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GENERALIZATIONS OF STRONGLY STARLIKE FUNCTIONS
Jacek Dziok

Abstract. By using functions of bounded variation we generalize the class of
strongly starlike functions and related classes. The main object is to obtain char-
acterizations and inclusion properties of these classes of functions.

1. INTRODUCTION

Let A denote the class of functions which are analytic in U/ := {z € C : |2| < 1}
and let A, (p € No:={0,1,2,...}) denote the class of functions f € A of the form

Q) f(z) =2+ Z a2z (z€U).
n=p+1
Leta,0 €C,la| <1, a<p, 0<G<1, k>2,peN pe A,
A function f € A, is said to be in the class Sh of multivalent strongly starlike
function of order g if
’A 2f'(2)

rg
pf(2)
We denote by M, the class of real-valued functions m of bounded variation on [0, 27]
which satisfy the conditions

<Bg (z elU).

27 27
@ /dm () =2, /\dm )] < k.
0 0

It is clear that M, is the class of nondecreasing functions on [0, 27| satisfying (2) or

2m
equivalently | dm (t) = 2.
0
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40 Jacek Dziok

Let Py (a, 5) denote the class of functions ¢ € Ay for which there exists m € My,
such that

2

3 q(z):1/<1+<1_2a>26_it)ﬁdm(t) (- cl).

2 1 — ze ¥
0

Here and throughout we assume that all powers denote principal determinations.
Moreover, let us denote

P (a) :== P (a,1), Pp (a,B) := {q e Ay: g% ep, (a,)}.

In particular, P := P, (0) is the well-known class of Carathéodory functions. The
classes Py := P (0), P (p) (0 < p < 1) were investigated by Paatero [19] (see also
Pinchuk [23]) and Padmanabhan and Parvatham [21], respectively. We note that

2f'(2)
pf(z)

feS;—=

P(8),
where -
P(8):=Ps(8) = {g€ A :|Arg g (2)] < 63 }.

Now, we generalize the class of strongly starlike functions. We denote by M, (a, 3; 6, )
the class of functions f € A, such that

9 Z(cp*f)”(2>) IEICES 0

a0 = 0+ ) <09 e

where * denote the Hadamard product (or convolution). Moreover, let us denote
M (a'7 B; 0, gD) =My (a'7 B; 0, gp) s W (a'7 B; gO) = My, (a'7 B; 0, SO),

W(a7 B; 90) =Ws (aa /8; ()0)7 Wi (aa /8> =W (aa /8; Zp/ (1 - Z))a
S; (vaa> =W (a’71;()0>'

We see that 57 = W5 (0, 3) and
(4) fEWk(a,ﬁ,cp)ﬁcp*fEWk(a,ﬂ)

Let @ = (ai,as), ﬁ = (B1, B2) . We say that a function f € A, belongs to the
class CWx (7, F; 0, cp) , if there exists a function g € W, (a2, 2; ) such that
4

e DY, g2l @) o
(” (v 9) ) )“1 ) lewa)(a) © rlanh).

These classes generalize well-known classes of functions, which were defined in
ealier works, see for example [1-10] and [14-26]. We note that

€ Pk (a,B),

p
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M (a, B; a, ) is related to the class of functions with the bounded Mocanu
variation defined by Coonce and Ziegler [4] and intensively investigated by Noor
et al. [15-18]

o Vi : =Wy (0, 1; %) is the well-known class of functions of bounded bound-

P (1-z

ary rotation (for details, see, [2, 7, 14, 21]).

5= (Tl (@ =5 (FEUDD )

1-z p(1l-2)

are the classes of multivalent starlike functions of order o and multivalent convex
functions of order «, respectively.

Ry(a) :=S; (zp/ (1 — z)2=e) ,a/p) (o < p)

will be called the class of multivalent prestarlike functions of order «. In par-
ticular, R («) := R («) is the well-know class of prestarlike functions of order
« introduced by Ruscheweyh [24].

e CC := CWx (0, 1; O(I—Zz)2> is the well-known class of close-to-convex func-
tions.

The main object of the paper is to obtain some characterizations and inclusion
properties for the defined classes of functions. Some applications of the main results
are also considered.

2. CHARACTERIZATION THEOREMS

Let us define

k 1 k 1
By (a, ) f:{<z+§) q - <Z_§) Q2¢Q1,Q2<ha,,8},

where

1+ (1—2a)z

B
11— ) ,hatzh%l (ZGU)

© b ()= (

From the result of Hallenbeck and MacGregor ([13], pp. 50) we have the following
lemma.
Lemma 1. g < h, g if and only if there exists m € M, such that

2

Q(z)Z%O/<1+<1_2a>ze_it)ﬁdm(t) (zel).

