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DOMINATION IN THE ZERO-DIVISOR GRAPH OF AN IDEAL
OF A NEAR-RING

T. Tamizh Chelvam and S. Nithya

Abstract. Let N be a near-ring. In this paper, we associate a graph corresponding
to the 3-prime radical Z of N, denoted by I'z(NN). Further we obtain certain
topological properties of Spec(N), the spectrum of 3-prime ideals of N and graph
theoretic properties of I'z(IN). Using these properties, we discuss dominating sets
and connected dominating sets of I'z (V).

1. INTRODUCTION

Throughout this paper, by a near-ring N we always mean a zero-symmetric near-
ring with identity 1. For basic definitions in near-rings one may refer [10]. For subsets
A, Bof N, (A: B) ={ne N:nBC A}. Anideal I of N is said to be a prime
ideal if JK C I, then either J C I or K C [ for ideals J and K of N. Let a,b € N.
An ideal I of N is 3-prime if aNb C I, then either a € [ or b € I. An ideal I of
N is 3-semiprime if aNa C I, then a € I. An ideal I of N is completely prime if
ab € I, then either a € I or b € I. Note that completely prime = 3-prime = prime
[14]. Moreover, if N is a commutative ring, then the notions of prime, 3-prime and
completely prime are one and the same. The intersection of all proper prime ideals of
N is called the prime radical of N and denoted by P(NN), the intersection of all proper
3-prime ideals of N is called the 3-prime radical of N and denoted by Z (V) and the
intersection of all proper completely prime ideals of N is called the completely prime
radical of N. Let N'(N) denote the set of all nilpotent elements of N. A near-ring
N is called 2-primal if P(N) = N(N). As observed in [5], if N is a zero-symmetric
2-primal near-ring, then the prime radical, the 3-prime radical and the completely prime
radical are coincide. A near-ring N is called a pm-near-ring if every 3-prime ideal is
contained in a unique maximal ideal of N.
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The study on graphs from algebraic structures is an interesting subject for mathe-
maticians since the notion of Cayley graphs from groups [4]. In recent years, many alge-
braists as well as graph theorists have focused on the zero-divisor graph of rings. In [2],
D.F. Anderson and P.S. Livingston introduced the zero-divisor graph of a commutative
ring R with identity, denoted by I'( R), as the graph with vertices Z(R)* = Z(R)\ {0},
the set of nonzero zero-divisors of R, and for distinct vertices x and y are adjacent if
and only if xy = 0. This concept due to I. Beck [3], who let all the elements of R be
vertices of I'( R) and was mainly interested in colorings. S.P. Redmond [11] introduced
the zero-divisor graph with respect to an ideal I of R, denoted by I';(R), as the graph
with vertex set {z € R\ I : xy € I for some y € R\ I}, and two distinct vertices = and
y are adjacent if and only if zy € I. Later on, the zero-divisor graph and the ideal-based
zero-divisor graph were studied in near-rings and one may refer [1, 7]. Subsequently, in
[13], authors constructed the zero-divisor graph to an ideal I of a near-ring IV, denoted
by I'7(N), as the graph with vertex set {x € N\ I: 2Ny C I or yNx C I for some
y € N\ I} and two distinct vertices « and y are adjacent if and only if zNy C I
or yNx C I. If I is a totally reflexive ideal of N (i.e, if aNb C I, then bNa C I
for a,b € N), then the vertex set V(I';/(N)) = {x € N\ I : 2Ny C I for some
y € N \ I}. Having constructed I'; (V) corresponding to a totally reflexive ideal I of
N, T. Tamizh Chelvam and S. Nithya [13] proved that Beck’s conjecture is true for
the class of I'7 (V') and further they characterized all near-rings N for which the graph
I'7(N) is finitely colorable.

