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X-POSETS OF CERTAIN COXETER GROUPS
Sarah B. Hart* and Peter J. Rowley

Abstract. Let X be a subgroup of a Coxeter group W. In [5], the authors
developed the notion of X -posets, which are defined on certain equivalence classes
of the (right) cosets of X in W. These posets can be thought of as a generalization
of the well-known Bruhat order of W. This article provides a catalogue of all the
X-posets for various small Coxeter groups.

1. INTRODUCTION

Suppose that W is a Coxeter group and let X be a subgroup of W. Then, in [5],
the authors introduced and began the investigation of X -posets, which are defined on
certain equivalence classes of the (right) cosets of X in W. The special case when X
is the trivial subgroup yields the well known, and important, Bruhat order [6]. While
taking X to be a standard parabolic subgroup of W delivers us the (generalized) Bruhat
order defined on the cosets in W of that standard parabolic subgroup [3]. The study
of X -posets is in its infancy and will benefit greatly from a well organized collection
of examples. The aim here is to provide a catalogue of all the X -posets for various
small Coxeter groups. Specifically we look at the Coxeter groups of type As, Az, Ay,
A5, Bg, Bg and D4.

We now describe X -posets in more detail as well as establishing our notation and
briefly recapping some basic facts about Coxeter groups. Assume that W is a finite
Coxeter group with X a subgroup of W. Then, by definition, W has a presentation

W=(R|(rs)"=1,r,s€R)

where m,s € N, m;» = 1 and for r,s € R, r # s, mys = mg > 2. Let V be a
real vector space with basis II = {«,|r € R}, upon which we define the symmetric
bilinear form (-, -} by

Received September 5, 2010, accepted April 30, 2013.

Communicated by Ruibin Zhang.

2010 Mathematics Subject Classification: 20F55.

Key words and phrases: Coxeter group, Cosets, Bruhat order, Partially ordered set.
*Corresponding author.

1901



1902 Sarah B. Hart and Peter J. Rowley

(., ag) = — cos (mim> where r, s € R.
For r,s € R we also define
T = s — 2{ay, ag)a.

This extends to give an action of W which is faithful and respects (-, -) (see [6]). The
root system ® (of W) is the following subset of V'

={w-a,|reRweW},

with @+ = {3° Mo, € ® | A\, > 0 forall 7 € R} and &~ = —&7 being,
respectively, the positive and negative roots of ®. As is well-known ® = &TUd .
The elements in R are called the fundamental reflections of W and Ref(W), the set
of reflection of W, consists of all W-conjugates of the fundamental reflections.

For Y a subset of W define

N(Y)={ac d"|w-ac d for some w € Y}

and [(Y) = |[N(Y)|. We call [(Y) the Coxeter length of Y. This is a generalization
of the usual length function in Coxeter groups, first defined in [7].

For right cosets Xg and Xh of X we write Xg ~ Xh whenever Xgt = Xh
for some ¢ € Ref(WW) and X g and Xh have the same Coxeter length. Let ~ be the
equivalence relation generated by ~ on the set of right cosets of X in W and let X be
the set of ~ equivalence classes. (We remark that our choice of right, as opposed to
left, cosets is due to the fact that W acts on the right of ® — see [5] for more on this.)
Now let x,x" € X. We write x ~» x’ if there is a right coset X ¢ in x and a right
coset X h in x" such that X gt = X h for some ¢ € Ref(W) and I(Xg) < [(Xh). The
partial order < on X is defined by x < x’ if and only if there exist x1,...,%x,, € X
such that x ~» x1 ~ ...~ X, ~ x" and we call X the X-poset (of W).

A standard parabolic subgroup of IV is a subgroup generated by .S where S C R and
is usually denoted by Wg. The (generalized) Bruhat order defined on the cosets of Wg
will be denoted by B(Wg). Any conjugate of a standard parabolic subgroup is called a
parabolic subgroup of W. For X < W let (X ), denote the standard parabolic closure
of X which is the intersection of all standard parabolic subgroups of W containing X .
The following three results from [5] have a bearing on our calculations here.

Theorem 1.1. ([5], Corollary 1.4). Suppose that X < W where W is finite. If
N(X)= N({X)sp), then the X-poset X is poset isomorphic to B((X )sp).

