TAIWANESE JOURNAL OF MATHEMATICS

Vol. 17, No. 5, pp. 1613-1625, October 2013

DOI: 10.11650/tjm.17.2013.2739

This paper is available online at http://journal.taiwanmathsoc.org.tw

DOMINATION IN THE ZERO-DIVISOR GRAPH OF AN IDEAL OF A NEAR-RING

T. Tamizh Chelvam and S. Nithya

Abstract. Let N be a near-ring. In this paper, we associate a graph corresponding to the 3-prime radical \mathcal{I} of N, denoted by $\Gamma_{\mathcal{I}}(N)$. Further we obtain certain topological properties of Spec(N), the spectrum of 3-prime ideals of N and graph theoretic properties of $\Gamma_{\mathcal{I}}(N)$. Using these properties, we discuss dominating sets and connected dominating sets of $\Gamma_{\mathcal{I}}(N)$.

1. Introduction

Throughout this paper, by a near-ring N we always mean a zero-symmetric nearring with identity 1. For basic definitions in near-rings one may refer [10]. For subsets A, B of N, $(A:B) = \{n \in N : nB \subseteq A\}$. An ideal I of N is said to be a prime ideal if $JK \subseteq I$, then either $J \subseteq I$ or $K \subseteq I$ for ideals J and K of N. Let $a, b \in N$. An ideal I of N is 3-prime if $aNb \subseteq I$, then either $a \in I$ or $b \in I$. An ideal I of N is 3-semiprime if $aNa \subseteq I$, then $a \in I$. An ideal I of N is completely prime if $ab \in I$, then either $a \in I$ or $b \in I$. Note that completely prime \Rightarrow 3-prime \Rightarrow prime [14]. Moreover, if N is a commutative ring, then the notions of prime, 3-prime and completely prime are one and the same. The intersection of all proper prime ideals of N is called the *prime radical* of N and denoted by $\mathcal{P}(N)$, the intersection of all proper 3-prime ideals of N is called the 3-prime radical of N and denoted by $\mathcal{I}(N)$ and the intersection of all proper completely prime ideals of N is called the *completely prime* radical of N. Let $\mathcal{N}(N)$ denote the set of all nilpotent elements of N. A near-ring N is called 2-primal if $\mathcal{P}(N) = \mathcal{N}(N)$. As observed in [5], if N is a zero-symmetric 2-primal near-ring, then the prime radical, the 3-prime radical and the completely prime radical are coincide. A near-ring N is called a pm-near-ring if every 3-prime ideal is contained in a unique maximal ideal of N.

Received December 9, 2012, accepted March 19, 2013.

Communicated by Gerard Jennhwa Chang.

2010 Mathematics Subject Classification: Primary 16Y30; Secondary 05C69.

Key words and phrases: Zero-divisor graph, 3-Prime ideal, Domination, Spectrum of 3-prime ideals.

The study on graphs from algebraic structures is an interesting subject for mathematicians since the notion of Cayley graphs from groups [4]. In recent years, many algebraists as well as graph theorists have focused on the zero-divisor graph of rings. In [2], D.F. Anderson and P.S. Livingston introduced the zero-divisor graph of a commutative ring R with identity, denoted by $\Gamma(R)$, as the graph with vertices $Z(R)^* = Z(R) \setminus \{0\}$, the set of nonzero zero-divisors of R, and for distinct vertices x and y are adjacent if and only if xy = 0. This concept due to I. Beck [3], who let all the elements of R be vertices of $\Gamma(R)$ and was mainly interested in colorings. S.P. Redmond [11] introduced the zero-divisor graph with respect to an ideal I of R, denoted by $\Gamma_I(R)$, as the graph with vertex set $\{x \in R \setminus I : xy \in I \text{ for some } y \in R \setminus I\}$, and two distinct vertices x and y are adjacent if and only if $xy \in I$. Later on, the zero-divisor graph and the ideal-based zero-divisor graph were studied in near-rings and one may refer [1, 7]. Subsequently, in [13], authors constructed the zero-divisor graph to an ideal I of a near-ring N, denoted by $\Gamma_I(N)$, as the graph with vertex set $\{x \in N \setminus I : xNy \subseteq I \text{ or } yNx \subseteq I \text{ for some } \}$ $y \in N \setminus I$ and two distinct vertices x and y are adjacent if and only if $xNy \subseteq I$ or $yNx \subseteq I$. If I is a totally reflexive ideal of N (i.e, if $aNb \subseteq I$, then $bNa \subseteq I$ for $a, b \in N$, then the vertex set $V(\Gamma_I(N)) = \{x \in N \setminus I : xNy \subseteq I \text{ for some } \}$ $y \in N \setminus I$. Having constructed $\Gamma_I(N)$ corresponding to a totally reflexive ideal I of N, T. Tamizh Chelvam and S. Nithya [13] proved that Beck's conjecture is true for the class of $\Gamma_I(N)$ and further they characterized all near-rings N for which the graph $\Gamma_I(N)$ is finitely colorable.

Since \mathcal{I} (abbreviation for $\mathcal{I}(N)$) is a 3-prime radical of N, \mathcal{I} is a totally reflexive ideal of N. Due to this, $V(\Gamma_{\mathcal{I}}(N)) = \{x \in N \setminus \mathcal{I} : xNy \subseteq \mathcal{I} \text{ for some } y \in N \setminus \mathcal{I}\}$ and two distinct vertices x and y are adjacent if and only if $xNy \subseteq \mathcal{I}$. If \mathcal{I} is a 3-prime ideal of N, then the graph $\Gamma_{\mathcal{I}}(N)$ is empty. Hence we consider near-rings N for which \mathcal{I} is not a 3-prime ideal. For an ideal I of N and $x \in N$, the *annihilator* of x is nothing but $(I:Nx) = \{y \in N: yNx \subseteq I\}$. By Proposition 1.42 [10], (I:Nx) is an ideal of N. Since \mathcal{I} is a totally reflexive ideal of N, $(\mathcal{I}:Nx) = \{y \in N: xNy \subseteq \mathcal{I}\}$.

