 ∧ ei2 ∧ · · · ∧ ein |1 ≤ i1 < · · · < in ≤ m} is an orthonormal basis of E
N
k

for some positive integer k.
Now, we define a ruled submanifold M in L

m. A non-degenerate (r + 1)-
dimensional submanifold M in L

m is called a ruled submanifold if M is foliated
by r-dimensional totally geodesic submanifolds E(s, r) of L

m along a regular curve
α = α(s) on M defined on an open interval I . Thus, a parametrization of a ruled
submanifold M in L

m can be given by

x = x(s, t1, t2, · · · , tr) = α(s) +
r∑

i=1

tiei(s), s ∈ I, ti ∈ Ii,

where Ii’s are some open intervals for i = 1, 2, · · · , r. For each s, E(s, r) is open in
Span{e1(s), e2(s), · · · , er(s)}, which is the linear span of linearly independent vector
fields e1(s), e2(s), · · · , er(s) along the curve α. Here we assume E(s, r) are either
non-degenerate or degenerate for all s along α. We call E(s, r) the rulings and α the
base curve of the ruled submanifold M . In particular, the ruled submanifold M is said
to be cylindrical if E(s, r) is parallel along α, or non-cylindrical otherwise.

Remark 2.1. ([9]).

(1) If the rulings of M are non-degenerate, then the base curve α can be chosen to
be orthogonal to the rulings as follows: Let V be a unit vector field on M which
is orthogonal to the rulings. Then α can be taken as an integral curve of V .

(2) If the rulings are degenerate, we can choose a null base curve which is transversal
to the rulings: Let V be a null vector field on M which is not tangent to the
rulings. An integral curve of V can be the base curve.

By solving a system of ordinary differential equations similarly set up in relation
to a frame along a curve in L

m as given in [3], we have

Lemma 2.2. ([10]). Let V (s) be a smooth l-dimensional non-degenerate distribu-
tion in the Minkowski m-space L

m along a curve α = α(s), where l ≥ 2 and m ≥ 3.
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Then, we can choose orthonormal vector fields e1(s), · · · , em−l(s) along α which gen-
erate the orthogonal complement V ⊥(s) satisfying e′i(s) ∈ V (s) for 1 ≤ i ≤ m − l.

3. NON-DEGENERATE RULINGS

Let M be an (r + 1)-dimensional ruled submanifold in L
m generated by non-

degenerate rulings. By Remark 2.1, the base curve α can be chosen to be orthogonal to
the rulings. Without loss of generality, we may assume that α is a unit speed curve, that
is, 〈α′(s), α′(s)〉 = ε(= ±1). From now on, the prime ′ denotes d/ds unless otherwise
stated. By Lemma 2.2, we may choose orthonormal vector fields e1(s), · · · , er(s) along
α satisfying

(3.1) 〈α′(s), ei(s)〉 = 0, 〈e′i(s), ej(s)〉 = 0, i, j = 1, 2, · · · , r.

A parametrization of M is given by

(3.2) x = x(s, t1, t2, · · · , tr) = α(s) +
r∑

i=1

tiei(s).

In this section, we always assume that the parametrization (3.2) satisfies the con-
dition (3.1). Then, M has the Gauss map

G =
1

‖xs‖xs ∧ xt1 ∧ · · · ∧ xtr ,

or, equivalently

(3.3) G =
1

|q|1/2
(Φ +

r∑
i=1

tiΨi),

where q is the function of s, t1, t2, · · · , tr defined by

q = 〈xs, xs〉, Φ = α′ ∧ e1 ∧ · · · ∧ er and Ψi = e′i ∧ e1 ∧ · · · ∧ er.

Now, we separate the cases into two typical types of ruled submanifolds which are
cylindrical or non-cylindrical.

Theorem 3.1. The cylindrical ruled submanifolds in L
m generated by non-

degenerate rulings have harmonic Gauss map if and only if M is part of an (r + 1)-
plane or a cylinder over the base curve α(s) which is a plane curve in a degenerate
plane given by α(s) = s2C + sD for some constant null vector C and a constant
space-like unit vector D satisfying 〈C, D〉 = 0.
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Proof. Let M be a cylindrical (r + 1)-dimensional ruled submanifold in L
m

generated by non-degenerate rulings, which is parameterized by (3.2). We may assume
that e1, e2, · · · , er generating the rulings are constant vectors.

The Laplacian Δ of M is then naturally expressed by

Δ = −ε
∂2

∂s2
−

r∑
i=1

εi
∂2

∂t2i
,

where εi = 〈ei(s), ei(s)〉 = ±1 and the Gauss map G of M is given by

G = α′ ∧ e1 ∧ · · · ∧ er.

If we denote by Δ′ the Laplacian of α, that is Δ′ = −ε ∂2

∂s2 , we have the Laplacian
ΔG of the Gauss map

(3.4) ΔG = Δ′α′ ∧ e1 ∧ · · · ∧ er.

We now suppose that the Gauss map G is harmonic, that is ΔG = 0. From (3.4),
we have

Δ′α′ = 0.

The converse is straightforward.
We need the following lemmas for later use.

Lemma 3.2. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold
parameterized by (3.2) in L

m. Suppose that e′1, e′2,· · · , e′r are non-null and some of
generators of rulings e1, · · · , ek are constant vector fields along α. Then we have the
Laplacian

Δ =
1

2q2

∂q

∂s

∂

∂s
− 1

q

∂2

∂s2
− 1

2q

r∑
i=k+1

εi
∂q

∂ti

∂

∂ti
−

r∑
i=1

εi
∂2

∂t2i
.

Proof. The isometric immersion x of M can be put

x(s, t1, · · · , tr) = α(s) +
k∑

i=1

tiei(s) +
r∑

j=k+1

tjej(s).

