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COMPONENTWISE LINEAR MODULES OVER A KOSZUL ALGEBRA

Dancheng Lu* and Dexu Zhou

Abstract. In this paper we devote to generalizing some results of componentwise
linear modules over a polynomial ring to the ones over a Koszul algebra. Among
other things, we show that the i-linear strand of the minimal free resolution of
a componentwise linear module is the minimal free resolution of some module
which is described explicitly for any i ∈ Z. In addition we present some theorems
about when graded modules with linear quotients are componentwise linear.

1. INTRODUCTION

Throughout this paper R is a standard graded finitely generated K-algebra over
a field K and M is a finitely generated graded R-module. Recall that an (infinite)
minimal free resolution of M is an exact sequence of graded R-modules:

(∗) F.(M) : · · · −→ Fk
φk−→ · · · φ2→ F1

φ1−→ F0
φ0−→ M −→ 0

where Fk =
⊕
j∈Z

R(−j)βk,j(M ), k = 0, 1, · · · ,

such that all nonzero entries in all matrices φk, k > 0 are homogeneous of positive
degrees and φ0 is a homogeneous R-linear map. Every graded R-module has a unique
minimal free resolution up to isomorphism. In fact, every graded free resolution of
M is the direct sum of a minimal free resolution of M and a trivial complex. Here a
trivial complex is any free resolution of zero module. From a minimal free resolution
of M one can obtain many invariants of M including projective dimension, regularity,
Hilbert series and etc. For examples£º

Proj.dim(M) = max{i|βi,j(M) �= 0 for some j}
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reg(M) = max{j − i|βi,j(M) �= 0}
If assume further that R is a standard graded polynomial ring K[x1, · · · , xn] over

a field K, then the minimal free resolution of a graded R-module has finite length.
In this case, one can obtain the Hilbert series and depth of M from its minimal free
resolution. The type of M is the K-dimension of ExtgR(R/m, M) by definition, where
g = depthM . It is well-known that the type of M is equivalent to the largest non-
vanishing Betti number of M .

Hence it is important to obtain a minimal free resolution of a graded module.
However it remains an open question to construct a minimal free resolution for M
even when M is a general monomial ideal of a standard graded polynomial ring.

The most simple resolutions are linear resolutions. Recall that a minimal resolution
F.(M) is called (d-)linear if it has the following form:

F.(M) : · · · → R(−d − i)βi,i+d(M ) → · · · → R(−d)β0,d(M ) → M → 0.

It is equivalent to saying that generators of M are all in the same degree d and all
nonzero entries in all matrices φk, k > 0 are linear forms. A graded R-module M

is called (d-)linear if it admits a (d-)linear minimal free resolution, or equivalently,
βi,j(M) = 0 for all j �= i + d. It is clear that a linear module is generated in a single
degree. J. Herzog and T. Hibi generalized this notion by introducing componentwise
linear ideal in [7].

Definition 1.1. (Herzog and Hibi [7]). A finitely generated graded R-module M
is called componentwise linear if for each i ∈ Z, M<i> has a linear resolution, where
M<i> is the graded R-submodule of M generated by the degree i component Mi.

WhenR is a polynomial ring, the class of componentwise linear ideal is rather large:
it includes stable monomial ideals, squarefree stable monomial ideals. In particular the
generic initial ideal of each graded ideal in a polynomial ring is always componentwise
linear ideal. The class of componentwise linear modules over a polynomial ring has
been investigated extensively by many authors (see e.g. [7-10].)
We give an example to show that there exist some odd componentwise linear R-

modules if R is not a polynomial ring.

Example. Set R = k[x, y]/(x2, xy, y2). It is a Koszul algebra of dimension zero.
Since m2 = 0, we see that the maximal graded ideal m consists of linear forms and
zero element, it follows that every finitely generated gradedR-module is componentwise
linear.