 $Spec(N),\ Max(N)$ and Min(N) denote the set of all proper 3-prime ideals of N, the set of all maximal ideals of N and the set of all minimal 3-prime ideals of N, respectively. For $a \in N$, we define $V(a) = \{P \in Spec(N) : a \in P\},\ D(a) = \{P \in Spec(N) : a \notin P\} = Spec(N) \setminus V(a) \text{ and } M(a) = V(a) \cap Max(N).$ Note that $V(a) = V(\langle a \rangle)$ and $D(a) = D(\langle a \rangle)$, where $\langle a \rangle$ is the ideal generated by $a \in N$. Also, for an ideal J of N, $V(J) = \bigcap_{a \in J} V(a)$ and $D(J) = \bigcup_{a \in J} D(a)$. Since the sets $\{V(J) : J \text{ is an ideal of } N\}$ and $\{D(J) : J \text{ is an ideal of } N\}$ satisfy the axioms for closed sets and open sets, one can have a topology on Spec(N) and hence Spec(N) is a topological space. Further with respect to this topology Min(N) is a subspace of Spec(N). If N is a zero-symmetric near-ring with identity, then $Max(N) \subseteq Spec(N)$ and so we consider Max(N) as a subspace of Spec(N). Also $\mathcal{B} = \{D(x) : x \in N\}$ is a base of the topological space Spec(N). The operators cl and cl denote the closure

and the interior in a topological space. For basic definitions of topological space one may refer [8].

Recently, K. Samei [12] studied the relation between properties of a commutative reduced ring R and properties of the graph $\Gamma(R)$ through topological properties of Spec(R). Note that when N is a commutative reduced ring, the 3-prime radical of N is $\{0\}$ and so $\Gamma(N) = \Gamma_{\mathcal{I}}(N)$. In Section 2, we generalize some results proved in [12] for commutative ring to near-rings. In section 3, we construct a dominating set of $\Gamma_{\mathcal{I}}(N)$ through a base of the topological space Spec(N) and on the other way obtain a dense subset in Spec(N) corresponding to every dominating set in $\Gamma_{\mathcal{I}}(N)$. Moreover, we give a topological characterization for the set of all central vertices of $\Gamma_{\mathcal{I}}(N)$ to be a dominating set and the neighbourhood of every vertex in $\Gamma_{\mathcal{I}}(N)$ to be a connected dominating set of $\Gamma_{\mathcal{I}}(N)$.

Let G be a graph with vertex set V(G). Recall that G is connected if there is a path between any two distinct vertices of G. The neighbourhood of a vertex x in G is the set consisting of all vertices which are adjacent with x. For two vertices x and y of G, the distance d(x,y) to be the length of a shortest path from x to y. The diameter of G is $diam(G) = max \{d(x,y): x,y \in V(G)\}$. The eccentricity of a vertex x in G is defined as $e(x) = max \{d(x,z): z \in V(G)\}$. The radius of G is the minimum eccentricity among the vertices of G, which is denoted by rad(G). A vertex x in G is a central vertex if e(x) = rad(G). For $S \subseteq V(G)$, the induced subgraph G in induced by G is the subgraph of G with vertex set G and two vertices are adjacent in G in and only if they are adjacent in G and it is denoted by G. A graph G is complete if each pair of distinct vertices is adjacent. For undefined terms in graph theory, we refer to G.

2. Basic Properties of $\Gamma_{\mathcal{I}}(N)$

The results of this section provide effective criterion for discussing the dominating sets and the connected dominating sets of $\Gamma_{\mathcal{I}}(N)$ in Section 3. One can easily observe the following.

Observation 2.1. Let N be a near-ring and $a \in N$. Then

- (i) $V((\mathcal{I}:Na)) = clD(a) = Spec(N) \setminus intV(a)$.
- (ii) $a \in V(\Gamma_{\mathcal{I}}(N))$ if and only if $\emptyset \neq clD(a) \neq Spec(N)$.

The following proposition topologically characterizes the concept of distance in $\Gamma_{\mathcal{I}}(N)$. First we need the following Lemma.

Lemma 2.2. ([13, Theorem 2.2]). Let I be a totally reflexive ideal of a near-ring N. Then $diam(\Gamma_I(N) \leq 3)$.

Proposition 2.3. Let \mathcal{I} be the 3-prime radical of N and $a,b,c \in V(\Gamma_{\mathcal{I}}(N))$ be distinct elements. Then the following are true.

- (i) c is adjacent in $\Gamma_{\mathcal{I}}(N)$ to both a and b if and only if $clD(a) \cup clD(b) \subseteq V(c)$;
- (ii) d(a,b) = 1 if and only if $D(a) \cap D(b) = \emptyset$;
- (iii) d(a,b) = 2 if and only if $D(a) \cap D(b) \neq \emptyset$ and $clD(a) \cup clD(b) \neq Spec(N)$;
- (iv) d(a,b) = 3 if and only if $D(a) \cap D(b) \neq \emptyset$ and $clD(a) \cup clD(b) = Spec(N)$.

Proof.

