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ROBUST ESTIMATION: LOCATION-SCALE
AND REGRESSION PROBLEMS

Wen Hsiang Wei

Abstract. A robust estimating method to search for the bounded function mini-
mizing a risk is proposed. The estimators obtained by the proposed method are
the generalizations of several classical robust estimators. In addition, a variety
of robust estimators can be obtained, including robust one and multidimensional
estimators, robust regression and robust model selection criteria for univariate or
multivariate data with independent or correlated errors, and robust Bayes estima-
tors. Further, a simulation study is conducted to evaluate the proposed method.

1. INTRODUCTION

The foundations of modern robustness theory were laid by Huber (1964), as in-
dicated by Hampel et al. (1986, p. 172). The asymptotic minimax approach is
mathematically rigorous and elegant. Another approach to robust estimation using M-
estimators subject to low gross-error sensitivity or bounded influence has been proposed
by Hampel (see Hampel 1974; Hampel et al. 1986, Theorem 1, p. 117, p. 241; Staudte
and Sheather 1990, Theorem 4.3, p. 115). The bounded influence approach has been
successfully applied to a variety of statistical models, including linear regression (see
Krasker and Welsch 1982) and generalized linear models (Künsch et al. 1989). In the
location case, the optimal bounded influence M-estimator can be Huber estimator given
the specific underlying distribution.
In many point estimation problems, the objective is to find the minimizer of a

risk function. In this article, the goal is to find the ”bounded” minimizer of the risk
function among a class of functions. A function being a bounded function almost surely
is defined first. Let Y be a p × 1 random vector corresponding to the q × 1 vector
of parameters θ and the parameter space be Θ. As no prior has been imposed on the
parameters, the notations P , E , and Cov for the probabilities, the expected values, and
the covariances of the random variables of interest correspond to the parameters in this
article, i.e., P = Pθ, E = Eθ, and Cov = Covθ .
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Definition 1.1. A measurable function φ : Rp ×Rq → Rm,

φ(y, θ) = [φ1(y, θ), . . . , φm(y, θ)]t,

is said to be a bounded function almost surely if

P (||φ(Y , θ)|| ≤ Cθ) = 1,

for all θ ∈ Θ, where Cθ is a finite constant depending on θ, y is a p× 1 vector, and
‖ · ‖ is the Euclidean distance.
If φ is bounded, it is a bounded function almost surely. However, a bounded

function almost surely might not be bounded. The minimizer is defined as follows.

Definition 1.2. A bounded function almost surely φ̂ : Rp×Rq → Rm is minimum
risk bounded (MRB) function in a class F if the risk

R
[
φ̂(Y , θ)

]
= E

{
ρ
[
φ̂(Y , θ),Y , θ

]}
≤ E {ρ [φ(Y , θ),Y , θ]} = R [φ(Y , θ)]

for all θ ∈ Θ, where φ : Rp ×Rq → Rm is any other measurable function in the class
F and ρ is a non-negative measurable function almost surely defined on Rm×Rp×Rq,
i.e, P (ρ[φ(Y , θ),Y , θ)] ≥ 0) = 1 for all θ ∈ Θ.

The functions of interest in the class F could be the function of residuals or its
corresponding sensitivity measures, the influence function, the biased or unbiased M-
estimation equations, the biased or unbiased estimating functions (see Durbin 1960), or
the loss function. Thus, a variety of statistical problems can be resolved based on the
proposed approach. For example, in a one-dimensional location parameter problem, the
functions of interest can be φ(y, θ), where φ(y, θ) is a well-defined smooth function and
θ is the location parameter. If the bounded function φ(y, θ) = max[−C,min(y−θ, C)]
is used, the corresponding M-estimator is a type of trimmed mean which minimizes the
bounded residual sum of squares

∑n
i=1 φ

2(Yi, θ) (see Serfling 1980, Example D, pp.
246-248), where C is a constant and n is the number of observations. On the other
hand, if the risk function is the asymptotic variance, which mainly depends on the
expectation of the square of the influence function, the corresponding optimal bounded
influence M-estimator is a type of Winsorized mean. In a linear regression problem,
the bounded function can be the functions φi and the corresponding Huber M-estimator
is the solution of