Theorem 1.2. ([5], Proposition 4.1). Suppose that X < W where W is finite. If X
is not contained in any proper parabolic subgroup of W, then |X| = 1. In particular,
X is poset isomorphic to B(WR).
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Theorem 1.3. ([5], Theorem 3.8). Let X <Y < W where X and Y are finite
and Y is a reflection subgroup of W. Let X and ) denote, respectively, the X -poset
and the Y -poset. If N(X) = N(Y) then X is poset isomorphic to Y. If W is finite
and X is poset isomorphic to' Y then N(X) = N(Y).

Accompanying each Coxeter group of rank n is its Coxeter graph with the nodes la-
belled {1, ..., n} (in one-to-one correspondence with elements R). Let R = {ry,...,r,}.
To compress our tabular information in Section 2 when giving elements of W we sup-
press the symbol “r”; so, for example, for W of type A4 instead of r179747r3 we shall
write [1243]. We use Z,,, 2™, Dih(m), Alt(m), Sym(m) to denote, respectively, the
cyclic group of order m, the elementary abelian group of order 2™, the dihedral group
of order m, the alternating group of degree m and the symmetric group of degree m.

Our next section describes the structure of various X -posets — this information was
obtained with the assistance of Magma [2]. Our third section draws some lessons from

these examples.

2. X -PoSETS FOR SMALL COXETER GROUPS

In compiling the data below on X -posets where X < W, we take the view that
the (generalized) Bruhat order on cosets of a standard parabolic subgroup is “known”.
Thus, because of Theorem 1.2, we only need concern ourselves with subgroups con-
tained in parabolic subgroups of W. Also Theorem 1.1 tells us that we can ignore any
X for which N (X) = N((X)gp).

For m € N, C,, will denote the totally ordered set with m elements — C,, is
sometimes called the m-chain poset. In the posets presented in the figures below we
have only joined x; and x2 (where x;, x2 € X) if x; < x3 and I(x2) = I(x1) + 1.
For x € X the length of x, {(x) is defined to be {(X g) where X ¢ is any coset in x —
clearly [(x) is well defined. Also, in these figures we have indicated on the right-hand
side the lengths of the poset elements. Here we cover the Coxeter groups of type As,
As, Ay, As, By, Bs and D4. An example of an X -poset for type Fy is given in [4].

(2.1) W of type As, ?—g For X <W, X = B((X)sp)-

(2.2) W of type As, ?—;—g For X < W, either X = B((X)yp) or one of the
following holds:-

X ‘ X
([32123]) = Zy ‘ Co
(2132)) = Zy | Cs
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(2.3) Wof type Ay, ¢ 3 9. For X < W, cither X = B({X)sp) or one of
the following holds:-

10 10
10

9 9
9

8 8
8

7 7
7

6 6
6
5 5 5

4 4

Fig. 1. A4(i)(left), A4(ii)(centre) and A4 (ii7)(right).

Next we look at the case when W is of type As — so we have the Coxeter diagram:
?—’—’—z—g. Unlike for W of type A4 (in (2.3)), here we shall take ad-
vantage of the graph automorphism of order 2 (which interchanges vertices 1 and 5,
vertices 2 and 4, and fixes vertex 3) and only consider subgroups of W conjugate to
subgroups of Wiass (= W1 2,3.43)» Wizss (= Wyi2351) and Wiaas (= Wi 2.45))-

In (2.4) we first list the subgroups X which are contained in Wi234 and whose
poset is not of the form B((X)sp) (note that these are given in the same order as in
(2.3)). Then we consider similar subgroups of Wis35 (which is of type As x Ap).
Let X903, respectively X5, denote the projection of X in Wies, respectively Ws. If
the X1a3-poset in Wia3 is B((X123)sp), and the Xs-poset in W5 is B((X5)sp), then
X = B((X)sp). Hence, consulting (2.2), we see that in this subcase we only need
examine X = ([321235]) and X = ([21325]). Similar considerations apply to the
subgroups of Wiq45 with (2.1) showing that we need not consider any subgroups of
Wiaas.

A number of X-posets we encounter when W is of type A5 have quite a large
number of elements — too large to draw a comprehensible lattice. To describe these
larger posets we use the following scheme. For ¢ € N and X-poset X we set X; =
{x € X |l(x)=1}. If |X| = t, then we will label the elements of X by 1,2,...,¢. In
As(vii), As(viii), As(ix) and As(x), for each non-empty X; and i < |®T| we give the
element x of X; followed by the set of all elements y in X;;;, with the property that
x <y. So, for example, in A5(vii) we see that X7 = {8,9,10, 11,12, 13} and that the
element 8 is less than 14 and 16, the element 9 is less than 14, 15, 17, and so on. One
further point, we may reduce our computational labours by using Theorem 1.3. Thus
we observe in (2.4) that for X <Y < W with N(X) = N(Y) and Y a reflection
subgroup we have X = ) for the pairs (X,Y):-
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([4321234], [43421234])),