Since Z (abbreviation for Z(N)) is a 3-prime radical of N, 7 is a totally reflexive
ideal of N. Due to this, V(I'z(N)) = {x € N\Z: 2Ny C T forsomey € N \Z}
and two distinct vertices x and y are adjacent if and only if tNy C Z. If 7 is a 3-prime
ideal of NV, then the graph I'z (V) is empty. Hence we consider near-rings N for which
7 is not a 3-prime ideal. For an ideal I of N and x € N, the annihilator of x is nothing
but (I : Nz) = {y € N :yNx C I}. By Proposition 1.42 [10], (I : Nz) is an ideal
of N. Since Z is a totally reflexive ideal of N, (Z: Nx)={y € N : Ny C 7}.

Spec(N), Max(N) and Min(N) denote the set of all proper 3-prime ideals of
N, the set of all maximal ideals of N and the set of all minimal 3-prime ideals of
N, respectively. For a € N, we define V(a) = {P € Spec(N):a € P}, D(a) =
{P € Spec(N):a ¢ P} = Spec(N)\ V(a) and M(a) = V(a) N Max(N). Note
that V(a) = V({a)) and D(a) = D({a)), where (a) is the ideal generated by a € N.

Also, for an ideal J of N, V(J) = (| V(a) and D(J) = |J D(a). Since the sets
acJ acJ
{V(J) : J is an ideal of N} and {D(J) : J is an ideal of N} satisfy the axioms for

closed sets and open sets, one can have a topology on Spec(N) and hence Spec(N)
is a topological space. Further with respect to this topology Min(N) is a subspace of
Spec(N). If N is a zero-symmetric near-ring with identity, then Maxz(N) C Spec(N)
and so we consider Max(N) as a subspace of Spec(N). Also B = {D(x): 2z € N} is
a base of the topological space Spec(N). The operators ¢l and int denote the closure
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and the interior in a topological space. For basic definitions of topological space one
may refer [8].

Recently, K. Samei [12] studied the relation between properties of a commutative
reduced ring R and properties of the graph I'(R) through topological properties of
Spec(R). Note that when N is a commutative reduced ring, the 3-prime radical of
N is {0} and so I'(N) = I'z(V). In Section 2, we generalize some results proved in
[12] for commutative ring to near-rings. In section 3, we construct a dominating set of
I'z(N) through a base of the topological space Spec(IN') and on the other way obtain a
dense subset in Spec(N) corresponding to every dominating set in I'z(IV'). Moreover,
we give a topological characterization for the set of all central vertices of I'z(N) to be
a dominating set and the neighbourhood of every vertex in I'z(/N) to be a connected
dominating set of I'z (V).

Let G be a graph with vertex set V(G). Recall that G is connected if there is a
path between any two distinct vertices of G. The neighbourhood of a vertex x in G is
the set consisting of all vertices which are adjacent with x. For two vertices x and y
of G, the distance d(z, y) to be the length of a shortest path from x to y. The diameter
of G is diam(G) = max {d(x,y) : x,y € V(G)}. The eccentricity of a vertex x in
G is defined as e(x) = max {d(x, z) : z € V(G)}. The radius of G is the minimum
eccentricity among the vertices of G, which is denoted by rad(G). A vertex z in G is
a central vertex if e(z) = rad(G). For S C V(G), the induced subgraph H induced
by S is the subgraph of G with vertex set .S and two vertices are adjacent in H if and
only if they are adjacent in G and it is denoted by (S). A graph G is complete if each
pair of distinct vertices is adjacent. For undefined terms in graph theory, we refer to

[6].
2. Basic PROPERTIES OF I'z (V)

The results of this section provide effective criterion for discussing the dominating
sets and the connected dominating sets of I'z(N') in Section 3. One can easily observe
the following.

Observation 2.1. Let N be a near-ring and a € N. Then
(1) V((Z: Na)) = clD(a) = Spec(N) \ intV (a).
(i) a € V(I'z(N)) if and only if ) # clD(a) # Spec(N).

The following proposition topologically characterizes the concept of distance in
I'z(N). First we need the following Lemma.

Lemma 2.2. ([13, Theorem 2.2]). Let I be a totally reflexive ideal of a near-ring
N. Then diam(T';(N) < 3.

