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FIXED POINT THEOREMS FOR NEW GENERALIZED HYBRID
MAPPINGS IN HILBERT SPACES AND APPLICATIONS

Wataru Takahashi, Ngai-Ching Wong and Jen-Chih Yao*

Abstract. In this paper, we introduce a broad class of nonlinear mappings in
a Hilbert space which covers nonexpansive mappings, nonspreading mappings,
hybrid mappings and contractive mappings. Then we prove fixed point theorems
for the class of such mappings. Using these results, we prove well-known and
new fixed point theorems in a Hilbert space.

1. INTRODUCTION

Let H be a real Hilbert space and let C be a nonempty subset of H . A mapping
T : C → H is said to be nonexpansive [18], nonspreading [13], and hybrid [19] if

‖Tx − Ty‖ ≤ ‖x − y‖,

2‖Tx− Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2

and
3‖Tx− Ty‖2 ≤ ‖x − y‖2 + ‖Tx− y‖2 + ‖Ty − x‖2

for all x, y ∈ C, respectively; see also [7], [8] and [20]. These mappings are indepen-
dent and they are deduced from a firmly nonexpansive mapping in a Hilbert space; see
[19]. A mapping F : C → H is said to be firmly nonexpansive if

‖Fx − Fy‖2 ≤ 〈x − y, Fx − Fy〉

for all x, y ∈ C; see, for instance, Browder [2], Goebel and Kirk [5], and Kohsaka
and Takahashi [12]. Recently Kawasaki and Takahashi [10] introduced the following
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nonlinear mapping in a Hilbert space. A mapping T from C intoH is said to be widely
generalized hybrid if there exist α, β, γ, δ, ε, ζ ∈ R such that

α‖Tx − Ty‖2 + β‖x − Ty‖2 + γ‖Tx− y‖2 + δ‖x − y‖2

+ max{ε‖x− Tx‖2, ζ‖y − Ty‖2} ≤ 0

for any x, y ∈ C; see also [11].
In this paper, motivated by these mappings, we introduce a broad class of nonlinear

mappings in a Hilbert space which covers nonexpansive mappings, nonspreading map-
pings, hybrid mappings, contractive mappings, contractively nonspreading mappings
and contractively hybrid mappings. Then we prove fixed point theorems for the class
of such mappings. Using these results, we prove well-known and new fixed point
theorems in a Hilbert space.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively.
We denote the strong convergence and the weak convergence of {xn} to x ∈ H by
xn → x and xn ⇀ x, respectively. Let A be a nonempty subset of H . We denote by
coA the closure of the convex hull of A. In a Hilbert space, it is known that

(2.1) ‖αx + (1− α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2

for all x, y ∈ H and α ∈ R; see [18]. Furthermore, in a Hilbert space, we have that

(2.2) 2〈x− y, z − w〉 = ‖x − w‖2 + ‖y − z‖2 − ‖x − z‖2 − ‖y − w‖2

for all x, y, z, w ∈ H . Let C be a nonempty subset of H and let T be a mapping from
C into H . We denote by F (T ) the set of fixed points of T .
Let l∞ be the Banach space of bounded sequences with supremum norm. Let μ

be an element of (l∞)∗ (the dual space of l∞). Then, we denote by μ(f) the value
of μ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by μn(xn) the value
μ(f). A linear functional μ on l∞ is called a mean if μ(e) = ‖μ‖ = 1, where
e = (1, 1, 1, . . .). A mean μ is called a Banach limit on l∞ if μn(xn+1) = μn(xn).
We know that there exists a Banach limit on l∞. If μ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞ xn ≤ μn(xn) ≤ lim sup

n→∞
xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have μ(f) =
μn(xn) = a. See [17] for the proof of existence of a Banach limit and its other
elementary properties. Using means and the Riesz theorem, we can obtain the following
result; see [14, 15, 16] and [17].
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Lemma 2.1. Let H be a Hilbert space, let {xn} be a bounded sequence in H and
let μ be a mean on l∞. Then there exists a unique point z0 ∈ co{xn | n ∈ N} such
that

μn〈xn, y〉 = 〈z0, y〉, ∀y ∈ H.