Then, we have

xs = α′(s) +
r∑

j=k+1

tje
′
j(s), xti = ei(s)

for i = 1, 2, · · · , r. As we introduced in the beginning of this section, the function q
is given by

(3.5) q = 〈xs, xs〉 = ε +
r∑

i=k+1

2uiti +
r∑

i,j=k+1

wijtitj,
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where ui = 〈α′, e′i〉, wij = 〈e′i, e′j〉, i, j = k + 1, · · · , r. Note that q is a polynomial in
t = (tk+1, · · · , tr) with functions in s as coefficients.

Then, the Laplacian Δ is easily obtained by

Δ =
1

2q2

∂q

∂s

∂

∂s
−1

q

∂2

∂s2
− 1

2q

r∑
i=k+1

εi
∂q

∂ti

∂

∂ti
−

r∑
i=1

εi
∂2

∂t2i
.

From now on, for a polynomial F (t) in t = (t1, t2, · · · , tr), deg F (t) denotes the
degree of F (t) in t = (t1, t2, · · · , tr) unless otherwise stated.

By Lemma 3.2, ΔG = 0 is rewritten as

(3.6)

(
∂q

∂s
)2(Φ+

r∑
j=k+1

Ψjtj) − 3
2
q
∂q

∂s
(Φ′ +

r∑
j=k+1

Ψ′
jtj) −

1
2
q
∂2q

∂s2
(Φ +

r∑
j=k+1

Ψjtj)

+q2(Φ′′ +
r∑

j=k+1

Ψ′′
j tj) +

1
2
q

r∑
i=k+1

εi(
∂q

∂ti
)2(Φ +

r∑
j=k+1

Ψjtj)

−1
2
q2

r∑
i=k+1

εi
∂q

∂ti
Ψi − 1

2
q2

r∑
i=k+1

εi
∂2q

∂t2i
(Φ +

r∑
j=k+1

Ψjtj) = 0.

To deal with (3.6), we have two possible cases either ∂q
∂s �= 0 or ∂q

∂s = 0 on some
open interval.

Lemma 3.3. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold
parameterized by (3.2) in L

m with harmonic Gauss map. Let e1, e2, · · · , er be or-
thonormal generators of the rulings along α generating the rulings. If e′i are non-null
for i = 1, 2, · · · , r and some of generators of the rulings e1, · · · , ek are constant vector
fields along α, then we have

e′i = εuiα
′.

Proof. We will prove this according to the following steps.

Step 1. In this step, we show that wij = εuiuj for i, j = k + 1, · · · , r.

Case 1. Suppose that ∂q
∂s �= 0. We may assume ∂q

∂s �= 0 on an open interval I for
this case. Then, each term of the left side of (3.6) involves (∂q

∂s)
2 or q and thus we

have

(3.7) (
∂q

∂s
)2 = q(t)P (t)

for some polynomial P (t) in t of degree 2 with functions in s as coefficients. Com-
paring the both sides of (3.7), we can get

P (t) =
∑
i,j

θijtitj
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for some symmetric functions θij of s. Together with this equation and (3.7), we have

(3.8) εθij = 4u′
iu

′
j,

(3.9) uiθjh + ujθhi + uhθij = 2(u′
iw

′
jh + u′

jw
′
hi + u′

hw′
ij),

(3.10) 2(w′
ijw

′
hl+w′

ihw′
jl+w′

liw
′
jh)=wijθhl+wihθjl+wjlθih+wliθjh+whlθij+wjhθli

for i, j, h, l = k + 1, · · · , r. From (3.8) and (3.10), we see that ε = 1.
If u′

i = 0 for all i = k + 1, · · · , r, then (∂q
∂s) = 0, which is a contradiction.

Therefore, there exists i0 ∈ {k + 1, · · · , r} such that u′
i0

�= 0. And, (3.10) yields
(w′

i0i0
)2 = 4wi0i0(u

′
i0

)2. Also, (3.9) implies (w′
i0i0

)2 = 4u2
i0

(u′
i0

)2. Thus we have

(3.11) wi0i0 = u2
i0

for i0 satisfying u′
i0
�= 0.

By replacing h, l with i, j, respectively in (3.9) and (3.10), we get

(3.12) 2uiθij + ujθii = 4u′
iw

′
ij + 2u′

jw
′
ii,

(3.13) 4w′
ijw

′
ij + 2w′

iiw
′
jj = 4wijθij + wiiθjj + wjjθii.

If u′
i0
�= 0 and u′

j0
�= 0 for some i0 and j0, then equation (3.12) with the aid of (3.8)

and (3.11) implies

(3.14) w′
i0j0 = ui0u

′
j0 + u′

i0uj0.

Substituting (3.14) into (3.13), we have

(3.15) wi0j0 = ui0uj0

for i0 and j0.
Suppose that u′

i(s0) = 0 at some s0 for i = k + 1, · · · , r. Let

Λ0 = {i|u′
i(s0) = 0, k + 1 ≤ i ≤ r}.

Then, at s0, equation (3.7) can be written as

(3.16)

4
∑

i,j /∈Λ0

u′
iu

′
jtitj + 4

∑
i,j,h/∈Λ0

u′
iw

′
jhtitjth +

∑
i,j,h,l /∈Λ0

w′
ijw

′
hltitjthtl

= (1 + 2
r∑

i=k+1

uiti +
r∑

i,j=k+1

wijtitj)(
∑

i,j /∈Λ0

θijtitj),
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from which,

(3.17) ui(s0) = 0

and

(3.18) wij(s0) = 0

for i ∈ Λ0 and j = k + 1, · · · , r.
Therefore, by (3.15), (3.17) and (3.18), we have

(3.19) wij(s) = ui(s)uj(s)

for all i, j = k + 1, · · · , r and for all s.

Case 2. Suppose ∂q
∂s = 0 on some open interval U .