- (i) Note that c is adjacent to both a and b in $\Gamma_{\mathcal{I}}(N)$ if and only if $aNc \subseteq \mathcal{I}$ and $bNc \subseteq \mathcal{I}$ if and only if $D(a) \cap D(c) = D(b) \cap D(c) = \emptyset$ if and only if $D(a) \cup D(b) \subseteq V(c)$ and if and only if $clD(a) \cup clD(b) \subseteq V(c)$.
- (ii) Trivial from definitions.
- (iii) Suppose d(a,b)=2, then there exists $c\in V(\Gamma_{\mathcal{I}}(N))$ such that c is adjacent to both a and b. By (ii) and (i), $D(a)\cap D(b)\neq\emptyset$ and $clD(a)\cup clD(b)\subseteq V(c)$. Since $c\notin\mathcal{I}$, we have $V(c)\neq Spec(N)$.
 - Conversely assume that $D(a) \cap D(b) \neq \emptyset$ and $clD(a) \cup clD(b) \neq Spec(N)$. By (ii), $d(a,b) \neq 1$. Since clD(a) = V((I:Na)) and clD(b) = V(I:Nb), there exists $P \in Spec(N)$ with $x,y \notin P$ for some $x \in (\mathcal{I}:Na)$ and $y \in (\mathcal{I}:Nb)$. This implies that $xNy \nsubseteq \mathcal{I}$ and there exists $n \in N$ such that $xny \in (\mathcal{I}:Na)$ and $xny \in (\mathcal{I}:Nb)$. Hence d(a,b) = 2.
- (iv) By Lemma 2.2, we have $diam(\Gamma_{\mathcal{I}}(N)) \leq 3$. Now proof follows from (ii) and (iii).

Lemma 2.4. Let N be a near-ring. For $\mathcal{F} \subseteq Spec(N)$, the closure of \mathcal{F} is $cl\mathcal{F} = \left\{ P' \in Spec(N) : \bigcap_{P \in \mathcal{F}} P \subseteq P' \right\}$.

 $\begin{array}{ll} \textit{Proof.} & \text{Let } A = \left\{P' \in Spec(N) : \bigcap_{P \in \mathcal{F}} P \subseteq P'\right\} \text{ and } Q \in A. \text{ Since } \mathcal{B} = \{D(x) : x \in N\} \text{ is a base for the space } Spec(N), \text{ it is enough to a } D(x) \text{ such that } Q \in D(x). \text{ Clearly } D(x) \cap \mathcal{F} \neq \emptyset, \text{ i.e., } Q \in cl\mathcal{F}. \text{ Suppose } A \subsetneq cl\mathcal{F}, \text{ there is } P_1 \in cl\mathcal{F} \text{ such that } \bigcap_{P \in \mathcal{F}} P \not\subseteq P_1. \text{ Let } x \in \bigcap_{P \in \mathcal{F}} P \setminus P_1, \text{ then } P_1 \in D(x) \text{ and } D(x) \cap \mathcal{F} = \emptyset, \text{ a contradiction. Hence } cl\mathcal{F} = A. \end{array}$

From this Lemma 2.4, for every closed subset \mathcal{F} of Spec(N), $\mathcal{F}=V(J)$ where $J=\bigcap_{P\in\mathcal{F}}P.$

Theorem 2.5. Let \mathcal{I} be the 3-prime radical of a near-ring N. A subset \mathcal{F} of Spec(N) is dense in Spec(N) if and only if $\mathcal{I} = \bigcap_{O \in \mathcal{F}} Q$.

 $\begin{array}{ll} \textit{Proof.} & \text{Let } \mathcal{F} \text{ be dense in } Spec(N). \text{ Then by Lemma 2.4, } cl\mathcal{F} = \left\{P' \in Spec(N): \bigcap_{Q \in \mathcal{F}} Q \subseteq P'\right\} = Spec(N). \text{ Hence } \bigcap_{Q \in \mathcal{F}} Q \subseteq \mathcal{I}. \text{ As } \mathcal{F} \subseteq Spec(N), \\ \mathcal{I} = \bigcap_{Q \in \mathcal{F}} Q. \end{array}$

Conversely, assume that $\mathcal{I} = \bigcap_{Q \in \mathcal{F}} Q$. Suppose $cl\mathcal{F} = \left\{ P' \in Spec(N) : \bigcap_{Q \in \mathcal{F}} Q \subseteq P' \right\} \subseteq Spec(N)$. Then there exists $P_1 \in Spec(N)$ such that $\bigcap_{Q \in \mathcal{F}} Q \not\subseteq P_1$, i.e., there exists $x \in \bigcap_{Q \in \mathcal{F}} Q \setminus P_1$, a contradiction to the fact that $\mathcal{I} = \bigcap_{Q \in \mathcal{F}} Q$. Hence \mathcal{F} is dense in Spec(N).

Note that every maximal ideal is a 3-primal ideal in a zero-symmetric near-ring N with identity 1. This along with Theorem 2.5 give the following corollary.

Corollary 2.6. Let \mathcal{I} be the 3-prime radical of N with $\mathcal{I} = \cap Max(N)$. Then Max(N) is dense in Spec(N).

Theorem 2.7. Let N be a near-ring with the 3-prime radical \mathcal{I} . Then

- (i) Spec(N) is a compact space,
- (ii) Max(N) is a compact subspace of Spec(N),
- (iii) If N is a 2-primal pm-near-ring, then Max(N) is Hausdorff. Moreover, if $\mathcal{I} = \cap Max(N)$, then Spec(N) is normal.

Proof. (i) and (ii) follow from Theorem 2.3(ii) and (iii) in [7]. (iii) Since N is a 2-primal near-ring, all prime radicals are coincide. Now the proof follows from Theorems 2.8 and 2.3(v) in [7].

Theorem 2.8. Let N be a 2-primal pm-near-ring with $\mathcal{I} = \cap Max(N)$. Then $diam(\Gamma_{\mathcal{I}}(N)) = 3$ if and only if there exist at least three distinct maximal ideals in N.

Proof. Assume that $diam(\Gamma_{\mathcal{I}}(N))=3$, then there exist $a,b,x,y\in V(\Gamma_{\mathcal{I}}(N))$ such that a-x-y-b is a path. Suppose |Max(N)|=2 and let $Max(N)=\{M_1,M_2\}$. As d(a,b)=3, by Proposition 2.3(ii) there exists a 3-prime ideal $P\in D(a)\cap D(b)$. By $P\in D(a)$ and Corollary 2.6, there exists a maximal ideal $M_1\in D(a)$. Since $aNx\subseteq\mathcal{I},\,xNy\subseteq\mathcal{I}$ and $\mathcal{I}=M_1\cap M_2,\,x\in M_1\setminus M_2,\,y\in M_2\setminus M_1$. Now $yNb\subseteq\mathcal{I}$ gives that $b\in M_1$. Therefore $M_1\in D(a)\setminus D(b)$. Similarly, as $P\in D(b)$ we can show that $M_2\in D(b)\setminus D(a)$. Again $P\in D(anb)$ for some $n\in N$ and Max(N) is

dense in Spec(N), we have $D(anb) \cap Max(N) \neq \emptyset$. But $M_i \notin D(anb) \cap Max(N)$ for i = 1, 2, a contradiction. Thus $|Max(N)| \geq 3$.