∑n
i=1Xiφi(Yi,β) = 0, whereXi are the values of the covariates, β

are the regression coefficients, and φi(y,β) = max[−C,min(y −Xiβ, C)]. In fact,
the bounded functions in these examples are the MRB functions.
The MRB functions can be thought as the robust version of some commonly used

functions for point estimation, for example, the score function. These functions, defined
below, might be unbounded and minimize a risk among a class of functions.
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Definition 1.3. A measurable function φ̂ : Rp ×Rq → Rm is minimum risk (MR)
function in a class F∞ if the risk

R
[
φ̂(Y , θ)

]
= E

{
ρ
[
φ̂(Y , θ),Y , θ

]}
≤ E {ρ [φ(Y , θ),Y , θ]} = R [φ(Y , θ)]

for all θ ∈ Θ, where φ : Rp × Rq → Rm is any other measurable function in
the class F∞ and ρ is a non-negative measurable function almost surely defined on
Rm ×Rp × Rq.

In this article, the function ρ(φ, y, θ) = φt(y, θ)W (θ)φ(y,θ), the frequently
used weighted least squares, is of interest, where W is an m × m matrix function
defined on Rq and W (θ) = U t(θ)U(θ) is assumed to be a positive-definite weight
matrix for any given θ ∈ Θ, where U is an m×m matrix function defined on Rq. As
indicated by Croux, Filzmoser, Oja, and Critchley (see Morgenthaler 2007, p. 281, p.
288), robust methods for correlated or heteroscedastic errors in the regression need to
be proposed. The types of model deviations could be taken into account by the robust
methods based on the weighted least squares. In next section, the forms of the MRB
functions for general parametric families are given. The MRB functions for two main
parametric families, exponential families and location-scale families, are derived. As
the observed data have multivariate normal distribution, the result is the generalization
of Theorem 4.3 of Staudte and Sheather (1990, p. 115), which illustrates the basic idea
of Hampel et al. (1986). In addition, the corresponding Bayes MRB function, referred
to as minimum risk bounded Bayes (MRBB) function, is introduced. In Section 3,
the applications of the MRB and MRBB functions to different types of data, including
multivariate normal, binomial, and Poisson, are presented. Further, the applications
of these MRB functions for a variety of regression models, including robust regres-
sion and robust model selection for univariate or multivariate data with independent or
correlated errors, generalized linear models, linear mix-effects models, and generalized
estimating equations, are also given in this section. A simulation study to compare the
estimators based on the MRB and MRBB functions with the classical estimators, such
as maximum likelihood estimator (MLE) and weighted least squares estimator (WLSE),
is conducted in Section 4. A concluding discussion is given in Section 5. Finally, the
proofs of main results are delegated to the last section. The additional numerical results
along with computational details are delegated to the supplementary materials, which
can be found at

http://web.thu.edu.tw/wenwei/www/papers/tjmSupplement.pdf/ .

2. MINIMUM RISK BOUNDED (MRB) FUNCTION

In the theory of point estimation, one way of obtaining the optimal estimator is
to restrict the class of estimators of interest by requiring the estimators in the class
to satisfy some condition, for example, the condition of unbiasedness (see Lehmann
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and Casella 1998, p. 5). In addition, unbiased estimating functions were of interest in
Durbin (1960), while the optimal bounded M-estimator can be obtained subject to the
first moment conditions for the corresponding estimating function and its derivative (see
Theorem 1 of Hampel et al. 1986, p. 102, pp. 117-119; Theorem 4.3 of Staudte and
Sheather 1990, p. 115). Motivated by these methods, the first moment conditions are
imposed on the classes of functions of interest and their corresponding first derivatives
in order to obtain the MRB and MRBB functions. Intuitively, the first derivatives of
the functions of interest are closely related to the sensitivity of the functions to the data
or the parameters.
In this section, the MRB and MRBB functions are based on the proposed general-

ized (or weighted) Huber function h : Rp ×Rq → Rr (also see Hampel et al. 1986, p.
239; p. 261)

h(y, θ) = h [c(y, θ), v(y,θ),U(y,θ)] = v(y, θ) min
[
1,

c(y, θ)
‖U(y, θ)v(y,θ)‖

]
,

where y is a p × 1 vector, v is a r × 1 vector function defined on Rp × Rq, U is
an m × r matrix function defined on Rp × Rq, and c is a bounded function defined
on Rp × Rq. As ||U(y, θ)v(y,θ)|| = 0, let h(y, θ) = v(y, θ). Note that c(y, θ) is
usually positive and the notation h[c(y, θ), v(y,θ),U(y,θ)] is used for indicating the
dependence of the function on c, v, and U . The vector function v is associated with the
possibly unbounded function of interest involving the statistic and the parameter, while
the matrix function U is usually associated with the correlated errors of the data. The
bounded function c is associated with the imposed bound for the function of interest.
The choices of the bounded function c reflect the trade-off between robustness and
efficiency. However, the determination of optimal functions c might be difficult (see
Huber and Ronchetti 2009, p. 84). Therefore, data-dependent benchmark function c
can be used as the alternative in such situations. Three types of data-dependent criteria
are suggested:

