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ON r-EQUITABLE COLORING OF COMPLETE MULTIPARTITE GRAPHS

Chih-Hung Yen*

Abstract. Let r � 0 and k � 1 be integers. We say that a graph G has an
r-equitable k-coloring if there exists a proper k-coloring of G such that the sizes
of any two color classes differ by at most r. The least k such that a graph G has
an r-equitable k-coloring is denoted by χr=(G), and the least n such that a graph
G has an r-equitable k-coloring for all k � n is denoted by χ∗

r=(G). In this
paper, we propose a necessary and sufficient condition for a complete multipartite
graph G to have an r-equitable k-coloring, and also give exact values of χr=(G)
and χ∗

r=(G).

1. INTRODUCTION

A graph G = (V, E) is composed of a nonempty vertex set V and an edge set E .
All graphs we consider in this paper are presumed to be undirected, finite, loopless, and
without multiple edges. For a positive integer k, a (proper) k-coloring of a graph G

is a mapping f : V → {1, 2, . . . , k} such that adjacent vertices have different images.
The images 1, 2, . . . , k are called colors and the corresponding sets {u ∈ V : f(u) =
1}, {u ∈ V : f(u) = 2}, . . . , {u ∈ V : f(u) = k} are called color classes. Obviously,
a color class is an independent set whose size may be equal to zero in G. And one color
in a k-coloring of a graph G is said to be missing if its corresponding color class is an
empty set of size zero. Moreover, a graph is k-colorable if it has a k-coloring. The
chromatic number of a graph G, written χ(G), is the least k such that G is k-colorable.
A k-coloring of a graph G is said to be equitable provided that the sizes of any

two color classes differ by at most one. A graph G is equitably k-colorable if G has
an equitable k-coloring. The least k such that a graph G is equitably k-colorable is
called the equitable chromatic number of G and denoted by χ=(G). The notion of
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equitable colorability was first introduced by Meyer [9] in 1973. His motivation came
from the problem of assigning one of the six days of the work week to each garbage
collection route. And so far, quite a few results on equitable coloring of graphs have
been obtained in the literature, see [1, 2, 4-10].
Recently, Hertz and Ries [3] generalized the notion of equitable colorability. They

said that a k-coloring of a graph G is r-equitable for an integer r � 0 if the sizes of
any two color classes differ by at most r. And a graph G is r-equitably k-colorable
if there exists an r-equitable k-coloring of G. The least k such that a graph G is r-
equitably k-colorable is called the r-equitable chromatic number of G and denoted by
χr=(G). It is clear that an r-equitably k-colorable graph is certainly (r + 1)-equitably
k-colorable. Moreover, an equitably k-colorable graph is also 1-equitably k-colorable,
and vice versa. In fact, such a generalization is quite natural since many k-colorable
graphs do not have equitable k-colorings.
Unlike proper colorings of graphs, an equitably (or r-equitably) k-colorable graph

may not be equitably (or r-equitably) (k + 1)-colorable. For example, the graph in
Figure 1, denoted by K3,3, is equitably 2-colorable, yet it is not equitably 3-colorable.
Hence, we also have an interest in finding the least n such that a graph G is equitably (or
r-equitably) k-colorable for all k � n, called the equitable (or r-equitable) chromatic
threshold of G and denoted by χ∗

=(G) (or χ∗
r=(G)). Note that χ∗

0=(G) does not exist for
any graph G. Because a graph G is not 0-equitably k-colorable for any k � |V (G)|+1.

Fig. 1. The graph K3,3.

In this paper, we pay attention to r-equitable coloring of a particular class of graphs,
called complete multipartite graphs. We first give a brief review for equitable coloring
on complete multipartite graphs related to our results in this paper. Then, for any r � 0,
we propose a necessary and sufficient condition for a complete multipartite graph G to
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have an r-equitable k-coloring, and also give exact values of χr=(G) and χ∗
r=(G).