3. FIXED POINT THEOREMS

Let H be a real Hilbert space and let C be a nonempty subset of H . A mapping
T from C into H is called symmetric generalized hybrid if there exist α, β, γ, δ ∈ R

such that

(3.1)
α‖Tx − Ty‖2 +β(‖x − Ty‖2 + ‖Tx − y‖2) + γ‖x− y‖2

+δ(‖x − Tx‖2 + ‖y − Ty‖2) ≤ 0

for all x, y ∈ C. Such a mapping T is also called (α, β, γ, δ)-symmetric generalized
hybrid. If α = 1, β = δ = 0 and γ = −1 in (3.1), then the mapping T is nonexpansive.
If α = 2, β = −1 and γ = δ = 0 in (3.1), then the mapping T is nonspreading.
Furthermore, if α = 3, β = γ = −1 and δ = 0 in (3.1), then the mapping T is hybrid.
Recently Kawasaki and Takahashi [10] introduced the following nonlinear mapping in
a Hilbert space and they proved a fixed point theorem and a mean convergence theorem
for the mappings. Let H be a real Hilbert space and let C be a nonempty subset of
H . A mapping T from C into H is said to be widely generalized hybrid if there exist
α, β, γ, δ, ε, ζ ∈ R such that

(3.2)
α‖Tx − Ty‖2 +β‖x − Ty‖2 + γ‖Tx− y‖2 + δ‖x − y‖2

+ max{ε‖x − Tx‖2, ζ‖y − Ty‖2} ≤ 0

for any x, y ∈ C. Such a mapping T is called (α, β, γ, δ, ε, ζ)-widely generalized
hybrid. Replacing the variables x and y in (3.2), we have that

(3.3)
α‖Ty − Tx‖2 +β‖y − Tx‖2 + γ‖Ty − x‖2 + δ‖y − x‖2

+ max{ε‖y − Ty‖2, ζ‖x − Tx‖2} ≤ 0.

From (3.2) and (3.3) we have that

(3.4)
2α‖Ty − Tx‖2 + (β + γ)(‖y − Tx‖2 + ‖Ty − x‖2) + 2δ‖y − x‖2

+ max{ε‖x − Tx‖2, ζ‖y − Ty‖2} + max{ε‖y − Ty‖2, ζ‖x− Tx‖2} ≤ 0.

From ε‖x − Tx‖2, ζ‖y − Ty‖2 ≤ max{ε‖x − Tx‖2, ζ‖y − Ty‖2}, we have that

(3.5) ε‖x − Tx‖2 + ζ‖y − Ty‖2 ≤ 2 max{ε‖x − Tx‖2, ζ‖y − Ty‖2}.
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Similarly, we have that

(3.6) ε‖y − Ty‖2 + ζ‖x − Tx‖2 ≤ 2 max{ε‖y − Ty‖2, ζ‖x− Tx‖2}.
Consequently, we have from (3.4), (3.5) and (3.6) that

(3.7)
2α‖Ty − Tx‖2 +(β + γ)(‖y − Tx‖2 + ‖Ty − x‖2) + 2δ‖y − x‖2

+
1
2
(ε + ζ)(‖x − Tx‖2 + ‖y − Ty‖2) ≤ 0.

Such a mapping T is symmetric generalized hybrid. We first prove a fixed point
theorem for symmetric generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space, let C be a nonempty closed convex
subset of H and let T be an (α, β, γ, δ)-symmetric generalized hybrid mapping from
C into itself such that the conditions (1) α + 2β + γ ≥ 0, (2) α + β + δ > 0 and
(3) δ ≥ 0 hold. Then T has a fixed point if and only if there exists z ∈ C such that
{T nz : n = 0, 1, . . .} is bounded. In particular, a fixed point of T is unique in the
case of α + 2β + γ > 0 on the condition (1).