Following [1] a standard graded finitely generated K- algebra R is called Koszul
if regR(K) = 0, i.e., K is a 0-linear R- module when it is regarded as the quotient
module of R. By [2], we know that a standard graded finitely generated K- algebra R
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is Koszul if and only if all finitely generated R-modules have finite regularity. Thus
Koszul algebras can be characterized by the Betti diagram (see details in [8, page 69])
of its graded module: R is Koszul if and only if there are only finite nonzero rows in
the Betti diagram of every finitely generated graded R-module. It was pointed out in
[1] that Koszul algebras are “surprisingly common”: they include the coordinate rings
of “Sergre-Veronese” embeddings, any algebra with a quadratic straightening law, and
any high Veronese subring of an graded ring (See [1,4,5] and its references). Let Δ be
a simplicial complex. It was proved in [4] (or see [5]) that the Stanley-Reinser ring
k[Δ] is Koszul if and only if Δ is a flag complex, that is the non-face ideal IΔ is
generated by quadratic monomials.
In this paper we mainly investigate componentwise linear modules over a Koszul

algebra. In Section 2, we give some properties of such modules. For example, we show
that Soc(M) is always componentwise linear for any graded module M (Proposition
2.1.). On the other hand, quotient modules of a componentwise linear module are
usually not componentwise linear (Theorem 2.7). In addition, we generalize a result of
componentwise linear ideal ([7, Proposition 1.3] or [8, Proposition 8.2.13]) of a polyno-
mial ring to the one of componentwise linear module over a Koszul algebra (Theorem
2.11). Note that the original proof cannot be applied to our case since we cannot use the
Koszul complex to compute the Betti numbers in the case of a Koszul algebra. Also,
we show in Theorem 2.16 that the i-linear strand of the minimal free resolution of a
componentwise linear module is the minimal free resolution of some module which is
described explicitly. In the final section, we first show a graded module over a Koszul
algebra which has linear quotients with respect to a (not necessarily minimal) system
of generators ordered by their degrees is componentwise linear (Theorem 3.1). We also
show that under some assumptions a graded module is componentwise linear if and
only if it has linear quotients (Corollary 3.3). Finally we generalize a result of [8] by
showing that a graded module over a polynomial ring which has linear quotients with
respect to a minimal system of generators is componentwise linear.
We fix some notations. Throughout this paper R is a standard graded finitely

generated K-algebra over a field K , m is the maximal graded ideal of R and M is
a finitely generated graded R-module. We use d(M), D(M) to denote the minimal
degree and the maximal degree of generators of M respectively. That is:

d(M) = min{d ∈ Z|Md �= 0}, D(M) = max{d ∈ Z|(M/mM)d �= 0}.
Clearly d(M) ≤ D(M) ≤ reg (M) for any graded module M .

We record two known results for later use.

Lemma 1.2. ([3]). A graded R-module M is linear if and only if reg (M) =
d(M) = D(M).

The following result can be proved by using Tor functor directly.
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Lemma 1.3. (see e.g. [12]). Let 0 → L → M → N → 0 be a short exact
sequence of finitely generated graded R-modules. Then

(1) reg(N ) ≤ max{reg(M), reg(L)− 1};
(2) reg(M) ≤ max{reg(L), reg(N )};
(3) reg(L) ≤ max{reg(M), reg(N ) + 1}.

2. COMPONENTWISE LINEAR MODULES

In this section we assume further R is a Koszul algebra. We will obtain some
properties of componentwise linear modules over a Koszul algebra. Among other
things, we show that the graded Betti numbers of a componentwise linear module can
be determined by the Betti numbers of its components and the i-linear strand of the
minimal free resolution of a componentwise linear module is acyclic for any i ∈ Z.

Proposition 2.1. For any finitely generated graded R-module M , Soc(M) is
componentwise linear. Moreover if we assume further R is a standard graded poly-
nomial ring and M has finite length, then M is componentwise linear if and only if
Soc(M) = M .