([12134321)),

( {
[212])), (([1343]), ([1], [343])), (<[134321]]>

(([124321]), ([12321], [4])),
([3432]), ([2], [343])), (([2432

X

({[2321]), ([1
1), ([232], [4]))-
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[1234321], [12134321))),
; ([121],[343])), (([234321]),
[232])), (([1321]),

([12324321]) =
([21321432)) = Zy
([12134321]) =
([4321234]) =~ Z,
([132143]) = Zs
([213432]) = Zy
([1214]) = Z,
([1343]) =2 Zy
([32123]) = Zy
([23432]) = Zy
([2132]) = Zs
([3243]) =
([234321]) 2 Z;3
([124321]) =
([134321]) 2 73
([1321]) = Z3
([3432]) =2 Z3
([2321]) = Z3
([2432]) = Z3
([4321234], [43421234]) = 22
([32123],[342123]) = 22
([1234321], [12134321]) = 22
([23432],[213432]) = 22
([4], [212]) = 22
([1], [343]) = 22
([121], [343]) = Sym(3)
([1], [23432]) = Sym
([12321], [4]) = Sym
Sym
S
S
S

gy

([1], [232]
([121], 3]
([2], [343]
([232], [4]

i 11 1R IIZ

], [343
32], [4

-~ —— ——

|X| = 10;
|X| = 10;
|X| = 10;
|X| = 10;
|X| = 15;
|X] = 15;

|X| = 10;
| X[ = 10;

see Ay (iii)
see Ay (iii)
see A4(i)
see A4(i)
see A4 (ii)
see A4 (ii)

see Ay (iii)
see Ay (iii)
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15 15
14 14
13 13
12 12
11 11
10 10
9 9
8 8
Fig. 2. As(i)(left) and As(ii).
(2.4) W of type A5, & @& —€&—@—8 [, X <V, cither X = B
one of the following hollds:-2 v
X X

X a subgroup
of Wia34

([12324321])
([21321432))
]

[ Ly
[

([12134321])

(

2
2

IIZ IIZ IIZ

|X| = 18; see A5(i)
|X| = 18; see As(ii)
|X| = 18; see As(iii)

[4321234]) = Zy |X| = 24; see As(iv)
([132143]) = Zo |X| = 30; see As(v)
([213432]) = Zo |X| = 30; see As(vi)
([1214]) = Zg |X| = 60; see As(vii)
([1343]) = |X| = 60; see As(viii)
([32123]) = |X| = 60; see As(ix)
([23432]) = Z |X| = 60; see As(x)
([2132]) = |X| = 90; see As(xi)
([3243]) = |X| = 90; see As(xii)
<[234321]> = |X| = 12; see As(xiii)
([124321))=Z |X| = 12; see As(xiii)
([134321]) = Z |X| = 12; see As(xiii)
([1321]) = Zg |X| = 30; see As(xiv)

([3432]) = Z4

([2321]) = Z4

([2432]) = Z3
([4321234], [43421234]) = 2
([32123], [342123]) = 22

|X| = 30; see As(xv)
|X| = 30; see As(xiv)
|X| = 30; see As(xv)
|X| = 18; see A5(i)
|X| = 18; see A5(i)

((X)sp) or
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([1234321], [12134321])
([23432], [213432]) =
([4], [212]) = 22
([1], [343]) = 22
((121], [343]) = Sym(3)

=~ 92
22

|X| = 18; see As(iii)
|X| = 18; see As(iii)
|X| = 60; see As(vii)
|X| = 60; see As(viii)
|X| = 12; see As(xiii)
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([1],[23432]) = Sy (3) |X| = 12; see As(xiii)
([12321], [4]) = Sym(3) |X| = 12; see As(xiii)
([1], [232]) = S (3) |X| = 30; see As(xiv)
([121],[3]) = Sym(3) |X| = 30; see As(xiv)
([2], [343]) = Sym(3) |X| = 30; see As(xv)
([232], [4]) = Sy (3) |X| = 30; see As(xv)
X a subgroup ([321235]) = Z |X| = 30; see As(xvi)
of W1235 <[21325]> =7 ‘:{‘ = 45; N¢§ A5(xvii)

X conjugate to a subgroup of Wio34 and X not contained in any proper standard

parabolic subgroup of .