Proof. Suppose that T has a fixed point z. Then {T nz : n = 0, 1, . . .} = {z}
and hence {T nz : n = 0, 1, . . .} is bounded. Conversely, suppose that there exists
z ∈ C such that {T nz : n = 0, 1, . . .} is bounded. Since T is an (α, β, γ, δ)-symmetric
generalized hybrid mapping of C into itself, we have that

α‖Tx − T n+1z‖2 + β(‖x− T n+1z‖2 + ‖Tx − T nz‖2) + γ‖x− T nz‖2

+ δ(‖x− Tx‖2 + ‖T nz − T n+1z‖2) ≤ 0

for all n ∈ N∪{0} and x ∈ C. Since {T nz} is bounded, we can apply a Banach limit
μ to both sides of the inequality. Since μn‖Tx − T nz‖2 = μn‖Tx − T n+1z‖2 and
μn‖x− T n+1z‖2 = μn‖x − T nz‖2, we have that

(α + β)μn‖Tx − T nz‖2 + (β + γ)μn‖x − T nz‖2

+ δ(‖x− Tx‖2 + μn‖T nz − T n+1z‖2) ≤ 0.

Furthermore, since

μn‖Tx − T nz‖2 = ‖Tx− x‖2 + 2μn〈Tx − x, x − T nz〉+ μn‖x − T nz‖2,

we have that

(α + β + δ)‖Tx− x‖2 + 2(α + β)μn〈Tx− x, x− T nz〉

+ (α + 2β + γ)μn‖x − T nz‖2 + δμn‖T nz − T n+1z‖2 ≤ 0.
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From (1) α + 2β + γ ≥ 0 and (3) δ ≥ 0, we have that

(3.8) (α + β + δ)‖Tx− x‖2 + 2(α + β)μn〈Tx− x, x− T nz〉 ≤ 0.

Since there exists p ∈ H from Lemma 2.1 such that

μn〈y, T nz〉 = 〈y, p〉
for all y ∈ H , we have from (3.8) that

(3.9) (α + β + δ)‖Tx− x‖2 + 2(α + β)〈Tx− x, x− p〉 ≤ 0.

Since C is closed and convex, we have that

p ∈ co{T nx : n ∈ N} ⊂ C.

Putting x = p, we obtain from (3.9) that

(3.10) (α + β + δ)‖Tp− p‖2 ≤ 0.

We have from (2) α + β + δ > 0 that ‖Tp − p‖2 ≤ 0. This implies that p is a fixed
point in T .
Next suppose that α + 2β + γ > 0. Let p1 and p2 be fixed points of T . Then we

have that

α‖Tp1 − Tp2‖2 + β(‖p1 − Tp2‖2 + ‖Tp1 − p2‖2) + γ‖p1 − p2‖2

+ δ(‖p1 − Tp1‖2 + ‖p2 − Tp2‖2) ≤ 0

and hence (α + 2β + γ)‖p1 − p2‖2 ≤ 0. We have from α + 2β + γ > 0 that p1 = p2.
Therefore a fixed point of T is unique. This completes the proof.

As a direct consequence of Theorem 3.1, we obtain the following theorem.

Theorem 3.2. Let H be a Hilbert space, let C be a nonempty bounded closed
convex subset of H and let T be an (α, β, γ, δ)-symmetric generalized hybrid mapping
from C into itself such that the conditions (1) α + 2β + γ ≥ 0, (2) α + β + δ > 0 and
(3) δ ≥ 0 hold. Then T has a fixed point. In particular, a fixed point of T is unique
in the case of α + 2β + γ > 0 on the condition (1).

Using Theorem 3.1, we prove the following fixed point theorem. Before proving
it, we introduce a more broad class of nonlinear mappings which contains the class
of symmetric generalized hybrid mappings. A mapping T from C into H is called
symmetric more generalized hybrid if there exist α, β, γ, δ, ζ ∈ R such that