• 100(1 − ζ)th percentile, i.e., c(y, θ) = min[C, q1−ζ(|z|)], where C is a pre-
specified constant, 0 < ζ < 1, q1−ζ(|z|) is the 100(1 − ζ)th percentile of
|z1|, . . . , |zm|, and zi is the ith element of the vector z = U(y, θ)v(y, θ);

• Three sigma, i.e., c(y, θ) = min(C, 3Sz), where Sz = [
∑m

i=1(zi − z̄)2/(m −
1)]1/2 and z̄ =

∑m
i=1 zi/m;

• Box plot, i.e., c(y, θ) = min[C, 2IQR(|z|)], where IQR(|z|) is inter-quartile
range of |z1|, . . . , |zm|.

In practice, C can be a very large number such that the benchmark mainly depends on
q1−ζ(|z|), 3Sz , or 2IQR(|z|).
Hereafter, let the parameter space Θ be a nonempty open set of Rq. The notation

ġy = [∂g(y)/∂yi] is a vector of first derivatives of the function g with respect to y and
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ġyi is the ith component of ġy , while Δy(g) is a vector with the ith elementΔyi(g) =
g(. . . , yi − 1, . . .) and Δ+

y (g) is a vector with the ith element Δ+
yi

(g) = g(. . . , yi +
1, . . .). If E[ġy(Y )] exists, the differentiability of ġy a.s. is assumed spontaneously,
where a.s. stands for almost surely. Let vec(M) = (m11, m21, . . . , m(m−1)n, mmn)t

be the vectorization of them×n matrixM = [mij], while vecs(M) = (m11, . . . , mpp,

m21, m31, m32, . . . , mp(p−1))t is the vectorization of the p × p symmetric matrixM .
Further, the quantities with a hat correspond to the ones of the MRB, MRBB, or MR
functions. For example, μ̂ is denoted as the means of the MRB, MRBB, or MR
functions provided that μ is denoted as the means of the class of functions of interest.
The notations μ1 and μ̂1 are the matrices with elements equal to the means of the
first derivatives of the functions of interest and the associated MRB, MRBB, or MR
functions, respectively. Finally, the inequality v < ∞ is used to indicate that all the
elements of the vector v are finite.

2.1. Multivariate normal distribution and large sample case

Since Theorem 4.3 of Staudte and Sheather (1990, p. 115) plays a crucial role in
the development of the MRB functions in this article, the normal random variables are
considered first and the generalization of the theorem can be obtained. Further, as the
sample size is large and the underlying random variables are not normal, the function
related to the norm MRB function can be also obtained. Let Y = (Y1, . . . , Yp)t have a
multivariate normal distribution with the parameter θ of interest, for example, θ being
the vector of parameters corresponding to the mean and variance-covariance matrix of
Y . Note that Y has a density with respect to Lebesgue measure on Rp.
The following class of functions is of interest:

Fn [c(y, θ),U(θ),μ(θ),μ1(θ)] = {φ : ||Uφ|| ≤ c(Y , θ) ≤ Cθ <∞ a.s.,

E(|φk)|) <∞, E(φ) = μ(θ), E
(∣∣∣φ̇k,yi

∣∣∣) <∞, E
(
φ̇k,yi

)
= μ1,ik(θ),

∀θ ∈ Θ, k = 1, . . . , m, i = 1, . . . , p} .

The MRB function in the class is given by the following theorem.

Theorem 2.1. The function

φ̂(y, θ) = h [c(y, θ),M1(θ)y +M0(θ),U(θ)](2.1)

is the MRB function in the class Fn[c(y, θ),U(θ), μ̂(θ), μ̂1(θ)] if the following con-
ditions hold:

(i)
P (Y ∈ {y : ||U(θ) [M1(θ)Y +M0(θ)]|| = c(y, θ)}) = 0;

(ii) E(|ċyi|) <∞;
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(iii) the elements of the m×m matrix U(θ), the m×p matrix functionM1(θ), and
the m× 1 vector functionM0(θ) are finite for all θ ∈ Θ.