Proposition 2.3. Let T be the 3-prime radical of N and a,b,c € V(I'z(N)) be
distinct elements. Then the following are true.
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(1) cis adjacent in T'z(N) to both a and b if and only if clD(a)UclD(b) C V(c);
(i1) d(a,b) =1 if and only if D(a) N D(b) = 0;
(i4i) d(a,b) = 2 if and only if D(a) N D(b) # 0 and clD(a) U clD(b) # Spec(N),
(iv) d(a,b) = 3 if and only if D(a) N D(b) # O and clD(a) U clD(b) = Spec(N).
Proof.

(i) Note that ¢ is adjacent to both a and b in I'z(NV) if and only if aNe¢ C Z
and bN¢ C 7 if and only if D(a) N D(c) = D(b) N D(c) = ( if and only if
D(a) UD(b) C V() and if and only if c/D(a) U el D(b) C V (c).

(ii) Trivial from definitions.

(iii) Suppose d(a, b) = 2, then there exists ¢ € V(I'z(IV)) such that ¢ is adjacent to
both a and b. By (ii) and (i), D(a) N D(b) # 0 and clD(a) U clD(b) C V(c).
Since ¢ ¢ Z, we have V (c) # Spec(N).

Conversely assume that D(a) N D(b) # 0 and c/D(a)UclD(b) # Spec(N). By
(ii), d(a,b) # 1. Since clD(a) = V((I : Na)) and clD(b) = V(I : Nb), there
exists P € Spec(N) with z,y ¢ P for some z € (Z : Na) and y € (Z : Nb).
This implies that 2Ny ¢ 7 and there exists n € N such that zny € (Z : Na)
and zny € (Z : Nb). Hence d(a,b) = 2.

(iv) By Lemma 2.2, we have diam(I'z(NN)) < 3. Now proof follows from (ii) and
(ii1). n

Lemma 24. Let N be a near-ring. For F C Spec(N), the closure of F is

cdF = {P’ € Spec(N): N PC P’}.
pPeF

Proof. Let A = {P’ € Spec(N): N PC P’} and Q € A. Since B =
pPeF
{D(z) :x € N} is a base for the space Spec(NV), it is enough to a D(z) such that
Q € D(z). Clearly D(z)NF # 0, i.e., Q € clF. Suppose A C clF, thereis P € clF
such that (\ P € P;. Letz € () P\ P, then P, € D(z) and D(z)NF =0, a
PEF PeF
contradiction. Hence clF = A. ]

From this Lemma 2.4, for every closed subset F of Spec(N), F = V(J) where

J= P
pPeF

Theorem 2.5. Let I be the 3-prime radical of a near-ring N. A subset F of

Spec(N) is dense in Spec(N) if and only if T = [ Q.
QeF
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Proof. Let F be dense in Spec(N). Then by Lemma 2.4, clF = {P’ €

Spec(N) : N QQP’} = Spec(N). Hence () Q@ C Z. As F C Spec(N),

QeF QeF

=N Q.

QeF

Conversely, assume that Z = (] Q. Suppose clF =< P’ € Spec(N): () Q C

Qer QeF
P' > C Spec(N). Then there exists P; € Spec(N) such that () Q € P, i.e., there
QeF
exists z € [ @\ P, a contradiction to the fact that Z = () (). Hence F is dense
Qer QeF

in Spec(N). u

Note that every maximal ideal is a 3-primal ideal in a zero-symmetric near-ring [N
with identity 1. This along with Theorem 2.5 give the following corollary.

Corollary 2.6. Let T be the 3-prime radical of N with T = NMax(N). Then
Max(N) is dense in Spec(N).

Theorem 2.7. Let N be a near-ring with the 3-prime radical . Then
(1) Spec(N) is a compact space,
(1i) Max(N) is a compact subspace of Spec(N),

(1i1) If N is a 2-primal pm-near-ring, then Max(N) is Hausdorff. Moreover, if
Z =NMax(N), then Spec(N) is normal.

Proof. (i) and (ii) follow from Theorem 2.3(ii) and (iii) in [7].
(iii) Since N is a 2-primal near-ring, all prime radicals are coincide. Now the proof
follows from Theorems 2.8 and 2.3(v) in [7]. ]

Theorem 2.8. Let N be a 2-primal pm-near-ring with T = NMax(N). Then
diam(T'z(N)) = 3 if and only if there exist at least three distinct maximal ideals in
N.