(3.11)
α‖Tx − Ty‖2 + β(‖x − Ty‖2 + ‖Tx − y‖2) + γ‖x− y‖2

+δ(‖x − Tx‖2 + ‖y − Ty‖2) + ζ‖x − y − (Tx − Ty)‖2 ≤ 0

for all x, y ∈ C. Such a mapping T is called (α, β, γ, δ, ζ)-symmetric more generalized
hybrid.
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Theorem 3.3. Let H be a real Hilbert space, let C be a nonempty closed convex
subset of H and let T be an (α, β, γ, δ, ζ)-symmetric more generalized hybrid mapping
from C into itself such that the conditions (1) α + 2β + γ ≥ 0, (2) α + β + δ + ζ > 0
and (3) δ + ζ ≥ 0 hold. Then T has a fixed point if and only if there exists z ∈ C
such that {T nz : n = 0, 1, . . .} is bounded. In particular, a fixed point of T is unique
in the case of α + 2β + γ > 0 on the condition (1).

Proof. Since T : C → C is an (α, β, γ, δ, ζ)-symmetric more generalized hybrid
mapping, there exist α, β, γ, δ, ζ ∈ R satisfying (3.11). We also have that

(3.12)
‖x − y − (Tx− Ty)‖2 = ‖x − Tx‖2 + ‖y − Ty‖2

−‖x − Ty‖2 − ‖y − Tx‖2 + ‖x − y‖2 + ‖Tx − Ty‖2

for all x, y ∈ C. Thus we obtain from (3.11) that

(α + ζ)‖Tx− Ty‖2 + (β − ζ)(‖x− Ty‖2 + ‖Tx − y‖2)(3.13)
+ (γ + ζ)‖x − y‖2 + (δ + ζ)(‖x− Tx‖2 + ‖y − Ty‖2) ≤ 0.

The conditions (1) α + 2β + γ ≥ 0 and (2) α + β + δ + ζ > 0 are equivalent to
(α+ζ)+2(β−ζ)+(γ+ζ)≥0 and (α+ζ)+(β−ζ)+(δ+ζ)>0, respectively. Furthermore,
since (3) δ + ζ ≥ 0 holds, we have the desired result from Theorem 3.1.

As a direct consequence of Theorem 3.3, we obtain the following.

Theorem 3.4. Let H be a real Hilbert space, let C be a nonempty bounded
closed convex subset of H and let T be an (α, β, γ, δ, ζ)-symmetric more generalized
hybrid mapping from C into itself such that the conditions (1) α + 2β + γ ≥ 0, (2)
α + β + δ + ζ > 0 and (3) δ + ζ ≥ 0 hold. Then T has a fixed point if and only if
there exists z ∈ C such that {T nz : n = 0, 1, . . .} is bounded. In particular, a fixed
point of T is unique in the case of α + 2β + γ > 0 on the condition (1).

The following theorem is an extension of Theorem 3.4.

Theorem 3.5. Let H be a real Hilbert space, let C be a nonempty bounded closed
convex subset of H and let T be an (α, β, γ, δ, ζ)-symmetric more generalized hybrid
mapping from C into itself which satisfies the conditions (1) α + 2β + γ ≥ 0, (2)
α + β + δ + ζ > 0 and (3) there exists λ ∈ [0, 1) such that (α + β)λ + δ + ζ ≥ 0.
Then T has a fixed point. In particular, a fixed point of T is unique in the case of
α + 2β + γ > 0 on the condition (1).

Proof. Since T is an (α, β, γ, δ, ζ)-symmetric more generalized hybrid mapping
from C into itself, we obtain that

α‖Tx − T n+1z‖2 + β(‖x − T n+1z‖2 + ‖Tx− T nz‖2) + γ‖x− T nz‖2

+δ(‖x − Tx‖2 + ‖T nz − T n+1z‖2) + ζ‖(x − Tx) − (T nz − T n+1z)‖2 ≤ 0
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for any n ∈ N ∪ {0} and for any x ∈ C.
Let λ ∈ [0, 1)∩{λ : (α+β)λ+ζ +η ≥ 0} and define S = (1−λ)T +λI . Since C

is convex, S is a mapping from C into itself. Since C is bounded, {Snz : n = 0, 1, . . .}
is bounded for any z ∈ C. Since λ 
= 1, we obtain that F (S) = F (T ). Moreover,
from T = 1