1 — ze ¥
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Theorem 1.
BA(CL,,B>CBJ€(G,,,3> (23/\<k>.

Proof. Let ¢ € By(a,[). Then there exist ¢i1,q2 < hqpg such that ¢ =

F+5)a—(3-3)aor

I O L P e S r:
q= 4 9 q1 1 9 q2 Q2—k_QQ1 k—QQQ'

Since g2 < hq 3, We have ¢ € By, (a, ). ]

Theorem 2. The class By, (a, 5) is convex.

Proof. Letq,r € By (a,3), a € [0,1], p := £ 4+ 1. Then there exist ¢;,r; <
has (7 =1,2) such that

q=pq — (1 —p) g, r=pr1— (1 —p)r.
It follows that
ag+(1—a)r=plag + (1 -a)r)—(1—p)(ag+(1-a)r).

Since ag;+(1 — a)rj < hqpg (j = 1,2), we conclude that ag+(1 — o) 7 € By (a, 3) .
Hence, the class By (a, ) is convex. |

Theorem 3.
Py (a,8) = By (a,3) .

Proof. Let g € Py (a,3). Then g satisfy (3) for some m € M. If m € Mo, then
by Lemma 1 and Theorem 1 we have g € Py (h) C Py (h) . Let now m € M, ~ Mo.
Since m is the function with bounded variation, by the Jordan theorem there exist
real-valued functions 1, u2 which are nondecreasing and nonconstant on [0, 27] such
that

27 27 27
(6) m= 1 — 2, /\dm(t)\ =/du1 (t) +/dM2 (t).

0 0 0
Thus, putting

py (2m) — 1 (0) 1 ,
0 = = My = o (1=1,2)

we get mq, my € My and
(7) m = a1mi; — aamsy.

Combining (6) and (7) we obtain
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2 2
201 — 20 = /dm (£) = 2, 201 + 20 = /\dm O] < k.
0 0

and so

m:(%%), QQZG_%) (Azrdm(t)<k).

Therefore, by (3) and (7) we obtain

_ /\+1 A1
q= 4 B q1 1 B q2,
2

0@ =1 [ (U295 ) e =1,

1—ze™i

where

Thus, by Lemma 1 and Theorem 1 we have g € By (a, 3) C Bx (a, 5) . Conversely, let
q € By (a, 3). Then there exist q1, g2 < hq  such that g is of the form

_k+1 k1
CI—4QQ14QQ2~

Thus, by Lemma 1 there exist mq, my € My such that ¢ is of the form (3) with

(k1N (E1L
m = 1 B ma 1 B mo.

Since
27 I 1 27 I 1 27
/dm(t):<Z+§)/dm1—<z—§)/dm2:2,
0 0 0
27 I 1 27 I 1 27
< — — [ — g
/\dm(t)\_<4+2)/dm1+<4 2)/dm2 ,
0 0 0
we have m € M, and consequently ¢ € Py, (a, 3) . ]

Lemma 2. [7]. Let ¢ € Ay. Then g € Py (a) if and only if

2

/

0

q(re“) —a
1—a

R dt<kmr (0<r<l).
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From Lemma 2 we have the following corollary.

Corollary 1. Let ¢ € Ao. Then g € Py (a, B) if and only if

2

®) /

0

q1/,8 (reit) _a
1—a

R dt <km (0<r<1).

3. THE MAIN INCLUSION RELATIONSHIPS
From now on we make the assumptions: 0 <6 <1 and
9) Rhop(z) >a (z€U).

Then we have

(10) Wi (a,B) C S, (o).
Let ®,(b, ¢) denote the multivalent incomplete hipergeometric function defined by
(12) B (0.0) (2) = 2P Py (bl z) = 3 Dnop
P\ T 2 1<b717072>_z<c> z (ZGU)
n=p n—p

Lemma 3. [11]. Let he K, g € Ag and A > 0. If

2q'(2)
4+ 075 <R (),
then ¢ < h.
Lemma 4. [5]. Let f € R, (a), g € S}, (). Then
[ (hg)

o) Ca (b))

where ¢o {h(U)} denotes the closed convex hull of h(U).

Lemma 5. [5]. Let p € N. If either

1
(12) R[b] < R[c], S[b] = [¢] and 5(2p+1—b—6)§a<p
or
c
< — =) <
(13) 0<b_cand(p 2>_a<p,
then

P,(b,c) € Rp(a).
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Theorem 4. If ¢y € R, («), then

Proof. Let f € Wy (a, 5; ). Thus, by Theorem 3 there exist g1, g2 < hq g such

that
M_ E 1 z) — E—l z z
P(@*f)(Z)_<4+2)Q1(> <4 2)%() (zelU).