Proof.  Assume that diam(I'z(NN)) = 3, then there exist a, b, z,y € V(I'z(N))
such that a—x—y—b is a path. Suppose |Maxz(N)| = 2 and let Max(N) = { M1, Ma}.
As d(a,b) = 3, by Proposition 2.3(ii) there exists a 3-prime ideal P € D(a) N D(b).
By P € D(a) and Corollary 2.6, there exists a maximal ideal M; € D(a). Since
aNz CZ,eNyCZ andZ = My N My, x € My \ My, y € My \ My. Now yNb C 7T
gives that b € M;. Therefore M; € D(a) \ D(b). Similarly, as P € D(b) we can
show that My € D(b) \ D(a). Again P € D(anb) for some n € N and Max(N) is
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dense in Spec(N), we have D(anb) N Max(N) # 0. But M; ¢ D(anb) N Max(N)
for i = 1,2, a contradiction. Thus |Max(N)| > 3.

Conversely, suppose that |[Maxz(N)| > 3 and let My, My, M3 be distinct maximal
ideals in N. By Theorem 2.7(iii), Max(N) is Hausdorff. Thus there exist a; € N
such that M; € D(a;),i =1,2,3 and D(a;) are mutually disjoint. Since a; ¢ M; and
as ¢ Mo, there exista € My, b € My such that a+a} = b+a, = 1 where a] € < a; >
and af, € < ag >. Thus M; € V(a) C D(a;) and My € V(b) C D(ag). Clearly
Ms € D(a)ND(b) and so D(a)ND(b) # 0. Suppose D(a)UD(b) C Spec(N). Then
there exists P € Spec(N) such that P € V(a) C D(a;) and P € V(b) C D(as),
a contradiction. Therefore c!D(a) U clD(b) O D(a) U D(b) = Spec(N) and so by
Proposition 2.3(iv), d(a, b) = 3 which implies diam(I'z(N)) = 3. |

Theorem 2.9. Let N be a 2-primal pm-near-ring with |N| > 4 and
NMaz(N) = (0). Then diam(I'z(N)) = min {|Max(N)|, 3}.

Proof.  Since NMax(N) = (0), Z = NMax(N) gives |[Max(N)| > 1. Suppose
that |[Max(N)| = 2. Let Max(N) = {My, My}, then there exist a; € M; \ My and
ay € My \ My such that a1 Nas C Z and so a1, ag € V(I'z(N)). Since | N| > 4, either
M or My contains at least two nonzero elements. If possible, M; and M contains
only one element, then |[N| = 4, a contradiction. Without loss of generality assume
that there exists nonzero (a; #)by € M. Since agaNb; C 7 and by ¢ My which imply
by € V(I'z(N)) and a; Nby € M,. Therefore d(aq, b1) = 2 and so diam(I'z(N)) = 2.
This along with Theorem 2.8 imply that diam(I'z(N)) = min {|Max(N)|, 3}. |

Remark 2.10. In Theorem 2.9, if |[N| = 4, then the fact is not true. Consider
the near-ring of matrices N = 2 2) NS Zg}. Then diam(I'z(N)) = 1. If
|N| < 4, then the graph I'z(N) is empty.

Lemma 2.11. Let N be a 2-primal pm-near-ring with T = N"Max(N). For every
open subset U of P in Spec(N), there exists a € V(I'z(N)) such that P € intV (a) C
V(a) CU. Thatis, {intV(a):a € V(I'z(N))} is a base of the space Spec(N).