1−λS − λ
1−λI and (2.1), we have that

α

∥∥∥∥
(

1
1 − λ

Sx − λ

1 − λ
x

)
−

(
1

1 − λ
Sy − λ

1 − λ
y

)∥∥∥∥
2

+ β

∥∥∥∥x −
(

1
1 − λ

Sy − λ

1− λ
y

)∥∥∥∥
2

+ β

∥∥∥∥
(

1
1− λ

Sx − λ

1 − λ
x

)
− y

∥∥∥∥
2

+ γ‖x− y‖2

+ δ

∥∥∥∥x −
(

1
1− λ

Sx − λ

1 − λ
x

)∥∥∥∥
2

+ δ

∥∥∥∥y −
(

1
1 − λ

Sy − λ

1− λ
y

)∥∥∥∥
2

+ ζ

∥∥∥∥
(

x −
(

1
1 − λ

Sx − λ

1 − λ
x

))
−

(
y −

(
1

1 − λ
Sy − λ

1− λ
y

))∥∥∥∥
2

= α

∥∥∥∥ 1
1− λ

(Sx − Sy)− λ

1− λ
(x − y)

∥∥∥∥
2

+ β

∥∥∥∥ 1
1 − λ

(x− Sy)− λ

1 − λ
(x − y)

∥∥∥∥
2

+ β

∥∥∥∥ 1
1 − λ

(Sx− y) − λ

1 − λ
(x − y)

∥∥∥∥
2

+ γ‖x− y‖2

+ δ

∥∥∥∥ 1
1− λ

(x − Sx)
∥∥∥∥

2

+ δ

∥∥∥∥ 1
1 − λ

(y − Sy)
∥∥∥∥

2

+ ζ

∥∥∥∥ 1
1 − λ

(x− Sx)− 1
1− λ

(y − Sy)
∥∥∥∥

2

=
α

1 − λ
‖Sx − Sy‖2 +

β

1 − λ
‖x − Sy‖2

+
β

1 − λ
‖Sx− y‖2 +

(
− λ

1 − λ
(α + 2β) + γ

)
‖x− y‖2

+
δ + βλ

(1− λ)2
‖x − Sx‖2 +

δ + βλ

(1 − λ)2
‖y − Sy‖2

+
ζ + αλ

(1− λ)2
‖(x− Sx)− (y − Sy)‖2 ≤ 0.

Therefore S is an
(

α
1−λ , β

1−λ ,− λ
1−λ(α + 2β) + γ, δ+βλ

(1−λ)2 ,
ζ+αλ
(1−λ)2

)
-symmetric more gen-

eralized hybrid mapping. Furthermore, we obtain that
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α

1 − λ
+

2β

1 − λ
+

γ

1 − λ
− λ

1 − λ
(α + 2β) + γ = α + 2β + γ ≥ 0,

α

1 − λ
+

β

1 − λ
+

δ + βλ

(1− λ)2
+

ζ + αλ

(1 − λ)2
=

α + β + δ + ζ

(1 − λ)2
> 0,

δ + βλ

(1 − λ)2
+

ζ + αλ

(1 − λ)2
=

(α + β)λ + δ + ζ

(1− λ)2
≥ 0.

Therefore by Theorem 3.4 we obtain F (S) 
= ∅.
Next suppose that α + 2β + γ > 0. Let p1 and p2 be fixed points of T . Then

α‖Tp1 − Tp2‖2 + β(‖p1 − Tp2‖2 + ‖Tp1 − p2‖2) + γ‖p1 − p2‖2

+ δ(‖p1 − Tp1‖2 + ‖p2 − Tp2‖2) + ζ‖(p1 − Tp1) − (p2 − Tp2)‖2

=(α + 2β + γ)‖p1 − p2‖2 ≤ 0

and hence p1 = p2. Therefore a fixed point of T is unique.

For the case β + δ = 0 in Theorem 3.5, we have the following theorem.

