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THE ASCENDING CHAIN CONDITION FOR PRINCIPAL LEFT IDEALS
OF SKEW POLYNOMIAL RINGS

A. R. Nasr-Isfahani

Abstract. In this note we study the ascending chain conditions on principal left
(resp. right) ideals of the skew polynomial ring R[x; α, δ]. We give a charac-
terization of skew polynomial rings R[x; α, δ] that are domains and satisfy the
ascending chain condition on principal left (resp. right) ideals. We also prove
that if R is an α-rigid ring that satisfies the ascending chain condition on right
annihilators and ascending chain condition on principal right (resp. left) ideals,
then the skew polynomial ring R[x; α, δ] and skew power series ring R[[x; α]]
also satisfy the ascending chain condition on principal right (resp. left) ideals.

1. INTRODUCTION

Throughout this paper R denotes an associative ring with unity, α is a ring en-
domorphism and δ an α-derivation of R, that is, δ is an additive map such that
δ(ab) = δ(a)b + α(a)δ(b), for all a, b ∈ R. We denote by R[x; α, δ] the Ore ex-
tension (the skew polynomial ring) whose elements are the left polynomials

∑n
i=0 aix

i

with ai ∈ R, the addition is defined as usual and the multiplication subject to the rela-
tion xa = α(a)x + δ(a) for any a ∈ R. The skew power series ring, whose elements
are the series

∑∞
i=0 aix

i with ai ∈ R, is denoted by R[[x; α]]. The addition in the ring
R[[x; α]] is defined as usual and the multiplication subject to the relation xa = α(a)x
for any a ∈ R.

A ring R satisfies the ascending chain condition for principal left (resp. right)
ideals (ACCPL (resp. ACCPR)), if there does not exist an infinite strictly ascending
chain of principal left (resp. right) ideals of R. We say that R is an ACCPL-ring (resp.
ACCPR-ring) if R satisfies ACCPL (resp. ACCPR). If a domain R satisfies ACCPL
(resp. ACCPR) we say that R is an ACCPL-domain (resp. ACCPR-domain). Clearly
every left (resp. right) noetherian ring satisfies ACCPL (resp. ACCPR). Also by
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Jonah’s Theorem [9], every left perfect ring satisfies ACCPL. In the commutative ring
theory the ascending chain condition on principal ideals (ACCP) is very important for
studies of factorization. Several authors studied the passing of ACCP to the polynomial
ring and power series ring. It is well known and easy to see that if R is a commutative
domain satisfying ACCP, then for any family X of indeterminates, the polynomial ring
R[X ] and power series ring R[[X ]] also satisfy ACCP. Heinzer and Lantz in [7] and
Frohn in [4], gave examples to show that ACCP does not rise to the polynomial ring
and power series ring in general. Frohn in [5, Theorem 4.1] showed that, if a ring R
satisfies ACCP and R[X ] has acc on annihilator ideals, then R[X ] also satisfies ACCP.
The ascending chain condition on principal right (resp. left) ideals has been studied in
the noncommutative ring theory, in a number of papers, for example, [1, 6] and [13].
Recently Mazurek and Ziembowski in [11] studied the ascending chain condition on
principal left (resp. right) ideals of skew generalized power series rings.

In this paper we study this property for the skew polynomial ring R[x; α, δ] and
skew power series ring R[[x; α]]. First we show that R[x; α, δ] is a domain satisfying
the ascending chain condition on principal left ideals and α is injective if and only if
R[x; α] is a domain satisfying the ascending chain condition on principal left ideals if
and only if R[[x; α]] is a domain satisfying the ascending chain condition on principal
left ideals if and only if R is a domain, R satisfies the ascending chain condition on
principal left ideals and α is injective. We also show that if R is an ACCPR-domain
and α is injective and preserves nonunit elements of R, then R[x; α, δ] is an ACCPR-
domain. A commutative domain R is said to be archimedean if

⋂
n≥1 anR = 0 for

each nonunit element a of R. It is well-known that any domain satisfying ACCP is
archimedean, but the converse is not true (for more details see [3]). We prove that
R[x; α, δ] is a left archimedean domain and α is injective if and only if R[x; α] is a
left archimedean domain if and only if R[[x; α]] is a left archimedean domain if and
only if R is a left archimedean domain and α is injective. Also we prove that if R is
a right archimedean domain and α is injective and preserves nonunit elements of R,
then R[x; α, δ] is a right archimedean domain.