On U , all functions ui and wij are constants. So, from (3.6) we also have

(3.20)
r∑

i=k+1

εi(
∂q

∂ti
)2 = q(t)P1(t),

where P1(t) is a function of t.
Suppose that there exist j1, · · · , jl ∈ {k + 1, · · · , r} such that ( ∂q

∂tji
)2 are not the

multiples of q(t) for i = 1, · · · , l. Because of (3.20), we get

(3.21)
l∑

i=1

εji(
∂q

∂tji

)2 = q(t)P2(t)

for some function P2(t). Since all of ( ∂q
∂tj1

)2, · · · , ( ∂q
∂tjl

)2 are not the multiples of q(t),

(
∂q

∂tji

)2 = ajiq(t) + rji(t)

for some constants aji and polynomials rji(t) in t with deg rji(t) ≤ 1 for i = 1, · · · , l.
Then,

∑l
i=1 εjirji(t) must be a multiple of q(t) because of (3.21), which is a contra-

diction. Thus, we have

(
∂q

∂ti
)2 = 4εu2

i q(t)

for all i = k +1, · · · , r. If we compare the both sides of the above equation, we easily
see that

(3.22) wij = εuiuj
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for all i, j = k + 1, · · · , r.

Step 2. In this step, we prove that e′i = εuiα
′ for i = k + 1, · · · , r.

Equations (3.19) and (3.22) imply

(3.23) 〈e′i − εuiα
′, e′i − εuiα

′〉 = 0

for all i = k + 1, · · · , r.
Suppose that M is Lorentzian. Then, the normal space of M at each point is

space-like. By (3.23), we see that the normal components of e′i vanish and thus we get

(3.24) e′i = εuiα
′

for all i = k + 1, · · · , r.
We now assume that M is space-like. Then, ε = 1. Since wii = u2

i for i =
k + 1, · · · , r, we can put

e′i = uiα
′ +

m−1∑
a=r+1

λi
aea,

where
∑m−1

a=r+1 λi
aea is vanishing or a null vector field along α.

Suppose
∑m−1

a=r+1 λi
aea is a null vector field along α for some i = k + 1, · · · , r.

By the hypothesis, ui is non-zero. In case of u′
i(s0) = 0 at some s0, if we follow the

argument developed in Case 1 of Step 1 above, we see that ui(s0) = 0, a contradiction.
Therefore, u′

i �= 0 for all s. Then, we get

q = 〈xs, xs〉 = (1 +
r∑

i=k+1

tiui)2 +
m−1∑

a=r+1

εa(
r∑

i=k+1

λi
ati)

2

= (1 +
r∑

i=k+1

tiui)2.

Without loss of generality, we may assume that 1 +
∑r

i=k+1 tiui > 0. Hence we may
put

G = Φ +
1
q̃

m−1∑
a=r+1

(
r∑

i=k+1

λi
ati)ξa,

where ξa = ea ∧ e1 ∧ e2 ∧ · · · ∧ er for a = r + 1, · · · , m − 1 and q̃2 = q. By
straightforward computation we have the Laplacian ΔG of the Gauss map

ΔG=

r∑
j=k+1

u′
jtj

q̃3
Φ′ − 1

q̃2
Φ′′+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r∑
j=k+1

u′′
j tj

q̃4
−

3(
r∑

j=k+1

u′
jtj)

2

q̃5

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

m−1∑
a=r+1

(
r∑

i=k+1

λi
ati)ξa
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+

3
r∑

j=k+1

u′
jtj

q̃4

m−1∑
a=r+1

(
r∑

i=k+1

(λi
a)

′ti)ξa +

3
r∑

j=k+1

u′
jtj

q̃4

m−1∑
a=r+1

(
r∑

i=k+1

λi
ati)ξ

′
a

− 1
q̃3

m−1∑
a=r+1

(
r∑

i=k+1

(λi
a)

′′ti)ξa − 2
q̃3

m−1∑
a=r+1

(
r∑

i=k+1

(λi
a)

′ti)ξ′a

− 1
q̃3

m−1∑
a=r+1

(
r∑

i=k+1

λi
ati)ξ

′′
a − 1

q̃3

r∑
i=k+1

u2
i (

m−1∑
a=r+1

(
r∑

h=k+1

λh
ath)ξa)

+
1
q̃2

r∑
i=k+1

ui(
m−1∑

a=r+1

λi
aξa).

Since the Gauss map is harmonic, ΔG = 0 and thus

(3.25)

0 = q̃2(
r∑

j=k+1

u′
jtj)Φ

′ − q̃3Φ′′

+ {q̃(
r∑

j=k+1

u′′
j tj) − 3(

r∑
j=k+1

u′
jtj)

2}
m−1∑

a=r+1

(
r∑

i=k+1

λi
ati)ξa

+ 3q̃(
r∑

j=k+1

u′
jtj)

m−1∑
a=r+1

{(
r∑

i=k+1

(λi
a)

′ti)ξa + (
r∑

i=k+1

λi
ati)ξ

′
a}

− q̃2
m−1∑

a=r+1

{(
r∑

i=k+1

(λi
a)

′′ti)ξa − 2(
r∑

i=k+1

(λi
a)

′ti)ξ′a − (
r∑

i=k+1

λi
ati)ξ

′′
a}

− q̃2
r∑

i=k+1

u2
i (

m−1∑
a=r+1

(
r∑

h=k+1

λh
ath)ξa) + q̃3

r∑
i=k+1

ui(
m−1∑

a=r+1

λi
aξa).

In equation (3.25) all the coefficients of terms in t vanish. So, we can see easily that

(3.26) Φ′′ =
r∑

i=k+1

ui(
m−1∑

a=r+1

λi
aξa).