The abbreviated notation for the class Fn[c(y, θ),U(θ), μ̂(θ), μ̂1(θ)] is Fn. Note
that the generalized Huber function is differentiable with respect to y almost surely by
the equation in condition (i) and by condition (ii). The generalized Huber function is
well defined and bounded almost surely by condition (iii). The basic idea of proving
the theorem is mainly from Theorem 1 of Hampel et al. (1986, pp. 117-119, pp.
241-243) and Theorem 4.3 of Staudte and Sheather (1990, p. 115). If U(θ) is the
identity matrix I , c(y, θ) = C, M1(θ) = I and M0(θ) = 0, the MRB function φ̂
given in the expression (2.1) is the Huber function (see Hampel et al. 1986, p. 239;
Serfling 1980, p. 247; Staudte and Sheather 1990, p. 112).
The MRB functions with mean 0, such as the influence function or residuals in

some models, can be obtained by the following corollary.

Corollary 2.1. Under the assumptions given in Theorem 2.1, the function

φ̂(y, ν,Σ) = h
[
c(ν,Σ),Y − ν,Σ−1/2

]

is the MRB function in the class Fn[c(ν,Σ),Σ−1/2, 0, μ̂1(ν,Σ)], where ν and Σ are
the mean vector and variance-covariance matrix of Y , respectively.

If U = 1, μ̂1 = 1, c(ν,Σ) = C, and the bounded influence functions in a location
problem are of interest, the corollary is Theorem 4.3 of Staudte and Sheather (1990, p.
115).
As the underlying distribution for the data is not a multivariate normal distribution,

the function with a minimum risk, which has the same form as the MRB function in
Fn, can be obtained based on Theorem 2.1.

Theorem 2.2. Let Yn = (Yn1, . . . , Ynp)t, Yn
d−→Y , and Y have a multivariate

normal distribution, where d−→ denotes the convergence in distribution. Then, for
sufficiently large n,

R [φn(Yn, θ)] ≥ R
[
φ̂(Yn, θ)

]
,

if the following conditions hold:
(i) φn(Yn, θ)

d−→φ(Y , θ) for any given θ ∈ Θ, where φ ∈ Fn, E(Y 2
nj) → E(Y 2

j ),
and

‖U(θ)φn(Yn, θ)‖ ≤ c(Yn, θ) ≤ Cθ <∞ a.s.;

(ii) the conditions given in Theorem 2.1 hold.
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Note that φn can be the function not belonging to the class Fn. The above theorem
requires finite second moments of the random variables Ynj for large n. Therefore, for
the random variables with infinite second moments such as Cauchy random variables,
the large sample approximation based on the above theorem might not be suitable.
However, for Cauchy random variables, the exact MRB functions do exist, as implied
by Theorem 2.3 and Theorem 2.4 in the following section.

2.2. General parametric families

Since the optimal bounded score function in Theorem 1 of Hampel et al. (1986, pp.
117-119, pp. 241-243) is a fundamental quantity in robust statistics, the generalization
of the theorem is given in this section. The density function f(y|θ) of interest with
respect to some common measure, also denoted as f , is considered as a function of
both y = (y1, . . . , yp)t and θ = (θ1, . . . , θq)t.
If the support of Y = (Y1, . . . , Yp)t is (a1, b1) × · · · × (ap, bp), not necessarily

bounded, and the corresponding measure is Lebesgue measure, the following class of
functions is of interest:

F y [c(y, θ),U(θ),μ(θ),μ1(θ)] = {φ : ||Uφ|| ≤ c(Y , θ) ≤ Cθ <∞ a.s.,

E(|φk|) <∞, E(φ) = μ(θ), E
(∣∣∣φ̇k,yi

∣∣∣) <∞, E
(
φ̇k,yi

)
= μ1,ik(θ),

∀θ ∈ Θ, k = 1, . . . , m, i = 1, . . . , p.} .
If Yi take values in the set {0, 1, 2, · · ·} and the corresponding measure is counting
measure (see Lehmann and Casella 1998, p. 8), the following class of functions is of
interest:

FΔy [c(y, θ),U(θ),μ(θ),μ1(θ)] = {φ : ||Uφ|| ≤ c(Y , θ) ≤ Cθ <∞ a.s.,

E(|φk|) <∞, E(φ) = μ(θ), E
[|Δ+

yi
(φk)|

]
<∞, E

[
Δ+

yi
(φk)

]
= μ1,ik(θ),

∀θ ∈ Θ, k = 1, . . . , m, i= 1, . . . , p.} .
The MRB functions in the two classes are given by the following theorem.