2. KNOWN RESULTS

Recall that a graph G is t-partite if its vertex set can be partitioned into t inde-
pendent sets V1, V2, . . . , Vt, and complete t-partite, denoted by Kn1,n2,...,nt , if every
vertex in Vi is adjacent to every vertex in Vj whenever i �= j and |Vi| = ni � 1 for
all 1 � i � t. V1, V2, . . . , Vt are called partite sets of G. By convention it is always
assumed that t � 2 and 1 � n1 � n2 � · · · � nt. And a graph is said to be complete
multipartite if it is complete t-partite for some t. Furthermore, a complete t-partite
graph Kn1,n2,...,nt satisfies n1 = n2 = · · · = nt = n is also denoted by Kt(n).
Let �x� and �x� denote, respectively, the smallest integer not less than x and the

largest integer not greater than x. Also, let N denote the set of all positive integers. In
1994, Wu [10] proved the followings.

Theorem 1. For any Kn1,n2,...,nt , let p = n1 + n2 + · · ·+ nt. Then Kn1,n2,...,nt

is equitably k-colorable if and only if either k > p or ni � �ni/�p/k���p/k� for all
1 � i � t and

∑t
i=1�ni/�p/k�� � k �

∑t
i=1�ni/�p/k�� when k � p.

Theorem 2. χ=(Kn1,n2,...,nt) =
∑t

i=1�ni/h�, where h = max{m ∈ N : ni �
�ni/m�(m − 1) for all 1 � i � t}.
Theorem 3. χ∗

=(Kn1,n2,...,nt) =
∑t

i=1�ni/h�, where h = min{m ∈ N : there
exists some i such that ni < �ni/(m + 1)�m or there exist ni and nj , i �= j, such that
both of ni and nj are not divisible by m}.
Later, in 2001, Lam et al. [5] also showed the following result which is equivalent

to Theorem 2.

Theorem 4. χ=(Kn1,n2,...,nt) =
∑t

i=1�ni/(h + 1)�, where h = max{m ∈ N : ni

(mod m) < �ni/m� for all 1 � i � t}.
Recently, in 2010, Lin and Chang [6] showed the following results for Kt(n).

Theorem 5. For any k � t, Kt(n) is equitably k-colorable if and only if �n/�k/t��−
�n/�k/t�� � 1.

Theorem 6. χ∗
=(Kt(n)) = t�n/h�, where h is the least positive integer such that

n is not divisible by h.

3. OUR RESULTS

In what follows, let In denote the graph consisting of n isolated vertices, where
n � 1.
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Lemma 7. For any r � 0, In has an r-equitable k-coloring if and only if there
exists an integer m � 0 such that (m + r)k � n � mk.

Proof. (⇒) Suppose that In has an r-equitable k-coloring. Then there exists a
k-coloring of In such that each of the k color classes is of sizem, m+1, . . . , or m+r

for some integer m � 0. Hence, we have (m + r)k � n � mk.
(⇐) Firstly, since n = �n/k�+�(n − 1)/k�+· · ·+�(n − (k − 1))/k�, we partition

the vertex set of In into k independent sets V1, V2, . . . , Vk of sizes �n/k�, �(n − 1)/k�,
. . . , �(n − (k − 1))/k�, respectively. Next, since there exists an integer m � 0 such
that (m + r)k � n � mk, we have m + r � n/k � m. It implies that m + r �
�n/k� � �n/k� � m because m + r and m are integers. Then In has a k-coloring
such that each of the k color classes is of size m, m + 1, . . . , or m + r by letting
each of V1, V2, . . . , Vk be a color class and m + r � �n/k� � �(n − 1)/k� � · · · �
�(n − (k − 1))/k� = �n/k� � m. Hence, In has an r-equitable k-coloring.

Lemma 8. For any r � 1, Kn1,n2,...,nt has an r-equitable k-coloring such that at
least one color is missing if and only if k � (

∑t
i=1�ni/r�) + 1.