X

X

X =7, [12132432154321])

&

[213243215432])
[123243254321])

o~~~

[121321454321]) }

Ca

([2132145432])
([1232454321)) }
[

Cs

([1324321543))
([21345432])
([13214543))
([12432154])

Cs

([1213454321])
([1234354321])

|X| = 8; see As(xviii)

([123454321])

|X| = 8; see As(xix)

([12134543])

- ([12321454
X =2 &12345432%
([12343215])

Ca

18 possible X’s

&

([23432], [12132432154321))
([1234321], [213243215432))

X conjugate to ([13], [2132]) (6 possibilities) }

Co

([232], [121321454321])
([12321], [2132145432])
([343], [123243254321])
([1234321], [1324321543])

Ca

([3], [1232454321])
([12321], [13214543)) }

Cs
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([121], [21345432))
(2], [1213454321))
([4], [1234354321]))
([1234321], [12432154])

|X| = 8; see As(xviii)

([2432154])
- ([1214354])
X =2 ([1243254]) Cs
([1432154])
([3214543]) c
([1324543)) } 4
X = Dih(8) 18 possible X’s Co
X = Alt(4) 3 possible X’s Co
X = Sym(4) 6 possible X’s Co

X conjugate to a subgroup of Wis45 which is not a subgroup of Wiys34 and X not

contained in any proper standard parabolic subgroup of W.

X

([13243254])
([21324325))
([21324354))
([23214325))
([32432154])

Cy

132435

([321435]) }
([ 1)

Cr

X conjugate to a subgroup of Wio35 which is not a subgroup of Wia34 nor Wigys

and X not contained in any proper standard parabolic subgroup of .

X X
N ([2132143215432])

X =1 ([1232143254321]) } Cs
([13214321543]) c
([23214325432]) } 5
([121432154])

([321432543)) Cr
([213435432))
([2143254]) Co

([12134354321])

|X| = 6; see As(xx)
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8 possible X’s

Cs
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([32432543], [321432543])
([21321432], [321432543))
([132143], [23214325432])
([2132145432], [23214325432])
([324543], [13214321543))
([1324321543], [13214321543)])
([213243215432], [2132143215432])
([13214543], [321432543))

([3243], [1232143254321))

([121432154], [14354])
([13214321543], [321432543))
([121432154], [2143254])
([213435432], [21325))
([2143254], [14354])
([2143254], [21325])
([213435432], [2143254])
([23214325432], [321432543))

ctd.

X

[213432], [243254])
[12134321], [12432154])
[21345432], [23435432])
[1213454321], [1234354321])
[12134321], [121432154])
[1213454321], [12134354321])
[24], [12134354321])
[121454], [2143254])

[1214], [213435432])
[23435432], [213435432])
[1234354321], [12134354321])
[2454], [121432154])

o~ o~~~ o~~~ o~~~ o~

|X| = 6; see As(xx)

([213432], [2143254])
([21345432], [213435432))
([12432154], [121432154])
([243254], [2143254))

([121], [4], [2345432])
(2], [4], [123454321])
(2], [454], [1234321])
([121], [454], [23432])

|X| = 6; see As(xx)
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5 LN
é? 12 % 12
%g 11 % 11
K %’?3
A V-

Fig. 3. As(iii)(left) and As(iv)(right).

Fig. 4. As(v). Fig. 5. As(wi).
Table 1. As(vii)
X, j{kze%iﬂ |y<k}(y€3€t)
X4 1{2,3}
T, 2{4,5,6}; 3{6,7}
X6 4{9, 10, 12}; 5{8, 9, 11}; 6{10, 11,12, 13}; 7{12, 13}

X; 8{14,16}; 9{14, 15, 17}; 10{17, 18}; 11{16, 17, 19, 21}; 12{18, 19, 20}; 13{20, 21}

14{23,25}; 15{22, 24, 28}; 16{23,25, 30}; 17{23, 24, 26};

s 18{26,27}; 19{25, 26, 28,29}; 20{27, 28, 29}; 21{29, 30}
X 22{31,32,35}; 23{32, 33}; 24{32, 34, 36}; 25{33, 35,39 };
? 26{33,34,36,37}; 27{36,37}; 28{35, 36, 38}; 29{37, 38, 39}; 30{39}
X 31{40, 44}; 32{40, 41, 42}; 33{41, 42, 46}; 34{41, 43}; 35{42, 44, 47};
10 36{42,43,45}; 37{45,46}; 38{44,45,47}; 39{46, 47}
x 40{48,50}; 41{48,49}; 42{49, 50, 53}; 43{49, 51 };
H 44{50,52}; 45{50, 51, 53}; 46{53}; 47{52, 53}
X0 48{54,55}; 49{54,55,57}; 50{55, 56 }; 51{55,57}; 52{56}; 53{56,57}
%13 54{58}; 55{58,59}; 56{59}; 57{59}