Proof.  Let U be a proper open set of Spec(N). Then () # U¢ = Spec(N)\U =
V(J) for some ideal J of N. By Theorem 2.7(iii), Spec(N) is normal and so there
are disjoint open sets U’ and U” in Spec(N) such that P € U’ and V(J) C U”. Since
Spec(N) is compact and V' (J) is closed, V'(.J) is compact, so thereare a; € N, i = 1 to

n n
n such that V(J) C |J D(a;) = D(J1) C U”, where J; = Y < a; >. We claim that
i=1 i=1
J1+J = N. For otherwise, there exists a proper 3-prime ideal @ such that J;+J C @
which gives @ € V(J;) and Q € V(J) C D(J1), a contradiction. Thus J; +J = N,

ie,a+b=1forsomea € Jyand b € J. Since U'NU" = (), we have U'ND(a) =0
Hence P € U’ C int V(a) C V(a) € D(b) C D(J) = U. By Observation
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2.1, a € V(I'z(N)). Suppose U = Spec(N). Since |Max(N)| > 1, there exists a
maximal ideal M containing ¢ such that ¢ ¢ P. Then P € D(c) # Spec(N). Hence
there exists a € V(I'z(NN)) such that P € int V(a) CV(a) CD(b) C D(c)CU. m

In view of Lemma 2.11, we observe that the following remarks.

Remark 2.12. For every nonempty open subset U of Spec(N), by Lemma 2.11,
there exists b € N such that () # D(b) # Spec(N) and D(b) C U. Choose P; € D(b)
and P, € V(b). Since Spec(N) is normal, there exist ¢1,co € N such that P, €
D(c1) C D(b), P, € D(c2) and D(c¢1) N D(cg) = (. Therefore ¢; Nco C Z. Hence
for every nonempty open subset U of Spec(N), there exists ¢; € V(I'z(N)) such that
D(01> Q U.

If N is a 2-primal pm-near-ring, then by Theorem 2.7(ii) and (iii), Maz(N) is a
compact Hausdorff space and by Theorem 3.26 in [9], Max(N) is normal. By the
argument similar to the proof of Lemma 2.11, {intM(a) : a € V(I'z(N))} is a basis
of Max(N).

Proposition 2.13. Let T be the 3-prime radical of N and a € V(I'z(N)). If
e(a) =1, then |Min(N)| = 2.

Proof.  We claim that P, =Z U {a} and P» = (Z : Na) are the only minimal 3-
primal ideals of N. Let z1,z9 € P;. Since e(a) = 1, foreveryy € P» (x1 —29)Ny C
7 which yields 1 —x9 € P;. If x € Py, then x Ny +Z = T for every y € P, and
so (n+x —n)Ny CZ for everyn € N, i.e, n+x —n € P;. Thus P; is a normal
subgroup of N. Let x € P; and n,n’ € N, then znNy C 7 which gives PPN C P,
and since tNy+Z =Z, (n(n’+x) —nn’)Ny C Z, i.e, n(n’ +x) —nn’ € P;. Hence
P is an ideal of N. Assume that x1Nxo C P, 21,292 € N, then 21 NaxoNy C T for
every y € Ps.

Case 1. Let 21 Nzo C Z. Suppose that both z1, zo ¢ Py, then z1, 22 € V(I'z(N)).
As e(a) =1 gives aNzy C 7 and aNze C Z, so (a + x2)Nzy C Z. Thus a + x5 €
V(I'z(N)) such that d(a,a+ x2) = 2, a contradiction.

Case 2. Suppose zinze = a ¢ Z for some n € N. From this, 1 Na gé A
and 2oNa ¢ Z. Since every y € P, aNy C Z, z1nzoNy C Z. If 20Ny C T,
then d(a, z2) =, a contradiction. Also, if x9Ny ¢ Z, then z1NxoNy C Z implies
x1 € V(I'z(N)). Since P, is an ideal, zoNyNa C Z, so d(a,z1) = 2, again a
contradiction. Also P is a minimal 3-prime ideal of V.

Since P, is an ideal, it remains to prove that P, is 3-prime. Let z1 Nxo C Ps, then
1 NxoNa CZI. If xoNa C 7, then zo € P,. Otherwise, there exists n € N such that
xona = a, as roNa C P;. Hence 1 € P,. Therefore P, is a minimal 3-prime ideal
of N.
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If P e Min(N)\{Pi, P2}, then a ¢ P and there is some b € P, such that b ¢ P.
It is clear that aNb C Z, a contradiction to the fact that a,b ¢ P. [ |

Remark 2.14. The converse of the Proposition 2.13 is not true. Consider the near-
ring N = Zs3 x Zs, then the graph I'z(N) is K4 and N has exactly two minimal
3-prime ideals, but no one vertex in I'z(NV) has eccentricity one.