Theorem 2.3. (a) Let

φ̂y
∞(y, θ) = M1(θ)

(
ḟy

f

)
+M0(θ).

The function

φ̂(y, θ) = h
[
c(y, θ), φ̂y

∞(y, θ),U(θ)
]

(2.2)

is the MRB function in the class F y[c(y, θ),U(θ), μ̂(θ), μ̂1(θ)] if the following con-
ditions hold:
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(i) the support of Y is (−∞,∞) × · · · × (−∞,∞);
(ii)

P
(
Y ∈

{
y :
∣∣∣∣∣∣U(θ)φ̂y

∞(y, θ)
∣∣∣∣∣∣ = c(y, θ)

})
= 0;

(iii) ∂2f(Y |θ)/∂y∂yt exists almost surely for all θ ∈ Θ;
(iv) E(|ċyi|) <∞ and E[|∂(ḟyi/f)/∂yj|] <∞ for i, j = 1, . . . , p;
(v) the elements of the m×m matrix U(θ), the m× p matrix functionM1(θ), and

the m× 1 vector functionM0(θ) are finite for all θ ∈ Θ;
(vi) E[(ḟyi/f)2] <∞.

(b) The function given in the expression (2.2) is the MRB function in the class
F y[c(y, θ),U(θ), μ̂(θ), μ̂1(θ)] if the following conditions hold:

(i) the support of Y is the product of bounded intervals;
(ii) the conditions(ii), (iii), (iv), (v), and (vi) in (a) hold;
(iii) f → 0 as yi → ai or yi → bi.
(c) Let

φ̂Δy
∞ (y, θ) = M1(θ)

[
Δy (f)
f

]
+M0(θ),

if f > 0 and φ̂Δy∞ (y, θ) = 0 otherwise. The function

φ̂(y, θ) = h
[
c(y, θ), φ̂Δy

∞ (y, θ),U(θ)
]

is the MRB function in the class FΔy[c(y, θ),U(θ), μ̂(θ), μ̂1(θ)] if the following
conditions hold:
(i) Yi take values in the set {0, 1, 2, · · ·};
(ii) E{Δ+

yj
[Δyi(f)/f ]} <∞;

(iii) the condition (v) given in (a) holds;
(iv) E{[Δyi(f)/f ]2} <∞.
The abbreviated notations for the two classes F y[c(y, θ),U(θ), μ̂(θ), μ̂1(θ)] and

FΔy[c(y, θ),U(θ), μ̂(θ), μ̂1(θ)] are F y and FΔy, respectively. The above theorem
can be applied to two principal families of models, exponential families and location-
scale families, as given by the following corollary. An exponential family of distribu-
tions has densities of the form (see Lehmann and Casella 1998, p. 23)

f(y | θ) = exp

[
q∑

i=1

θiTi(y)−A(θ)

]
κ(y),(2.3)

and the densities of a location-scale family of distributions are

f(y | ν,B) = sign(|B|)|B|f0 [B(y − ν)] ,(2.4)
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where A and κ are real functions, Ti are real-valued statistics, ν is the location param-
eter, B = [bij] is a nonsingular scale parameter matrix, f0(x) is a density function,
sign(c) = 1 as c > 0 and sign(c) = −1 as c < 0, and |B| is the determinant of the
matrix B.

Corollary 2.2. (a) Let Y have the density function given in the expression (2.3).
If the support of Y is (a1, b1)× · · ·× (ap, bp), ḟy/f in the MRB function of Theorem
2.3 is

ḟy

f
=
∂
{
θtT (y) + log [κ(y)]

}
∂y

,

where T (y) = [T1(y), . . . , Tq(y)]t. If Yi take values in the set {0, 1, 2, · · · }, Δy(f)/f
in the MRB function is

Δy(f)
f

=

(Δy

{
exp
[ q∑

i=1

θiTi(y)
]}

exp
[ q∑

i=1

θiTi(y)
]
)(

Δy

[
κ(y)

]
κ(y)

)
.

(b) Let Y have the density function given in the expression (2.4). If the support of Y
is (a1, b1) × · · · × (ap, bp), ḟy/f in the MRB function of Theorem 2.3 is

ḟy

f
=
Btḟ0,x [B(y − ν)]
f0 [B(y − ν)]

.