X14 58{60}; 59{60}




X -posets of Certain Coxeter Groups 1911

Table 2. As(viii)

X k€ Xipa [J <k} € %)
e 1{2, 3}
X5 2{4,5,6}; 3{6,7}
Xs 4{9,10}; 5{8,9,11}; 6{10, 11,12}; 7{12,13}
X7 8{14,16,19}; 9{14, 15, 17}; 10{17,18}; 11{16, 17, 19,20}; 12{18, 19,20, 21}; 13{20, 21}
x 14{22,23,26}; 15{22,24}; 16{23,25}; 17{23,24,26,27};

8 18{26,27, 30}; 19{25,26, 28}; 20{27,28,29}; 21{29, 30}
X 22{31, 32, 34}; 23{32, 33}; 24{32, 34, 37}; 25{33,35};

? 26{33,34,36}; 27{36,37,39}; 28{35, 36, 38}; 29{37, 38,39}; 30{39}
X 31{40,43}; 32{40,41}; 33{41, 42}; 34{41,43,45}; 35{42, 44};

10 36{42,43,45,47}; 37{45,46}; 38{44,45,47}; 39{46,47}
X 40{48,49}; 41{48,49, 50}; 42{49, 50, 52}; 43{49,51};

11 44{50,52}; 45{50, 51, 53}; 46{53}; 47{52, 53}
Xi2 48{54}; 49{54,55}; 50{55,56}; 51{55,57}; 52{56}; 53{56, 57}
X3 54{58}; 55{58,59}; 56{59}; 57{59}
Xi4 58{60}; 59{60}

Table 3. As(ix)

X; k€ Xiv1 | j <k} € Xi)
X5 1{2,3,4}
X6 2{5,6,7,9}; 3{5,6,8}; 4{7,8,9}
X, 5{10,12, 14}; 6{10, 13, 15}; 7{11, 12,13, 16}; 8{12,13, 14, 15}; 9{11, 14, 15, 16}
X 10{20, 21, 22}; 11{17, 18,19, 23}; 12{19, 20, 24};

8 13{18,20, 22, 25}; 14{19, 21,22, 24}; 15{18,21, 25}; 16{17, 22, 23, 24, 25}
X 17{26, 27, 30}; 18{26,29, 32}; 19{27, 28,29, 33}; 20{28, 29, 34, 35};

% 21{29,31, 34}; 22{28, 31, 35}; 23{28, 30, 32, 33}; 24{27,33, 34, 35}; 25{26, 31, 32, 34}
10 26{37,39}; 27{36,37,40}; 28{36, 38, 41, 42}; 29{37, 38, 43}; 30{36,39,40};

31{38,41,44}; 32{38,39,43}; 33{40, 41,42, 43}; 34{37,41, 43,44}; 35{36,42, 44}
%1y 36{45,46,48}; 37{45,47}; 38{45,49, 50}; 39{45, 47}; 40{46, 47, 48};
41{48,49,51}; 42{46,50,51}; 43{47,49,50}; 44{45,48,50, 51}
Y1y 45{52,53}; 46{52, 54, 55}; 47{52, 53}; 48{53, 54, 55};
49{53,55, 56}; 50{52,55,56}; 51{54, 56}
X3 52{57,58}; 53{57,58}; 54{57,59}; 55{58,59}; 56{57,59}
X4 57{60}; 58{60}; 59{60}
Table 4. As(x)

X; JHkeXiv1 | j <k} € Xi)
X5 1{2,3,4}
Xo 2{5,7,9}; 3{5,6,8Y}; 4{6,7,8, 9}
X, 5{11,12,13}; 6{11, 14, 15}; 7{10, 11, 12, 16}; 8{12,13,14,15}; 9{10, 13,16}
X 10{17, 19, 22}; 11{20, 21, 23}; 12{19, 20, 23, 24};

8 13{19,21,24}; 14{18,20,25}; 15{18,21,25}; 16{17,21, 22, 24}
X 17{26, 28, 30}; 18{27,29, 31}; 19{26, 30, 32, 34}; 20{27, 31, 32, 33};