Proposition 2.15. Let N be a 2-primal pm-near-ring with T = NMax(N), a €
V(I'z(N)) and e(a) # 1. Then

(i) e(a) =2 if and only if |clD(a)| = 1,

(ii) e(a) = 3 if and only if |clD(a)| > 1.
In particular, e(a) = min{|c!D(a)| + 1, 3}.

Proof. (i) Assume that e(a) = 2. Suppose |cID(a)| > 1. Clearly D(a) # 0,
then there is a maximal ideal, say M in D(a). Now we prove that D(a) contains at
least two distinct maximal ideals. For otherwise, it contains only one maximal ideal
M. Since |cID(a)| > 1, there is a 3-prime ideal (M #)Q € clD(a). Therefore there
exists x € M \ @ such that aNz C NMaxz(N) = Z which is a contradiction to the
fact that D(a) N D(x) # (. Hence there are maximal ideals M, M’ in D(a). Let
be M\ M, then aNb ¢ M and so M € D(anb) for some n € N. By Lemma
2.11, there exists ¢ € N such that M € intV (c) C D(anb) C clD(a), consequently,
clD(a)UelD(c) = Spec(N) and M’ € D(a) NelD(c) gives that D(a) N D(c) # .
Then by Proposition 2.3(iv), d(a, ¢) = 3, a contradiction.

Conversely assume that [c/D(a)| = 1, then there is P € Spec(N ) such that D(a) =
clD(a) = {P}. On the contrary, suppose that d(a,b) = 3 for some b € V(I'z(N)).
Again by Proposition 2.3(iv), we have D(a) UclD(b) = clD(a)UclD(b) = Spec(N).
This implies that cID(b) = V(a). Therefore D(a) N D(b) = (), a contradiction. This
shows that e(a) = 2.

(i1) Proof follows from the hypothesis and (i). ]

3. DOMINATING SETS IN I'z(IV)

A subset D of V(I'z(IV)) is called a dominating set if for every v € V(I'z(N))—D
is adjacent to some vertex in D. The domination number ~(G) is the cardinality of
the smallest possible dominating set in G. A dominating set D is called a connected
dominating set if the induced subgraph < D > is connected. The connected domination
number v.(G) is the cardinality of the smallest possible connected dominating set. The
following theorem exposes a close connection between I'z (V) and the topological space

Spec(N).
Theorem 3.1. Let N be a 2-primal pm-near-ring with T = NMax(N). Then

(1) For every dominating set of I'z(N), there exists a dense subset in Spec(N ).
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(1) For every base for the open sets of the space Spec(N ), there exists a dominating
set in T'z(N).

Proof. (i) Suppose D is a dominating set. For every a € D, there exists
b € V(I'z(N)) such that aNb C Z. Since Maz(N) is dense, O # D(b) N Max(N) C
M (a) and Max(N)\ M(a) # (). Then we take M, € intM (a) and M, € Max(N)\
M (a). First we show that the set A = {M, : a € D}U{M/ : a € D} is a dense subset
of Max(N). By Remark 2.12(ii) {intM(c) : ¢ € V(I'z(N))} is a basis for Maxz(N).
Therefore it is sufficient to prove that for every ¢ € V(I'z(N)), ANintM(c) # 0. Let
c € V(I'z(N)). If ¢ € D implies that M, € AN intM(c). Otherwise, since D is a
dominating set, there exists d € D such that cNd C Z. Thus M), € Max(N)\M(d) C
intM (c) and so M), € ANintM(c). This shows that A is a dense subset in Maxz(N)
this along with Max(N) is dense in Spec(N) lead to A is dense in Spec(N).
(ii) Let B = {B) : A € A} be a base for the open sets of the space Spec(N). By
Remark 2.12(i), for every By € B, there exists ay € V(I'z(V)) such that D(ay) C B,.
We claim that D = {ay : A € A} is a dominating set. Let b € V(I'z(N)). Then there
exists By € B such that By C intV (b). Therefore D(ay) C intV (b), i.e., axNb CZ
and consequently D is a dominating set. ]

In a topological space X, a point x of X is said to be an isolated point of X
if the one point set {x} is open in X. Py(N), Mo(N) and Zy(N) denote the sets
of isolated points of the spaces Spec(N), Max(N) and Min(N), respectively. The
following lemma shows that these isolated points sets are coincide in a pm-near-ring
N with Z = NMax(N).

