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ALGORITHMIC AND ANALYTICAL APPROACHES TO THE SPLIT
FEASIBILITY PROBLEMS AND FIXED POINT PROBLEMS

Li-Jun Zhu, Yeong-Cheng Liou*, Yonghong Yao and Chiuh-Cheng Chyu

Abstract. The split feasibility problem and fixed point problem is considered.
New algorithm is presented for solving this split problem. Some analytical tech-
niques are demonstrated and strong convergence results are obtained.

1. INTRODUCTION

Recently, some split problems have been presented and studied by some authors.
See, e.g., [1]-[16]. In which the following split feasibility problem is now well-known:
Finding a point z* such that

(1.1) z*eC and Ax* €Q,

where C' and ) are two closed convex subsets of two Hilbert spaces H; and Ho,
respectively, and A : H; — Hs is a bounded linear operator. The prototype of this
problem was first introduced by Censor and Elfving [3] in the finite dimensional Hilbert
spaces. The background of the split feasibility (1.1) is based on the field of intensity-
modulated radiation therapy when one attempts to describe physical dose constraints
and equivalent uniform dose constraints within a single model. Censor and Elfving [3]
used the simultaneous multi-projections algorithm to solve the split feasibility problem
(1.1) where C € RY and Q € RM . Their algorithms, as well as others, see, e.g., Byrne
[2], involve matrix inversion at each iterative step. Calculating inverses of matrices
is very time-consuming, particularly if the dimensions are large. Therefore, a new
algorithm for solving the split feasibility problem was devised by Byrne [1], called the
CQ-algorithm:
Tnt1 = Po(xy, — TA*(I — Pg)Ax,),n € N,
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where 7 € (0, %) with L being the largest eigenvalue of the matrix A*A, I is the unit
matrix or operator and Po and Py denote the orthogonal projections onto C' and @),
respectively. Consequently, C'() algorithm has been extensively by many mathemati-
cians, see, for instance, [5-10]. Especially, in [12], Xu gave a continuation of the study
on the CQ algorithm and its convergence. He applied Mann’s algorithm to the split
feasibility problem (1.1) and proposed an averaged CQ algorithm:

Tnt1 = (1 — ap)zy + oy Po(xy, — TA (I — Pg)Axy,),n €N,

which was proved to be weakly convergent to a solution of the split feasibility problem
(1.1) under suitable choices of iterative parameters. Xu [12] further suggested a single
step regularized method:

(1.2) ZTnt1 = Po((1 — anyn)zn — mA* (I — Pg)Axy,),n € N.

Xu proved that the sequence {x,,} generated by (1.2) converges in norm to the minimum-
norm solution of the split feasibility problem (1.1) provided the parameters {«,,} and
{Vn} satisfy the following conditions:

(i) ap — 0and 0 < 7y, < 5732

A2 +an
(i) 22, anym = 00;
(111> |'Yn+1_’Y7L|+’Yn|04n+1_04n|

— 0.
(a7L+1'Y7L+1 )2

Next, we concern the following problem: Find hierarchically a fixed point of a
nonexpansive mapping 1" with respect to another mapping .S, namely

(1.3) Find z € Fiz(T) such that (z — SZ,% — ) < 0,Vz € Fix(T).
It is not hard to check that (1.3) is equivalent to the fixed point problem

Find & € C such that = Pan:(T) - Sz,

where Pp;,(7) stands for the metric projection on the closed convex set Fix(T). By
using the definition of the normal cone to Fiz(T), i.e.,

{ue H;(Vy € Fiz(T)) (y — z,u) <0}, ifz e Fix(T);
Npig(ry s ¢ — .

(), otherwise.
We easily prove that (1.3) is equivalent to the variational inclusion

In order to solve (1.3), Moudafi et al. [17]-[18] suggested a well-known viscosity
algorithm and obtained convergence result. Further, Marino and Xu [19] suggested the
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following general iterative algorithm to minimize a quadratic function 1 (Bz, z) — (z, b)
over the set of fixed points of nonexpansive mapping 7', where B is a strongly positive
linear bounded operator and b is a given point:

(1.4) Tpy1 = Qo f(xy) + (I — o, B)Txy,¥n € N.