Proof. (⇒) Clearly, if Kn1,n2,...,nt has an r-equitable k-coloring such that at least
one color is missing, then there exists an r-equitable (k − 1)-coloring of Kn1,n2,...,nt

such that each of the k − 1 color classes is of size 0, 1, . . . , or r. Hence, it implies
that we can certainly find positive integers k1, k2, . . . , kt such that k − 1 =

∑t
i=1 ki

and Ini has a ki-coloring in which each of the ki color classes is of size 0, 1, . . . ,

or r for all 1 � i � t. Then we have rki � ni for all 1 � i � t. Since r � 1
and k1, k2, . . . , kt are positive integers, ki � �ni/r� for all 1 � i � t. Therefore,
k − 1 =

∑t
i=1 ki �

∑t
i=1�ni/r� and thereby k � (

∑t
i=1�ni/r�) + 1.

(⇐) If k � (
∑t

i=1�ni/r�)+1, then k−1 �
∑t

i=1�ni/r�. Hence, we can certainly
find positive integers k1, k2, . . . , kt such that k − 1 =

∑t
i=1 ki and ki � �ni/r� for

all 1 � i � t. So, ki � ni/r and rki � ni � 1 > 0 = 0 · ki for all 1 � i � t.
Then Ini has a ki-coloring such that each of the ki color classes is of size 0, 1, . . . , or
r for all 1 � i � t by the proof of Lemma 7. Therefore, there exists an r-equitable
(k−1)-coloring ofKn1,n2,...,nt such that each of the k−1 color class is of size 0, 1, . . . ,
or r by k − 1 =

∑t
i=1 ki. It implies that Kn1,n2,...,nt has an r-equitable k-coloring

such that at least one color is missing.

Note that Kn1,n2,...,nt has no 0-equitable k-coloring such that at least one color is
missing; otherwise, the order of Kn1,n2,...,nt is equal to zero.

Lemma 9. For any r � 0, Kn1,n2,...,nt has an r-equitable k-coloring such that no
color is missing if and only if there exists a positive integer m such that �ni/m� �
�ni/(m + r)� for all 1 � i � t and

∑t
i=1�ni/m� � k �

∑t
i=1�ni/(m + r)�.

Proof. (⇒) It is obvious that if Kn1,n2,...,nt has an r-equitable k-coloring such
that no color is missing, then we can certainly find positive integers k1, k2, . . . , kt,
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and m such that k =
∑t

i=1 ki and Ini has a ki-coloring in which each of the ki

color classes is of size m, m + 1, . . . , or m + r for all 1 � i � t. Hence, we have
(m + r)ki � ni � mki for all 1 � i � t. Since k1, k2, . . . , kt, and m are positive
integers, it implies that ni/m � ki � ni/(m + r) and thereby �ni/m� � ki �
�ni/(m + r)� for all 1 � i � t. Therefore, �ni/m� � �ni/(m + r)� for all 1 � i � t

and
∑t

i=1�ni/m� �
∑t

i=1 ki = k �
∑t

i=1�ni/(m + r)�.
(⇐) If there exists a positive integer m such that �ni/m� � �ni/(m + r)� for

all 1 � i � t and
∑t

i=1�ni/m� � k �
∑t

i=1�ni/(m + r)�, then we can certainly
find positive integers k1, k2, . . . , kt such that k =

∑t
i=1 ki and �ni/m� � ki �

�ni/(m + r)� for all 1 � i � t. Hence, ni/m � ki � ni/(m + r) and thereby
(m + r)ki � ni � mki for all 1 � i � t. Then Ini has a ki-coloring in which each of
the ki color classes is of size m, m + 1, . . . , or m + r for all 1 � i � t by the proof
of Lemma 7. Therefore, Kn1,n2,...,nt has an r-equitable k-coloring such that no color
is missing by k =

∑t
i=1 ki and m � 1.

By the conclusions of Lemmas 8 and 9, we can conclude the necessary and sufficient
condition for a complete t-partite graph Kn1,n2,...,nt to have an r-equitable k-coloring.

Theorem 10. For any r � 0, Kn1,n2,...,nt has an r-equitable k-coloring if and
only if at least one of the following statements holds.
1. r � 1 and k � (

∑t
i=1�ni/r�) + 1.

