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TOTAL SCALAR CURVATURE AND HARMONIC CURVATURE

Gabjin Yun, Jeongwook Chang and Seungsu Hwang*

Abstract. On a compact n-dimensional manifold, it has been conjectured that a
critical point metric of the total scalar curvature, restricted to the space of metrics
with constant scalar curvature of unit volume, will be Einstein. This conjecture
was proposed in 1984 by Besse, but has yet to be proved. In this paper, we prove
that if the manifold with the critical point metric has harmonic curvature, then it
is isometric to a standard sphere.

1. INTRODUCTION

Let M be an n-dimensional compact manifold and M1 be the set of all smooth
Riemannian structures of unit volume on M . The scalar curvature sg is a non-linear
function of the metric g. Its linearization at g in the direction of the symmetric two-
tensor h is given by

s′g(h) = −Δgtrh + δgδgh − g(h, rg).

Here, Δg is the negative Laplacian of g, rg is its Ricci tensor, and δg is the metric dual
of the map on the bundle of symmetric tensors induced by covariant differentiation.
The dual linearized operator s′∗g of s′g is given by

(1) s′∗g (f) = Dgdf − gΔgf − frg,

where Dgdf is the Hessian of f .
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The following formulae are important for the analysis of the map

S : g �→
∫

M
sgdvg

when S is defined over C, a subset of M1, consisting of constant scalar curvature
metrics. The Euler-Lagrange equation of S restricted to C may be written as the
following critical point equation(CPE, hereafter):

(2) zg = s′∗g (f),

where zg is the traceless Ricci tensor defined by zg = rg − sg

n g and f is a function on
M with a vanishing mean value. It is obvious that a solution g of the CPE is Einstein
if f is trivial. Therefore, from now on, we consider only the case when (g, f) is a
non-trivial solution of the CPE.

In 1987 Besse proposed the following conjecture in [1]:

Conjecture I. A solution of the critical point equation (2) is Einstein.
There are some partial answers to Conjecture I. Among them, Lafontaine showed

in [8] that if a solution metric g of the CPE is locally conformally flat and ker s′∗g �= 0,
then such a metric is Einstein. Later Bessières, Lafontaine, and Rozoy showed that if
a solution metric g of the 3-dimensional CPE is locally conformally flat, Conjecture
I is true without the need for a condition on ker s′∗g ([2]). Recently we proved the
following result:

Theorem 1.1. [3]. Let (g, f) be a non-trivial solution of the CPE on an n-
dimensional compact Riemannian manifold M . If the Ricci tensor of g is parallel,
then (M, g) is isometric to a standard sphere.

The geometric structure of an Einstein solution is known to be simple; Obata
showed that such a solution is isometric to a standard n-sphere([10]). For more details,
we refer the reader to [1] and [7].

In this paper, we answer Conjecture I for harmonic curvature, which is a general-
ization of conformal flatness or parallel Ricci tensor conditions. We say that (M, g) has
harmonic curvature if the divergence of the Riemann curvature vanishes, i.e., δR = 0.
A locally conformally flat metric with constant scalar curvature has harmonic curvature
(see Section 3). It is also well known that every manifold with a parallel Ricci tensor
has harmonic curvature. However, there are examples of compact and noncompact
Riemannian manifolds with δR = 0 and ∇rg �= 0 (see [4] and Theorem 5.2 in [6]).
By virtue of Theorem 1.1, it is natural to ask whether a solution metric of the CPE
which has harmonic curvature is Einstein. In the following we show that the answer
to this question is affirmative.
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Theorem 1.2. Let (g, f) be a non-trivial solution of the CPE on an n-dimensional
compact Riemannian manifold M . If (M, g) has harmonic curvature, then M is
isometric to a standard sphere.

This result is a good progress to solve Conjecture I. The remaining part is to show
that the solution metric in Conjecture I is harmonic.

We remark that Derdzinski has given a local characterization of the analytic metrics
with harmonic curvature, assuming that the Ricci tensor is not parallel and has less than
three distinct eigenvalues at any point; such a compact analytic manifold is covered
isometrically by certain warped products ([4]). In view of Remark 3.5, the eigenvalues
of the Ricci tensor has less than three distinct eigenvalues if (M, g) has harmonic
curvature and (g, f) is a non-trivial solution of the CPE. However, since a CPE solution
cannot be realized on a warped product space ([3]), we may conclude that the Ricci
tensor should be parallel in this case.

As an immediate consequence of Theorem 1.2, we have the following generalization
of Lafontaine’s result([8]), which does not need a condition on ker s′∗g .

Corollary 1.3. Let (g, f) be a non-trivial solution of the CPE on an n-dimensional
compact Riemannian manifold M . If g is locally conformally flat, then (M, g) is
isometric to a standard sphere.

While Lafontaine’s proof relies on the classification of locally conformally flat metrics
with ker s′∗g �= 0, our work directly shows that g is Einstein by Theorem 4.1 if g is
locally conformally flat (see Remark 3.5).