Conversely, suppose that $|Max(N)| \geq 3$ and let M_1, M_2, M_3 be distinct maximal ideals in N. By Theorem 2.7(iii), Max(N) is Hausdorff. Thus there exist $a_i \in N$ such that $M_i \in D(a_i)$, i=1,2,3 and $D(a_i)$ are mutually disjoint. Since $a_1 \notin M_1$ and $a_2 \notin M_2$, there exist $a \in M_1$, $b \in M_2$ such that $a+a'_1=b+a'_2=1$ where $a'_1 \in < a_1 >$ and $a'_2 \in < a_2 >$. Thus $M_1 \in V(a) \subseteq D(a_1)$ and $M_2 \in V(b) \subseteq D(a_2)$. Clearly $M_3 \in D(a) \cap D(b)$ and so $D(a) \cap D(b) \neq \emptyset$. Suppose $D(a) \cup D(b) \subsetneq Spec(N)$. Then there exists $P \in Spec(N)$ such that $P \in V(a) \subseteq D(a_1)$ and $P \in V(b) \subseteq D(a_2)$, a contradiction. Therefore $clD(a) \cup clD(b) \supseteq D(a) \cup D(b) = Spec(N)$ and so by Proposition 2.3(iv), d(a,b) = 3 which implies $diam(\Gamma_{\mathcal{I}}(N)) = 3$.

Theorem 2.9. Let N be a 2-primal pm-near-ring with |N| > 4 and $\cap Max(N) = \langle 0 \rangle$. Then $diam(\Gamma_{\mathcal{I}}(N)) = min\{|Max(N)|, 3\}$.

Proof. Since $\cap Max(N) = \langle 0 \rangle$, $\mathcal{I} = \cap Max(N)$ gives |Max(N)| > 1. Suppose that |Max(N)| = 2. Let $Max(N) = \{M_1, M_2\}$, then there exist $a_1 \in M_1 \setminus M_2$ and $a_2 \in M_2 \setminus M_1$ such that $a_1Na_2 \subseteq \mathcal{I}$ and so $a_1, a_2 \in V(\Gamma_{\mathcal{I}}(N))$. Since |N| > 4, either M_1 or M_2 contains at least two nonzero elements. If possible, M_1 and M_2 contains only one element, then |N| = 4, a contradiction. Without loss of generality assume that there exists nonzero $(a_1 \neq b_1 \in M_1$. Since $a_2Nb_1 \subseteq \mathcal{I}$ and $b_1 \notin M_2$ which imply $b_1 \in V(\Gamma_{\mathcal{I}}(N))$ and $a_1Nb_1 \nsubseteq M_2$. Therefore $d(a_1,b_1) = 2$ and so $diam(\Gamma_{\mathcal{I}}(N)) = 2$. This along with Theorem 2.8 imply that $diam(\Gamma_{\mathcal{I}}(N)) = min\{|Max(N)|, 3\}$.

Remark 2.10. In Theorem 2.9, if |N|=4, then the fact is not true. Consider the near-ring of matrices $N=\left\{\begin{pmatrix} 0 & 0 \\ x & x \end{pmatrix}, x\in\mathbb{Z}_2\right\}$. Then $diam(\Gamma_{\mathcal{I}}(N))=1$. If |N|<4, then the graph $\Gamma_{\mathcal{I}}(N)$ is empty.

Lemma 2.11. Let N be a 2-primal pm-near-ring with $\mathcal{I} = \cap Max(N)$. For every open subset U of P in Spec(N), there exists $a \in V(\Gamma_{\mathcal{I}}(N))$ such that $P \in intV(a) \subseteq V(a) \subseteq U$. That is, $\{intV(a) : a \in V(\Gamma_{\mathcal{I}}(N))\}$ is a base of the space Spec(N).

Proof. Let U be a proper open set of Spec(N). Then $\emptyset \neq U^c = Spec(N) \setminus U = V(J)$ for some ideal J of N. By Theorem 2.7(iii), Spec(N) is normal and so there are disjoint open sets U' and U'' in Spec(N) such that $P \in U'$ and $V(J) \subseteq U''$. Since Spec(N) is compact and V(J) is closed, V(J) is compact, so there are $a_i \in N$, i=1 to n such that $V(J) \subseteq \bigcup_{i=1}^n D(a_i) = D(J_1) \subseteq U''$, where $J_1 = \sum_{i=1}^n < a_i >$. We claim that $J_1 + J = N$. For otherwise, there exists a proper 3-prime ideal Q such that $J_1 + J \subseteq Q$ which gives $Q \in V(J_1)$ and $Q \in V(J) \subseteq D(J_1)$, a contradiction. Thus $J_1 + J = N$, i.e., a + b = 1 for some $a \in J_1$ and $b \in J$. Since $U' \cap U'' = \emptyset$, we have $U' \cap D(a) = \emptyset$. Hence $P \in U' \subseteq int V(a) \subseteq V(a) \subseteq D(b) \subseteq D(J) = U$. By Observation

2.1, $a \in V(\Gamma_{\mathcal{I}}(N))$. Suppose U = Spec(N). Since |Max(N)| > 1, there exists a maximal ideal M containing c such that $c \notin P$. Then $P \in D(c) \neq Spec(N)$. Hence there exists $a \in V(\Gamma_{\mathcal{I}}(N))$ such that $P \in int\ V(a) \subseteq V(a) \subseteq D(b) \subseteq D(c) \subset U$.