Theorem 3.6. Let H be a real Hilbert space, let C be a nonempty bounded closed
convex subset ofH and let T be an (α,−β, γ, β, ζ)-symmetric more generalized hybrid
mapping from C into itself, i.e., there exist α, β, γ, ζ ∈ R such that

(3.14)
α‖Tx − Ty‖2 + β(‖x − Ty‖2 + ‖Tx − y‖2) + γ‖x− y‖2

−β(‖x − Tx‖2 + ‖y − Ty‖2) + ζ‖x − y − (Tx− Ty)‖2 ≤ 0

for all x, y ∈ C. Furthermore, suppose that T satisfies the following conditions: (1)
α+2β+γ ≥ 0, (2) α+ζ > 0 and (3) there exists λ ∈ [0, 1) such that (α+β)λ−β+ζ ≥
0. Then T has a fixed point. In particular, a fixed point of T is unique in the case of
α + 2β + γ > 0 on the condition (1).

4. APPLICATIONS

In this section, we prove well-known and new fixed point theorems in a Hilbert
space by using fixed point theorems obtained in Section 3.
Let H be a Hilbert space and let C be a nonempty subset of H . Then T : C → H

is called a widely strict pseudo-contraction if there exists r ∈ R with r < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + r‖(I − T )x − (I − T )y‖2, ∀x, y ∈ C.

We call such T a widely r-strict pseudo-contraction. If 0 ≤ r < 1, then T is a
strict pseudo-contraction; see [4]. Furthermore, if r = 0, then T is nonexpansive.
Conversely, let S : C → H be a nonexpansive mapping and define T : C → H by
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T = 1
1+nS + n

1+nI for all x ∈ C and n ∈ N. Then T is a widely (−n)-strict pseudo-
contraction. In fact, from the definition of T , it follows that S = (1+n)T −nI . Since
S is nonexpansive, we have that for any x, y ∈ C,

‖(1 + n)Tx − nx − ((1 + n)Ty − ny)‖2 ≤ ‖x − y‖2

and hence
‖Tx− Ty‖2 ≤ ‖x− y‖2 − n‖(I − T )x− (I − T )y‖2.

Using Theorem 3.3, we first prove the following fixed point theorem.

Theorem 4.1. Let H be a real Hilbert space, let C be a nonempty bounded closed
convex subset of H and let T be a widely strict pseudo-contraction from C into itself,
i.e., there exists r ∈ R with r < 1 such that

(4.1) ‖Tx − Ty‖2 ≤ ‖x − y‖2 + r‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C.

Then T has a fixed point in C.

Proof. We first assume that r ≤ 0. We have from (4.8) that for any x, y ∈ C,

(4.2) ‖Tx − Ty‖2 − ‖x − y‖2 − r‖(I − T )x− (I − T )y‖2 ≤ 0.

Then T is a (1, 0,−1, 0,−r)-symmetric more generalized hybrid mapping. Further-
more, (1) α+2β+γ = 1−1 ≥ 0, (2) α+β+δ+ζ = 1−r > 0 and (3) δ+ζ = −r ≥ 0
in Theorem 3.3 are satisfied. Thus T has a fixed point from Theorem 3.3. Assume
that 0 ≤ r < 1 and define a mapping T as follows:

Sx = λx + (1− λ)Tx, ∀x ∈ C,

where r ≤ λ < 1. Then S is a mapping from C into itself and F (S) = F (T ). From
Sx = λx + (1− λ)Tx, we also have that

Tx =
1

1− λ
Sx − λ

1 − λ
x.

Thus we obtain from (4.8) and (2.1) that

0 ≥ ‖ 1
1− λ

Sx − λ

1 − λ
x − (

1
1 − λ

Sy − λ

1 − λ
y)‖2

− ‖x − y‖2 − r‖x − y − { 1
1− λ

Sx − λ

1 − λ
x − (

1
1− λ

Sy − λ

1 − λ
y)}‖2

= ‖ 1
1− λ

(Sx− Sy)− λ

1 − λ
(x − y)‖2

− ‖x − y‖2 − r‖ 1
1 − λ

(x − y)− 1
1 − λ

(Sx− Sy)‖2

=
1

1− λ
‖Sx − Sy‖2 − λ

1− λ
‖x − y‖2
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+
1

1 − λ
· λ

1− λ
‖x − y − (Sx− Sy)‖2 − ‖x − y‖2

− r

(1− λ)2
‖x − y − (Sx− Sy)‖2

=
1

1− λ
‖Sx − Sy‖2 − 1

1 − λ
‖x − y‖2 +

λ − r

(1 − λ)2
‖x − y − (Sx− Sy)‖2.