This paper is organized as follows. In Section 2, we analyze the critical point equa-
tions. In Section 3, we formulate the critical point equations under harmonic curvature
conditions. In particular, we decompose the traceless Ricci tensor zg in Lemma 3.4 into
tangential component of the level sets of f and their orthogonal complements. Using
this decomposition, we prove Theorem 4.1, a special case of Theorem 1.2, which has
the condition that one component WN of the decomposition of zg vanishes. Finally, we
will complete the proof of Theorem 1.2 in Section 5 by showing that WN is identically
zero on M .

2. PRELIMINARIES

Let (M, g, f) be a non-trivial solution of the CPE. Taking the trace of (2) gives

(3) Δgf = − sg

n − 1
f.

Thus, by (1), (2) and (3), the CPE may be written as

(4) (1 + f)zg = Dgdf +
sgf

n(n − 1)
g.

Here the scalar curvature sg is constant from our stated assumptions.
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Proposition 2.1. Let (g, f) be a non-trivial solution of (4), and B = {x ∈
Mn | f(x) = −1}. Then B has measure zero.

Proof. Let B′ be the set of critical points of f in B. Then B \ B′ is a union of
hypersurfaces. For p ∈ B′ , from (4) we have

Ddfp(ξ, ξ) =
sg

n(n − 1)
gp(ξ, ξ) > 0

for any nonzero tangent vector ξ in the tangent space TpM at p. Thus p is a non-
degenerate critical point of f . Such non-degenerate critical points are isolated, and
thus the set B′ should be finite. Therefore B = B′ ∪ (B \B′) has measure zero.

Let Crit(f) = {x ∈ M | df(x) = 0}. For this set, we observe the following fact.

Proposition 2.2. The measure of Crit(f) is zero.

Proof. We first claim that Crit(f)∩B is finite. If p ∈ Crit(f)∩B, we observe
that as in the proof of Proposition 2.1 that p is an isolated point, and thus Crit(f) ∩B

is finite since B is compact. To prove that there is no open set in Crit(f) ∩ (M \B),
it suffices to prove that g and f are analytic in M \B. Since the coefficients, in local
harmonic coordinates, of the coupled elliptic system (3) and (4) are real-analytic, it
follows from Theorem 6.6.1 in [9] that g and h = 1+f are in fact real-analytic where
f �= −1.

3. HARMONIC CURVATURE

In this section we study harmonic curvature and its relation to the CPE. For an
n-dimensional Riemannian manifold (M, g), the second Bianchi identity yields the
well-known divergence formulae δrg = −1

2dsg and

(5) δR = −dDrg,

where dD is the first-order differential operator from C∞(S2M) into C∞(Λ2T ∗M ⊗
T ∗M) defined by

dDω(x, y, z) = Dxω(y, z)− Dyω(x, z)

for a two form ω. Consequently

(6) δW = −n − 3
n − 2

dD

(
rg − sg

2(n − 1)
g

)
,

where W is its Weyl conformal curvature tensor.
We say that (M, g) has harmonic curvature if the divergence of the Riemann cur-

vature vanishes, i.e., δR = 0. When n = 3, (M, g) is locally conformally flat and has
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constant scalar curvature. When n ≥ 4, (M, g) has harmonic Weyl tensor (δW = 0)
and constant scalar curvature. Moreover, it is equivalent to dDrg = 0, in other words,
rg is a Codazzi tensor. Harmonic curvature is a generalization of locally conformally
flatness of a metric. For n ≥ 4, a metric is locally conformally flat if and only if
W = 0. Thus, by (6) and the definition of harmonic curvature, a locally conformally
flat metric with constant scalar curvature has harmonic curvature for n ≥ 3.

The product of a 1-form β and a symmetric two form η can be defined by β ∧
η(x, y, z) = β(x)η(y, z)− β(y)η(x, z). Then we have the following equation.

Lemma 3.1. Let (M, g) have harmonic curvature and (g, f) be a non-trivial so-
lution of the CPE. Then

(7) (n − 2) ĩ∇fW = (n − 1)df ∧ z + i∇fz ∧ g.

Here, we define ĩ by ĩξω(X, Y, Z) = ω(X, Y, Z, ξ) for a 4-tensor ω, and i by iξz(X) =
z(ξ, X).

Proof. From (4) we have

(1 + f)dDrg(X, Y, Z) = 〈R(∇f, Z)Y, X〉+
(

sg

n − 1
df ∧ g − df ∧ rg

)
(X, Y, Z).

Now from

W(X, Y, Z,W ) = R(X, Y, Z,W )− 1
n − 2

(g(X, Z)r(Y,W )+ g(Y, W )r(X,Z)

−g(Y, Z)r(X, W )− g(X, W )r(Y,Z))

+
sg

(n − 1)(n− 2)
(g(X, Z)g(Y, W )− g(Y, Z)g(X,W )),

ĩ∇fR = ĩ∇fW − 1
n − 2

i∇frg ∧ g +
sg

(n − 1)(n − 2)
df ∧ g − 1

n − 2
df ∧ rg.