Moreover, H = ¢ x f € W (a,8) C S} (a). Thus, applying the properties of
convolution, we get

2l x o) fI'(2) _ <E+1) ¥ (2) * [q1 (2) H(2)]
as)  pl@re)efIz) \4 7 2) T u()HE)
4 2 VY (2) x H(z) '
By Lemma 4 we conclude that
Fio) = LG HEL oy o SU) (zelU, j=1,2).

: ¥ () < H(z) : . B
Therefore, F; < hqp and by (15) we have f € W (a, ;¢ * ¢), which proves the
theorem. -

Theorem 5. Let ¢ € R (a), 0 <6 < 1. Then

(16) Mk(&,ﬂ,d,@)ka (aa57@>CMk(aa5757¢*‘P>

Proof. Let f € My (a,f;9,¢) N Wk (a, 5; ¢). Then, applying Theorem 4, we
obtain f € Wy (a, 5; ¢ = ). Thus, we have

b 2 1) L 2 ) () |

)= e e Y T he e P
Since the class Py, (a, ) is convex by Theorem 2, we conclude that (1 — §) Fy +0F; €
P (a, 5). Hence, f € My (a, 5; 0, x @) and, in consequence, we get (16). ]

Lemma 6. If 0 <~ < 4, then

M (a, 8;6,) C M (a, B;7, ).
Proof. Let f € M (a,(3;9,¢) and let

(e ) )

Pl W

q(2):
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Then, we obtain ,
4 ) ew.

Since Js, (f) < ha3, We have ¢ < h, 3 by Lemma 3. Moreover,

5 —
Jyo (f) = %J(S,w (f) + prq.

Because h, g is convex and univalent in ¢/, then we obtain J,,, (f) < hqe Or equiv-

alently f € M (a, 5357, ¢). [
From Theorem 5 and Lemma 6 we have the following corollary.

Corollary 2. Let ¢y € R, (), 0 < < 1. Then
M (a, 3;0,¢) C M (a, ;6,9 % @) .
Theorem 6. If ¢ € R, («), then
(17) ewi (@, B56.0) comy (T, 5:0,050).

Proof. Let f € CWg (?,3;5, (p). Then there exist g € Wy (aq, £2; ) and
q1,q2 < hq, g, such that

z(ex f) (2) :<
p(p*g)(2)

and F = o x g € Wy (az, 32)
we get

q(z)+96

§+%)m@>—<§—%)@@> (= )
C

S, (). Thus, applying the properties of convolution,

W)« fl'(z) _ (k, L\ bx(@F)
(18) p (¥ * @) *g](2) _<4+2 b * F (2)

_<§_%)%(z) (zel).

By Lemma 4 we conclude that

x (q; F - _
£ ()= B ) el 0} Chaa@) (U, j=1.2)
Therefore, F; < hq, 5, and by (18) we have f € CW;, (7, F; 0,1 % cp). [ |

Combining Theorems 4-6 with Lemma 5 we obtain the following theorem.
Theorem 7. If either (12) or (13), then

Wi (a, B; ©) € Wi (a, B; (b, ) x ¢) ,

M (a, 3;6,¢) C M (a, 3; 6, Pp(b, c) x ) ,

Wi (@, F30,0) € CW (@, F:0,0,(b, )+ ¢)
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Since @, (b, ¢) * ®p(c,b) * ¢ = ¢, by Theorem 7 we obtain the next result.
Theorem 8. If either (12) or (13), then

Wi (a, B; @p(c, b) + ) C Wi (a, B ¢) ,

M (a, B; 6, Pp(c, b) x ) C M (a, 556, ),

Wi (@, 30, @y(c,b) ) <Oy (T, F30,%)

Let us define the linear operators J : A, — A,

(19) In(f) (2) = A#Hpmﬂ(z), (z €U, R(\) > 0).

Since Jy (f) = ®,(5 +1,%) = f, putting b= £, ¢ =% 41 in Theorem 8, we have
the following theorem.

Theorem 9. If p — R [§] < a < p, then

Wi (a, B; Ix () C W (a, B; ¢),
M (a, B0, I\ () C M (a, B; 9, ),

W, (@, 516,11 (9) oWy (@, Bidip).
In particular, for A = 1 we get the following theorem.