Proof. Let d ∈ Z and set N = (Soc(M))<d>. Then d(N ) = D(N ) = d. On the
other hand since mN = 0, reg(N ) ≤ max{r|Nr �= 0} = d by [1, Theorem 1] and so
reg(N ) = d(N ) = D(N ), which implies N is linear by Lemma 1.2.
Assume further R is a standard graded polynomial ring and M has finite length.

If M �= Soc(M), then exists d ∈ Z such that mM<d> �= 0. Note that reg(M<d>) >

d = D(M<d>) by [1, Lemma 1.3(c)], we have M<d> is not linear and so M is not
componentwise linear.

Proposition 2.2. If M is componentwise linear, then so is mM . In particular, if
M is linear, then so is mM .

Proof. For any d ∈ Z, we see that

M<d> = Md ⊕ m1Md ⊕ m2Md ⊕ · · · , (mM)<d+1> = m1Md ⊕ m2Md ⊕ · · · .

Hence we can obtain the following short exact sequence

0 → (mM)<d+1> → M<d> → Md → 0.

Here we regard Md as a graded R-module with mMd = 0. Thus Md
∼= K(−d)n for

some n and reg (Md) = d. It follows that reg((mM)<d+1>) ≤ d + 1 by Lemma 1.3,
implying (mM)<d+1> is (d + 1)-linear, as required.

Corollary 2.3. Let M be a finitely generated graded R-module generated in
degrees d1 < d2 < · · · < dr. If M<di> is linear for each i = 1, · · · , r, then M is
componentwise linear.
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Proof. Fix d ∈ Z. If d < d1, then M<d> = 0 and it is linear. If d ≥ d1, we let
k = max{i|di ≤ d}; then M<d> = m(d−dk)M<dk> is linear by Proposition 2.2.

Assume that M1, M2, M are finitely generated graded R-modules such that M ∼=
M1 ⊕ M2. Then: (1) M1, M2 are d-linear if and only if M is d-linear; (2) M<d> =
M1

<d> ⊕ M2
<d> for any d ∈ Z. Based on those facts, we have:

Proposition 2.4. Let M be the direct sum of finitely generated graded R-modules
M i, i = 1, · · · , k. ThenM is componentwise linear if and only ifM i is componentwise
linear for each i = 1, · · · , k.

For convenience, we use M(R) for the category of finitely generated graded R-
modules whose morphisms are the homogeneous R-module homomorphisms of degree
0. Let f : M −→ N be a morphism in M(R). Then it induces a morphism f<d> :
M<d> → N<d> naturally. Hence we can regard “<d>” as a functor from M(R) to
M(R). It is routine to check that if f is surjective (resp. injective), then f<d> is
surjective (resp. injective). However “<d>” is not an exact functor in general.

Lemma 2.5. Let 0 → L → M → N → 0 be a short exact sequence in M(R) and
d ∈ Z. Then

(1) the sequence 0 → L≥d ∩ M<d> → M<d> → N<d> → 0 is exact.

(2) the induced complex 0 → L<d> → M<d> → N<d> → 0 is exact if and only if
Ld+i ∩ miMd = miLd for each i > 0.

Proof. By straightforward check.

Lemma 2.6. Let 0 → L → M → N → 0 be a short exact sequence in M(R)
satisfying d(L) = D(L) = d(M). Then for any d ∈ Z, the induced complexes
0 → L<d> → M<d> → N<d> → 0 and 0 → mL<d> → mM<d> → mN<d> → 0
are exact.

Proof. Denote d(L) by k. If d < k, then L<d> = M<d> = N<d> = 0 and we
are done. If d ≥ k, then Ld+i = miLd for each i > 0 and hence the first sequence is
exact by Lemma 2.5. The second sequence is a restriction of the first one, hence it is
exact.

We give a necessary condition for which a quotient module of a componentwise
linear module is componentwise linear.

Theorem 2.7. Let 0 → L → M → N → 0 be a short exact sequence in
M(R). Assume M and N are componentwise linear and L ∩ M<d(M )> �= 0. Then
d(M) ∈ {d(L), d(L)− 1}.