We can obtain

(1 + f)dDrg = ĩ∇fW − 1
n − 2

i∇frg ∧ g +
sg

(n − 2)
df ∧ g − n − 1

n − 2
df ∧ rg

= ĩ∇fW − n − 1
n − 2

df ∧ z − 1
n − 2

i∇fz ∧ g.

Then equation (7) follows from the harmonicity of the metric g.

Throughout the rest of this paper, we assume that (M, g) has harmonic curvature
and (g, f) is a non-trivial solution of the CPE. As immediate consequences of (7), we
have the following two results.
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Lemma 3.2. For each regular value c of f and a tangent vector X to f−1(c),

(8) z(X,∇f) = 0

on f−1(c).

Proof. Note that X is orthogonal to ∇f . Applying the triple (X,∇f,∇f) into
(7) gives

0 = (n − 2)W(X,∇f,∇f,∇f) = (2− n)z(X,∇f)|df |2,
since df(X) = 0. This implies that (8) is true.

Lemma 3.3. On M we have

(9) |df |2i∇fz = z(∇f,∇f) df.

Proof. From dDrg = 0 and (7), applying the triple (∇f, Y,∇f) into (7) with an
arbitrary vector Y gives

0 = (n − 2)W(∇f, Y,∇f,∇f)

= (n − 1)(|df |2z(Y,∇f)− df(Y )z(∇f,∇f))

+z(∇f,∇f)df(Y )− z(∇f, Y )|df |2.

Therefore we obtain
|df |2z(Y,∇f) = df(Y )z(∇f,∇f).

Thus equation (9) holds.

On M \ Crit(f), we can define N := df/|df | and α = z(N, N ). Then we can
rewrite the equation (9) as

(10) i∇fz = αdf.

Taking the divergence of (10) gives

(11) δ(i∇fz) = −〈dα, df〉 − αΔf.

On the other hand, if {Ei}i=1,...,n is a local orthonormal basis of vector fields,

δ(rg(dϕ, ·)) = −
∑

i

(DEirg(dϕ))(Ei) = −
∑

i

Ei(r(dϕ, Ei))

= −〈Ddϕ, rg〉+ δrg(dϕ) = −〈Ddϕ, rg〉 − 1
2
〈dsg, dϕ〉
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for any smooth function ϕ. Thus, since sg is constant, from (4) we have

(12) δ(i∇fz) = δ(r(df, ·)) +
sg

n
Δf = −〈Ddf, r〉 − sg

2

n(n − 1)
f = −(1 + f)|z|2.

Therefore, by (11) and (12) we obtain

(13) (1 + f)|z|2 = − sg

n − 1
αf + 〈dα, df〉.

On the other hand, by Lemma 3.1 and Lemma 3.3 we have

−df ∧ z =
α

n − 1
df ∧ g − n − 2

n − 1
ĩ∇fW .

Thus, applying the triple (Ei,∇f, Ej) into the above equation gives the following
orthogonal decomposition of z.

Lemma 3.4. Let {Ei}n
i=1 be a local orthonormal frame field on M \Crit(f) with

En = N = ∇f/|∇f |. Then we have

(14) zij = − α

n − 1
δij − n − 2

n − 1
Wij,

for i, j = 1, ..., n− 1, where Wij = WN(Ei, Ej) ≡ W(Ei, N, Ej, N ). Thus

(15) |z|2 =
n

n − 1
α2 +

(
n − 2
n − 1

)2

|WN |2.

Note that equation (15) follows from trWN = 0.

Remark 3.5. Using our approach, we can easily recover Lafontaine’s work, which
says that, if (M, g) is locally conformally flat and (g, f) is a non-trivial solution of
the CPE, then (M, g) is Einstein. In fact, if (M, g) is (locally) conformally flat,
then by Lemma 3.1 and 3.2, zg has two eigenvalues with multiplicities 1 and n − 1,
respectively. Namely, choosing an orthonormal frame {Ei} with En = ∇f/|∇f | and
letting α = zg(En, En), we have

(16) zg(Ei, Ej) = − α

n − 1
δij for 1 ≤ i, j ≤ n − 1.

In this case, g is Einstein by Theorem 4.1.
Note that, if (M, g) has harmonic curvature, we may also recover (16) by (15)

with Theorem 5.1. In other words, zg also has at most two eigenvalues if (M, g) has
harmonic curvature.
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For a real number c, we denote Lc as a connected component of f−1(c). The
following lemma implies that the functions |z|2 and |WN |2 are constant on Lc due to
(13) and (15) since α, |df |, 〈dα, df〉 are constant on Lc.

Lemma 3.6. For each regular value c of f , α, |df |, and 〈dα, df〉 are constant on
Lc.

Proof. From (4) and Lemma 3.2, it is easy to see that DNN = 0;

DNN =
n−1∑
i=1

〈DNN, Ei〉Ei =
1

|df |
n−1∑
i=1

〈DNdf, Ei〉Ei =
1 + f

|df |
n−1∑
i=1

z(N, Ei)Ei = 0.