2. There exists a positive integer m such that �ni/m� � �ni/(m + r)� for all
1 � i � t and

∑t
i=1�ni/m� � k �

∑t
i=1�ni/(m + r)�.

For example, K3,5,7 has a 2-equitable k-coloring such that at least one color is
missing if and only if k � 10. Moreover, if we choose m = 1, 2, 3, then we get
that K3,5,7 has a 2-equitable k-coloring such that no color is missing if and only if
15 � k � 4. Hence, K3,5,7 has a 2-equitable k-coloring if and only if k � 4.

Theorem 11. For any r � 0 and 1 � n1 � n2 � · · · � nt, let θ = max{m ∈
N : �ni/m� � �ni/(m + r)� for all 1 � i � t}. Then χr=(Kn1,n2,...,nt) =

∑t
i=1

�ni/(θ + r)�.
Proof. Firstly, since �ni/1� = ni � �ni/(1 + r)� for all 1 � i � t, we have that

θ exists with θ � 1. Secondly, if m ≥ n1 +1, then �n1/m� = 0 < 1 = �n1/(m + r)�.
Hence, θ � n1. Finally, if k =

∑t
i=1�ni/(θ + r)�, then Kn1,n2,...,nt has an r-equitable

k-coloring by the choice of θ and Theorem 10. Now, let k <
∑t

i=1�ni/(θ + r)�, and
suppose that Kn1,n2,...,nt has an r-equitable k-coloring. By k <

∑t
i=1�ni/r� if r � 1

and Theorem 10, we know that there exists a positive integer m such that �ni/m� �
�ni/(m + r)� for all 1 � i � t and

∑t
i=1�ni/m� � k �

∑t
i=1�ni/(m + r)�. Then

m � θ by the choice of θ, and thereby k �
∑t

i=1�ni/(m + r)� �
∑t

i=1�ni/(θ + r)�.
It is a contradiction. Thus Kn1,n2,...,nt has no r-equitable k-coloring when k <
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∑t
i=1�ni/(θ + r)�. Therefore, we can conclude that χr=(Kn1,n2,...,nt) =

∑t
i=1

�ni/(θ + r)�.

Theorem 12. For any r � 1 and 1 � n1 � n2 � · · · � nt, let m1, m2, . . . , mx be
all positive integers such that m1 < m2 < · · · < mx and �ni/mj� � �ni/(mj + r)�
for all 1 � i � t and 1 � j � x. Also, let M = {m1, m2, . . . , mx} and θ =
min{mj ∈ M :

∑t
i=1�ni/(mj + r)� > (

∑t
i=1�ni/mj+1�) + 1 or mj = mx}. Then

χ∗
r=(Kn1,n2,...,nt) =

∑t
i=1�ni/(θ + r)�.

Proof. Firstly, since �ni/1� = ni � �ni/(1 + r)� for all 1 � i � t, we
have m1 = 1, and thereby M is a nonempty set and θ exists with θ � 1. Secondly,
if k � (

∑t
i=1�ni/r�) + 1, then Kn1,n2,...,nt has an r-equitable k-coloring by Theo-

rem 10. Finally, let k satisfy
∑t

i=1�ni/r� � k �
∑t

i=1�ni/(θ + r)�, and also let
m� = max{mj ∈ M :

∑t
i=1�ni/mj� � k}. Since ∑t

i=1�ni/m1� =
∑t

i=1 ni �
∑t

i=1�ni/r� � k, we know that m� exists with m� � 1. Also, m� � θ by the
choice of θ. Then we want to show that

∑t
i=1�ni/m�� � k �

∑t
i=1�ni/(m� + r)�,

and thus Kn1,n2,...,nt has an r-equitable k-coloring by Theorem 10. Suppose that
k <

∑t
i=1�ni/(m� + r)�. Then m� < m�+1 � θ by k �

∑t
i=1�ni/(θ + r)�, and

k >
∑t

i=1�ni/m�+1� by the choice of m�. Hence, we have
∑t

i=1�ni/(m� + r)� >
(
∑t

i=1�ni/m�+1�) + 1. It is a contradiction by m� < θ and the choice of θ. Now,
let k = (