The smoothness conditions in the above classes of functions are mainly on the first
derivatives of the functions φ with respect to the data. The following class subject to
the smoothness conditions on the first derivatives with respect to the parameters is of
interest:

F θ [c(y, θ),U(θ),μ(θ),μ1(θ)] = {φ : ||Uφ|| ≤ c(Y , θ) ≤ Cθ <∞ a.s.,

E (φ) = μ(θ) <∞, E
(
φ̇k,θi

)
= μ1,ik(θ) <∞,

∀θ ∈ Θ, k = 1, . . . , m, i = 1, . . . , q.} .
The MRB function in the class is given by the following theorem.

Theorem 2.4. Let

φ̂θ
∞(y, θ) = M1(θ)

(
ḟθ

f

)
+M0(θ),

if f > 0 and φ̂θ∞(y, θ) = 0 otherwise. The function

φ̂(y, θ) = h
[
c(y, θ), φ̂θ

∞(y, θ),U(θ)
]

(2.5)
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is the MRB function in the class F θ[c(y, θ),U(θ), μ̂(θ), μ̂1(θ)] if the following con-
ditions hold:
(i)

P
(
Y ∈

{
y :
∣∣∣∣∣∣U(θ)φ̂θ

∞(y, θ)
∣∣∣∣∣∣ = c(y, θ)

})
= 0;

(ii) ∂2f(Y |θ)/∂θ∂θt exists almost surely for all θ ∈ Θ;
(iii) E(|ċθi|) <∞ and E[|∂(ḟθi/f)/∂θj|] <∞ for i, j = 1, . . . , q;
(iv) the elements of the m×m matrix U(θ), the m× q matrix functionM1(θ), and
the m× 1 vector functionM0(θ) and their first derivatives are finite for all θ ∈ Θ;
(v) E[φ(Y , θ)] can be differentiated with respect to θ under the integral sign for any
φ in the class F θ[c(y, θ),U(θ), μ̂(θ), μ̂1(θ)];
(vi) E[(ḟθi/f)2] <∞.
The abbreviated notation for the class F θ[c(y, θ),U(θ), μ̂(θ), μ̂1(θ)] is F θ. If

m = 1, c(y, θ) = C, M1(θ) = 1, and U(θ) = 1, the MRB function given in
the expression (2.5) is the optimal bounded influence function given in Theorem 1 of
Hampel et al. (1986, pp. 117-119).
Theorem 2.4 can be also applied to the previous two families of models. For the

densities of the location-scale families of distributions, let θ = [νt, vect(B)]t provided
that the elements of B are all distinct. Also, let θ = [νt, vecst(B)]t provided that the
matrix B is symmetric.

Corollary 2.3. (a) Let Y have the density function given in the expression (2.3).
ḟθ/f in the MRB function of Theorem 2.4 is

ḟθ

f
= T (y)− Ȧθ.

(b) Let Y have the density given in the expression (2.4). Then, if bij are distinct,

ḟθ

f
=

[(
ḟν

f

)t

, vect
(

∂f
∂B

f

)]t

,

where

ḟν

f
=

(−1)Btḟ0,x [B(y − ν)]
f0 [B(y − ν)]

,

and
∂f
∂B

f
=
(
B−1

)t +G,

and where G = ḟ0,x[B(y − ν)](y − ν)t/f0[B(y − ν)]. If B is symmetric,
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ḟθ

f
=

[(
ḟν

f

)t

, vecst
(

∂f
∂B

f

)]t

,

where
∂f
∂B

f
=
[
2B−1 − diag(B−1)

]
+G+Gt − diag(G),

and where diag(M) is a diagonal matrix of which diagonal equal to the one of the
matrixM .

When the underlying distribution has the form f(y|θ) = f0(y−θ), the equivalence
of the MRB function given in the expression (2.2) and the one given in the expression
(2.5) is indicated by the following corollary.

Corollary 2.4. Let Y have the density function f(y|θ) = f0(y − θ), where f0 is
known and θ is an unknown location parameter. For any MRB function in the class
F y, there exists an equivalent MRB function in the class F θ.