Now, since dDrg = 0 and the scalar curvature sg is constant, dDz = 0. Thus for a
tangent vector X to Lc, from (8) and DNN = 0 we obtain

X(α) = X(z(N, N )) = DXz(N, N ) + 2z(DXN, N )
= DNz(X, N ) = N (z(X, N ))− z(DNX, N )− z(X, DNN )
= −〈DNX, N 〉α = 0.

This implies the constancy of α on f−1(c). In particular, dα = N (α)N . The second
part follows easily; for a tangent vector ξ to the level set of f ,

ξ|df |2 = 2〈Dξdf, df〉 = 2(1 + f)z(ξ, df)− 2sf

n(n − 1)
ξ(f) = 0

by Lemma 3.2. Also, since α is constant on each level sets of f , the third statement
follows from

0 = NX(α) = N 〈dα, X〉 = 〈DNdα, X〉
= 〈DXdα, N 〉 = X〈dα, N 〉,

where we used Lemma 3.2 in the last equality.

It is clear that α and dα are defined on M \Crit(f). For the rest of this section, we
discuss the extension of α and dα onto all of M . Since we have |α| ≤ |z|, α can even
be defined on the measure zero set Crit(f). In particular, if z(x0) = 0 for x0 ∈ Crit(f),
α(x0) can be continuously defined to be zero since limx→x0 |α| ≤ limx→x0 |z| = 0.

Let G = |df |2 + s
n(n−1)f

2. It is easy to see that G is continuous on M . To
investigate the properties of α and the structure of level sets of f , we need some
technical properties of the function G. To find these, we are going to use a conformal
metric (1+f)−2g of g which may be singular somewhere. We remark that if the scalar
curvature is identically zero, the equation (4) reduces to a static space-time metric
h rg = Dgdh with h = 1 + f ≥ 0. In studying static metrics, it is often very useful to
consider the conformal change of the metric. For example, in dimension 4, the Ricci
curvature of the conformal change h−2g of a static metric g becomes non-negative.
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Lemma 3.7. For the function G = |df |2 + s
n(n−1)

f2 and the conformal metric
g̃ = h−2g with h = 1 + f , we have

(17) Δ̃G +
(n − 3)

h
g̃(dG, df) = 2h4|z|2,

where Δ̃ is the Laplacian of g̃. In particular, if x0 ∈ Crit(f) and z(x0) �= 0, then G

has its local minimum at x0.

Proof. Making a conformal change (c.f. see [2]) gives

Δ̃
(
|df |2 +

s

n(n − 1)
f2

)
= 2h4|z|2 − 2(n− 3)h2z(df, df),

since

Δ̃|df |2 = 2h4|z|2 − 2s

n(n − 1)
h2|df |2 +

2s2

n(n − 1)2
f2h2

−2(n − 3)h2z(df, df) +
2(n − 2)
n(n − 1)

sfh|df |2

and
Δ̃f2 = − 2s

n − 1
h2f2 + 2|df |2h2 − 2(n − 2)fh|df |2.

Thus the function G satisfies (17).
Note that, for any tangent vector ξ at x0,

(18) ξ(G) = 2〈Dξdf, df〉 +
2sf

n(n − 1)
〈ξ, df〉 = 2hz(ξ, df).

Therefore dG = 2h i∇fz.
If x0 ∈ Crit(f), we have ξ(G)(x0) = 0 by (18). Also by (17) and the assumption

that z(x0) �= 0, Δ̃G = 2h4|z|2 > 0 at x0. Since G is constant on each level sets of f ,
we may conclude that G has its local minimum at x0.

Remark 3.8. By Lemma 3.7 we can apply the maximum principle to G = |df |2 +
s

n(n−1)f
2 on the open set M ε = {x ∈ M | 1+f(x) > ε} for an arbitrary small positive

number ε to conclude that G achieves its maximum on B = {x ∈ M | f(x) = −1}.
Similarly, we may conclude that G on the set M−ε = {x ∈ M | 1 + f(x) < −ε} also
achieves its local maximum on B.

Let x1 ∈ Crit(f). Note that Crit(f) has measure zero by Proposition 2.2 . As
mentioned above, if z(x1) = 0, then α(x1) can be continuously defined to be zero.
Now we assume that z(x1) �= 0. Let M0 = {x ∈ M | 1 + f(x) > 0}.
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Lemma 3.9. Let x1∈Crit(f). If x1∈M0 and z(x1) �=0, then x1 has to be a local
maximum point of f . Also, if f(x1) < −1 and z(x1) �= 0, then x1 has to be a local
minimum point of f . If f(x1)=−1, then x1 has to be a local minimum point of f .

Proof. First of all, note that, for a connected level set Lf(x1) containing x1, we
have |df |(y) = 0 for every y ∈ Lf(x1) and G has its local minimum on Lf(x1) by
Lemma 3.7.