2140 Dancheng Lu and Dexu Zhou

Proof. It is clear that d(M) ≤ d(L). Set k = d(M). Since

0 → L ∩ M<k> → M<k> → N<k> → 0

is exact and since reg(M<k>) = reg(N<k>) = k, we obtain reg(L∩M<k>) ≤ k + 1.
It follows that d(L) ≤ d(L∩ M<k>) ≤ reg(L∩ M<k>) ≤ k + 1, as required.

Use this result, we can give a complete description of cyclic graded R-module
which is componentwise linear.

Example 2.8. If M is a nonzero cyclic graded R-module which is componentwise
linear, then there exist a ∈ Z and an 1-linear ideal I such thatM ∼= (R/I)[−a]. In the
case when R is a standard graded polynomial ring, every ideal generated by 1-linear
forms is 1-linear, hence we obtain that a cyclic graded R-module is componentwise
linear if and only if M ∼= (R/I)[−a] for some d ∈ Z and some ideal I generated by
linear forms.

Proposition 2.9. Let M be a finitely generated graded R-module with d(M) =
d. Then M is componentwise linear if and only if both M/M<d> and M<d> are
componentwise linear. Moreover in this case we have

βi(M<j>) − βi((mM)<j−1>) = βi(N<j>) − βi((mN )<j−1>) + βi,i+j(M<d>),

for each i, j, where N = M/M<d> .

Proof. By Lemma 2.6 we obtain the short exact sequence

(1) 0 → (M<d>)<j> → M<j> → N<j> → 0

for each j. If M is componentwise linear, then (M<d>)<j> and M<j> are linear
graded modules with the same regularity j, and thus reg(N<j>) ≤ j by Lemma 1.3.
It follows that N<j> is linear. The converse statement can be proved similarly.

Assume M is componentwise linear. Since only possible nonzero graded Betti
numbers of three modules in (1) are

βi,i+j(M<j>), βi,i+j((M<d>)<j>), βi,i+j(N<j>), i ∈ Z,

one can use the long exact sequence obtained by acting Tor functor on (1) to obtain

(2) βi(M<j>) = βi((M<d>)<j>) + βi(N<j>).

Similarly, from the short exact sequence 0 → m(M<d>)<j−1> → mM<j−1> →
m(M/M<d>)<j−1> → 0 (see Lemma 2.6) one can obtain that

(3) βi(mM<j−1>) = βi(m(M<d>)<j−1>) + βi(mN<j−1>).
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Note that: if j < d, then (M<d>)<j> = m(M<d>)<j−1> = 0; if j = d,
then (M<d>)<j> = M<d>, m(M<d>)<j−1> = 0; if j > d, then (M<d>)<j> =
m(M<d>)<j−1>, and since βi(M<d>) = βi,i+d(M<d>), it is not difficult to see that

(4) βi,i+j(M<d>) = βi((M<d>)<j>) − βi(m(M<d>)<j−1>).

Now the desired equality follows by combining (2), (3) and (4).

If A is a subset of Z, we use M<A> to denote the graded R-submodule of M

generated by the subset ∪i∈AMi.

Corollary 2.10. Let M be a componentwise linear graded R-module. Then
M/M<≤d> and M<≤d> are componentwise linear for any d ∈ Z.

Proof. Assume that M is generated in degrees d1 < d2 < · · · < dn. Then
N := M/M<d1> is componentwise linear by Proposition 2.9. Since d(N ) = d2 and
N<d2> = M<d1,d2>/M<d1>, we obtain M/M<d1 ,d2>

∼= N/N<d2> and M<d1,d2> are
componentwise linear by Proposition 2.9. It follows by induction that M/M<d1 ,··· ,dk>

is componentwise linear for any 1 ≤ k ≤ n. Now the assertion follows by the fact
M<≤d> = M<d1,··· ,dk>, where k is the largest i such that di ≤ d.