Lemma 3.2. Let N be a pm-near-ring with T = NMax(N). Then Py(N) =
Mo(N) =TZy(N).

Proof.  First we show that Py(N) = M (V). Suppose { M } is open in Max(N),
then D(a) N Maxz(N) = {M?} for some a € N. It follows that
a € N M’. Therefore < a > M C NMax(N) = Z. Since every
M'eMaz(N)\{M}
P € Spec(N) is prime, (a) C P or M C P and so D(a) = {M}, i.e., M € Py(N).
The opposite inclusion is trivial. Now it is sufficient to show that Mo (V) = Zp(N).
Let P’ € Zy(N) such that {P'} = D(b) N Min(N), b € N. Then P’ C M’ for

a unique maximal ideal M’ and so b € N M\ P'. This implies that
MeMaz(N)\{M'}
M #17,i.e., there exists ¢ ¢ Z and ¢ € N M. Therefore
MeMaz(N)\{M'} MeMaz(N)\{M'}

¢ ¢ M’ and hence M’ is an isolated point of Max(N), so M € My(N) = Py(N)
and consequently P’ = M’ € My(N). Since Mo(N)=Py(N), Mo(N)CZp(N). m
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Theorem 3.3. Let N be a 2-primal pm-near-ring with T = NMax(N) and
|Min(N)| > 2. Then the set of central vertices of I'z(N) is a dominating set if
and only if the set of isolated points of Spec(N) is dense in Spec(N).

Proof.  Let D be the set of central vertices of I'z(V). Since diam(I'z(N)) < 3
and Proposition 2.13, e(a) = 2 for every a € D. Then by Proposition 2.15(i), we have
D={aeV(I'z(N)):|clD(a)| = 1}. Now we claim that Y = {P, : D(a) = {P,},
a € D} is a dense subset of Spec(N). Let U be a nonempty open set which does
not contain any isolated points. Since Maxz(N) is dense in Spec(N), there exists
M € Un Max(N). By Lemma 3.2, |U N Max(N)| > 1, so there are distinct
maximal ideals M, M’ € U. Clearly (Z : Nag) € M, ap € D, otherwise, M €
V((Z : Nap)) = clD(ap), a contradiction. Then there exists y € (Z : Nag) \ M
and z € M’ \ M such that b = zny € P,y N M'\ M for some n € N and there is
b € N such that M € D(¥') C U. Therefore by Lemma 2.11, there exists ¢ € N and
n’ € N such that M € intV (c) C D(bn't') C U, consequently P,,, M’ € cl D(c),
ie, ce V(I'z(N))\ D. Since D is a dominating set, there exists a € D such that
aNc¢ C Z. Hence P, € D(a) C intV(c) C U, i.e., U contains an isolated point of
Spec(N). This leads to UNY # 0, i.e.,, Y is dense in Spec(N).

Conversely, let Y = {P) : A € A} be the set of isolated points of Spec(N). Consider
D = {ay: D(ay) = {Pr}}, then e(ay) = 2 for every A € A and so every element of
D is a central vertex of I'z(NV). Suppose that b € V(I'z(N)) \ D. Since Y is dense
in Spec(N), then there exists Py € intV (b) NY. Therefore D(ay) C intV (b) which
implies that ayNb C 7, i.e., D is a dominating set. [

Proposition 3.4. Let N be a 2-primal pm-near-ring with T = NMax(N). If
Spec(N) has an isolated point, then there exists a € N such that the neighbourhood
N(a) of a in T'z(N) is a dominating set.