Subsequently, algorithm (1.4) and its variant have been extensively studied. Please
consult [23]-[30].

Motivated and inspired by the works in this direction, in this paper we will devote
to study the split feasibility problem and fixed point problem. In section 2 we recall
some basic concepts and cite some useful lemmas. In section 3, we first introduce our
problem and construct our iterative algorithm for the studied problem. In section 4, we
give convergence analysis of the suggested algorithm.

2. Basic CoNCEPTS AND USEFUL LEMMAS

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively.
Let C be a nonempty closed convex subset of H.

Definition 2.1. A mapping 7' : C' — C' is called nonexpansive if
1Tz =Tyl < [l —yll,
for all z,y € C.

We will use Fizz(T') to denote the set of fixed points of 7, that is, Fiz(T) = {z €
C:x=Tzx}.

Definition 2.2. A mapping f : C' — C is called contractive if

1f(2) = FW)Il < pllz =yl

for all z,y € C and for some constant p € (0,1). In this case, we call f is a
p-contraction.

Definition 2.3. A linear bounded operator B : H — H is called strongly positive
if there exists a constant v > 0 such that

(Bw,z) > v«]?,
forall z,y € H.

Definition 2.4. We call Po : H — C' the metric projection if for each x € H

l = Po(z)|| = inf{[lz =y - y € C}.



1842 Li-Jun Zhu, Yeong-Cheng Liou, Yonghong Yao and Chiuh-Cheng Chyu

It is well known that the metric projection Po : H — C' is characterized by:
(z = Pe(x),y— Fo(x)) <0

for all x € H, y € C. From this, we can deduce that Pp is firmly-nonexpansive, that
1s,

(2.5) 1Pe(z) — Pe()l” < (@ —y, Po(w) — Pe(y))

for all z,y € H. Hence P¢ is also nonexpansive.
It is well-known that in a real Hilbert space H, the following two equalities hold:

(2.6) ltz + (1 = O)yl* = tllzl* + 1 = B)llyl* — 1 = )|z -y,
for all z,y € H and ¢ € [0, 1], and
2.7) lz +yl* = llel® +2(z, y) + Iy,
for all z,y € H. It follows that
(2.8) lz +yl* < llel® +2(y, z + y),
forall z,y € H.
Lemma 2.5. ([20]). Let {z,} and {y,} be two bounded sequences in a Ba-

nach space X and let {(3,} be a sequence in [0,1] with 0 < liminf, . 3, <
lim sup,,_,o, Bn < 1. Suppose that

Tnt+1 = (1 - Bn>yn + ann
foralln > 0 and
limsup([|ynt1 = ynll = 241 — 2nl)) <0.
n—oo

Then, lim, oo ||yn — zn|| = 0.

Lemma 2.6. ([21]). Let C be a closed convex subset of a real Hilbert space H and
let S : C'— C be a nonexpansive mapping. Then, the mapping I — S is demiclosed.
That is, if {x,,} is a sequence in C such that x, — x* weakly and (I — S)x, — y
strongly, then (I — S)z* = y.

Lemma 2.7. ([22]). Assume that {a,} is a sequence of nonnegative real numbers
such that
An+1 < (1 - 7n>an + 5717 n e N,

where {7y} is a sequence in (0,1) and {0, } is a sequence such that
(1) ZrOLO:I Tn = O0;
1 In
(2) Hmsup, o 5% < 0 0r 3707 [0n] < oo

Then lim,,_.oo a,, = 0.
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3. PROBLEMS AND CONSTRUCTED ALGORITHMS

In this section, we first introduce our problem and consequently suggest our algo-
rithm for solving this problem. Now we give the assumptions on the underlying spaces,
involved operators and additional parameters which will be used in the next section,
throughout.

1. Underlying Spaces:

(S1): Hy and H, are two real Hilbert spaces;

(S2): D C Hy and E C Hy are two nonempty closed convex sets.