In section 3, we study the ACCPR (resp. ACCPL) property for the skew polynomial
ring R[x; α, δ] and skew power series ring R[[x; α]] in the case R is not a domain.
We show that if R satisfies the ascending chain condition on principal right (resp.
left) ideals, R has acc on right annihilators and α is a rigid automorphism (i.e., for
each a ∈ R, aα(a) = 0 implies a = 0) of R then R[x; α, δ] and R[[x; α]] satisfy the
ascending chain condition on principal right (resp. left) ideals.
A commutative ring R is called présimplifiable (for more details see [2]) if for each
a, b ∈ R, ab = a implies a = 0 or b is a unit. A présimplifiable ring is a ring with
zero divisors which is nearly an integral domain. We show that for a présimplifiable
ring R and automorphism α of R, R[[x; α]] satisfies ACCPR if and only if R satisfies
ACCP if and only if R[[x; α]] satisfies ACCPL.
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2. SKEW POLYNOMIAL RINGS THAT ARE ACCPL-DOMAINS

In this section we study when the skew polynomial ring R[x; α, δ] and skew power
series ring R[[x; α]] are ACCPL-domains (resp. ACCPR-domains).

We denote the set of unit elements of a ring R by U(R).

Proposition 2.1. ([11, Proposition 2.7]). For any domain R the following conditions
are equivalent:

(1) R satisfies ACCPL.
(2) For any sequences (an)n∈N, (bn)n∈N of nonzero elements of R such that an =

bnan+1 for all n ∈ N, there exists m ∈ N with bn ∈ U(R) for all n ≥ m.
(3) For any sequences (an)n∈N, (bn)n∈N of nonzero elements of R such that an =

bnan+1 for all n ∈ N, there exists m ∈ N with bm ∈ U(R).
(4)

⋂
n∈N

r1r2 · · ·rnR = 0 for any sequence (rn)n∈N of nonunits of R.

Corollary 2.2. ([11, Corollary 2.8]). Let A be a subring of a domain B such that
U(A) = A ∩ U(B). If B satisfies ACCPL, then A satisfies ACCPL.

The degree of a polynomial f ∈ R[x; α, δ] will be denoted by deg(f) and the
leading coefficient of f will be denoted by l(f).

Theorem 2.3. Let R be a ring, α an endomorphism of the ring R and δ an
α-derivation of R. Then the following are equivalent:

(1) R[x; α, δ] is an ACCPL-domain and α is injective.
(2) R[[x; α]] is an ACCPL-domain.
(3) R[x; α] is an ACCPL-domain.
(4) R is an ACCPL-domain and α is injective.

Proof. (1) ⇒ (4) Assume that S = R[x; α, δ] is an ACCPL-domain. Since
R[x; α, δ] is a domain, R is a domain and since U(R) = R ∩ U(S), R is an ACCPL-
domain by Corollary 2.2. (4) ⇒ (1) Assume that R is an ACCPL-domain and α is
injective. It is easy to see that S = R[x; α, δ] is a domain. Let (fn)n∈N, (gn)n∈N be
any sequences of nonzero elements of S with fn = gnfn+1 for each n ∈ N. Since S
is a domain and α is injective, deg(fn) = deg(gn) + deg(fn+1) for each n ∈ N. If
for each n ∈ N, deg(fn) = deg(fn+1), then gn ∈ R and so l(fn) = gnl(fn+1). Since
R is an ACCPL-domain, there exists m ∈ N such that gm ∈ U(R), by Proposition
2.1. Thus S is an ACCPL-domain. Now assume that there exists m ∈ N such that
deg(gm) �= 0. So deg(fm) > deg(fm+1). If for each n > m, deg(gn) = 0 then
by the same argument as above there exists m′ > m such that gm′ ∈ U(R) and the
result follows. So we can assume that there exists a sequence of positive integers
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n1 < n2 < n3 < · · · , such that for each positive integer i, deg(gni) �= 0. Thus we
have deg(fn1) > deg(fn2) > deg(fn3) > · · · . Then there exists a positive integer t
such that for each n ≥ t, deg(fn) = 0. Thus for each n ≥ t, fn, gn ∈ R and so there
exists m > t such that gm ∈ U(R) and the result follows.