Theorem 10. If 0 < «a < p, then

Wi (a, B; 29’ (2)) € Wi (a, B ¢),
M (a, B0, 2¢' (2)) € M (a, B9, ),

CWy (7, 3.6 20 (z)) C Oy (7, 3., (p) .
4. ApPPLICATIONS TO CLASSES DEFINED BY LINEAR OPERATORS
For real numbers A, ¢ (A > —p), we define the function
(20) U(ar,bi,t) (2):= (2P ¢Fs(at, ..., ag; b1, ..., b5 2)) * far (2) (2 €U),

where ,Fy(ai, ..., aq b1, ..., b; 2) is the generalized hypergeometric function and

e (z) = nf: <n+ /\)tz" (z €U).

p+ A

It is easy to verify that
(21) bU(b+1,¢,t) = 20 (b, ¢, 1) + (b —p)U(b, ¢, ),
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(22) bW (b, c,t) =2V (b,c+ 1,t) + (b—p)¥(b,c+ 1,1),
23) (p+ N) (b, e, t+1) = 20 (b, e, t) + AU (b, ¢, 1),
(24) U(b,c,t) = @p(b,d) x ¥(d,c,t).

where ®,,(b, d) is defined by (11).
Corresponding to the function ¥ (b, ¢, t) we consider the following classes of func-
tions:

Vi(a, B; b, ¢, t) := Wi (a, B; ¥(b, ¢, 1)) ,
CVi(T, b, c,t) = CW (? ﬁ,a,m(z),c,t)).
By using the linear operator
(25) Opb,c,tl f=V(bc,t)xf (feA)
we can define the class V, (a, 3; b, ¢, t) alternatively in the following way:
O, b+ 1,¢,1 f(2)

Op [b, ¢, 1] f(2)
Corollary 3. If p—R[b] < a <p, m €N, then

f€Vi(a,B;bc,t)<=b

+p—bePirla,pf).

(26) Vk (a,ﬂ;b—i—m,c,t)CVk(a,ﬂ;b,c,t),
(27) CVi (a, 3504+ m,c,t) C CVg (a, B; b, c,t).
Proof. It is clear that it is sufficient to prove the corollary for m = 1. Let

Jy and ¥(b,c,t) be defined by (19) and (20), respectively. Then, by (21) we have
U(b+1,c,t) = Jo (Y(b, ¢, t)). Hence, by using Theorem 9 we conclude that

Wi (a, 8; (b + 1,¢,1)) C Wi (a, 8 (b, e,1))
CWy, (7, G600+ 1,c t)) CCWy (7, 36, 9(b,c, t)) .

This clearly forces the inclusion relations (26) and (27) for m = 1. |
Analogously to Corollary 3, we prove the following corollary.

Corollary 4. Let m e N. If p—R[c] < a < p, then
Vi (a, 850, ¢, t) C Vi (a,03; b,c+ m, t),
CVi (7, F; b, c, t) C CVg (7, F; b,c+ m, t) .
If =R [A] < a < p, then
Vi (a, B;b, ¢, t+m) C Vg (a, 55b, ¢, t),
CVy (7, Bibet+ m> oy (7, 3:b,c, t) .
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It is natural to ask about the inclusion relations in Corollaries 3 and 4 when m is
positive real. Using Theorems 4 and 6, we shall give a partial answer to this question.

Corollary 5. If the multivalent incomplete hipergeometric function ®,,(b, d) defined
by (11) belongs to the class R, («), then

—

(28)  Vi(a,Bid, ;) Vi, Bibse. ), CVN(@,Fid. e t) cevy (@, F3b,et).

(29)  Vila, Bie,b1)C Vi (afie dit), CVk(@ Fie,byt) < CVi(@, Bied,1).

Proof. Let us put ¢ = ®,(b,d), ¢ = ¥(d, c,t). Then, by (22) and Theorems 4
and 6 we obtain

Wk (a'7 Bv \Il<d7 C, t)) - Wk (a'7 Bv \I/<b7 C, t)) )
CWi (?, 36, 0(d,c, t)) C CWy (7, G160, c, t)) .

Thus, we get the inclusion relations (28). Analogously, we prove the inclusions (29).m

Combining Corollary 5 with Lemma 5, we obtain the following result.

Corollary 6. If either (12) or (13), then the inclusion relations (28) and (29) hold
true.

The linear operator ©, [b, c, t] defined by (25) includes (as its special cases) other
linear operators of geometric function theory which were considered in earlier works.
In particular, we can mention here the Dziok-Srivastava operator, the Hohlov opera-
tor, the Carlson-Shaffer operator, the Ruscheweyh derivative operator, the generalized
Bernardi-Libera-Livingston operator, the fractional derivative operator, and so on for
the precise relationships, see, Dziok and Srivastava ([10], pp. 3-4). Moreover, the
linear operator ©, [b, c, ] includes also the Salagean operator, the Noor operator, the
Choi-Saigo-Srivastava operator, the Kim-Srivastava operator, and others (for the precise
relationships, see, Cho et al. [3]). By using these linear operators we can consider
several subclasses of the classes Vi (a, 3;b, ¢, t) and CVi(d, ﬁ; b, c,t), see for exam-
ple [1-10, 12, 20, 22, 26]. Also, the obtained results generalize several results obtained
in these classes of functions.
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