2.3. Bayes model

In this section, the Bayes MRB functions are given. Suppose that the prior dis-
tribution of the parameter θ is π(θ) and fθ|y is the posterior density function. The
bounded function almost surely φ and the nonnegative function almost surely ρ in
Bayes procedures satisfy

P ((Y , θ) ∈ {(y, θ∗) : ||φ(y, θ∗)|| ≤ C}) = 1

and

P ((Y , θ) ∈ {(y, θ∗) : ρ[φ(y, θ∗), y, θ∗)] ≥ 0}) = 1,

respectively. In addition, the weight matrixW in Bayes procedures is an m×m matrix
function defined onRp andW (Y ) = U t(Y )U(Y ) is assumed to be a positive-definite
weight matrix almost surely, where U is an m ×m matrix function defined on Rp.
The minimum risk bounded Bayes (MRBB) function and the minimum risk Bayes
function can be defined analogously as in Definition 1.2 and Definition 1.3. The main
difference is that the risk of interest in this section is the expected value of the function
ρ(φ,Y , θ) = φt(Y , θ)W (Y )φ(Y , θ) of the random vector (Y , θ), i.e., θ being not
degenerated.
If the support of θ is (c1, d1)×· · ·×(cq, dq), not necessarily bounded, the following

class of functions is of interest:
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F b [c(y, θ),U(y),μ(y),μ1(y)] = {φ : ||Uφ|| ≤ c(Y , θ) ≤ C <∞ a.s.,

E(|φk|) <∞, E [φ | Y ] = μ(Y ) a.s., E
(∣∣∣φ̇k,θi

∣∣∣) <∞,

E
[
φ̇k,θi | Y

]
= μ1,ik(Y ) a.s., k = 1, . . . , m, i = 1, . . . , q.

}
.

If θi take values in the set {0, 1, 2, · · ·}, the following class of functions is of interest:
FΔb [c(y, θ),U(y),μ(y),μ1(y)] = {φ : ||Uφ|| ≤ c(Y , θ) ≤ C <∞ a.s.,

E(|φk|) <∞, E [φ | Y ] = μ(Y ) a.s., E
[
|Δ+

θi
(φk)|

]
<∞,

E
[
Δ+

θi
(φk) | Y

]
= μ1,ik(Y ) a.s., k = 1, . . . , m, i= 1, . . . , q.

}
.

The MRBB functions in the two classes are given by the following theorem.

Theorem 2.5. (a) Let

φ̂b
∞(y, θ) = M1(y)

(
ḟθ|y,θ

fθ|y

)
+M0(y),

The function

φ̂(y, θ) = h
[
c(y, θ), φ̂b

∞(y, θ),U(y)
]

(2.6)

is the MRBB function in the class F b[c(y, θ),U(y), μ̂(y), μ̂1(y)] if the following
conditions hold:
(i) the support of θ is (−∞,∞) × · · · × (−∞,∞);
(ii)

P
(
(Y , θ) ∈

{
(y, θ∗) :

∣∣∣∣∣∣U(y)φ̂b
∞(y, θ∗)

∣∣∣∣∣∣ = c(y, θ∗)
})

= 0;

(iii) ∂2fθ|y(θ|Y )/∂θ∂θt exists almost surely;
(iv) E(|ċθi|) <∞ and E[|∂(ḟθ|y,θi

/fθ|y)/∂θj|] <∞ for i, j = 1, . . . , q;
(v) the elements of the m×m matrixU(Y ), the m×q matrixM1(Y ), and them×1
vectorM0(Y ) are bounded random variables;
(vi) E[( ˙fθ|y,θi

/fθ|y)2] <∞.
(b) The function given in the expression (2.6) is the MRBB function in the class
F b[c(y, θ),U(y), μ̂(y), μ̂1(y)] if the following conditions hold:
(i) the support of θ is the product of bounded intervals;
(ii) the conditions (ii), (iii), (iv), (v), and (vi) in (a) hold;
(iii) fθ|y → 0 as θi → ci or θi → di.
(c) Let

φ̂Δb
∞ (y, θ) = M1(y)

[
Δθ(fθ|y)
fθ|y

]
+M0(y),
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if fθ|y > 0 and φ̂Δb∞ (y, θ) = 0 otherwise. The function

φ̂(y, θ) = h
{
c(y, θ), φ̂Δb

∞ (y, θ),U(y)
}

is the MRBB function in the class FΔb[c(y, θ),U(y), μ̂(y), μ̂1(y)] if the following
conditions hold:
(i) θi take values in the set {0, 1, 2, · · ·};
(ii) E{Δ+

θj
[Δθi(fθ|y)/fθ|y]} <∞;

(iii) the condition (v) given in (a) holds;
(iv) E{[Δθi(fθ|y)/fθ|y]2} <∞.
The abbreviated notations for the two classes F b[c(y, θ),U(y), μ̂(y), μ̂1(y)] and

FΔb[c(y, θ),U(y), μ̂(y), μ̂1(y)] are F b and FΔb, respectively. Since the proofs of
this theorem are analogous to Theorem 2.3, the proofs are not presented in the last
section. The above theorem can be applied to the exponential families, as given by the
following corollary.