In view of Lemma 2.11, we observe that the following remarks.

Remark 2.12. For every nonempty open subset U of Spec(N), by Lemma 2.11, there exists $b \in N$ such that $\emptyset \neq D(b) \neq Spec(N)$ and $D(b) \subseteq U$. Choose $P_1 \in D(b)$ and $P_2 \in V(b)$. Since Spec(N) is normal, there exist $c_1, c_2 \in N$ such that $P_1 \in D(c_1) \subseteq D(b)$, $P_2 \in D(c_2)$ and $D(c_1) \cap D(c_2) = \emptyset$. Therefore $c_1Nc_2 \subseteq \mathcal{I}$. Hence for every nonempty open subset U of Spec(N), there exists $c_1 \in V(\Gamma_{\mathcal{I}}(N))$ such that $D(c_1) \subseteq U$.

If N is a 2-primal pm-near-ring, then by Theorem 2.7(ii) and (iii), Max(N) is a compact Hausdorff space and by Theorem 3.26 in [9], Max(N) is normal. By the argument similar to the proof of Lemma 2.11, $\{intM(a): a \in V(\Gamma_{\mathcal{I}}(N))\}$ is a basis of Max(N).

Proposition 2.13. Let \mathcal{I} be the 3-prime radical of N and $a \in V(\Gamma_{\mathcal{I}}(N))$. If e(a) = 1, then |Min(N)| = 2.

Proof. We claim that $P_1 = \mathcal{I} \cup \{a\}$ and $P_2 = (\mathcal{I}:Na)$ are the only minimal 3-primal ideals of N. Let $x_1, x_2 \in P_1$. Since e(a) = 1, for every $y \in P_2$ $(x_1 - x_2)Ny \subseteq \mathcal{I}$ which yields $x_1 - x_2 \in P_1$. If $x \in P_1$, then $xNy + \mathcal{I} = \mathcal{I}$ for every $y \in P_2$ and so $(n + x - n)Ny \subseteq \mathcal{I}$ for every $n \in N$, i.e., $n + x - n \in P_1$. Thus P_1 is a normal subgroup of N. Let $x \in P_1$ and $n, n' \in N$, then $xnNy \subseteq \mathcal{I}$ which gives $P_1N \subseteq P_1$ and since $xNy + \mathcal{I} = \mathcal{I}$, $(n(n'+x) - nn')Ny \subseteq \mathcal{I}$, i.e., $n(n'+x) - nn' \in P_1$. Hence P_1 is an ideal of N. Assume that $x_1Nx_2 \subseteq P_1$, $x_1, x_2 \in N$, then $x_1Nx_2Ny \subseteq \mathcal{I}$ for every $y \in P_2$.

- **Case 1.** Let $x_1Nx_2 \subseteq \mathcal{I}$. Suppose that both $x_1, x_2 \notin P_1$, then $x_1, x_2 \in V(\Gamma_{\mathcal{I}}(N))$. As e(a) = 1 gives $aNx_1 \subseteq \mathcal{I}$ and $aNx_2 \subseteq \mathcal{I}$, so $(a + x_2)Nx_1 \subseteq \mathcal{I}$. Thus $a + x_2 \in V(\Gamma_{\mathcal{I}}(N))$ such that $d(a, a + x_2) = 2$, a contradiction.
- **Case 2.** Suppose $x_1nx_2=a\notin\mathcal{I}$ for some $n\in N$. From this, $x_1Na\nsubseteq\mathcal{I}$ and $x_2Na\nsubseteq\mathcal{I}$. Since every $y\in P_2$, $aNy\subseteq\mathcal{I}$, $x_1nx_2Ny\subseteq\mathcal{I}$. If $x_2Ny\subseteq\mathcal{I}$, then $d(a,x_2)=$, a contradiction. Also, if $x_2Ny\nsubseteq\mathcal{I}$, then $x_1Nx_2Ny\subseteq\mathcal{I}$ implies $x_1\in V(\Gamma_{\mathcal{I}}(N))$. Since P_2 is an ideal, $x_2NyNa\subseteq\mathcal{I}$, so $d(a,x_1)=2$, again a contradiction. Also P_1 is a minimal 3-prime ideal of N.

Since P_2 is an ideal, it remains to prove that P_2 is 3-prime. Let $x_1Nx_2\subseteq P_2$, then $x_1Nx_2Na\subseteq \mathcal{I}$. If $x_2Na\subseteq \mathcal{I}$, then $x_2\in P_2$. Otherwise, there exists $n\in N$ such that $x_2na=a$, as $x_2Na\subseteq P_1$. Hence $x_1\in P_2$. Therefore P_2 is a minimal 3-prime ideal of N.

If $P \in Min(N) \setminus \{P_1, P_2\}$, then $a \notin P$ and there is some $b \in P_2$ such that $b \notin P$. It is clear that $aNb \subseteq \mathcal{I}$, a contradiction to the fact that $a, b \notin P$.

Remark 2.14. The converse of the Proposition 2.13 is not true. Consider the nearring $N = \mathbb{Z}_3 \times \mathbb{Z}_5$, then the graph $\Gamma_{\mathcal{I}}(N)$ is $K_{2,4}$ and N has exactly two minimal 3-prime ideals, but no one vertex in $\Gamma_{\mathcal{I}}(N)$ has eccentricity one.

Proposition 2.15. Let N be a 2-primal pm-near-ring with $\mathcal{I} = \cap Max(N)$, $a \in V(\Gamma_{\mathcal{I}}(N))$ and $e(a) \neq 1$. Then

- (i) e(a) = 2 if and only if |clD(a)| = 1,
- (ii) e(a) = 3 if and only if |clD(a)| > 1. In particular, $e(a) = min \{|clD(a)| + 1, 3\}$.