Theorem 2.11. Let M be a componentwise linear R-module, where R is a Koszul
algebra. Then βi,i+j(M) = βi(M<j>)− βi(mM<j−1>) for all i, j.

Proof. We use induction on t := D(M) − d(M). If t = 0, then M is linear and
so βi,i+j(M) = 0 if j �= d(M). If j ≤ d(M) − 1, then M<j> = mM<j−1> = 0 and
so βi(M<j>)− βi(mM<j−1>) = 0 = βi,i+j(M); if j = d(M), then M<j> = M and
mMj−1 = 0, which implies βi(M<j>) − βi(mM<j−1>) = βi(M) = βi,i+j(M); if
j ≥ d(M) + 1, then M<j> = mM<j−1> and so βi(M<j>) − βi(mM<j−1>) = 0 =
βi,i+j(M). This proves the equality holds when t = 0.
If t > 0, then the short exact sequence

0 → M<d> → M → M/M<d> → 0,

induces the following exact sequence

· · · → TorR
i+1(K, M/M<d>)i+1+j−1 → TorR

i (K, M<d>)i+j → TorR
i (K, M)i+j

→ TorR
i (K, M/M<d>)i+j → TorRi−1(K, M<d>)i−1+j+1 → · · ·

By Proposition 2.9, M/M<d> is componentwise linear. Note that D(M/M<d>) =
D(M) and d(M/M<d>) > d(M), we have D(M/M<d>) − d(M/M<d>) < t. By
induction, reg(M/M<d>) = D(M) (see Corollary 2.12). Set D = D(M), d = d(M).
There are five cases to consider.



2142 Dancheng Lu and Dexu Zhou

Case 1. If j > D, then TorRi (K, M<d>)i+j = TorRi (K, M/M<d>)i+j = 0 and
so TorRi (K, M)i+j = 0. Hence βi,i+j(M) = βi(M<j>)− βi(mM<j−1>) = 0.

Case 2. If j = D, βi,i+j(M) = βi,i+j(M/M<d>) = βi(M<j>) − βi(mM<j−1>)
by Proposition 2.9 and induction.

Case 3. If j < d, then βi,i+j(M) = 0 = βi(M<j>) − βi(mM<j−1>).

Case 4. If j = d, thenTorRi+1(K, M/M<d>)i+1+j−1 = TorRi−1(K, M<d>)i−1+j+1 =
0 it follows that βi,i+j(M) = βi(M<d>)+βi,i+j(M/M<d>) = βi(M<j>)−βi(mM<j−1>)
by Proposition 2.9.

Case 5. If d < j < D, then TorRi (K, M<d>)i+j = TorR
i−1(K, M<d>)i−1+j+1 =

0 which implies βi,i+j(M) = βi,i+j(M/M<d>) = βi(M<j>) − βi(mM<j−1>) by
Proposition 2.9 again.

Corollary 2.12. If M is componentwise linear, then reg(M) = D(M).

Proof. Note that for any j > D(M), we haveM<j> = mM<j−1>£¬ which implies
βi,i+j(M) = 0 by Theorem 2.11. It follows that reg(M) ≤ D(M), as required.

We give an example to show that the converse statement of Corollary 2.12 is not
true. For this we need a lemma.

Lemma 2.13. AssumeM is minimally generated by homogeneous elements f1, · · · , fk.
Let d ∈ Z and N = M/M≥d . Then N is minimally generated by {f i|deg fi ≤ d−1},
where f i is the image of fi in N .

Proof. Clearly N is generated by {f i|deg fi ≤ d − 1}. Assume {f i|deg fi ≤
d − 1} = f 1, · · · , ft, where t ≤ s. If we omit fi in f 1, · · · , ft. Then there exist
homogeneous elements ai ∈ R such that f i =

∑
1≤j≤t,j �=i ajf j and deg(ajf j) =

deg(f i) for each j �= i, which implies f := fi −
∑

1≤j≤t,j �=i aifi ∈ M≥d. Since
deg(f) ≤ d− 1, we have f = 0, a contradiction.