(2) ⇔ (4) [11, Corollary 3.4].
(3) ⇔ (4) The proof is similar to that of the proof (1) ⇔ (4).

We will say that an endomorphism α of a ring R preserves nonunit elements of R
if α(R\U(R)) ⊆ R\U(R).

Theorem 2.4. Let R be a ring, α an endomorphism of the ring R and δ an α-
derivation of R. If R is an ACCPR-domain and α is injective and preserves nonunit
elements of R, then R[x; α, δ] is an ACCPR-domain.

Proof. It is easy to see that S = R[x; α, δ] is a domain. Let (fn)n∈N, (gn)n∈N be
any sequences of nonzero element of S with fn = fn+1gn for each n ∈ N. Since S is
a domain and α is injective, deg(fn) = deg(fn+1) + deg(gn) for each n ∈ N. If for
each n ∈ N, deg(fn) = deg(fn+1) = t, then gn ∈ R and so l(fn) = l(fn+1)αt(gn).
Since R is an ACCPR-domain, there exists m ∈ N such that αt(gm) ∈ U(R), by
the right-sided version of Proposition 2.1. Since α preserves nonunit elements of R,
gm ∈ U(R) and thus gm ∈ U(S). Now assume that there exists n ∈ N such that
deg(gn) �= 0. By a similar argument as in the proof of Theorem 2.3 we can see that
gm ∈ U(S) for some m ∈ N. Hence the right-sided version of Proposition 2.1 implies
that S is an ACCPR-domain.

Note that if R[x; α, δ] is an ACCPR-domain then by Corollary 2.2 R is an ACCPR-
domain. But we do not know whether α preserves nonunit elements of R and α is
injective in this case.

Theorem 2.5. Let R be a ring and α an endomorphism of the ring R. Then the
following are equivalent:

(1) R[x; α] is an ACCPR-domain.

(2) R[[x; α]] is an ACCPR-domain.

(3) R is an ACCPR-domain and α is injective and preserves nonunit elements of R.

Proof. (1) ⇒ (3) Assume that S = R[x; α] is an ACCPR-domain. Since U(R) =
R∩U(S), the right-sided version of Corollary 2.2 implies that R is an ACCPR-domain.
Moreover, if a ∈ R and α(a) = 0, then in the domain S we have xa = 0. Hence a = 0,
which shows that α is injective. Suppose that α(r) ∈ U(R) for some r ∈ R\U(R).
For each n ∈ N, let fn = (α(r))−nx. Then for each n ∈ N, fn = fn+1r and so by
using right-sided version of Proposition 2.1, r ∈ U(R), a contradiction.
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The equivalence (2) ⇔ (3) was proved in [11, Corollary 3.4(ii)], whereas the
implication (3) ⇒ (1) is an immediate consequence of Theorem 2.4.

Let R[x; α, δ] be a skew polynomial ring. If there exists d ∈ R such that δ(r) =
dr −α(r)d for all r ∈ R, then δ is called an inner α-derivation of R. In this case, we
have R[x; α, δ] = R[x− d; α].

Corollary 2.6. Let R be a ring, α an endomorphism of the ring R and δ an
inner α-derivation of R. Then R[x; α, δ] is an ACCPR-domain if and only if R is an
ACCPR-domain and α is injective and preserves nonunit elements of R.

Corollary 2.7. Let S = R[x1; δ1][x2; δ2] · · · [xn; δn] be an iterated differential
polynomial ring, where each δi is a derivation of R[x1; δ1] · · · [xi−1; δi−1]. Then S

is an ACCPL-domain (resp. ACCPR-domain) if and only if R is an ACCPL-domain
(resp. ACCPR-domain).

A domain R is said to be left (resp. right) archimedean if
⋂

n≥1 anR = 0
(
⋂

n≥1 Ran = 0) for each nonunit element a of R. By Proposition 2.1, any ACCPL-
domain (resp. ACCPR-domain) is left (resp. right) archimedean, but the converse is
not true in general (for more details see [3]).

Theorem 2.8. Let R be a ring, α an endomorphism of the ring R and δ an α-
derivation of R. If R is a right archimedean domain and α is injective and preserves
nonunit elements of R, then R[x; α, δ] is a right archimedean domain.