% 21{30,31,32,35}; 22{28,32, 34}; 23{27,30, 33, 35}; 24{26, 31,34, 35}; 25{19, 32, 33}
10 26{36, 38}; 27{39,40}; 28{38,41,43}; 29{37, 39, 42}; 30{36, 41, 43};

31{37,40, 42}; 32{37,41,44}; 33{39, 41,42, 44}; 34{37,38, 43, 44}; 35{36,40, 42, 43, 44}
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36{47,48}; 37{45,46,49}; 38{47,48}; 39{46,50}; 40{46,50};

X 41{45,47,51}; 42{45,49,40}; 43{45,48,51}; 44{46,47,49, 51}
45{52,53,54}; 46{52,55}; 47{53,56}; 48{53,56};
*12 49{53,54, 55}; 50{52,55}; 51{52, 54, 56}
X3 52{57,58}; 53{57,59}; 54{58,59}; 55{57,58}; 56{57,59}
X4 57{60}; 58{60}; 59{60}
Table 5. As(xi)
X gk € Xipr [ J <k} € %)
X4 1{2,3,4}
X5 2{5,6,7,8}; 3{6,8,9,10}; 4{7,9,10}
X 5{11,12,13}; 6{11,13,14,15,16}; 7{12,14, 15,17, 19};
0 8{13,16,17,19}; 9{14, 17,18}; 10{15, 18,19}
X 11{20, 21, 22, 23}; 12{21, 22, 24, 26}; 13{20, 23, 24, 26, 27, 29}; 14{21, 24, 25, 28};
T 15{22,25,26,29,31}; 16{23,27,28,31}; 17{24,28,29, 30}; 18{25,29, 30}; 19{26, 30, 31}
20{32, 33, 35, 36, 38}; 21{33, 34, 37}; 22{34, 35, 38, 40}; 23{32, 36, 37, 40, 42};
X 24{33,37, 38,39, 41}; 25{34, 38, 39, 42, 44}; 26{35, 39, 40, 43,45}; 27{36, 41,45};
28{37,41,42, 44}; 29{38,42, 43}; 30{39, 43, 44}; 31{40, 44, 45}
32{46,47, 50, 52}; 33{47,48,49, 50}; 34{48, 49, 52, 54}; 35{49, 50, 53, 55};
X0 36{46,51, 55, 58}; 37{47,51, 52,54, 57}; 38{48, 52, 53,58}; 39{49, 53, 54, 57,59}

40{50,54, 55,56}; 41{51, 58, 59}; 42{52, 56, 57, 58}; 43{53, 56, 57}; 44{54,56,59}; 45{55, 59}

46{60, 64, 70}; 47{60, 61, 63, 67}; 48{61, 62, 70}; 49{62, 63, 67, 71}; 50{63, 64, 66

X10 51{60,69,70, 71}; 52{61, 66, 67,70}; 53{62, 66,67, 68,69}; 54{63,65, 66, 71}; 55{64, 68, 71};

56{65, 66, 68}; 57{65,67, 69}; 58{68,69, 70}; 59{68, 71}

60{78,79,80}; 61{74,76,79}; 62{74, 76,77, 78}; 63{73, 74,80},

X 64{77,80}; 65{72,73,75}; 66{72,73,74,77}; 67{73,76,78};
68{75,77}; 69{72,75,78}; 70{72,77,78,79}; 71{75, 77, 80}
x 72{81,82}; 73{81, 83,84}; 74{81,83}; 75{82,84}; 76{83,86};
12 77{82,84,85}; 78{84,86}; 79{81, 85, 86}; 80{84, 85}
X3 81{87,88}; 82{88}; 83{87,89}; 84{88,89}; 85{88,89}; 86{87, 89}
X4 87{90}; 88{90}; 89{90}
Table 6. As(xii)
X; JHk €Xiv1 |j <k} €X)
ER 1{2,3,4}
X5 2{5,6,7,8,10}; 3{6,8,9}; 4{7,9, 10}
x 5{11,12,13, 15}; 6{11, 13, 14, 16, 18}; 7{12, 14, 15, 17, 19};
0 8{13,16, 17}; 9{14,17, 18}; 10{15,18, 19}
x 11{20, 21, 23,25 }; 12{21, 22,24, 26}; 13{20, 23,24, 27,29}; 14{21, 24, 25, 28, 30};
T 15{22,25,26,29, 31}; 16{23,27, 28}; 17{24, 28,29}; 18{25, 29, 30}; 19{26, 30, 31}
20{32, 33, 36, 38}; 21{33, 34, 37, 39}; 22{34, 35, 38, 40}; 23{32, 36, 37, 43};
Xs 24{33,37,38,41,44}; 25{34, 38,39, 42, 45}; 26{35, 39, 40, 43}; 27{36, 41, 42};
28{37,41,42,43}; 29{38,42, 43, 44}; 30{39,43, 44, 45}; 31{40, 44, 45}
32{46,47,53}; 33{47,48,51, 54}; 34{48,49, 52, 55}; 35{49, 50, 53}; 36{46, 51, 52, 53};
Xy 37{47,51,52,53,56}; 38{48,52, 53, 54,57, 59}; 39{49, 53, 54, 55, 58}; 40{50, 54, 55, 56};