Considering the coefficient of ti0 for some i0 ∈ {k + 1, · · · , r}, we have

(3.27) u′
i0Φ

′ =
m−1∑

a=r+1

{(λi0
a )′′ξa − 2(λi0

a )′ξ′a − λi0
a ξ′′a + (

r∑
h=k+1

u2
h)λi0

a ξa}.
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Using (3.26) and (3.27), (3.25) is rewritten as

(3.28)

q̃(
r∑

j=k+1

u′′
j tj) − 3(

r∑
j=k+1

u′
jtj)

2}
m−1∑

a=r+1

(
r∑

i=k+1

λi
ati)ξa

+ 3q̃(
r∑

j=k+1

u′
jtj)

m−1∑
a=r+1

{(
r∑

i=k+1

(λi
a)

′ti)ξa + (
r∑

i=k+1

λi
ati)ξ

′
a} = 0.

Comparing the coefficients of t2i0 and t3i0 , we obtain

(u′
i0)

2
m−1∑

a=r+1

λi0
a ξa = 0.

Since u′
i0

is non-zero, we know that λi0
a = 0 for all a = r + 1, · · · , m− 1.

Therefore, we have

(3.29) e′i = uiα
′

for all i = k + 1, · · · , r.
Consequently, by (3.24) and (3.29), we obtain

e′i = εuiα
′

for all i = k + 1, · · · , r.
We now prove that the non-cylindrical ruled submanifold M in L

m satisfying the
conditions of Lemma 3.3 is an (r + 1)-plane.

Theorem 3.4. Let M be an (r + 1)-dimensional non-cylindrical ruled submani-
fold parameterized by (3.2) in L

m with harmonic Gauss map. Let e1, e2, · · · , er be
orthonormal generators of the rulings along the base curve α. If e′i are non-null for
i = 1, 2, · · · , r and some of generators of the rulings e1, · · · , ek are constant vector
fields along α, then M is part of an (r + 1)-plane in L

m. Proof. By Lemma 3.3,
we have

q = 〈xs, xs〉 = 〈(1 + ε

r∑
i=k+1

tiui)α′, (1 + ε

r∑
j=k+1

tjuj)α′〉

= (1 + ε

r∑
i=k+1

tiui)2〈α′, α′〉 = ε(1 + ε

r∑
i=k+1

tiui)2

and hence G = Φ. From ΔG = 0 we obtain Φ′′ + εΦ′′uiti − εΦ′u′
iti = 0. Therefore,

Φ′′ = 0 and hence Φ′u′
i = 0.

If u′
i �= 0 for some i = k + 1, · · · , r, we get Φ′ = 0.
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Suppose that u′
i ≡ 0 for all i = k + 1, · · · , r. But, Φ′′ = 0 implies

(3.30) α′′′ ∧ e1 ∧ · · · ∧ er +
r∑

i=k+1

α′′ ∧ e1 ∧ · · · ∧ e′i ∧ · · · ∧ er = 0.

This gives

(3.31) α′′′ ∧ e1 ∧ · · · ∧ er ∧ e′j = 0

for all j = k + 1, · · · , r. By virtue of (3.31) and Lemma 3.3, we get α′′′ ∧ α′ = 0.
Together with this fact and (3.30), we have

α′′ = −
r∑

i=k+1

εiuiei

and hence Φ′ = 0.
Therefore, M is part of an (r + 1)-dimensional plane in L

m.

We now deal with the case that some of generators of rulings have null derivatives.

Lemma 3.5. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold
parameterized by (3.2) in L

m with harmonic Gauss map. If some generators ej1, ej2,
· · · , ejk

of the rulings have null derivatives along the base curve α for j1 < j2 <

· · · < jk ∈ {1, 2, · · · , r}, then the Gauss map G has of the form

(3.32) G = Φ +
k∑

i=1

tjiΨji

for the harmonic vectors Φ and Ψji .

Proof. We can rewrite the parametrization (3.2) of M as

x(s, t1, · · · , tr) = α(s) +
∑

i�=j1,j2,··· ,jk

tiei(s) +
k∑

i=1

tjieji(s)

and its Laplace operator is given by

Δ =
1

2q2

∂q

∂s

∂

∂s
− 1

q

∂2

∂s2
− 1

2q

r∑
i=1

εi
∂q

∂ti

∂

∂ti
−

r∑
i=1

εi
∂2

∂t2i
.

Then, there are possible two cases such that either ejk+1
, · · · , ejr generating the

rulings except ej1(s), ej2(s), · · · , ejk
(s) are constant vector fields or e′i �= 0 for some

i = jk+1, · · · , jr if k < r.
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Case 1. Suppose that ejk+1
, · · · , ejr are constant vector fields.

Subcase 1.1. Let deg q(t) = 0. In this case, e′ji
are null with e′ji

(s) ∧ e′jl
(s) = 0

for i, l = 1, 2, · · · , k and 〈α′(s), e′j(s)〉 = 0 for j = j1, j2, · · · , jk. Then M has the
Gauss map

G = Φ +
k∑

i=1

tjiΨji .

Thus, we have

ΔG = −(Φ′′(s) +
k∑

i=1

tjiΨ
′′
ji
(s)).

Hence, Φ and Ψji are harmonic if the Gauss map G is harmonic.

Subcase 1.2. Let deg q(t) = 1. In this case, 〈α′(s), e′ji
(s)〉 �= 0 for some ji

(1 ≤ i ≤ k) and the null vector fields e′ji
satisfy e′ji

∧ e′jl
= 0 for i, l = 1, 2, · · · , k.

The Gauss map G of M has the form

G =
G̃(t)

(ε̃q)1/2
,

where deg G̃(t) ≤ 1. Computing ΔG and using ΔG = 0, we get

(3.33)

(
∂q

∂s
)2(Φ+

k∑
i=1

Ψjitji)−
3
2
q
∂q

∂s
(Φ′+

k∑
i=1

Ψ′
ji
tji)−

1
2
q
∂2q

∂s2
(Φ+

k∑
i=1

Ψjitji)

+q2(Φ′′ +
k∑

i=1

Ψ′′
ji
tji) +

1
2
q

k∑
i=1

εji(
∂q

∂tji

)2(Φ +
k∑

l=1

Ψjl
tjl

)

−1
2
q2

k∑
i=1

εji

∂q

∂tji

Ψji = 0.