Example 2.14. Let M = R ⊕ R(−5). Then M is componentwise linear by
Proposition 2.4 with d(M) = 0 and D(M) = 5. Put N = M/M≥6. We see that N

has finite length and so reg(N ) = D(N ) = 5 by [1, Theorem 1, Lemma 3(c)] and
Lemma 2.13. However, N is not componentwise linear by Theorem 2.7.
The following proposition can be regarded as a partial converse statement of Corol-

lary 2.12.

Proposition 2.15. Let M be finitely generated graded R-module. Then M is
componentwise linear if and only if reg(M<≤t>) = D(M<≤t>) for all t ∈ Z.
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Proof. It is clear that ifM is componentwise linear then reg(M<≤t>) = D(M<≤t>)
for all t ∈ Z. Conversely assume reg(M<≤t>) = D(M<≤t>) for all t ∈ Z. We use in-
duction onD(M)−d(M). IfD(M) = d(M), then we are done. IfD(M)−d(M) > 0,
we consider the short exact sequence 0 → M<d> → M → M/M<d> → 0, where
d = d(M). It is clear that M<d> has a d-linear resolution since reg(M<d>) ≤ d. By
Lemmas 2.6 and 1.3, we have reg((M/M<d>)<t>) ≤ reg(M<t>) ≤ t for any t ∈ Z
and it follows that M/M<d> is componentwise linear by induction hypothesis. Hence
M is componentwise linear by Proposition 2.9.

Let F.(M) be the minimal free resolution ofM as in Introduction. For any integer
i, the i-linear strand of F.(M) is defined to be the complex

F<i>
· (M) : · · · → F<i>

k

φ<i>
k−→ F<i−1>

k−1

φ<i−1>
k−→ · · · φ<1>

k−→ F0 −→ 0

where F<i>
k = R(−k − i)βk,k+i(M ) and the map φ<i>

k : F<i>
k → F<i−1>

k is the
corresponding component of φk : Fk =

⊕
j F<j>

k −→ Fk−1 =
⊕

j F<j>
k−1 . In general,

F<i>· (M) is not acyclic. Motivated by [13, Proposition 4.9] we obtain the following
result.

Theorem 2.16. Let M be a componentwise linear graded R-module generated in
degrees d1 < d2 < · · · < dr. Then

(1) F.<d>(M) vanishes if d /∈ {d1, · · · , dr};
(2) F.<di>(M) is the minimal free resolution of (M/M<d1,··· ,di−1>)<di> for any

1 ≤ i ≤ r.

Proof. We use induction on r. The case when r = 1 is clear. Assume r > 1 and let
N = M<d1,··· ,dr−1>. Then N is componentwise linear by Corollary 2.10. By induction
hypothesis, we have F.<d>(N ) vanishes if d /∈ {d1, · · · , dr−1} and F.<di>(N ) is the
minimal free resolution of (N/N<d1,··· ,di−1>)<di> for 1 ≤ i ≤ r−1. Consider the short
exact sequence 0 → N → M → M/N → 0. Since M/N has a dr-linear resolution,
we obtain that F.<d>(M) = F.<d>(N ) if d < dr and F.<d>(M) = F.<d>(M/N ) if
d ≥ dr. Note that (N/N<d1,··· ,di>)<d> = (M/M<d1 ,··· ,di>)<d> if i < r and d < dr,
the result follows.

We observe that if mM = 0, then (M/M<d1,··· ,di−1 >)<di> = M<di> for 1 ≤ i ≤
r. By this fact, we obtain the following result immediately.

Corollary 2.17. Let M be a finitely generated graded R-module with mM = 0.
Then F.<d>(M) is the minimal free resolution of M<d> for any d ∈ Z.
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3. THE MODULE WITH LINEAR QUOTIENTS

In this section we will investigate the graded modules with linear quotients. The
first two results involve graded modules over any Koszul algebra (see Theorem 3.1
and Corollary 3.3). As an application we give an example of a non-componentwise
linear module over a proper Koszul algebra in Example 3.4. The last result (Theorem
3.7) involves graded modules over polynomial ring, which is a generalization of [8,
Theorem 8.2.15].