(S3): C C D and Q C F are two nonempty closed convex sets.

2. Involved Operators:

(O1): A: Hy — Hs is a bounded linear operator with its adjoint A*;

(02): B is a strongly positive bounded linear operator on H; with coefficient v > 0;

(03): f: D—D is a p-contraction;

(04): S:Q — Qand T : C — C are two nonexpansive mappings.

3. Additional Parameters:

(P1): 0 € (0, W) and o > 0 are two constants;

(P2): {ay,} and {f,} are two real number sequences in (0, 1).

In this paper, we devote to study the following split feasibility problem and fixed
point problem:

Problem 3.1. Find z* € C' N Fixz(T) such that Az* € Q N Fiz(S).

Remark 3.2. It is obvious this problem contains the split feasibility problem (1.1)
as a special case. In fact, if we can take 7' = [ and S = I, then Fiz(T) = C and
Fiz(S) = Q.

In order to solve Problem 3.1, we construct the following algorithm:

Algorithm 3.3. Taking xy € H; arbitrarily, we define a sequence {x,} by the
following:

(3 1) Unp = TPC(a:n —0A* (I — SPQ)Aa:n),
‘ Tn+l1 = CtnUf(IIZn> + ann + ((1 - Bn)l - anB>vnu
for all n € N.

4. CONVERGENCE ANALYSIS

In this section, we give the convergence analysis of the algorithm (3.1) and obtain
our main results. We use I' to denote the solution set of Problem 3.1, i.e.,
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I'={z"z" € CN Fiz(T), Ax* € QN Fix(S)}.

Theorem 4.1. Suppose I' # (. Assume the following conditions hold:

(A1) : limy, ooty = 0 and 30 | o = 00;

(A2) : 0 < liminf,, o By < limsup,,_ Bn < 1;

(A3):op < 7.

Then the sequence {x,} generated by algorithm (3.1) converges strongly to p =
Projr(of 4+ I — B)p which solves the following VI:

4.1) ((of = B)z,y—z) <0,Vy €T.
Remark 4.2. It is clear that the solution of (4.1) is unique.

Proof.  Set z, = PoAxy, yn = x, — 6A*(I — SPg)Ax,, and u,, = Po(x, —
dA*(I — SPg)Axy,) for all n € N. Then w, = Pcyy,. Let p = Pr(of +1 — B)p.
Then, we have p € C N Fiz(T) and Ap € Q N Fixz(S). By these facts and the
firmly-nonexpansivity of P and Pg, we have the following conclusions:

4.2) ():  lzn — Ap| = [|[PoAzy — Ap|| < || Azy — Ap]|,

(4.3) (i):  |un —pll = |1Poyn —pll < lyn —pl,
(44) (i) [|Szn — Apl|? < ||z — Ap||* < [[Azy — Ap||® — |20 — Azyl|?,

(4.5) (V): [Juns1 — tnll = [ Poynr = Peynll < ynsr — ynll;
and

@6) ) llzns1 = znll = [[Po A1 — Pon|| < [Azni1 — Azy.
From (3.1), we have

|Znt+1 —pl|
= |lan(o f(zn) — Bp) + Bu(zn —p) + (1 = Bp)I — anB)(Tu, — p)|
< ano| f(zn) = f(P)Il + anllo f(p) — Bpl|l + Ballzn — pl|

+(1 = B — any)|lun — pl|-

(4.7)

Using (2.7), we get

lyn — pII?
(4.8) = ||lzn — p 4 6A*(Sz, — Axy,)|?
= ||lzn — p||? + 02| A* (S 2, — Axy)||? 4+ 20z, — p, A*(Szp — Azy)).
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Since A is a linear operator with its adjoint A*, we have

(X — p, A*(Szp, — Axy))

<A(a:n p), Szn — Axy)

= (Az, — Ap+ Sz, — Az, — (Sz, — Axy,), Sz, — Axy)
= (Sz, — Ap, Sz, — Ax,) — ||Sz, — Az, |2

(4.9)

Again using (2.7), we obtain
— Ap, Sz, — Axy)
(1520 — Ap||* + [[Sz0 — Azy|® — [|Azn — Ap||?).