Proof. Put S = R[x; α, δ]. Suppose that R is a right archimedean domain and α

is injective and preserves nonunit elements of R. It is easy to see that S is a domain.
Let f be a nonunit element of S and g ∈ ⋂

n≥1 Sfn. Then for each n ∈ N there
exists hn ∈ S such that g = hnfn. Let m denote the degree of g. If deg(f) = 0,
then for each n ∈ N, l(g) = l(hn)αm(fn). Thus l(g) ∈ ⋂

n≥1 R(αm(f))n. Since
αm(f) is nonunit, l(g) = 0 and so g = 0. If deg(f) �= 0, then for each n ∈ N,
deg(g) = deg(hn) + ndeg(f). Thus g = 0 and the result follows.

Note that if R[x; α, δ] is a right archimedean domain then R is a right archimedean
domain. But we do not know whether α preserves nonunit elements of R and α is
injective in this case.

Let f = f0 + f1x + f2x
2 + · · · ∈ R[[x; α]]\{0}. We denote by π(f) the smallest

i ≥ 0 such that fi �= 0.

Theorem 2.9. Let R be a ring and α an endomorphism of the ring R. Then the
following are equivalent:

(1) R[x; α] is a right archimedean domain.
(2) R[[x; α]] is a right archimedean domain.
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(3) R is a right archimedean domain and α is injective and preserves nonunit
elements of R.

Proof. (1) ⇒ (3) Assume that S = R[x; α] is a right archimedean domain. It is
easy to see that R is domain and α is injective. Let a be a nonunit element of R and
b ∈ ⋂

n≥1 Ran. Then b ∈ ⋂
n≥1 San and so b = 0. Thus R is a right archimedean

domain. Suppose that α(r) ∈ U(R) for some r ∈ R\U(R). For each n ∈ N, let
fn = (α(r))−nx, then fn ∈ S and fnrn = x. So x ∈ ⋂

n≥1 Srn, a contradiction.

(3) ⇒ (1) is an immediate consequence of Theorem 2.8.

(2) ⇒ (3) The proof is similar to the proof of (1) ⇒ (3).

(3) ⇒ (2) Suppose that R is a right archimedean domain and α is injective and
preserves nonunit elements of R. It is easy to see that T = R[[x; α]] is domain.
Assume that f = f0 + f1x + f2x

2 + · · · is a nonunit element of T and 0 �= g =
g0 + g1x + g2x

2 + · · · ∈ ⋂
n≥1 Tfn. Then, for each n ∈ N, there exists hn =

hn0 + hn1x + hn2x
2 + · · · ∈ T such that g = hnfn. Put π(g) = m. If π(f) = 0,

then for each n ∈ N, gm = hnmαm(fn
0 ). Thus gm ∈ ⋂

n≥1 R(αm(f0))n. Since f
is nonunit, f0 is nonunit and so αm(f0) is nonunit. Thus gm = 0 and so g = 0, a
contradiction. If π(f) �= 0, then for each n ∈ N, m = π(hn) + nπ(f). Thus g = 0, a
contradiction.

Corollary 2.10. Let R be a ring, α an endomorphism of the ring R and δ an inner
α-derivation of R. Then R[x; α, δ] is a right archimedean domain if and only if R is
a right archimedean domain and α is injective and preserves nonunit elements of R.

Theorem 2.11. Let R be a ring, α an endomorphism of the ring R and δ an
α-derivation of R. Then the following are equivalent:

(1) R[x; α, δ] is a left archimedean domain and α is injective.
(2) R[[x; α]] is a left archimedean domain.
(3) R[x; α] is a left archimedean domain.
(4) R is a left archimedean domain and α is injective.

Proof. The proof is similar to the proof of Theorems 2.8 and 2.9.

Corollary 2.12. Let S = R[x1; δ1][x2; δ2] · · · [xn; δn] be an iterated differential
polynomial ring, where each δi is a derivation of R[x1; δ1] · · · [xi−1; δi−1]. Then S

is a right (resp. left) archimedean domain if and only if R is a right (resp. left)
archimedean domain.

3. ACCPL SKEW POLYNOMIAL RINGS WHICH ARE NOT DOMAINS

Frohn in [5, Theorem 4.1] showed that, if a commutative ring R satisfies ACCP
and R[x] has acc on annihilator ideals, then R[x] also satisfies ACCP. In this section
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we show that under suitable conditions on the ACCPL (resp. ACCPR) ring R, the
skew polynomial ring R[x; α, δ], the skew power series ring R[[x; α]] and the skew
polynomial ring R[x; α] are ACCPL-rings (resp. ACCPR-rings).