∑t
i=1�ni/(θ + r)�) − 1. Then k <

∑t
i=1�ni/r� by θ � 1. Also, k <∑t

i=1�ni/(mj + r)� for eachmj � θ. Moreover, by the choice of θ, k >
∑t

i=1�ni/mj�
for each mj > θ. So, there exists no mj ∈ M such that

∑t
i=1�ni/mj� � k �∑t

i=1�ni/(mj + r)�. Then Kn1,n2,...,nt has no r-equitable k-coloring by Theorem 10.
Thus we can conclude that χ∗

r=(Kn1,n2,...,nt) =
∑t

i=1�ni/(θ + r)�.
In fact, it is not difficult to observe that if a graph G has an r-equitable k-coloring

such that at least one color is missing, then there must exist a positive integer k′ < k

such that G has an r-equitable k′-coloring in which no color is missing. Hence, the
r-equitable chromatic number χr=(G) of a graph G is actually equal to the least k

such that G has an r-equitable k-coloring in which no color is missing. Similarly,
the r-equitable chromatic threshold χ∗

r=(G) of a graph G is actually equal to the least
n such that G has an r-equitable k-coloring for all k > n and G has an r-equitable
n-coloring in which no color is missing. Finally, according to the above theorems, we
have the following corollaries.

Corollary 13. For any r � 0 and k � t, Kt(n) has an r-equitable k-coloring if
and only if �n/�k/t�� − �n/�k/t�� � r.

Proof. (⇒) Suppose that Kt(n) has an r-equitable k-coloring. Then, either
r � 1 and k � t�n/r� + 1 or there exists a positive integer m such that t�n/m� �
k � t�n/(m + r)� by Theorem 10. If r � 1 and k � t�n/r� + 1, then �k/t� �
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�n/r� � n/r. Hence, we have n/�k/t� � n/(n/r) = r. Since r is an integer,
it implies that �n/�k/t�� � r and thereby �n/�k/t�� − �n/�k/t�� � r. If there
exists a positive integer m such that t�n/m� � k � t�n/(m + r)�, then n/m �
�n/m� � �k/t� � k/t � �k/t� � �n/(m + r)� � n/(m + r). Hence, we have
m � �n/�k/t�� � �n/�k/t�� � m + r because m and m + r are positive integers. It
implies that �n/�k/t�� − �n/�k/t�� � r.
(⇐) Let m = �n/�k/t��. Firstly, if m = 0, then �k/t� � n + 1 and �k/t� � n.

It implies that r � �n/�k/t�� − �n/�k/t�� = 1 − 0 = 1 and k/t > n. Hence,
k � tn+1 = t�n/1�+1 � t�n/r�+1. Therefore, Kt(n) has an r-equitable k-coloring
by Theorem 10. Next, if m � 1, by �n/�k/t�� − �n/�k/t�� � r, then we have
m = �n/�k/t�� � n/�k/t� � n/(k/t) � n/�k/t� � �n/�k/t�� � m + r. Hence,
n/m � �n/m� � �k/t� � k/t � �k/t� � �n/(m + r)� � n/(m + r). It implies that
�n/m� � �n/(m + r)� and t�n/m� � k � t�n/(m + r)�. Therefore, Kt(n) has an
r-equitable k-coloring by Theorem 10.

Corollary 14. For any r � 0, χr=(Kt(n)) = t = χ=(Kt(n)).

Corollary 15. For any r � 1 and n � 1, let θ be the least positive integer such
that �n/(θ + 1)� < �n/(θ + r)�. Then χ∗

r=(Kt(n)) = t�n/(θ + r)�.
Proof. Firstly, since �n/(n + 1)� = 0 < 1 = �n/(n + r)�, we know that θ exists

with θ � n. Also, �n/m� � �n/(m + 1)� � �n/(m + r)� for eachm ∈ {1, 2, . . . , θ−
1} by the choice of θ. Moreover, if m = θ − 1, then �n/(θ − 1 + 1)� = �n/θ� �
�n/(θ − 1 + r)� � �n/(θ + r)�. Hence, we have that �n/m� � �n/(m + r)� for
each m ∈ {1, 2, . . . , θ}. Next, let m1, m2, . . . , mx be all positive integers such
that m1 < m2 < · · · < mx and �n/mj� � �n/(mj + r)� for all 1 � j � x.
Also, let M = {m1, m2, . . . , mx}. Then m1 = 1, m2 = 2, . . . , mθ = θ, and
thereby (