(Sz
(4.10) 1
2

By (4.4), (4.9) and (4.10), we get

—~

Ty — p, A (Sz, — Axy))

1
= 51520 — Ap|* + ||Szn — Azp||® — || Az, — Apl?)
=Sz, — Aa:nH2
(4.11) 1
< 5(Azn — Ap|* = llzn — Azp||* + ||Szn — Ay

1Azn — Apl?) = [|S2n — Azy|?

1 1
= —§Hzn — Aa:nH2 — §HSzn — Aa:nHQ.

Substituting (4.11) into (4.8) to deduce
1y = plI* < llan —pl* + 52HAH2HSZn — Azy |

1
+25(—§Hzn Aa:nHQ— —HSzn—Aa:nH )
= [lzn — plI* + (O* A|I* - )HSZn—f‘lﬂan2 8| 2n — Ay |?
< [z — pl*.

(4.12)

It follows that

lyn — pll < ||lzn — pl|-

Thus, from (4.7), we get

[2n+1 =Pl < anopllzn = pll + anllo f(p) = Bp|
+onllzn = pll + (1 = Bn — any)llzn — pl|
=[1 = (v —op)an]lzn = pll + anllo f(p) - Bpl|

- B
< maX{Hxn Ll of(p) — Bp|| }
y—op



1846 Li-Jun Zhu, Yeong-Cheng Liou, Yonghong Yao and Chiuh-Cheng Chyu

The boundedness of the sequence {z,,} yields.
Next, we estimate ||u,+1 — uy||. According to (2.7) and (4.5), we have

[ns1 = unl® < llynr1 — ynll?

= ||#ps1 — 2 + O[AT(SPg — I) Ay yy — A*(SPg — I)Axy)|?

= [zns1 — 2| + 6% A*[(SPg — I)Azpy1 — (SPq — I) Az

4 26(T i1 — ny A*[(SPg — I)Azpyy — (SPy — I)Azy))

< llent1 = zall* + 8| APl Sznt1 — Szn — (Aznsr — Az

+ 20(Axp11 — Az, Szt — Szn — (Azpyr — Axy))

= |[@nt1 — zal® + S| AIP1S2nr1 — Sz — (Azpsr — Azy) |
+20(Szpt1 — Szp, Sznt1 — Szn — (Axpy1 — Axy))

— 20||S2zn41 — Szn — (Azyyg — Axy)|)?

= |[#nt1 — zal® + S| AIP1S2nr1 — Sz — (Azpsr — Azy) |
+6(|Szns1 — Szal® + |S2ns1 — Szn — (Azpy1 — Axy)|?

— Az y1 — Az |*) — 26S2n11 — Szn — (Azpi1 — Azy)|?

= |lens1 = zall® + (82 Al* = 0)|Sznt1 — Szn — (Azpsr — Azy)|?
+ 0152041 — Sznll? = | Ansr — Azn?)

< Nl@nsr —anl® + (82 Al* = 8)[1S 201 — Sz — (Azntr — Awn)|?

+6(|[zn41 — ZnH2 — [[Azpy — Aan2>~

(4.13)

Since 0 € (0, HAIH2>’ we derive by virtue of (2.7) and (4.13) that

(4.14) tuns1 — unll < |Tnt1 — znl|-

From (3.1), we write 11 = Bn2n + (1 — Bpn)w, where wy, = Tu, + lfﬁ(af(a:n) —
BTuy,,) for all n € N. Then, we have

Ont1
s = wnll = [Tt = T + 75— (0 f @nt1) = BTunt)
n
«
~ =5 (0 f () = BTu)|
(a4
<N Tunss = Tunll + 75—l f(@ns1) = Bluna|
n
(a4
+ 7l f () — BT
" Qp41

< funsr —unl + lof(znt1) — BT un41]|

1- Bn—f—l

«a
E - BT
o f (@) = BT
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o)
< @ner — |l + ni—HHUf(xn—H) — BT un 1|
o 1- Bn—f—l
“ — BTu,||.
+ 2o (o) — BT