Theorem 3.1. LetM be a graded R-module (not necessarily minimally) generated
by homogeneous elements f1, f2, · · · , fn. Suppose deg f1 ≤ deg f2 · · · ≤ degfn and
(f1, · · · , fi−1) : fi is an 1-linear ideal for i = 1, · · · , n. Then M is componentwise
linear.

Proof. We use induction on n. If n = 1, then M ∼= (R/I)[−deg f1], where I is
1-linear, implying M is (deg f1)-linear.
If n > 1, we set d = d(M) and k = max{i|deg fi = d}. Then M<d> =

(f1, · · · , fk), and it is d-linear by [6, Lemma 2.16]. On the other hand M/M<d> =
(fk+1, · · · , fn) is componentwise linear by induction, where f i is the image of fi in
M/M<d> . Now the assertion follows from Proposition 2.9.

Example 3.2: Let S = k[x, y, z] be a standard graded polynomial ring over a field
k, and let R = S/(xz). Then R is a Koszul algebra by [4]. Assume that I is the ideal
of R generated by x2, xy2, y3. Then the successive colon ideals of I are (z), (x, z), (x).

Since regR(R/(z)) ≤ regS(R/(z)) = regS(S/(z)) = 0 by [1, Theorem 1], we
have (z) is an 1-linear ideal of R. Similarly (x, z), (x) are 1-linear ideals of R. Hence
I is a componentwise linear R-module by Theorem 3.1.

Corollary 3.3. LetM be a gradedR-module (not necessarily minimally) generated
by homogeneous elements f1, f2, · · · , fn with degf1 < · · · < degfr. Then M is
componentwise linear if and only if (f1, · · · , fi−1) : fi is an 1-linear ideal for i =
1, · · · , n.

Proof. In view of Theorem 3.1, we only need to prove the “only if” part. As-
sume that M is componentwise linear and denote deg(fi) by di, i = 1, · · · , r. Since
M<d1> = (f1) ∼= (R/I1)[−d1], where I = 0 : f1, and since M<d1> is linear, we
have I1 is an 1-linear ideal by Example 2.8. Set Ii = (f1, · · · , fi−1) : fi. Since
M<d1,d2>/M<d1>

∼= (R/I2)[−d2] and since M<d1,d2>/M<d1> is componentwise lin-
ear by Corollary 2.10, we obtain I2 is 1-linear by Example 2.8. Now the result follows
by induction.

Example 3.4. Let S = k[w, x, y, z] be a standard graded polynomial ring over a
field k and let I = (w, xy, z3) be an ideal of S. Since (w, xy) : z3 = (w, xy) is not
linear, we have I is not componentwise linear by Corollary 3.3.



Componentwise Linear Modules over a Koszul Algebra 2145

Remark. As is pointed out in Example 2.8: if we assume further R is a standard
graded polynomial ring, then “an 1-linear ideal” can be changed into “an ideal generated
by linear forms.”

Hereafter we assume that R is a standard graded polynomial ring over a field K .
We will give a generalization of [8, Theorem 8.2.15]. Our proof is in the same vein as
the one of [8, Theorem 8.2.15].

Lemma 3.5. Let M be a finitely generated graded R-module which is minimally
generated by homogeneous elements f1, f2, · · · , fs. Assume N = (f1, f2, · · · , fs)
is componentwise linear and N : fs is generated by linear forms. Then for any
d ≤ deg(fs), M<d> is linear.