An endomorphism α of a ring R is called a rigid endomorphism if rα(r) = 0
implies r = 0 for each r ∈ R. A ring R is called α-rigid if there exists a rigid
endomorphism α of ring R (for more details see [10]). Note that each α-rigid ring R
is reduced (i.e. has no nonzero nilpotent element). α-rigid rings are characterized in
the following.

Proposition 3.1. ([8, Proposition 5 and Corollary 18]). Let R be a ring, α an
endomorphism of R and δ an α-derivation of R. Then the following are equivalent:

(1) R is α-rigid.
(2) R[x; α, δ] is reduced and α is a monomorphism of R.
(3) R[[x; α]] is reduced and α is a monomorphism of R.

We need the following lemma in the sequel.

Lemma 3.2. ([8, Lemma 4]). Let R be an α-rigid ring, δ an α-derivation of R
and a, b ∈ R. Then we have the following:

(1) If ab = 0 then aαn(b) = αn(a)b = 0 for any positive integer n.
(2) If ab = 0 then aδm(b) = δm(a)b = 0 for any positive integer m.
(3) If aαk(b) = 0 for some positive integer k, then ab = 0.

Lemma 3.3. Let I be an ideal of a ring R. If R is an ACCPL (resp. ACCPR)
ring, then R/I is an ACCPL (resp. ACCPR) ring.

Let A be a subset of ring R. The left (resp. right) annihilator of A will be denoted
by lR(A) (resp. rR(A)). Recall that an ideal P of R is completely prime if ab ∈ P
implies a ∈ P or b ∈ P for a, b ∈ R.

Let R be a ring, α an endomorphism of R and δ an α-derivation of R. Recall that
an ideal I of R is called an α-ideal if α(I) ⊆ I , I is called α-invariant if α−1(I) = I
and I is called δ-ideal if δ(I) ⊆ I . If I is an α-ideal and δ-ideal we say I is an
(α, δ)-ideal. Note that if I is an (α, δ)-ideal, then ᾱ : R/I −→ R/I defined by
ᾱ(a + I) = α(a) + I for a ∈ R is an endomorphism of the factor ring R/I and
δ̄ : R/I −→ R/I defined by δ̄(a + I) = δ(a) + I is an ᾱ-derivation of R/I .

Theorem 3.4. Let R be an ACCPR ring, α a rigid automorphism of R and δ an
α-derivation of R. If R satisfies the ACC on right annihilators, then R[x; α, δ] is an
ACCPR ring.

Proof. We apply the method of Frohn [5, Theorem 4.1] to prove this theorem. For
each f ∈ S = R[x; α, δ] let If be the set of the leading coefficients of elements of the
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ideal SfS, together with 0. It is easy to see that If is an ideal of R. Assume at the
contrary that there exists a nonstabilizing chain of principal right ideals of S. So the
set M = {lR(

⋃
i≥1 Igi)|g1S ⊆ g2S ⊆ · · · is a nonstabilizing chain of principal right

ideal in S} is nonempty. Since R is α-rigid, R is reduced and so it is easy to see that
since R satisfies the ACC on right annihilators, R satisfies the ACC on left annihilators.
Thus M has a maximal element. Let P = lR(

⋃
i≥1 Ifi) be a maximal element of M ,

where f1S ⊆ f2S ⊆ · · · is a nonstabilizing chain in S. We show that P is a completely
prime ideal of R. Assume that a, b ∈ R\P and ab ∈ P . Since R is α-rigid, by using
Lemma 3.2 we can see that a ∈ lR(

⋃
i≥1 Ibfi). Also we have P ⊆ lR(

⋃
i≥1 Ibfi). So

the chain bf1S ⊆ bf2S ⊆ · · · stabilizes. Then there exists a positive integer t such that
for each n ≥ t, bfn+1 = bfnhn for some hn ∈ S. For each positive integer n, there
exists gn ∈ S such that fn = fn+1gn. Thus for each n ≥ t, bfn+1(1 − gnhn) = 0.
Let qi = fi(1 − gi−1hi−1), for each i > t. Since R is reduced, b ∈ lR(