Proof. (i) Assume that e(a)=2. Suppose |clD(a)|>1. Clearly $D(a)\neq\emptyset$, then there is a maximal ideal, say M in D(a). Now we prove that D(a) contains at least two distinct maximal ideals. For otherwise, it contains only one maximal ideal M. Since |clD(a)|>1, there is a 3-prime ideal $(M\neq)Q\in clD(a)$. Therefore there exists $x\in M\setminus Q$ such that $aNx\subseteq \cap Max(N)=\mathcal{I}$ which is a contradiction to the fact that $D(a)\cap D(x)\neq\emptyset$. Hence there are maximal ideals M,M' in D(a). Let $b\in M'\setminus M$, then $aNb\nsubseteq M$ and so $M\in D(anb)$ for some $n\in N$. By Lemma 2.11, there exists $c\in N$ such that $M\in intV(c)\subseteq D(anb)\subseteq clD(a)$, consequently, $clD(a)\cup clD(c)=Spec(N)$ and $M'\in D(a)\cap clD(c)$ gives that $D(a)\cap D(c)\neq\emptyset$. Then by Proposition 2.3(iv), d(a,c)=3, a contradiction.

Conversely assume that |clD(a)|=1, then there is $P\in Spec(N)$ such that $D(a)=clD(a)=\{P\}$. On the contrary, suppose that d(a,b)=3 for some $b\in V(\Gamma_{\mathcal{I}}(N))$. Again by Proposition 2.3(iv), we have $D(a)\cup clD(b)=clD(a)\cup clD(b)=Spec(N)$. This implies that clD(b)=V(a). Therefore $D(a)\cap D(b)=\emptyset$, a contradiction. This shows that e(a)=2.

(ii) Proof follows from the hypothesis and (i).

3. Dominating Sets in $\Gamma_{\mathcal{I}}(N)$

A subset D of $V(\Gamma_{\mathcal{I}}(N))$ is called a *dominating set* if for every $v \in V(\Gamma_{\mathcal{I}}(N)) - D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ is the cardinality of the smallest possible dominating set in G. A dominating set D is called a *connected dominating set* if the induced subgraph < D > is connected. The connected domination number $\gamma_c(G)$ is the cardinality of the smallest possible connected dominating set. The following theorem exposes a close connection between $\Gamma_{\mathcal{I}}(N)$ and the topological space Spec(N).

Theorem 3.1. Let N be a 2-primal pm-near-ring with $\mathcal{I} = \cap Max(N)$. Then

(i) For every dominating set of $\Gamma_{\mathcal{I}}(N)$, there exists a dense subset in Spec(N).

(ii) For every base for the open sets of the space Spec(N), there exists a dominating set in $\Gamma_{\mathcal{I}}(N)$.

Proof. (i) Suppose D is a dominating set. For every $a \in D$, there exists $b \in V(\Gamma_{\mathcal{I}}(N))$ such that $aNb \subseteq \mathcal{I}$. Since Max(N) is dense, $\emptyset \neq D(b) \cap Max(N) \subseteq \mathcal{I}$ M(a) and $Max(N) \setminus M(a) \neq \emptyset$. Then we take $M_a \in intM(a)$ and $M'_a \in Max(N) \setminus M(a)$ M(a). First we show that the set $\mathcal{A} = \{M_a : a \in D\} \cup \{M'_a : a \in D\}$ is a dense subset of Max(N). By Remark 2.12(ii) $\{intM(c): c \in V(\Gamma_{\mathcal{I}}(N))\}$ is a basis for Max(N). Therefore it is sufficient to prove that for every $c \in V(\Gamma_{\mathcal{I}}(N))$, $\mathcal{A} \cap intM(c) \neq \emptyset$. Let $c \in V(\Gamma_{\mathcal{I}}(N))$. If $c \in D$ implies that $M_c \in \mathcal{A} \cap intM(c)$. Otherwise, since D is a dominating set, there exists $d \in D$ such that $cNd \subseteq \mathcal{I}$. Thus $M'_d \in Max(N) \setminus M(d) \subseteq \mathcal{I}$ intM(c) and so $M'_d \in \mathcal{A} \cap intM(c)$. This shows that \mathcal{A} is a dense subset in Max(N)this along with Max(N) is dense in Spec(N) lead to A is dense in Spec(N). (ii) Let $\mathcal{B} = \{B_{\lambda} : \lambda \in \Lambda\}$ be a base for the open sets of the space Spec(N). By Remark 2.12(i), for every $B_{\lambda} \in \mathcal{B}$, there exists $a_{\lambda} \in V(\Gamma_{\mathcal{I}}(N))$ such that $D(a_{\lambda}) \subseteq B_{\lambda}$. We claim that $D = \{a_{\lambda} : \lambda \in \Lambda\}$ is a dominating set. Let $b \in V(\Gamma_{\mathcal{I}}(N))$. Then there exists $B_{\lambda} \in \mathcal{B}$ such that $B_{\lambda} \subseteq intV(b)$. Therefore $D(a_{\lambda}) \subseteq intV(b)$, i.e., $a_{\lambda}Nb \subseteq \mathcal{I}$ and consequently D is a dominating set.

In a topological space X, a point x of X is said to be an *isolated point* of X if the one point set $\{x\}$ is open in X. $\mathcal{P}_0(N)$, $\mathcal{M}_0(N)$ and $\mathcal{I}_0(N)$ denote the sets of isolated points of the spaces Spec(N), Max(N) and Min(N), respectively. The following lemma shows that these isolated points sets are coincide in a pm-near-ring N with $\mathcal{I} = \cap Max(N)$.

Lemma 3.2. Let N be a pm-near-ring with $\mathcal{I} = \cap Max(N)$. Then $\mathcal{P}_0(N) = \mathcal{M}_0(N) = \mathcal{I}_0(N)$.