First we prove the case when x1 ∈ M0. Suppose x1 is not a local maximum point
of f . Let x2 be the (global) maximum point of f . Then G has its local minimum at
x2; near x2 we have

dG = 2 i∇fz = 2h α df,

and hα is negative since, for a small connected neighborhood Ωε = {x ∈ M | f(x) >

f(x2)− ε} of x2 with an arbitrarily small ε > 0 (see Fig 1 (a) where x2 replaces x1),
h = 1 + f > 0 on Ωε, and

0 <

∫
Ωε

(1 + f)|z|2 = −
∫

∂Ωε

α|df | = −α

∫
∂Ωε

|df |,

implying that α < 0 on ∂Ωε = Lf(x2)−ε. Here, we used the fact that
∫
Ωε(1+f)|z|2 �= 0;

otherwise, since the metric g and thus the traceless Ricci tensor z are analytic on M0

as seen in the proof of Proposition 2.2, z ≡ 0 on Ωε, which implies that z ≡ 0 on the
connected component of M0 containing x1. This contradicts the fact that z(x1) �= 0
for x1 ∈ M0.

Now consider a geodesic γ from x1 to x2 in M0 (see Fig 1 (b) where x1 replaces x0

and x2 replaces x1). Since G also has its local minimum at x2 by the above argument
and the fact that G is constant on the each level sets of f , there exists a point on γ at
which G has its local maximum. Then, by the maximum principle of G mentioned in
Remark 3.8, G has to be constant along γ , and thus by (17) z = 0 on the connected
subset of {x ∈ M | f(x1) ≤ f(x) ≤ f(x2)} containing γ , contradicting our assumption
that z(x1) �= 0. This completes the proof of the first statement.

The proof of the second statement is similar. The remaining case is when f(x1) =
−1. In this case, x1 has to be a local minimum point of f by Proposition 2.1.

By Lemma 3.9, we may conclude that any critical point x1 of f with z(x1) �= 0
should be a local maximum if f(x1) > −1, or a local minimum if f(x1) ≤ −1, and
since α is constant on each level sets of f , α = z(df, df)/|df |2 can be continuously
defined up to x1 if z(x1) �= 0. If z(x1) = 0 for x1 ∈ Crit(f), α = 0 as discussed
above. In other words, α can be extended to a C0-function on on all of M . Also the
differentiation of α on Crit(f) can be considered in the distribution sense.

4. A SPECIAL CASE

In this section we prove Theorem 1.2 in the case when WN = 0 on M \ Crit(f).
Then by continuity WN ≡ 0 on M , and thus, by (15) α is smooth on all of M . Due
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to the results obtained by Obata ([10]), it is sufficient for the proof of Theorem 1.2 to
prove that z = 0 identically on M .

Theorem 4.1. If WN ≡ 0 on M , then g is Einstein.

In the following we shall prove that α is constant by showing that α is superhar-
monic on M (Lemma 4.6). If α is constant, since, by (12), (15), and the fact that∫
M f = 0,

n

n − 1
α2 =

n

n − 1

∫
M

(1 + f) α2 =
∫

M
(1 + f)|z|2 = −

∫
M

δ(i∇fz) = 0,

implying that α ≡ 0 on M .
When WN ≡ 0, by (13) and (15) we have

(19)
n

n − 1
(1 + f) α2 = − s

n − 1
αf + N (α)|df |,

since N (α)|df | = 〈dα, df〉. By virtue of Lemma 3.6, we denote α′ = N (α) and
α′′ = NN (α).

For the proof of Theorem 4.1, we need the following Lemma 4.2 and Lemma 4.4.

Lemma 4.2. If WN ≡ 0 on M , we have the following equalities

α′ =
n

n − 1
α δN,(20)

α′′ =
nα

n − 1

(
α +

s

n

)
+

n + 1
n − 1

α′ δN,(21)

Δ α =
nα

n − 1

(
α +

s

n

)
+

2
n − 1

α′ δN.(22)

Proof. From the definition of divergence and DNN = 0,

δN = −
n−1∑
i=1

〈DEiN, Ei〉

= − 1
|df |

(
(1 + f)

n−1∑
i=1

z(Ei, Ei)− sf

n

)
=

1
|df |

(
(1 + f)α +

sf

n

)
.

Thus by (19) we obtain

α′|df | =
n

n − 1
α
(
(1 + f)α +

s

n
f
)

=
n

n − 1
α |df | δN.

Taking the derivative in the direction N of (19) gives

(n − 1)α′′ = nα2 + s α + (n + 1)α′δN,
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where we used (20) and the fact that

(23) N (|df |) = 〈DNdf, N 〉 = (1 + f)α − sf

n(n − 1)
.

The last equation for the Laplacian of α follows from the following observation

Δ α = −δ(dα) = −δ(α′N ) = α′′ − α′ δN.

Remark 4.3. Equation (23) holds on M \ Crit(f) without any condition on WN .

The following is a special case of Lemma 5.2. However, we include the proof for
the sake of the completeness.

Lemma 4.4. If WN ≡ 0 on M , α ≤ 0 on M .

Proof. Let p be a maximum point of α. Then α′(p) = 0 and Δ α(p) ≤ 0. From

0 ≥ Δ α(p) = α′′(p) =
n

n − 1
α2(p) +

s

n − 1
α(p),

(α(p))2 + s
n α(p) ≤ 0, which implies that − s

n ≤ α(p) ≤ 0. Thus we may conclude
that α is always non-positive on M .