Then S is ( 1
1−λ , 0,− 1

1−λ, 0, λ−r
(1−λ)2

)-symmetric more generalized hybrid. From

1
1 − λ

+ 2 · 0 − 1
1 − λ

= 0,
1

1 − λ
+

λ − r

(1 − λ)2
> 0 and

λ − r
(1− λ)2

≥ 0,

(1) α + 2β + γ ≥ 0, (2) α + β + δ + ζ > 0 and (3) δ + ζ ≥ 0 in Theorem 3.3 are
satisfied. Thus S has a fixed point in C from Theorem 3.3 and hence T has a fixed
point. This completes the proof.

Let H be a Hilbert space and let C be a nonempty subset of H . Let T be a mapping
of C into H . For u ∈ H and s, t ∈ (0, 1), we define the following mapping:

Sx = tx + (1 − t)
(
su + (1− s)Tx

)
for all x ∈ C. We call such S a TWY mapping generated by u, T, s, t. Since Sx =
tx + s(1− t)u + (1− t)(1 − s)Tx, we have that for any x, y ∈ C,

‖Sx− Sy‖2 = ‖t(x − y) + (1− t)(1− s)(Tx− Ty)‖2

= t2‖x − y‖2 + (1 − t)2(1 − s)2‖Tx − Ty‖2

+ 2t(1− t)(1− s)〈x− y, Tx− Ty〉
= t2‖x − y‖2 + (1 − t)2(1 − s)2‖Tx − Ty‖2(4.3)

+ t(1− t)(1 − s)(‖x− Ty‖2 + ‖y − Tx‖2

− ‖x− Tx‖2 − ‖y − Ty‖2)

= t2‖x − y‖2 + (1 − t)2(1 − s)2‖Tx − Ty‖2

+ t(1− t)(1 − s)(‖x− Ty‖2 + ‖y − Tx‖2)

− t(1− t)(1 − s)(‖x− Tx‖2 + ‖y − Ty‖2)

Similarly, we have that

‖x− Sy‖2 + ‖y − Sx‖2

= s(1− t)2(‖u− x‖2 + ‖u− y‖2)

− s(1 − s)(1 − t)2(‖u − Tx‖2 + ‖u − Ty‖2)(4.4)
− t(1 − t)(1 − s)(‖x − Tx‖2 + ‖y − Ty‖2)

+ (1− t)(1 − s)(‖x− Ty‖2 + ‖y − Tx‖2) + 2t‖x − y‖2,
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‖x − Sx‖2 + ‖y − Sy‖2

= s(1 − t)2(‖u − x‖2 + ‖u − y‖2)(4.5)
− s(1 − s)(1− t)2(‖u − Tx‖2 + ‖u − Ty‖2)

+ (1 − s)(1 − t)2(‖x − Tx‖2 + ‖y − Ty‖2).

We also have that

‖x − y − Sx − Sy)‖2

= (1 − s)(1 − t)2(‖x− Tx‖2 + ‖y − Ty‖2)(4.6)
− (1− s)(1− t)2(‖x − Ty‖2 + ‖y − Tx‖2)

+ (1− t)2‖x − y‖2 + (1− t)2(1 − s)2‖Tx − Ty‖2.

Using (4.4) and (4.5), we have that

‖x− Sx‖2 + ‖y − Sy‖2 − ‖x − Sy‖2 − ‖y − Sx‖2

= (1− s)(1− t)(‖x− Tx‖2 + ‖y − Ty‖2(4.7)
− ‖x − Ty‖2 − ‖y − Tx‖2)− 2t‖x − y‖2.

Using (4.3) and (4.7), we have the following theorem.