Suppose u′
ji
≡ 0 for all i = 1, · · · , k. Then, ∂q

∂s = 0 and ∂2q
∂s2 = 0. Together with

(3.33) and these facts, we have

q(Φ′′ +
k∑

i=1

Ψ′′
ji
tji) +

1
2

k∑
i=1

εji(
∂q

∂tji

)2(Φ +
k∑

l=1

Ψjl
tjl

)− 1
2
q

k∑
i=1

εji

∂q

∂tji

Ψji = 0.

In this equation, since uj0 �= 0 for some j0, we can easily see that Ψ′′
j0

vanishes. Then
we obtain two equations as follows:

(3.34) Φ′′ + 2ε

k∑
i=1

εjiu
2
ji
Φ −

k∑
i=1

εjiujiΨji = 0,

(3.35)
k∑

i=1

Φ′′ujitji +
k∑

l=1

k∑
i=1

εjiu
2
ji
tjl

Ψjl
−

k∑
i,l=1

εjiujl
tjl

ujiΨji = 0.
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Substituting (3.34) into (3.35), we get

k∑
i=1

εjiu
2
ji
{

k∑
l=1

(2εujl
Φ − Ψjl

)tjl
} = 0.

If
∑k

i=1 εjiu
2
ji

≡ 0, then there exists eh for some h = j1, j2, · · · , jk such that
εh = −1 since deg q(t) = 1. It is a contradiction because of the causal character of
eh. Therefore,

∑k
i=1 εjiu

2
ji
�= 0 on an open interval J . So, we have 2εujiΦ = Ψji on

J , that is,
(2εujiα

′ − e′ji
) ∧ e1 ∧ · · · ∧ er = 0.

Since 2εujiα
′ − e′ji

is orthogonal to el for each l = 1, 2, · · · , r, 2εujiα
′ − e′ji

has to
be vanishing. But, it is a contradiction because of the characters of α′ and e′ji

for all
j1, · · · , jk.

Hence, there exists a non-zero function u′
j0

in some open interval U for some
j0 = j1, j2, · · · , jk.

On the other hand, equation (3.33) shows that all the coefficients of terms in t

vanish. Especially, if we examine the coefficients of t3j0 , t2j0 , t1j0 and t0j0 , then we have
the following four equations:

(3.36) 4(u′
j0)

2Ψj0 − 6u′
j0uj0Ψ

′
j0 − 2u′′

j0uj0Ψj0 + 4u2
j0Ψ

′′
j0 = 0,

(3.37)

4(u′
j0)

2Φ−6u′
j0uj0Φ

′−2u′′
j0uj0Φ+4u2

j0Φ
′′−3εu′

j0Ψ
′
j0−εu′′

j0Ψj0 +4εuj0Ψ
′′
j0

+4(
k∑

i=1

εjiu
2
ji
)uj0Ψj0 − 4(

k∑
i=1

εjiujiΨji)u
2
j0 = 0,

(3.38)
− 3εu′

j0Φ
′ − εu′′

j0Φ + Ψ′′
j0 + 4εuj0Φ

′′ + 4(
k∑

i=1

εjiu
2
ji
)uj0Φ

+ 2ε(
k∑

i=1

εjiu
2
ji
)Ψj0 − 4ε(

k∑
i=1

εjiujiΨji)uj0 = 0,

(3.39) Φ′′ + 2ε(
k∑

i=1

εjiu
2
ji
)Φ − (

k∑
i=1

εjiujiΨji) = 0.

Substituting (3.39) into (3.38), we get

(3.40) −3εu′
j0Φ

′ − εu′′
j0Φ + Ψ′′

j0 − 4(
k∑

i=1

εjiu
2
ji
)uj0Φ + 2ε(

k∑
i=1

εjiu
2
ji
)Ψj0 = 0.

Putting (3.36) and (3.39) into (3.37), we obtain
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(3.41)

4(u′
j0)

2Φ − 6u′
j0uj0Φ

′ − 2u′′
j0uj0Φ + 3εu′

j0Ψ
′
j0 + εu′′

j0Ψj0

+4(
k∑

i=1

εjiu
2
ji
)uj0Ψj0 − 8εu2

j0(
k∑

i=1

εjiu
2
ji
)Φ− 4ε

(u′
j0

)2

uj0

Ψj0 = 0.

Multiplying 2εuj0 with (3.40) and substituting the equation obtained in such a way
into (3.41), we get 2εuj0Φ = Ψj0 because u′

j0
is non-zero.

Then, one can easily see that α′ ∧ e′j0 = 0, which is a contradiction. Therefore, we
can conclude that no ruled submanifolds with deg q = 1 have harmonic Gauss map.

Subcase 1.3. Let deg q(t) = 2. Using the similar argument developed in Lemma
3.3, we have

α′ ∧ e′i = 0

for i = j1, · · · , jk, which is a contradiction. Therefore, no ruled submanifolds with
deg q = 2 have harmonic Gauss map G.

Case 2. Suppose that e′i �= 0 for some i = jk+1, · · · , jr.
In this case, we may assume that e′i �= 0 for all i = jk+1, · · · , jr, otherwise the

ruled submanifold M is a cylinder built over the ruled submanifold parameterized by
the base curve α and the rulings generated by ei’s except those constant vector fields.
Then, e′i are non-null for all i = jk+1, · · · , jr and deg q= 2.

If we again follow a similar argument in the proof of Lemma 3.3 , we have

α′ ∧ e′i = 0

for all i = 1, 2, · · · , r. This is a contradiction.
This completes the proof.