41{51,59}; 42{52, 58, 59}; 43{53, 56, 58}; 44{54,56,57}; 45{55, 57}
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46{60, 61, 70}; 47{60, 61, 62, 65}; 48{61, 62,63, 69, 71}; 49{62, 63, 64, 70}; 50{63, 64, 65};
X10 51{60, 68, 71}; 52{61, 66, 70,71}; 53{62, 65,67, 68,70}; 54{63, 65,66, 69}; 55{64,67,69};
56{65,66,67}; 57{67,69}; 58{66,68, 70}; 59{68, 71}

60{76,80}; 61{74,79,80}; 62{73, 75,76, 79}; 63{73, 74, 78};
X1 64{75,78}; 65{72,73,74,75}; 66{72, 74, 7T}; 67{75,77}:
68{72,76}; 69{75, 77, 78}; 70{74,76,77,79}; 71{72, 76, 80}

72{81,82}; 73{81, 83, 84}; 74{81, 83,86}; 75{82, 84, 86}; 76{31, 82, 85}

*12 77{82,86}; 78{84,86}; 79{83, 85,86}; 80{81,85}
%13 81{87,88}; 82{88}; 83{87,89}; 84{88,89}; 85{87,88}; 86{88, 89}
Xi4 87{90}; 88{90}; 89{90}
Table 7. As(xvii)

X gk € Xipa | < k}(j € X4)

X5 1{2,3}

Xo 2{4,5,7}; 3{4,5,6};

X7 4{8,9,10, 11}; 5{10, 11, 12}; 6{8,12}; 7{9, 10}

Xs  8{13,16,18}; 9{15,16, 17}; 10{13,14, 15,17, 19}; 11{17, 18,19}; 12{13, 14, 18}
13{20, 21, 23, 25}; 14{20, 26}; 15{20, 22, 23, 24};

*o 16{21,23}; 17{21,22,24, 26}; 18{21,25,26}; 19{24, 25}

x 20{27,28,31}; 21{28, 29, 30, 32}; 22{28, 29, 33}; 23{27,29, 30};
10 24{30,31, 33}; 25{30, 31}; 26{28, 31, 32}

X 27{34,37}; 28{34, 35, 37}; 29{34, 35, 36}; 30{36, 37, 38};
1 31{37,38}; 32{35, 38}; 33{36, 37}

%12 34{39,42}; 35{41,42}; 36{39,41}; 37{39,40, 41}; 38{40, 41}

%13 39{43,44}; 40{43}; 41{43,44}; 42{44}

X4 43{45}; 44{45}

15 14
14 13
13 12

11
12

10
11

9
10 8
9 7

Fig. 6. As(xiii). Fig. 7. As(xiv).
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Fig. 8. As(xv).

15 15 15
14 14 14
13 13 13
12 12 12
11 11 11
10 10

Fig. 10. As(xviii)(left), As(xix)(centre) and As(xx)(right).

(2.5) W of type By, §—9. For X < W either X = B({X)sp) or one of the
following holds:-
X | X
([212])) 2 Zy | Cy
([121]) =2 Zy | Co

(2.6) W of type Bs, ?:g—: For X < W either X = B({X)sp) or one of the
following holds:-

X x
([21232123]) = Z; Cs
([12123212]) = Z, Cy
([12132123]) = Z, Cy
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([2123212]) = Cs
([132123]) = Cy
([121321]) = Cy
([232123]) = Cy

([32123]) = Z,

|X| = 6; see B3(v)

([2132]) = Z,

|X| = 8; see Bs(vi)

([12321]) = Zy |X| = 8; see Bs(iii)

([232]) = Zg |X| = 8; see Bs(iv)

([212]) = Z |X| = 12; see Bs(i)

([121]) = Zg |X| = 12; see Bs(ii)

(1213]) = zg Cy

([2123]) = Cs

([1232]) = Cy

([2123], [21232123]> g Co
([1232], [132123]) =2 2 Co
([212],[21232123]) = 2 Co

([1], [2123212]) == 22 Co
([212],[12321]) = 22 Co
([32123], [121]) = 22 Co
([212], [232]) =~ 22 Ca
([32123], [2]) = 22 Ca

([1], [132123]) == 22 Cy

([121], [3]) = Sym(3) Cs

X = Wi, # Wiy (twice) = Dih(8) Co
X = W}, # Wiy (twice) = Dih(8) Cy

Fig. 11. Bs(i).