⋃
i Iqi) and

P ⊆ lR(
⋃

i Iqi). Then the chain q1S ⊆ q2S ⊆ · · · stabilizes. Thus there exists
a positive integer t′ such that for each m ≥ t′, qm+1 = qmlm for some lm ∈ S.
Then fm+1(1 − gmhm) = fm(1 − gm−1hm−1)lm and so fm+1 = fmhm + fm(1 −
gm−1hm−1)lm. Thus we have the contradiction fm+1 ∈ fmS. So P is a completely
prime ideal of R. Since R is α-rigid and P = lR(

⋃
i≥1 Ifi), by using Lemma 3.2 it

is easy to see that P is an α-invariant, δ-ideal. Now let T = (R/P )[x; ᾱ, δ̄]. Since
R is ACCPR and P is a completely prime ideal of R, by Lemma 3.3, R/P is an
ACCPR-domain. Thus T is an ACCPR-domain by Theorem 2.4. For each positive
integer i, fi = fi+1gi, where f = (a0 + P ) + (a1 + P )x + · · ·+ (an + P )xn ∈ T , for
each f = a0 +a1x+ · · ·+anxn ∈ S. If fi = 0 for some i, then the leading coefficient
a of f , a ∈ P = lR(

⋃
i≥1 Ifi). Thus a2 = 0 and since R is reduced, a = 0, which is

a contradiction. So for each i, fi �= 0 and so gi �= 0. By Proposition 2.1, there exists
a positive integer s such that for each m ≥ s, gm is invertible in T . Then there is a
h ∈ T such that gmh = hgm = 1. gmh − 1 = 0 and so for each coefficient b of the
polynomial gmh−1, b ∈ P . We claim that fm+1(gmh−1) = 0. Assume that fm+1 =
a0+a1x+· · ·+atx

t. For any coefficient b of gmh−1, bat = 0 and since R is reduced,
atb = 0. By Lemma 3.2 atx

tb = 0 and so fm+1b = (a0 + a1x + · · · + at−1x
t−1)b.

But fm+1b ∈ Sfm+1S and so at−1α
t−1(b) ∈ Ifm+1 . Thus bat−1α

t−1(b) = 0 and
since R is reduced, at−1α

t−1(b)b = 0. So by Lemma 3.2, at−1b
2 = 0 and since

R is reduced, at−1b = 0. Thus at−1x
t−1b = 0. Continuing in this way we have

aix
ib = 0 for each 0 ≤ i ≤ t and so fm+1b = 0. Thus fm+1(gmh − 1) = 0 and so

fm+1 = fm+1gmh = fmh. Then the chain f1S ⊆ f2S ⊆ · · · stabilizes, which is a
contradiction.

In the following example we show that the α-rigid condition and the ascending
chain condition on right annihilators are not superfluous in Theorem 3.4.

Example 3.5.
(1) ([7, Example]) Let k be a field and A1, A2, · · · be indeterminates over k, and set
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S = k[A1, A2, · · · ]/({An(An − An−1) : n ≥ 2})k[A1, A2, · · · ]. Denote by an

the image of An in S and by R the localization of S at the ideal (a1, a2, · · · )S.
Note that S is a limit of the rings Sn where S1 = k[a1] and Sn = Sn−1[an] =
Sn−1[An]/An(an−1 −An)Sn−1[An] for n ≥ 2. Heinzer and Lantz in [7] proved
that R satisfies ACCP but the ring R[x], does not satisfy ACCP. Note that in S

we have a2
3(a1 − a2)2 = a3a2(a1 − a2)2 = 0, but a3(a1 − a2) �= 0. Thus S is

not reduced and since R contains (an isomorphic copy of) S (see [7]), R is not
reduced. So the α-rigid condition in Theorem 3.4 is not superfluous.

(2) ([5, Remark after Lemma 4.3]) Let K be a field and A1, A2, · · · indeterminates
over K. Set A := {An : n ≥ 1}, I := (

⋃
n∈N

{An(Ak−1 − Ak) : 1 < k ≤
n})K[A] and S := K[A]/I . Denote by an the image of An in S and by R
the localization of S at the ideal (a1, a2, · · · )S. Frohn in [5] proved that R

is a reduced ACCP ring while R[x] is not. So the condition ”ACC on right
annihilators” in Theorem 3.4 is not superfluous.

Corollary 3.6. Let R be an ACCPL ring, α a rigid automorphism of R and δ an
α-derivation of R. If R satisfies the ACC on left annihilators, then R[x; α, δ] is an
ACCPL ring.