It is easy to show that if the Gauss map G of a ruled submanifold with non-
degenerate rulings in L

m has of the form (3.32), G is harmonic. Therefore, combining
the results of Theorem 3.4 and Proposition 3.5, we conclude

Theorem 3.6. Let M be an (r+1)-dimensional non-cylindrical ruled submanifold
with non-degenerate rulings in the Minkowski m-space L

m. Then, M has harmonic
Gauss map if and only if M is part of either an (r + 1)-plane or a ruled submanifold
up to cylinders over a certain submanifold with the parametrization given by

x(s, t1, t2, · · · , tr) = f(s)N + sE +
r∑

j=1

tj(pj(s)N + Fj)

for some smooth functions f and pj , and some constant vector fields N, E, Fj with
〈E, E〉 = 1, 〈N, N〉 = 〈N, E〉 = 〈N, Fj〉 = 〈E, Fj〉 = 0, and 〈Fj, Fi〉 = δji for
i, j = 1, 2, · · · , r.
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Proof. Suppose that M has harmonic Gauss map.
We now suppose that a non-cylindrical ruled submanifold M with non-degenerate

rulings is not part of an (r + 1)-plane and it is parameterized by (3.2). We may also
assume that the derivatives of the orthonormal vector fields e1, e2, · · · , er defining the
rulings never vanish, otherwise M is a cylinder built over those submanifolds. As
we see in the proof of Lemma 3.5, only Subcase 1.1 can occur. Therefore, we have
q = 1 and e′j are null vector fields with e′j(s) ∧ e′k(s) = 0 and 〈α′(s), e′j(s)〉 = 0 for
j, k = 1, 2, · · · , r. Then ΔG = 0 implies that

(3.42) Φ′′(s) = 0

and

(3.43) Ψ′′
j (s) = 0

for all j = 1, 2, · · · , r. Since e′j ∧ e′k = 0 for j, k = 1, 2, · · · , r, we have

Ψ′′
j = e′′′j ∧ e1 ∧ · · · ∧ er +

r∑
i=1

e′′j ∧ · · · ∧ e′i ∧ · · · ∧ er = 0

for each j = 1, 2, · · · , r. This implies

(3.44) e′′′j ∧ e1 ∧ · · · ∧ er ∧ e′l = 0

for j, l = 1, 2, · · · , r. Therefore, the vector fields e′′′j , e1, · · · , er, e
′
l are linearly depen-

dent for all s. So, (3.1) and the fact that e′j ∧ e′i = 0 for i, j = 1, 2, · · ·r imply

e′′′j ∧ e′l = 0

for j, l = 1, 2, · · · , r.
Since e′′′j ∧ e′k = 0 and e′j ∧ e′k = 0 for all j, k = 1, 2, · · ·r, we get

(3.45) e′′j ∧ e′k = 0

for all j, k = 1, 2, · · · , r.
On the other hand, (3.42) gives

0 = α′′′∧e1 ∧· · ·∧er +2
r∑

i=1

α′′∧· · ·∧e′i ∧· · ·∧er +
r∑

i=1

α′∧· · ·∧e′′i ∧· · ·∧ · · ·∧er.

Thus, we have
α′′′ ∧ e1 ∧ · · · ∧ er ∧ e′j = 0
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and hence

(3.46) α′′′ ∧ e′j = 0

for all j = 1, 2, · · · , r.
Since 〈α′, α′〉 = 1, 〈α′, e′j〉 = 0 and e′′j ∧ e′k = 0 for j, k = 1, 2, · · · , r, we see that

〈α′′, α′′〉 = 0

along α. From this, α′′ = 0 or α′′ is null and hence up to translation we may put

(3.47) α(s) = f(s)N + sE,

where N is a constant null vector, E a constant space-like unit vector satisfying 〈N, E〉 =
0 and f a smooth function.

Since e′′j ∧ e′i = 0 and α′′ ∧ e′j = 0 for all i, j = 1, 2, · · · , r, we may have

ej = pj(s)N + Fj

for some non-zero smooth function pj and orthonormal space-like constant vector fields
Fj along α satisfying 〈N, Fj〉 = 0 for j = 1, 2, · · · , r.

Consequently, up to translation the parametrization (3.2) of M can be put

(3.48) x(s, t1, t2, · · · , tr) = f(s)N + sE +
r∑

j=1

tj(pj(s)N + Fj).

Conversely, for some smooth functions f and pj defined along α and some constant
vector fields N, E, Fj (j = 1, 2, · · · , r) satisfying above conditions, it is easy to show
that a non-cylindrical ruled submanifold parameterized by (3.48) satisfies

ΔG = 0.

This completes the proof.

Remark. In Theorem 3.6, if the base curve α is a straight line and the generators
ei satisfy e′′i = 0 along α (i = 1, 2, · · · , r), the ruled submanifold M is minimal.

4. DEGENERATE RULINGS

Let M be an (r+1)-dimensional ruled submanifold in L
m with degenerate rulings

E(s, r) along a regular curve and let its parametrization be given by x̃(s, t) where
t = (t1, t2, · · · , tr). Since E(s, r) is degenerate, it can be spanned by a degenerate
frame {B(s) = e1(s), e2(s), · · · , er(s)} such that

〈B(s), B(s)〉 = 〈B(s), ei(s)〉 = 0, 〈ei(s), ej(s)〉 = δij , i, j = 2, 3, · · · , r.
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Without loss of generality as Lemma 2.2, we may assume that

〈e′i(s), ej(s)〉 = 0, i, j = 2, 3, · · · , r.
Since the tangent space of M at x̃(s, t) is a Minkowski (r + 1)-space which contains
the degenerate ruling E(s, r), there exists a tangent vector field A to M which satisfies

〈A(s, t), A(s, t)〉 = 0, 〈A(s, t), B(s)〉 = −1, 〈A(s, t), ei(s)〉 = 0, i = 2, 3, · · · , r

at x̃(s, t).
Let α(s) be an integral curve of the vector field A on M . Then we can define

another parametrization x of M as follows:

x(s, t1, t2, · · · , tr) = α(s) +
r∑

i=1

tiei(s),

where α′(s) = A(s).