Fig. 12. Bs(ii).

1915
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9
9 8
8 7
7

6
6

5
5

4

3

Fig. 13. Bsliii). Fig. 14. Bs(iv).
9
9
8
8
.
7
. 6
s 5
4
Fig. 15. B3(v). Fig. 16. Bs(vi).

1

(2.7) W of type Dy, , 3 4. Onaccount of the graph automorphisms we shall only
consider conjugates of subgroups of Wass = ([2], [3],[4]) and Wias = ([1],[2], [4])-
For X < W, either X = B((X)yp) or one of the following holds:-

X x
([12312343123]), ([12312431234]), c
([13123431234]), ([23123431234]) } 2

([1312343123)) Cs
([123124312)), ([132431234)), c
([231431234)), ([312343123)) } 4
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X =7, ([12324312)) Cs
([1312431)), ([2312432)), ;
([3431234]), ([1234312]) } 6
([132431)) C
([31243)) Cs
([43234]) |X| = 16; see Dy(i)
([3243]) |X| = 24; see Dy(ii)
([124312])
X =7, ([123432)) Cy
([134312))
([12431])
X7, ([32431)) Cs
([14312])
([1324312)) Cs
X conjugate to Y7 = ([12], [124]), c
X #£Y), X 0r Xo (9 conjugates) } 2
X conjugate to Ya = ([14], [24]), } Cy
X # Y5, X3 (10 conjugates)
([132431], [3243])
s ([13431], [132431])
X =2 ([1234312], [12324312)) Cy
([312343123], [1312343123])
([132431], [24]) Cs
X, = ([3123], [31243))
X, = ([431234], [3431234]) Ce
X5 = ([3243], [3143])
([4], [123124])
X = Sym(3) ([23432], [123432]) Cy
([13431], [123431])
([1234312], [24])
X = Dih(8) ([312343123], [3243]) Cs
([13431], [24])
([4], [132431)) Cs

3. SOME OBSERVATIONS

3.1. Mbbius Functions

It was first shown by Deodhar [3] that the Mobius function of the Bruhat order
of any Coxeter group takes values -1, 1. Generalized quotients, introduced by Bjorner
and Wachs [1] and having the Bruhat order of a Coxeter group as a special case, have
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Mobius functions which only take values -1, 0, 1. This is not true for X -posets as may
be seen by looking at As(v) where W is of type As and X = ([132143]) = Zs. The
elements X2, X3, X4, X5 are all the elements of length 11 which are greater than xg (of
length 10) and less than x; (of length 12). So (where 1 denotes the Mobius function
of X)

p(x6, x1) + p(x2, X1) + pu(x3,X1) + (X4, X1) + p(x35,X1) + pu(x1,%1) = 0

whence p(xg,x1) —1—1—1—141 =0, and hence p(xg,x1) = 3. In particular, X
cannot be a generalized quotient.

12
11

10

Fig. 17. Da(i). Fig. 18. Dy(ii).

3.2. Odd and even elements in intervals

In any interval of the Bruhat order of a Coxeter group there are the same number
of odd (length) elements as there are even (length) elements [6]. This property is not
shared by X -posets. For example in A4(i7) the interval between (and including) x; and
x3 has two even elements and only one odd element (as a more substantial example
take the interval between x; and x4).

3.3. X-posets in standard parabolic subgroups

Suppose that X is a subgroup of Y where Y is a standard parabolic subgroup of
W. Let Xy be the X-poset in Y. Then there are a number of connections between
Xy and X (see [5]) Does Xy exert even greater control upon the structure of X? The
answer appears to be a resounding no. Looking at (2.3) and (2.4) and taking W of type
As with Y = Wig34 we have that the X -posets for ([12324321]) and ([21321432]) in
Y are isomorphic (both are Cy) but the X -posets in W are not isomorphic. Note that
both ([12324321]) and ([21321432]) also have the same standard parabolic closure in
Y. There are other examples like this for W of type A5 as well as for W of type Bs.
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