Proof. It is known that α−1 is an automorphism of the opposite ring Rop and
−δα−1 is an α−1-derivation of Rop, and that R[x; α, δ]op ∼= Rop[x; α−1,−δα−1].
Then the result follows from Theorem 3.4.

Corollary 3.7. Let R be an ACCPR (resp. ACCPL) ring,
S = R[x1; α1, δ1][x2; α2, δ2] · · · [xn; αn, δn] be an iterated skew polynomial ring,
where each αi is a rigid automorphism of the ring R[x1; α1, δ1] · · · [xi−1; αi−1, δi−1]
and δi an αi-derivation of R[x1; α1, δ1] · · · [xi−1; αi−1, δi−1]. If R satisfies the ACC
on right (resp. left) annihilators, then S is an ACCPR (resp. ACCPL) ring.

Proof. Let R be an α-rigid ring. If R satisfies the ACC on right annihilators then
by [12, Theorem 2.6] and [12, Corollary 3.7], R[x; α, δ] satisfies the ACC on right
annihilators. By using this fact the result follows from Theorem 3.4.

Corollary 3.8. Let R be a reduced ACCPR (resp. ACCPL) ring,
S = R[x1; δ1][x2; δ2] · · · [xn; δn] be an iterated differential polynomial ring, where
each δi is a derivation of R[x1; δ1] · · · [xi−1; δi−1]. If R satisfies the ACC on right
(resp. left) annihilators, then S is an ACCPR (resp. ACCPL) ring.

Theorem 3.9. Let R be an ACCPR (resp. ACCPL) ring and α a rigid automor-
phism of R. If R satisfies the ACC on right (resp. left) annihilators, then R[[x; α]] is
an ACCPR (resp. ACCPL) ring.

Proof. For each f = a0 + a1x + · · · ∈ S = R[[x; α]] let If be the set of aπ(g) for
each g ∈ SfS, together with 0. Then the proof is similar to the proof of Theorem 3.4.



940 A. R. Nasr-Isfahani

A commutative ring R is called présimplifiable if for each a, b ∈ R, ab = a implies
a = 0 or b is a unit. A présimplifiable ring is a ring with zero divisors which is nearly
an integral domain.

Theorem 3.10. Let R be a commutative présimplifiable ring and α an automor-
phism of R. Then the following are equivalent:

(1) R is an ACCP ring.
(2) R[[x; α]] is an ACCPR-ring.
(3) R[[x; α]] is an ACCPL-ring.

Proof. (1) ⇒ (2) Set T = R[[x; α]]. Assume that R is an ACCP-ring. Let f1T ⊆
f2T ⊆ f3T ⊆ · · · be an increasing sequence of principal right ideals of T . We can
simplify by a convenient power of x, and suppose that fi(0) �= 0 for each i. We obtain
the sequence of non zero principal ideals of R, (f1(0)) ⊆ (f2(0)) ⊆ (f3(0)) ⊆ · · · .
Since R is an ACCP-ring, there exists a positive integer k such that for each n ≥ k,
(fk(0)) = (fn(0)). But for each n ≥ k, there exists gn ∈ T such that fk = fngn, so
fk(0) = fn(0)gn(0). Also there exists an element r ∈ R such that fn(0) = fk(0)r.
Thus fk(0) = fn(0)gn(0) = fk(0)rgn(0) and since R is présimplifiable and fk(0) �= 0,
rgn(0) is a unit element of R. Thus gn(0) is a unit element of R and so gn is a unit
element of T . Thus fn = fkg−1

n for n ≥ k and so the chain f1T ⊆ f2T ⊆ · · ·
stabilizes.

(2) ⇒ (1) Assume that T = R[[x; α]] is an ACCPR-ring and let (r1) ⊆ (r2) ⊆ · · ·
be a chain of principal ideals of R. We obtain the chain r1T ⊆ r2T ⊆ · · · in T . But
T satisfies ACCPR, so there exists a positive integer k such that for each n ≥ k, we
have rnT = rkT , which implies that (rn) = (rk).

(1) ⇔ (3) It is known that α−1 is an automorphism of the opposite ring Rop and
R[[x; α]]op ∼= Rop[[x; α−1]]. Then the result follows from (1) ⇔ (2).
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