Let H = {x ∈ M |Δ α(x) ≤ 0 } and Ω = {x ∈ M |α(x) + s
n < 0 }. The

following lemma gives us a good understanding of the set Ω.

Lemma 4.5. If WN ≡ 0 on M , Ω �= M and M \Ω � H . In particular, if H � M ,
Ω can be written as the disjoint union of M \ H and Ω ∩ H .

Proof. Note that Ω � M ; otherwise, on the set M+1 = {x ∈ M | 1 + f(x) > 1}

δN =
1

|df |
[
α + f(α +

s

n
)
]

< 0,

and thus we obtain the following contradiction;

0 >

∫
M+1

δN = −
∫

M+1

div(N ) = −
∫

∂M+1

〈N,−N 〉 = vol(∂M+1).

Thus M \ Ω is a non-empty set. In particular, M \ Ω is a subset of H . For the proof
of this fact, we need to show that Δ α ≤ 0 on M \Ω. This follows from (22) and the
facts that α ≤ 0 and α′δN = n

n−1α(δN )2 ≤ 0 on M by Lemma 4.4 and (20).
Also note that we have α = − s

n on ∂Ω and thus

α′ =
n

n − 1
αδN =

n

n − 1
α2

|df | =
s2

n(n − 1)
1

|df | > 0
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on ∂Ω. Therefore, the outward unit normal to ∂Ω is given by

∇α

|∇α| =
α′N
|α′N | =

α′

|α′|N = N.

The positivity of α′ on ∂Ω also implies that M \ Ω �= H , since δN = − s
n

1
|df | < 0 on

∂Ω and by (22)

Δα =
2

n − 1
α′ δN < 0.

Lemma 4.6. If WN ≡ 0 on M , H = M .

Proof. By Lemma 4.5, M \H ⊂ Ω. We claim that Ω has measure zero, implying
the proof of our lemma.

Suppose that the n-dimensional measure of Ω is positive. First we observe that
α′ �= 0 in Ω ∩ H ; if there is a point x0 ∈ Ω ∩ H such that α′(x0) = 0, then, since
α < − s

n on Ω

Δα(x0) =
n

n − 1
α(x0)

(
α(x0) +

s

n

)
> 0,

contradicting the fact that Δ α ≤ 0 on H . Thus, from the fact that α′ > 0 on ∂Ω,
α′ > 0 on Ω ∩ H . For x ∈ M \ H = Ω \ (Ω ∩ H), Δ α(x) > 0, and, since α is
constant on each level sets of f , we have α′ ≥ 0 on the all of Ω; otherwise there exists
some point y ∈ M \H such that α has a local maximum at y, which is impossible by
the maximum principle. Also, due to the fact that α′ > 0 on ∂Ω,

∫
Ω α′ > 0.

Note that by the proof of Lemma 4.5 the outward unit normal vector to ∂Ω is N .
Now by (20) ∫

Ω
δ(αN ) =

∫
Ω
−〈dα, N 〉+ αδN = −1

n

∫
Ω

α′.

On the other hand, by the divergence theorem∫
Ω

δ(αN ) =
∫

∂Ω
−α.

Consequently, by Lemma 4.4

0 <
1
n

∫
Ω

α′ =
∫

∂Ω
α ≤ 0,

which is a contradiction. This completes the proof of Lemma 4.6.

5. THE PROOF OF THEOREM 1.2

This section is devoted to the proof of Theorem 1.2. Due to Theorem 4.1, it suffices
to prove that WN vanishes identically on M . More precisely,
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Theorem 5.1. Let (g, f) be a non-trivial solution of the CPE. Assume also that
(M, g) has harmonic curvature. Then WN = 0.

We first show that α is nonnegative on the whole space of M in the following
lemma, and then prove that WN = 0 using Lemma 5.3 and Lemma 5.4.

Lemma 5.2. Let (g, f) be a non-trivial solution of the CPE. Assume also that
(M, g) has harmonic curvature. Then α ≤ 0.

Proof. Suppose that α(x0) = maxx∈M α(x) > 0.

Claim 1. We have −1 < f(x0) < 0.
Proof. [of Claim 1] At x0, we have by (13)

(24) (1 + f)|z|2 = − sf

n − 1
α.

Thus f(x0) �= 1. Also f(x0) �= 0, otherwise |z|2(x0) = 0 implying that α(x0) = 0, a
contradiction. Moreover, at x0 by (24)

0 <
s

n − 1
α = −1 + f

f
|z|2,

which implies our claim is true.

Fig. 1. Near a critical point.

Now we are ready to derive our contradiction. Choose a maximum point x1of f

such that a geodesic γ from x0 to x1 lies entirely in M0 (see Fig 1. (b)). It is easy to
see that α < 0 near every maximum points of f as in the proof of Lemma 3.9. Thus
there exist points in γ such that α = 0 at those points. Among those points let x2

be the point at which α changes sign. In other words, α(x2) = 0 and α > 0 before
the point x2 and α < 0 after x2 along the geodesic γ from x0 to x1. To obtain a
contradiction, we need to look into two cases, |df |(x2) �= 0 and |df |(x2) = 0.