Lemma 4.1. ([9]). We may assume that 〈A(s), B′(s)〉 = 0 for all s.

Two of the present authors proved the following lemma.
Lemma 4.2. ([10]). Let M be a ruled submanifold with degenerate rulings. Then,

the following are equivalent.
(1) M is minimal.
(2) B′(s) is tangent to M .

If we put P = 〈xs, xs〉 and Q = −〈xs, xt1〉, Lemma 4.1 implies

P (s, t) = 2
r∑

i=2

ui(s)ti +
r∑

i,j=1

wij(s)titj ,

Q(s, t) = 1 +
r∑

i=2

vi(s)ti,

where vi(s) = 〈B′(s), ei(s)〉, ui(s) = 〈A(s), e′i(s)〉, wij(s) = 〈e′i(s), e′j(s)〉 for i, j =
1, 2, · · · , r. Note that P and Q are polynomials in t = (t1, t2, · · · , tr) with functions
in s as coefficients. Then the Laplacian Δ of M can be expressed as follows:

Δ =
1

Q2
{∂P̄

∂t1

∂

∂t1
− 2Q

r∑
i=2

vi
∂

∂ti
+ 2Q

∂2

∂s∂t1
+ P̄

∂2

∂t21

− 2Q
r∑

i=2

vit1
∂2

∂t1∂ti
− Q2

r∑
i=2

∂2

∂t2i
},

where P̄ = P − t21
∑r

i=2 v2
i .
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By definition of an indefinite scalar product 
,� on G(r + 1, m), we may put


 xs ∧ xt1 ∧ xt2 ∧ · · · ∧ xtr , xs ∧ xt1 ∧ xt2 ∧ · · · ∧ xtr �= −Q2.

Let ε̄ = sign Q(t). Then we have the Gauss map

G =
1

ε̄Q
xs ∧ xt1 ∧ xt2 ∧ · · · ∧ xtr

=
1

ε̄Q
{A ∧ B ∧ e2 ∧ · · · ∧ er + t1B

′ ∧ B ∧ e2 ∧ · · · ∧ er

+
r∑

i=2

tie
′
i ∧ B ∧ e2 ∧ · · · ∧ er}.

We now define a G-kind ruled submanifold in Minkouski m-space. For a null curve
α̃(s) in L

m, we consider a null frame {A(s), B(s) = e1(s), e2(s), · · · , em−1(s)} along
α̃(s) satisfying

〈A(s), A(s)〉 = 〈B(s), B(s)〉 = 〈A(s), ei(s)〉 = 〈B(s), ei(s)〉 = 0,

〈A(s), B(s)〉 = −1, 〈ei(s), ej(s)〉 = δij, α̃′(s) = A(s)

for i, j = 2, 3, · · · , m− 1.
Let X(s) be the matrix (A(s) B(s) e2(s) · · ·em−1(s)) consisting of column vectors

of A(s), B(s), e2(s), · · · , em−1(s) with respect to the standard coordinate system in
L

m. Then we have
X t(s)EX(s) = T,

where X t(s) denotes the transpose of X(s), E =diag(−1, 1, · · · , 1) and

T =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 · · · 0
−1 0 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

.

Consider a system of ordinary differential equations

(4.1) X ′(s) = X(s)M(s),

where
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M(s)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 v2 v3 · · · vr 0 0 · · · 0
0 0 u2 u3 · · · ur ur+1 ur+2 · · · um−1

u2 v2 0 0 · · · 0 z2,r+1 z2,r+2 · · · z2,m−1

u3 v3 0 0 · · · 0 z3,r+1 z3,r+2 · · · z3,m−1

...
...

...
...

...
...

...
...

ur vr 0 0 · · · 0 zr,r+1 zr,r+2 · · · zr,m−1

ur+1 0 −z2,r+1 −z3,r+1 · · · −zr,r+1 0 0 · · · 0
ur+2 0 −z2,r+2 −z3,r+2 · · · −zr,r+2 0 0 · · · 0

...
...

...
...

...
...

...
...

um−1 0 −z2,m−1 −z3,m−1 · · · −zr,m−1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where vi (2 ≤ i ≤ r), uj (2 ≤ j ≤ m− 1) and za,b (2 ≤ a ≤ r, r + 1 ≤ b ≤ m− 1)
are some smooth functions of s.

For a given initial condition X(0) = (A(0) B(0) e2(0) · · ·em−1(0)) satisfying
X t(0)EX(0) = T , there exists a unique solution to X ′(s) = X(s)M(s) on the whole
domain I of α̃(s) containing 0. Since T is symmetric and MT is skew-symmetric,
d
ds(X

t(s)EX(s)) = 0 and hence we have

X t(s)EX(s) = T

for all s ∈ I . Therefore, A(s), B(s), e2(s), · · · , em−1(s) form a null frame along a
null curve α̃(s) in L

m on I . Let α(s) =
∫ s
0 A(u)du.

Then, we can define a parametrization for a ruled submanifold M by

(4.2) x(s, t1, t2, · · · , tr) = α(s) + t1B(s) +
r∑

i=2

tiei(s).

Definition 4.3. A ruled submanifold M with the parametrization

x(s, t1, t2, · · · , tr) = α(s) + t1B(s) +
r∑

i=2

tiei(s), s ∈ J, ti ∈ Ii

satisfying (4.1) and (4.2) is called a G-kind ruled submanifold.

Remark 4.4. The terminology G-kind ruled submanifolds is named by ruled sub-
manifolds generated by the Gauss map.

We now prove

Theorem 4.5. Let M be a ruled submanifold in L
m with degenerate rulings.