Theorem 4.2. Let H be a real Hilbert space, let C be a nonempty bounded closed
convex subset of H and let T be a widely strict pseudo-contraction from C into itself,
i.e., there exists r ∈ R with r < 1 such that

(4.8) ‖Tx − Ty‖2 ≤ ‖x − y‖2 + r‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C.

Let u ∈ C and s ∈ (0, 1). Define a mapping U : C → C as follows:

Ux = su + (1− s)Tx, ∀x ∈ C.

Then U has a unique fixed point in C.

Proof. Since T is a widely r-strict pseudo-contraction from C into itself, we have
that for any x, y ∈ C,

‖Tx− Ty‖2 − ‖x− y‖2 − r‖x− y − (Tx − Ty)‖2 ≤ 0.

If r ≤ 0, then T is a nonexpansive mapping. Therefore U is a contractive mapping.
Using the fixed point theorem for contractive mappings, we have that U has a unique
fixed point in C. Let 0 < r < 1. Since

‖x − y − (Tx − Ty)‖2 = ‖x − Tx‖2 + ‖y − Ty‖2

− ‖x − Ty‖2 − ‖y − Tx‖2 + ‖x − y‖2 + ‖Tx − Ty‖2,
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we have that

(1 − r)‖Tx− Ty‖2 − (1 + r)‖x− y‖2

− r(‖x− Tx‖2 + ‖y − Ty‖2 − ‖x − Ty‖2 − ‖y − Tx‖2) ≤ 0.

For u, T and s, r ∈ (0, 1), define a TWY mapping S as follows:

Sx = rx + (1 − r)
(
su + (1 − s)Tx

)
, ∀x ∈ C.

Then we have from (4.3) that

1
(1− r)(1− s)2

‖Sx− Sy‖2 − r2

(1− r)(1− s)2
‖x − y‖2

+
r

1 − s
(‖x − Tx‖2 + ‖y − Ty‖2 − ‖x − Ty‖2 − ‖y − Tx‖2)

− (1 + r)‖x − y‖2

− r(‖x− Tx‖2 + ‖y − Ty‖2 − ‖x − Ty‖2 − ‖y − Tx‖2) ≤ 0.

We have from (4.7) that

1
(1 − r)(1− s)2

‖Sx − Sy‖2 − r2

(1 − r)(1− s)2
‖x − y‖2

+
r

(1 − r)(1− s)2
(‖x − Sx‖2 + ‖y − Sy‖2 − ‖x − Sy‖2 − ‖y − Sx‖2)

+
2r2

(1 − r)(1− s)2
‖x − y‖2 − (1 + r)‖x − y‖2

− r

(1 − r)(1− s)
(‖x − Sx‖2 + ‖y − Sy‖2 − ‖x − Sy‖2 − ‖y − Sx‖2)

− 2r2

(1 − r)(1− s)
‖x − y‖2 ≤ 0

and hence

1
(1 − r)(1− s)2

‖Sx − Sy‖2

− rs

(1 − r)(1− s)2
(‖x − Sy‖2 + ‖y − Sx‖2)

+
(

r2

(1− r)(1− s)2
− 1 − s + r2(1 + s)

(1− r)(1− s)

)
‖x − y‖2

+
rs

(1 − r)(1− s)2
(‖x − Sx‖2 + ‖y − Sy‖2) ≤ 0.
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For this inequality, we apply Theorem 3.2. We first obtain that

1
(1− r)(1− s)2

− 2rs

(1 − r)(1− s)2
+

r2

(1− r)(1− s)2
− 1 − s + r2(1 + s)

(1 − r)(1− s)

=
s(1 + r)(2− s(1 − r))

(1− r)(1− s)2
> 0.

Furthermore, we have that

1
(1−r)(1−s)2

− rs
(1−r)(1−s)2

+
rs

(1 − r)(1− s)2
=

1
(1 − r)(1− s)2

> 0,

rs

(1 − r)(1− s)2
≥ 0.

Thus S has a unique fixed point z in C from Theorem 3.2. Since z is a fixed point of
S, we have z = rz + (1 − r)(su + (1 − s)Tz. From 1 − r 
= 0, we have that

z = su + (1 − s)Tz.

This completes the proof.
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