Case I. |df |(x2) �= 0.

Consider Lf(x2) with x2 ∈ Lf(x2). Then, since |df |(x2) �= 0, there is a connected
subset Ωε′ of M for a sufficiently small ε′ > 0 such that f(x2) − ε′ < f(x) < f(x2)
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for every x ∈ Ωε′ with smooth boundaries ∂Ωε′ = Lf(x2)−ε′ ∪ Lf(x2). Since

0 <

∫
Ωε′

(1 + f)|z|2 =
∫

Lf(x2)

α|df | −
∫

Lf(x2)−ε′
α|df |

= −
∫

Lf(x2)−ε′
α|df | < 0,

which is the desired contradiction.

Case II. |df |(x2) = 0.

Note that the critical point x2 cannot be a local maximum point of f ; otherwise on
the small connected neighborhood Ωε of x2 given by Ωε = {x ∈ M | f(x) > f(x2)−ε}
with a sufficiently small ε (see Fig. 1 (a) where x2 replaces x1), α has to be positive
and negative at the same time on ∂Ωε, which is impossible since α is constant on
∂Ωε = Lf(x2)−ε. Similarly, x2 cannot be a local minimum point of f . Thus by
Lemma 3.9, z(x2) = 0 and f is increasing nearby x2 along γ from x0 to x1.

If one can find a connected subset Ωε of M such that ∂Ωε is a union of Lf(x2)−ε

and Lf(x2) with x2 ∈ Lf(x2) as in the proof of Case I, we can obtain the desired
contradiction. If that is not possible, we then consider the connected hypersurface
components Li

f(x2)
of f−1(f(x2)) containing x2 with i = 1, . . . , k. Note that α = 0

on Li
f(x2)

. Then there exists a connected set Ω̃ε with a sufficiently small ε such that
f(x2)− ε < f(x) < f(x2) for x ∈ Ω̃ε and either ∂Ω̃ε = Lj

f(x2)−ε
∪Lj

f(x2)
for some j

(see Fig. 2 (a)), or ∂Ω̃ε = Lf(x2)−ε ∪ (∪k
i=1L

i
f(x2)

) (see Fig. 2 (b)). Then

0 <

∫
Ω̃ε

(1 + f)|z|2 = −
∫

Lj
f(x2)−ε

α|df | or −
∫

Lf(x2)−ε

α|df |,

implying that α < 0 on Lj
f(x2)−ε

or Lf(x2)−ε, which are both impossible by the
definition of the point x2.

Fig. 2. Near a critical point



1454 Gabjin Yun, Jeongwook Chang and Seungsu Hwang

The contradictions derived in cases |df |(x2) �= 0 or |df |(x2) = 0 complete the
proof of our Lemma.

Note that WN is also continuously well defined on all of M as α; if z(x0) = 0
for x0 ∈ Crit(f), WN can be defined as zero since |WN | ≤ n−1

n−2 |z|, and if z(x1) �= 0,
x1 is not a critical point of f unless it is a local maximum or minimum point. The
differentiation of WN on Crit(f) can also be considered in the distribution sense. We
can compute the divergence of WN as follows.

Lemma 5.3. Let {Ei}1≤i≤n be an orthonormal frame field with En = N . Then
we have

δWN (Ei) = 0 and δWN (N ) = −n − 2
n − 1

1 + f

|df | |WN |2.

Thus, on M \ Crit(f)

(25) δWN = δWN (N )N =
δWN(N )

|df | df.

Proof. Since δW = 0, for X = Ej

0 = δW(N, X, N ) = −
∑

i

DEiW(Ei, N, X, N)

= −
∑

i

Ei(W(Ei, N, X, N ))+
∑

i

[W(DEiEi, N, X, N )

+W(Ei, DEiN, X, N )+ W(Ei, N, DEiX, N ) + W(Ei, N, X, DEiN )].

Thus

δWN(X) = −
∑

i

DEiWN (Ei, X)

= −
∑

i

Ei(WN(Ei, X)) +
∑

i

(WN (DEiEi, X) + WN (Ei, DEiX))

= −
∑

i

(W(Ei, DEiN, X, N ) + W(Ei, N, X, DEiN )).

Thus, by (7)

(n − 2)W(Ei, DEiN, X,∇f) = (n − 1)df(Ei)z(DEiN, X)− df(DEiN )z(Ei, X)

+z(∇f, Ei)g(DEiN, X)− z(∇f, DEiN )g(Ei, X).

Note that df(Ei) = 0,

df(DEiN ) = 〈DEiN,∇f〉 =
1

|df |(1 + f)z(Ei,∇f) = 0,
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and z(∇f, Ei) = 0 by Lemma 3.2, and finally z(∇f, DEiN ) = 0, from the facts that
|df | is constant on each level sets of f , and

(26) DEiN =
n−1∑
j=1

〈DEiN, Ej〉Ej =
1

|df |
n−1∑
j=1

〈DEidf, Ej〉Ej.