M has harmonic Gauss map if and only if M is an open portion of a G-kind ruled
submanifold.
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Proof. We assume that the ruled submanifold M is parameterized by

x(s, t1, t2, · · · , tr) = α(s) + t1B(s) +
r∑

i=2

tiei(s), s ∈ J, ti ∈ Ii

such that 〈A(s), A(s)〉 = 〈B(s), B(s)〉 = 〈A(s), ei(s)〉 = 〈B(s), ei(s)〉 = 0, 〈A(s),
B(s)〉 = −1, 〈ei(s), ej(s)〉 = δij , and 〈e′i(s), ej(s)〉 = 0 for i, j = 2, 3, · · · , r, where
J and Ii are some open intervals and α′(s) = A(s). Furthermore, we assume that
〈A(s), B′(s)〉 = 0 for all s.

Suppose that M has harmonic Gauss map G. We then have two possible cases
according to the degree of Q.

Case 1. Suppose that deg Q(t) = 0, that is, Q = 1 and vi(s) = 0 for all
i = 2, 3, · · · , r. By definition, we get

ΔG =2
r∑

i=1

〈B′, e′i〉tiB′ ∧ B ∧ e2 ∧ · · · ∧ er

+2B′′ ∧ B ∧ e2 ∧ · · · ∧ er + 2
r∑

i=2

B′ ∧ B ∧ e2 ∧ · · · ∧ e′i ∧ · · · ∧ er.

From ΔG = 0 we have

〈B′, e′i〉B′ ∧ B ∧ e2 ∧ · · · ∧ er = 0

for all i = 1, 2, · · · , r. From Lemma 4.1, we see that B′(s) must be space-like. Thus,
B is a null constant vector field. By using Lemma 4.2, we see that M is minimal.

Let V (s) = {A(s), B(s), e2(s), · · · , er(s)} be a smooth distribution of index 1
along α satisfying 〈A(s), A(s)〉 = 〈B(s), B(s)〉=〈A(s), ei(s)〉= 〈B(s), ei(s)〉 = 0,
〈A(s), B(s)〉 = −1, 〈ei(s), ej(s)〉 = δij , and 〈e′i(s), ej(s)〉 = 0 for all s and i, j =
2, 3, · · · , r. Then, by Lemma 2.2, we can choose an orthonormal basis {er+1, · · · ,
em−1} for the orthogonal complement V ⊥(s) satisfying e′h(s) ∈ V (s) for all h =
r + 1, · · · , m− 1. Thus we may put

A′(s) =
m−1∑
i=2

ui(s)ei(s),

B′(s) = 0,

e′j(s) = uj(s)B(s) +
m−1∑

a=r+1

(−zj,a(s))ea(s), j = 2, · · · , r,

e′a(s) = uh(s)B(s) +
r∑

i=2

zi,a(s)ei(s), a = r + 1, · · · , m− 1.
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For a certain initial condition the above system of linear ordinary differential equations
has a unique solution to (4.1) with vi = 0 (i = 2, · · · , r) and za,b = 0 (a, b =
r + 1, r + 2, · · · , m − 1). The solution defines part of a G-kind ruled submanifold.

Case 2. Suppose that deg Q(t) = 1. Let V (s)={A(s), B(s), e2(s), · · · , er(s)} be
a smooth distribution of index 1 along α. Then we can choose an orthonormal basis
{er+1, · · · , em−1} for the orthogonal complement V ⊥(s) satisfying e′h(s) ∈ V (s) for
h = r + 1, · · · , m− 1. Then we may put

A′(s) =
m−1∑
i=2

ui(s)ei(s),

B′(s) =
m−1∑
i=2

vi(s)ei(s),

e′j(s) =vj(s)A(s) + uj(s)B(s) +
m−1∑

b=r+1

(−zj,b(s))eb(s), j = 2, · · · , r,

e′a(s) =va(s)A(s) + ua(s)B(s) +
r∑

b=2

zb,a(s)eb(s), a = r + 1, · · · , m − 1.

The straightforward computation provides

(4.3)

ΔG =
2ε̄

Q3

m−1∑
h=r+1

{(
r∑

i=1

〈B′, e′i〉ti −
r∑

i=2

v′iti)vh + v′hQ}eh ∧ B ∧ e2 ∧ · · · ∧ er

+
2ε̄

Q2

m−1∑
h=r+1

v2
hA ∧ B ∧ e2 ∧ · · · ∧ er

+
2ε̄

Q2

r∑
i=2

m−1∑
h=r+1

vivheh ∧ B ∧ e2 ∧ · · · ∧ ei−1 ∧ A ∧ ei+1 ∧ · · · ∧ er

− 2ε̄

Q2

r∑
i=2

m−1∑
h,l=r+1

vhzi,leh ∧ B ∧ e2 ∧ · · · ∧ ei−1 ∧ el ∧ ei+1 ∧ · · · ∧ er.

Since the Gauss map is harmonic, ΔG = 0. Thus, the functions va are vanishing for
a = r + 1, · · · , m− 1. Therefore, M is part of a G-kind ruled submanifold.

Conversely, if M is a G-kind ruled submanifold, then deg Q ≤ 1. From equation
(4.3), we can see that vr+1 = · · · = vm−1 = 0 implies ΔG = 0. Therefore, a G-kind
ruled submanifold M has harmonic Gauss map G. This completes the proof.

In [10], two of the present authors set up a characterization of minimal ruled
submanifolds in Minkowski space. Together with Theorem 4.5, we have a new charac-
terization of minimal ruled submanifolds with degenerate rulings in Minkowski space.
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Theorem 4.6. Let M be a ruled submanifold in L
m with degenerate rulings. The

following are equivalent:
(1) M is minimal.
(2) M has harmonic Gauss map.
(3) M is an open portion of a G-kind ruled submanifold.
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