Noting the conditions (A2) and the boundedness of the sequences {up+1}, {¥n+1},
{zn+1}, {Azn}, {f(xn)} and {BTu,}, we have

lim sup([|wp1 — wnl| = 21 = 2nl]) <O.
n—oo

By virtue of Lemma 2.5, we get

lim ||z, —wy,| =0.
n—oo
Hence,
(4.15) lim [|zn41 — zn || = lim (1 = By)||zn — wy| = 0.
n—oo n—oo

Since 41 — T = ap(of(xn) — BTuy) + (1 — Bn)(Tuy, — ), we obtain

1
[ Tun — xp]| < anllof(zn) — BTup || + |Tn41 — 2l ¢-
B

n

Thus,
(4.16) Jim [z, — Tup| = 0.
Using the firmly-nonexpansivenessity of Pc, we have
lun = plI* = | Peyn — pl®
(4.17) < llyn = plI* = 1Poyn — ynl*
= llyn — 21> = lun — yal*.
Applying (2.8) to (4.7) to deduce
|Znt1 — pH2 = |lan(o f(zn) — Bp) + Bn(@n — Tun) + (I — anB)(Tun, — p>H2
< (I = anB)(Tun = p) + Buln — Tuy) |
+ 2ap (0 f(zn) — Bp, Tpnt1 — D)
< (I = an Bl T, = p|| + Bullzn — Tunl|]*
+ 2an/lo f(xn) — Bplll|zn1 — pll
< [(1 = any)llun — pll + Bollzn — TunH]2
+ 2an/lo f(xn) — Bplll|zn1 — pll
=(1- O‘n'Y)QHun - pH2 + ﬂi“xn - TunH2
+2(1 = o) Bullun — pllllan — Tua ||
+ 2an/lo f(xn) — Bplll|zn1 — pll
< lzn — pH2 + @%Hxn - TunH2 +2(1 — ) Bpllun — pll[|2n — Tun ||
+ 2an/lo f(xn) — Bplll|zn1 — pl|.

(4.18)
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This together with (4.17) imply that

lens = pl* < llygn = pI* = lun = yull* + Billen — Tun|?
+2(1 = any)Bnllun = plll|zn = Tuq|
+2anlo f(2n) = Bplllzn1 = pl
< lwn = pII* = lun =yl + Ballzn — Tunl|?
+2(1 = any)Bnllun = plll|zn = Tuq|
+2anllo f(2n) = Bpll|znt1 = -

(4.19)

It follows that
[
< lwn = plI* = l#nt1 = pl* + Billwn — Tun|®
+2(1 — any)Bnllun — pllllzn — Tunll + 20| f (2n) — Bpl|||#n41 — pll
< (lzn = pll + lzns1 = pID 2041 = 2ol + B2llen — T
+2(1 — any)Bullun — pllllzn — Tunll + 20m||o f(2n) — Bpl|[|#n1 — pl|-

This together with (4.15), (4.16) and (A1) imply that

(4.20) lim |Juy, — ynll = 0.
n—oo

Returning to (4.18) and using (4.12), we have

2ns1 — I
< (1= any)?llun = pl* + B llwn — Tun|
+2(1 = an) Bullun = plll|zn — Tun|| + 20m||o f (zn) — Bplll|znt1 — pll
< lgn = DI + B2l120 — Tun |l + 201 — ) Bulltin — pll|2n — Tt
+ 200 f (zn) — Bplll|zn1 — pll
< lzn = pl? + (O*|AN? = 0)|S2n — Awnl® — 8]l 20 — Awal|?
+ ﬂi“xn - TunH2 +2(1 = any)Bullun — pllllzn — Tus||
+ 200 f (zn) — Bplll|znt1 — pll.
Hence,
(6 = *| AI)[S 2 — Az || + 6|20 — Az |?
< lwn = plI* = 201 = pl* + Bilxn — Tun|®
+2(1 = an) Bullun — pllllan — Tun|| + 2an|jo f (zn) — Bplllzn1 — pll