Proof. First we show that $\mathcal{P}_0(N) = \mathcal{M}_0(N)$. Suppose $\{M\}$ is open in Max(N), then $D(a) \cap Max(N) = \{M\}$ for some $a \in N$. It follows that $a \in \bigcap_{M' \in Max(N) \setminus \{M\}} M'$. Therefore $< a > M \subseteq \cap Max(N) = \mathcal{I}$. Since every $P \in Spec(N)$ is prime, $\langle a \rangle \subseteq P$ or $P \in Spec(N)$ or $P \in Spec(N)$ is prime, $P \in Spec(N)$ is prime, $P \in Spec(N)$ is unique inclusion is trivial. Now it is sufficient to show that $P \in Spec(N)$. The opposite inclusion is trivial. Now it is sufficient to show that $P \in Spec(N)$. Let $P \in \mathcal{I}_0(N)$ such that $P \in Spec(N)$ is an inclusion is trivial. Now it is sufficient to show that $P \in Spec(N)$ for a unique maximal ideal $P \in Spec(N)$ and so $P \in Spec(N)$ is implied that $P \in Spec(N)$ and so $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ and consequently $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ and consequently $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ and consequently $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ and consequently $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ and $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ and $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ and $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ and $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ and $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ and $P \in Spec(N)$ is an isolated point of $P \in Spec(N)$ is

Theorem 3.3. Let N be a 2-primal pm-near-ring with $\mathcal{I} = \cap Max(N)$ and |Min(N)| > 2. Then the set of central vertices of $\Gamma_{\mathcal{I}}(N)$ is a dominating set if and only if the set of isolated points of Spec(N) is dense in Spec(N).

Proof. Let D be the set of central vertices of $\Gamma_{\mathcal{I}}(N)$. Since $diam(\Gamma_{\mathcal{I}}(N)) \leq 3$ and Proposition 2.13, e(a) = 2 for every $a \in D$. Then by Proposition 2.15(i), we have $D = \{a \in V(\Gamma_{\mathcal{I}}(N)) : |clD(a)| = 1\}$. Now we claim that $Y = \{P_a : D(a) = \{P_a\}, a \in D\}$ is a dense subset of Spec(N). Let U be a nonempty open set which does not contain any isolated points. Since Max(N) is dense in Spec(N), there exists $M \in U \cap Max(N)$. By Lemma 3.2, $|U \cap Max(N)| > 1$, so there are distinct maximal ideals $M, M' \in U$. Clearly $(\mathcal{I} : Na_0) \not\subseteq M$, $a_0 \in D$, otherwise, $M \in V((\mathcal{I} : Na_0)) = clD(a_0)$, a contradiction. Then there exists $y \in (\mathcal{I} : Na_0) \setminus M$ and $x \in M' \setminus M$ such that $b = xny \in P_{a_0} \cap M' \setminus M$ for some $b \in N$ and there is $b' \in N$ such that $b \in M$ such t

Conversely, let $Y = \{P_{\lambda} : \lambda \in \Lambda\}$ be the set of isolated points of Spec(N). Consider $D = \{a_{\lambda} : D(a_{\lambda}) = \{P_{\lambda}\}\}$, then $e(a_{\lambda}) = 2$ for every $\lambda \in \Lambda$ and so every element of D is a central vertex of $\Gamma_{\mathcal{I}}(N)$. Suppose that $b \in V(\Gamma_{\mathcal{I}}(N)) \setminus D$. Since Y is dense in Spec(N), then there exists $P_{\lambda} \in intV(b) \cap Y$. Therefore $D(a_{\lambda}) \subseteq intV(b)$ which implies that $a_{\lambda}Nb \subseteq \mathcal{I}$, i.e., D is a dominating set.

Proposition 3.4. Let N be a 2-primal pm-near-ring with $\mathcal{I} = \cap Max(N)$. If Spec(N) has an isolated point, then there exists $a \in N$ such that the neighbourhood N(a) of a in $\Gamma_{\mathcal{I}}(N)$ is a dominating set.

Proof. Let P be an isolated point in Spec(N). Then there exists $a \in N$ such that $\{P\} = D(a)$ and so |clD(a)| = 1. If e(a) = 1, then clearly N(a) is a dominating set. Otherwise, since |clD(a)| = 1, Proposition 2.15(ii) implies that e(a) = 2. Suppose there is a vertex $b \notin N(a)$ which is not dominated by any $c \in N(a)$. As $diam(\Gamma_{\mathcal{I}}(N)) \leq 3$, d(b,c) = 2 or 3 and hence d(a,b) > 2, a contradiction.

Remark 3.5. From the Proposition 3.4, $\gamma(\Gamma_{\mathcal{I}}(N)) \leq |N(a)|$ and the bound is sharp. For example, consider the near-ring $N = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, then the corresponding graph $\Gamma_{\mathcal{I}}(N)$ as given in Figure 1. Here, $D((1,0,0)) = \{\{0\} \times \mathbb{Z}_2 \times \mathbb{Z}_2\}$, then $\{0\} \times \mathbb{Z}_2 \times \mathbb{Z}_2$ is an isolated point and hence the neighbourhood set $N((1,0,0)) = \{(0,1,1),(0,0,1)(0,1,0)\}$ is a minimum dominating set.

Theorem 3.6. Let \mathcal{I} be the 3-prime radical of a near-ring N and $diam(\Gamma_{\mathcal{I}}(N))=2$. Then the following are equivalent.

(i) For every $x \in V(\Gamma_{\mathcal{I}}(N))$, the neighbourhood N(x) in $\Gamma_{\mathcal{I}}(N)$ of x induces a connected subgraph of $\Gamma_{\mathcal{I}}(N)$ and hence it is a connected dominating set.

(ii) For every pair of distinct $a,b \in V(\Gamma_{\mathcal{I}}(N))$, there exists $c \in N$ such that $clD(a) \cup clD(b) \subseteq V(c)$.

Figure 1.