Therefore W(Ei, DEiN, X, N ) = 1
|df |W(Ei, DEiN, X,∇f) = 0. Similarly, we have

W(X, DEiN, Ei, N ) = 0. Hence we may conclude that δWN(X) = 0.
It still remains to show the second identity is correct. Since z(N, Ei) = 0 and

WN(N, ·) = 0, we may assume that E1, . . . , En−1 diagonalize WN at a point p.
Then, at p

δWN (N ) = −
n∑

i=1

DEiWN(Ei, N ) =
n−1∑
i=1

WN(Ei, DEiN )

=
n−1∑
i=1

〈DEiN, Ei〉WN (Ei, Ei).

Here we used the fact that WN (DEiEi, N ) = 0. So, from the CPE,

〈DEiN, Ei〉 =
1

|df |〈DEidf, Ei〉

=
1

|df |
(

(1 + f)z(Ei, Ei) − sf

n(n − 1)

)

= − 1
(n − 1)|df |

(
sf

n
+ (1 + f)α + (n − 2)(1 + f)WN(Ei, Ei)

)
.

Hence

δWN(N ) =
n−1∑
i=1

〈DEiN, Ei〉WN(Ei, Ei)

= − 1
(n − 1)|df |

(
sf

n
+ (1 + f)α

) n−1∑
i=1

WN(Ei, Ei)

−n − 2
n − 1

1 + f

|df |
n−1∑
i=1

WN (Ei, Ei)2

= −n − 2
n − 1

1 + f

|df | |WN |2,

where we used the fact that tr WN = 0 in the last equation.
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Lemma 5.4. The differential form δWN is a closed 1-form on M \ Crit(f).

Proof. Note that from (26)

DEiN = − 1
(n − 1)|df |

(
sf

n
+ (1 + f)α + (n − 2)(1 + f)WN (Ei, Ei)

)
Ei

for i = 1, . . . , n − 1. Since WN(Ei, Ei) = −n−1
n−2

(
α

n−1 + z(Ei, Ei)
)

by (14), we
obtain

(27) DEiN =
1

|df |
(

(1 + f)z(Ei, Ei) − sf

n(n − 1)

)
Ei.

In particular, if i �= j,

〈DEiEj, N 〉 = −〈Ej, DEiN 〉 = 0

and thus
〈[Ei, Ej], N 〉 = 〈DEiEj − DEjEi, N 〉 = 0.

Hence for a regular value c of f , the level set f−1(c) is an integrable hypersurface
in M . Since δWN(Ei) = 0 for 1 ≤ i ≤ n − 1 by Lemma 5.3, it follows from the
Frobenius theorem that

dδWN(Ei, Ej) = 0 for 1 ≤ i, j ≤ n − 1.

Next, by Lemma 5.3 and the fact that f, |df | and |WN |2 are all constant on each level
sets of f , we obtain

dδWN (N, Ei) = N (δWN(Ei))− Ei(δWN(N ))− δWN ([N, Ei])
= −δWN ([N, Ei]) = δWN(DEiN − DNEi).

By equation (27) and Lemma 5.3, δWN (DEiN ) = 0 and

δWN(DNEi) = 〈DNEi, N 〉δWN(N )
= −〈Ei, DNN 〉δWN(N ) = 0

since DNN = 0. Thus, we have dδWN(N, Ei) = 0 and consequently δWN is a
closed 1-form on M . This proves our lemma.

By Lemma 5.4 and Proposition 2.2, therefore, dδWN = 0 almost everywhere. Now
we are ready to prove Theorem 5.1.



Total Scalar Curvature and Harmonic Curvature 1457

Considering δWN as a vector, it follows from Lemma 5.3 that

〈δDdf, δWN〉 = 〈−dΔf − r(df, ·), δWN〉
=

s

n − 1
〈df, δWN〉 − r(df, δWN)

=
s

n − 1
δWN(N )|df | − |df |δWN(N )r(N, N )

=
s

n − 1
δWN(N )|df | − |df |δWN(N )

(
α +

s

n

)
= a

(
α − s

n(n − 1)

)
(1 + f)|WN |2,

where a = n−2
n−1 . Integrating this over M0, we have

∫
M0

〈δDdf, δWN〉 = a

∫
M0

(
α − s

n(n − 1)

)
(1 + f)|WN |2.

On the other hand, by Lemma 5.3 and Lemma 5.4 and the divergence theorem,∫
M0

〈δDdf, δWN〉 =
∫

M0
〈Ddf, dδWN〉 −

∫
∂M0

Ddf(δWN , N )

= −
∫

∂M0

δWN(N )Ddf(N, N )

= a

∫
∂M0

1 + f

|df | |WN |2Ddf(N, N ) = 0,

where the second equation follows from the fact that dδWN = 0 almost everywhere,
and the last equation follows from the definition of ∂M0 ⊂ f−1(−1). Thus∫

M0

(
α − s

n(n − 1)

)
(1 + f)|WN |2 = 0.

Since α − s
n(n−1) < 0 by Lemma 5.2, we may conclude that WN = 0 on the set

f > −1. Integrating the same integrand over f < −1, we have WN = 0 on the whole
space M . This completes the proof of Theorem 5.1.
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