Proof. Set k = deg(fs). Since if d < k, then M<d> = N<d> is linear, we only
need to prove M<k> is linear. Assume N : fs = (l1, · · · , lr), where each li is a linear
form. We claim that N<k> : fs = (l1, · · · , lr). Clearly, N<k> : fs ⊂ (l1, · · · , lr).
Conversely, for each i we have lifs ∈ N . Then lifs = a1f1 + · · ·+ as−1fs−1 with
each ai homogeneous. Since M is minimally generated by f1, f2, · · · , fs, it follows
that each nonzero ai are of positive degree. Since deg(lifs) = k + 1, we see that if
ai �= 0 then deg(fi) ≤ k, thus lifs ∈ (N≤k)k+1. Note that (N≤k)k+1 = (N<k>)k+1,
we obtain lifs ∈ N<k>, which implies N<k> : fs = (l1, · · · , lr).
Since M<k> = N<k> + (fs), we have M<k>/N<k>

∼= (S/I)[−k], where I =
(l1, · · · , lr) and reg(M<k>/N<k>) = k. Since reg(N<k>) = k, it follows that
regM<k> = k by Lemma 1.3 and so M<k> is k−linear, as required.

Lemma 3.6. Let M be a finitely generated graded R-module which is minimally
generated by homogeneous elements f1, f2, · · · , fs and let N = (f1, f2, · · · , fs−1)
Assume N : fs is generated by linear forms l1, · · · , lr and l1, · · · , lr, lr+1, · · · , ln
forms a basis of R1. Put M ′ = (f1, f2, · · · , fs−1, lr+1fs, · · · , lnfs), a submodule of
M . Then

(1) M ′ is minimally generated by f1, f2, · · · , fs−1, lr+1fs, · · · , lnfs.

(2) the colon ideals (N + lr+1fs + · · ·+ lr+i−1fs) : lr+ifs, i = 1, · · · , n − r, are
all generated by linear forms.

Proof. (1) It is clear we cannot omit any fi. If we omit lr+ifs for some i, then
lr+ifs = a1lr+1fs+· · ·+ai−1lr+i−1fs+ai+1lr+i+1fs+· · ·+an−r lnfs+g with ai ∈ S

and g ∈ N . It follows that lr+i−a1lr+1−· · ·−ai−1lr+i−1−ai+1lr+i+1+· · ·+an−r ln ∈
(l1, · · · , lr), and hence lr+i ∈ (l1, · · · , l̂r+i, · · · , ln), a contradiction.
(2) Let h ∈ (N + lr+1fs + · · ·+ lr+i−1fs) : lr+ifs, where i = 1, · · · , n. Then

hlr+ifs = g + a1lr+1fs + · · ·+ ai−1lr+i−1fs
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for some g ∈ N, aj ∈ S, which implies hlr+i+a1lr+1+· · ·+ai−1lr+i−1 ∈ (l1, · · · , lr).
Since l1, · · · , lr+i forms a regular sequence, we obtain h ∈ (l1, · · · , lr, · · · , lr+i−1),
and so (N + lr+1fs + · · ·+ lr+i−1fs) : lr+ifs = (l1, · · · , lr, · · · , lr+i−1).

Theorem 3.7. LetM be a gradedR-module minimally generated by homogeneous
elements f1, f2, · · · , fs. Suppose (f1, · · · , fi−1) : fi is generated by linear forms for
i = 1, · · · , n. Then M is componentwise linear.

Proof. By induction we can assume N := (f1, · · · , fs−1) is componentwise linear.
To show M is componentwise linear we use induction on D(N ) − k, where k =
deg(fs).
If D(N )−k ≤ 0, then the result follows from Lemma 3.5 and Corollary 2.3. Now

assume D(N ) > k. Since M<d> is linear for d ≤ k by Lemma 3.5, we only need to
prove M<j> is linear for j ≥ k + 1. Note that M<j> = M ′

<j> (see Lemma 3.6) for
j ≥ k + 1 and since M ′ is componentwise linear by induction, the result follows.

Remark. It was pointed out in [8, Page 142] the condition in Theorem 3.7 that
M has linear quotients with respect to a minimal system of homogeneous generators
cannot be omitted. Hence Theorem 3.7 cannot imply Theorem 3.1 even when R is a
polynomial ring.
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