Proof. (i) \Rightarrow (ii) Let $a,b \in V(\Gamma_{\mathcal{I}}(N))$. If $aNb \nsubseteq \mathcal{I}$, since $diam(\Gamma_{\mathcal{I}}(N)) = 2$, the result follows from Proposition 2.3(i). So it is enough to discuss the case that $aNb \subseteq \mathcal{I}$. Again by diameter of $\Gamma_{\mathcal{I}}(N)$, there exists $c' \in V(\Gamma_{\mathcal{I}}(N)) \setminus \{a,b\}$ such that $c' \in N(a)$ or $c' \in N(b)$. Without loss of generality, $c' \in N(a)$. Since induced subgraph of N(a) is connected, there is a path lies between c' and b. Then there exists $c \in N(a)$ such that $c \in N(b)$. Therefore by Proposition 2.3(i), $clD(a) \cup clD(b) \subseteq V(c)$. (ii) \Rightarrow (i) Let $x_1, x_2 \in N(x)$. If $x_1Nx_2 \subseteq \mathcal{I}$, then $x_1 - x_2$ is a path. Otherwise, there exists $n \in N$ such that $x_1nx_2 \notin \mathcal{I}$. Consider x, x_1 and x, x_2 , by our assumption and proposition 2.3(i), there exist $y_1, y_2 \in N$ such that $y_1 \in N(x) \cap N(x_1)$ and $y_2 \in N(x) \cap N(x_2)$. Then $x_1 - y_1 - x_1nx_2 - y_2 - x_2$ is a path in the induced subgraph of N(x). Thus N(x) induces a connected subgraph of $\Gamma_{\mathcal{I}}(N)$ and since $diam(\Gamma_{\mathcal{I}}(N)) = 2$, for every $x \in V(\Gamma_{\mathcal{I}}(N))$, N(x) is a dominating set.

Proposition 3.7. Let \mathcal{I} be the 3-prime radical of N such that for every $P \in Spec(N)$, $\bigcap_{Q \in Spec(N) \setminus \{P\}} Q \neq \mathcal{I}$. Then $\gamma_c(\Gamma_{\mathcal{I}}(N)) \leq |Spec(N)|$.

Proof. For every $P \in Spec(N)$, take $a_P \in \bigcap_{Q \in Spec(N) \setminus \{P\}} Q \setminus \mathcal{I}$. We show that the set $D = \{a_P : P \in Spec(N)\}$ is a connected dominating set of $V(\Gamma_{\mathcal{I}}(N))$. Suppose $b \in V(\Gamma_{\mathcal{I}}(N)) \setminus D$, then $b \in P'$ for some $P' \in Spec(N)$ and so we have $b_{P'} \in \bigcap_{Q' \in Spec(N) \setminus \{P'\}} Q' \setminus \mathcal{I}$. Then $b_{P'} \in D$ and $bNb_{P'} \subseteq \mathcal{I}$. Consequently, since every $a_P \in D$, $D(a_P) = \{P\}$, $P \in Spec(N)$ and by Proposition 2.3(ii), D induces a complete subgraph of $\Gamma_{\mathcal{I}}(N)$. Hence D is a connected dominating set. Therefore $\gamma_c(\Gamma_{\mathcal{I}}(N)) \leq |D| = Spec(N)$.

Remark 3.8. The bound in Proposition 3.7, is sharp. Consider the near-ring N with $Spec(N) = \{P_1, P_2\}$ and $|P_i \setminus \mathcal{I}| > 1$ for i = 1, 2. Let $a \in V(\Gamma_{\mathcal{I}}(N))$. Without loss of generality $a \in P_1 \setminus \mathcal{I}$, then $aNb \subseteq \mathcal{I}$ for every $b \in P_2 \setminus \mathcal{I}$ and $aNa' \nsubseteq \mathcal{I}$ for

every $a' \in P_1 \setminus \mathcal{I}$, so for all $a \in P_1 \setminus \mathcal{I}$, $b \in P_2 \setminus \mathcal{I}$, $\{a, b\}$ is a minimum connected dominating set.

ACKNOWLEDGMENTS

The work reported here is supported by the Major Research Project F.No.37-267/2009(SR) awarded to authors by the University Grants Commission(UGC), Government of India.

REFERENCES

- 1. G. Alan Cannon, Kent M. Neuerburg and Shane P. Redmond, Zero-divisor graphs of Near-rings and Semigroups, *Near-rings and Near-fields:Proceedings of the Conference on Near-rings and Near-fields II*, 2005, pp. 189-200, doi: 10.1007/1-4020-3391-5_8.
- 2. D. F. Anderson and P. S. Livingston, The zero divisor graph of a commutative ring, *J. Algebra*, **217** (1999), 434-447.
- 3. I. Beck, Coloring of Commutative rings, J. Algebra, 116 (1988), 208-226.
- 4. N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1973.
- 5. G. F. Birkenmeier, H. E. Heatherly and E. K Lee, Completely prime ideals and radicals in near-rings, *Proc. Fredericton Conference on Near-rings and Near-fields*, Kluwer Acad. Publ., Dordrecht, 1995, pp. 63-67.
- 6. G. Chartrand and P. Zhang, *Introduction to Graph Theory*, Wadsworth and Brooks/Cole, Monterey, CA, 1986.
- 7. P. Dheena and B. Elavarasan, An ideal-based zero-divisor graph of 2-primal near-rings, *Bull. Korean Math. Soc.*, **46** (2009), 1051-1060.
- 8. R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- 9. J. R. Munkres, *Topology*, Prentice-Hall of India, New Delhi, 2005.
- 10. G. Pilz, Near-rings, North Holland, Amsterdam, 1983.
- 11. S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, *Comm. Algebra*, **31** (2003), 4425-4443.
- 12. K. Samei, The zero-divisor graph of a reduced ring, *J. Pure Appl. Algebra*, **209** (2007), 813-821.
- 13. T. Tamizh Chelvam and S. Nithya, Zero-divisor graph of an ideal of a near-ring, *Discrete Math. Algorithms Appl.*, to appear.
- 14. S. Veldsman, On equiprime near-rings, Comm. Algebra 20(9) (1992), 2569-2587.

T. Tamizh Chelvam and S. Nithya Department of Mathematics Manonmaniam Sundaranar University Tirunelveli 627 012, Tamil Nadu India

E-mail: tamche59@gmail.com yathnis@yahoo.com