< ([lzn = pll + llzns1 = pIDzns1 — zall + Ballzn — Tun|?
+2(1 = any) Bullun — pllllzn — Tunl| + 204l f(2n) — Bplll|zns1 — pll,
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which implies that

(4.21) lim || Sz, — Az,|| = lim ||z, — Az,|| = 0.
n—oo n—oo
So,
(4.22) lim Sz, — 2z = 0.
n—oo
Note that

1Yn = @nl| = 10A"(SPQ — I) Azy||
< S[A[l[|Szn — Azp]l.
It follows from (4.21) that
(4.23) lim ||z, — yoll = 0.
n—oo
From (4.16), (4.20) and (4.23), we get
(4.24) lim ||z, —Tz,| =0.
n—oo

Now, we show that
limsup{(o f — B)p, zn, — p) < 0.

n—oo

Choose a subsequence {x,, } of {z,} such that

lim ((of — B)p, xn, — D)

i—00

(4.25) limsup{(of ~ B)p, 2n — p)

Since the sequence {x,, } is bounded, we can choose a subsequence {a:nl]} of {zp,}
such that Ty — 2. For the sake of convenience, we assume (without loss of generality)
that z,,, — z. Consequently, we derive from the above conclusions that

(4.26) Yn; — %,  Up,

7

-2z, Az, — 2z and z, — Az

By the demi-closed principle of the nonexpansive mappings S and 7" (see Lemma 2.6),
we deduce z € Fiz(T) and Az € Fixz(S) (according to (4.24) and (4.22), respectively).
Note that u,, = Pcyn, € C and z,, = PgAx,, € Q. From (4.26), we deduce z € C
and Az € Q. To this end, we deduce z € C'N Fiz(T) and Az € Q N Fiz(S). That
is to say, z € I'. Therefore,

limsup((o f — B)p, x,, —p) = lim ((6 f — B)p, xn, — p)

(4.27) = lim((of — B)p,z — p)

<0.
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Finally, we prove xz,, — p. From (3.1),we have

|41 — pH2 = (an(o f(2n) — Bp) + Bulzn — p)
+ ((1 = Bo)I — anB)(Tuyp — p), Tpt1 — p)
= an(0f(zn) — Bp, Tn+1 — p) + Bn{Tn — P, Tnt1 — p)
+ (1 = Bn) — y B)(Tun, — p), Tnt+1 — p)
< ano(f(zn) = f(p); Tpt1 — p) + an{o f(p) — Bp,Tn+1 — p)
+ Bullzn = plllznsr — pll + (1 = Bn — an V)| Tun — 1201 — p
(1= (v = op)an]l|zn — pllllznir — pll + an{o f(p) — Bp, Tny1 — p)

1 - (7 — Up>an H
2
+ an (o f(p) — Bp, 2ni1 — ).

IN

IN

1
zn — p||* + §H$n+1 —p|)?

It follows that

4.28)  |wnp1—pl* < [1=(y—0op)anllzn—p|* + 205 (0 f () — Bp, Tnt1—p)-

Applying Lemma 2.7 and (4.27) to (4.28), we deduce =, — p. The proof is com-
pleted. ]
In (3.1), if take T'= I and S = I, then we have

Algorithm 4.3. Taking xy € H; arbitrarily, we define a sequence {x,} by the
following:

(4.29) vp, = Po(xy, — 0A*(I — Pg)Axy,),
Tn+l1 = CtnUf(IIZn> + ann + ((1 - Bn)l - anB>vnu

for all n € N.

Corollary 4.4. Suppose the solution set r of the split feasibility problem (1.1) is
nonempty. Assume the following conditions hold:

(A1) : limy, o0 @y = 0 and Y07 | oy = 00;

(A2) : 0 < liminf,, o B, < limsup,_, OBn < 1,

(A3):0p < 7.

Then the sequence {x,} generated by algorithm (4.29) converges strongly to p =
Projr(of 4+ I — B)p which solves the following VI:

((of = B)z,y —xz) <0,y € r.
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