Proof. Let P be an isolated point in Spec(N). Then there exists a € N
such that {P} = D(a) and so |clD(a)| = 1. If e(a) = 1, then clearly N(a) is
a dominating set. Otherwise, since |c/D(a)| = 1, Proposition 2.15(ii) implies that
e(a) = 2. Suppose there is a vertex b ¢ N (a) which is not dominated by any ¢ € N (a).
As diam(T'z(N)) < 3, d(b,¢) = 2 or 3 and hence d(a, b) > 2, a contradiction. |

Remark 3.5. From the Proposition 3.4, v(I'z(N)) < |N(a)| and the bound is
sharp. For example, consider the near-ring N = Zo X Zo X Zo, then the corresponding
graph I'7(N) as given in Figure 1. Here, D((1,0,0)) = {{0} x Zg x Za}, then
{0} x Zy X Zs is an isolated point and hence the neighbourhood set N((1,0,0)) =
{(0,1,1),(0,0,1)(0,1,0)} is a minimum dominating set.

Theorem 3.6. Let I be the 3-prime radical of a near-ring N and
diam(T'z(N)) = 2. Then the following are equivalent.
(1) For every x € V(I'z(N)), the neighbourhood N(x) in T'z(N) of x induces a
connected subgraph of T'7(N) and hence it is a connected dominating set.
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(i1) For every pair of distinct a,b € V(I'z(N)), there exists ¢ € N such that
clD(a)UcD(b) C V(c).

(0,1,1)

(1,0,0)

Figure 1.

Proof. (i)=(ii) Let a,b € V(I'z(N)). If aNb ¢ Z, since diam(T'z(N)) = 2, the
result follows from Proposition 2.3(i). So it is enough to discuss the case that alNb C 7.
Again by diameter of I'z(V), there exists ¢ € V(I'z(N)) \ {a, b} such that ¢ € N(a)
or ¢ € N(b). Without loss of generality, ¢ € N(a). Since induced subgraph of N(a)
is connected, there is a path lies between ¢’ and b. Then there exists ¢ € N(a) such
that ¢ € N (b). Therefore by Proposition 2.3(i), c/D(a) U clD(b) C V(c).

(i)=(@) Let x1, 29 € N(x). If 1 Nzo C Z, then x1 — x2 is a path. Otherwise, there
exists n € N such that x1nzy ¢ Z. Consider z,x; and z,x9, by our assumption
and proposition 2.3(i), there exist y1,y2 € N such that y; € N(x) N N(z1) and
y2 € N(x) N N(zg). Then z1 — y3 — x1nxy — Y2 — x2 is a path in the induced
subgraph of N(x). Thus N(z) induces a connected subgraph of I'z(N) and since

diam(T'z(N)) = 2, for every x € V(I'z(N)), N(x) is a dominating set. |
Proposition 3.7. Let T be the 3-prime radical of N such that for every P €
Spec(N), 1 Q#L Then 7(Tz(N)) < [Spec(N)|.
QESpec(N)\{P}
Proof.  For every P € Spec(N), take ap € N Q \Z. We show
QESpec(N)\{P}

that the set D = {ap : P € Spec(N)} is a connected dominating set of V(I'z(N)).

Suppose b € V(I'z(N)) \ D, then b € P’ for some P’ € Spec(N) and so we have

bpr € N Q' \Z. Then bpr € D and bNbp: C Z. Consequently, since
Q'€Spec(N)\{P'}

every ap € D, D(ap) = {P}, P € Spec(N) and by Proposition 2.3(ii), D induces

a complete subgraph of I'z(/V). Hence D is a connected dominating set. Therefore

Ye(I'z(N)) < |D] = Spec(N). u

Remark 3.8. The bound in Proposition 3.7, is sharp. Consider the near-ring N
with Spec(N) = {Py, P2} and |P;\Z| > 1 fori = 1,2. Let a € V(I'z(N)). Without
loss of generality a € P, \ Z, then aNb C Z for every b € P, \ Z and aNda' ¢ T for
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everya € PP\Z,soforallac PL\Z,be P \Z, {a,b} is a minimum connected
dominating set.
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