∑t
i=1�n/mj+1�) + 1 >

∑t
i=1�n/mj+1� = t�n/mj+1� � t�n/(mj + r)� =∑t

i=1�n/(mj+r)� for eachmj ∈{m1, m2, . . . , mθ−1} by �n/(m+1)� � �n/(m+r)�
for each m ∈ {1, 2, . . . , θ − 1}. Furthermore, since �n/(θ + 1)� < �n/(θ + r)�,
it implies that t�n/(θ + 1)� + t � t�n/(θ + r)�. Therefore, if mθ+1 exists, then
mθ+1 � θ + 1 and (

∑t
i=1�n/mθ+1�) + 1 = t�n/mθ+1� + 1 < t�n/(θ + 1)� + t �

t�n/(θ + r)� =
∑t

i=1�n/(mθ + r)� for all t � 2. Thus we can conclude that
mθ = min{mj ∈ M :

∑t
i=1�n/(mj + r)� > (

∑t
i=1�n/mj+1�) + 1 or mj = mx}.

Then χ∗
r=(Kt(n)) = t�n/(θ + r)� by Theorem 12 and mθ = θ.

4. SOME CONCLUDING REMARKS

The motivation for writing this paper was reading a paper titled “on r-equitable
colorings of trees and forests” uploaded to the personal home page of Alain Heartz, see
[3]. Although the notion of r-equitable colorability is a quite natural generalization, it
seems to be proposed without precedent. Hence, we believe that such a paper might
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open the door for more interesting problems on equitable coloring of graphs in the
future, and perhaps, for more valuable research. In this paper, we do some things on
this side and view them as the beginning.

ACKNOWLEDGMENTS

The author thanks the referees for many helpful comments which led to a better
version of this paper.

REFERENCES

1. B.-L. Chen, K.-W. Lih and P.-L. Wu, Equitable coloring and the maximum degree,
Europ. J. Combin., 15 (1994), 443-447.

2. B.-L. Chen and C.-H. Yen, Equitable Δ-coloring of graphs, Discrete Math., 312 (2012),
1512-1517.

3. A. Hertz and B. Ries, On r-equitable colorings of trees and forests, submitted, 2011.
(http://www.gerad.ca/alainh/Ries.pdf)

4. H. A. Kierstead and A. V. Kostochka, Equitable versus nearly equitable coloring and the
Chen-Lih-Wu conjecture, Combinatorica, 30 (2010), 201-216.

5. P. C. B. Lam, W. C. Shiu, C. S. Tong and Z. F. Zhang, On the equitable chromatic
number of complete n-partite graphs, Discrete Appl. Math., 113 (2001), 307-310.

6. W.-H. Lin and G. J. Chang, Equitable colorings of Kronecker products of graphs, Discrete
Appl. Math., 158 (2010), 1816-1826.

7. K.-W. Lih, The equitable coloring of graphs, in: Handbook of Combinatorial Optimiza-
tion, D.-Z. Du and P. M. Pardalos (eds.), Vol. 3, Kluwer Academic Publishers, 1998,
pp. 543-566.

8. K.-W. Lih and P.-L. Wu, On equitable coloring of bipartite graphs, Discrete Math., 151
(1996), 155-160.

9. W. Meyer, Equitable coloring, Amer. Math. Monthly, 80 (1973), 920-922.

10. C.-H. Wu, On the equitable-coloring of the complete t-partite graphs, Master’s thesis,
Tunghai University, Taiwan, 1994.

Chih-Hung Yen
Department of Applied Mathematics
National Chiayi University
Chiayi 60004, Taiwan
E-mail: chyen@mail.ncyu.edu.tw