Corollary 2.5. Let Y have the density function given in the expression (2.3). If the
support of θ is (c1, d1) × · · ·× (cq, dq), ḟθ|y,θ/fθ|y in the MRBB function of Theorem
2.5 is

ḟθ|y,θ

fθ|y
= T (y)− Ȧθ +

∂ {log [π(θ)]}
∂θ

.

Note that in the exponential families, the difference between the Bayes model and
frequentist mainly depends on the logarithm of the prior distribution, as indicated by
the following equation:

ḟθ|y,θ

fθ|y
=
ḟθ

f
+
∂ {log [π(θ)]}

∂θ
.

2.4. Other properties of MRB and MRBB functions

In this section, some theoretical properties concerning the invariance of the MRB
functions and component-wise MRB functions are given. The following corollaries can
be obtained based on Theorem 2.1, Theorem 2.3, Theorem 2.4, and Theorem 2.5. The
first corollary indicates the shift ”invariance” of the MRB functions.

Corollary 2.6. Let F j + ı(y, θ) be the classes with elements φ+ ı(y, θ), where
φ ∈ F j , ı(y, θ) is a bounded function almost surely, and j ∈ {n, y,Δy, θ, b,Δb}.
Then, if the corresponding assumptions in Theorem 2.1, Theorem 2.3, Theorem 2.4,
or Theorem 2.5 hold, φ̂+ ı(y, θ) are the MRB functions in the classes F j + ı(y, θ),
where φ̂ are the MRB functions given in these theorems.
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As the weight matrix is block diagonal, the decomposition of the MRB function is
given by the following corollary. Further, the corollary implies that the MRB function
can be the combination of the MRB functions in different classes.

Corollary 2.7. Let φ = (φt
a,φ

t
b)

t and W (θ) is a block diagonal matrix with
the matrices Wa(θ) and Wb(θ) in the diagonal, where Wa(θ) and Wb(θ) are the
matrices of which orders equal to the dimensions of φa and φb, respectively. If
the corresponding assumptions in Theorem 2.1, Theorem 2.3, or Theorem 2.4 hold,
the MRB functions in the classes with elements satisfying φa ∈ F j + ıa(y, θ) and
φb ∈ F j + ıb(y, θ) are

φ̂(y, θ) =
[
φ̂t

a(y, θ), φ̂t
b(y, θ)

]t
,

where ıa(y, θ) and ıb(y, θ) are bounded functions almost surely, j ∈ {n, y,Δy, θ},
and φ̂a(y, θ) and φ̂b(y, θ) are the corresponding MRB functions in these classes.

Note that the analogous corollary can be obtained for the MRBB functions.

2.5. MR and MRB functions

In this section, the results concerning the interrelation of the MR function and
the score function along with the one of the MR function and the MRB function are
established. Let the classes of functions be

F j
∞ [μ̂(θ), μ̂1(θ)] = F j [∞,U(θ), μ̂(θ), μ̂1(θ)] ,

where j ∈ {y,Δy, θ, b,Δb}. In the classes F j∞, the MR functions are φ̂y∞(y, θ),
φ̂Δy∞ (y, θ), φ̂θ∞(y, θ), φ̂b∞(y, θ), and φ̂Δb∞ (y, θ), respectively, provided that the cor-
responding assumptions given in Theorem 2.3, Theorem 2.4, and Theorem 2.5 hold.
The following theorem indicates that the score function is also a MR function.

Theorem 2.6. Suppose that E[φ(Y , θ)] can be differentiated with respect to θ
under the integral sign for any φ in the class F θ∞[0,−I(θ)] and the elements of
W (θ) are finite for all θ ∈ Θ, where I(θ) is the information matrix. Then, the MR
function in the class is the score function, i.e.,

φ̂(y, θ) =
∂ log [f(y|θ)]

∂θ
=
ḟθ

f
,

if f > 0 and φ̂(y, θ) = 0 otherwise.

The following theorem indicates that a subsequence of estimators obtained by em-
ploying the MRB functions converges to the corresponding one by employing the MR
functions with probability one.
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Theorem 2.7. Let Yn = (Y1, . . . , Yn)t be a vector of random variables with the
density function fn and

p−→ denotes the convergence in probability.
(a) There exists a subsequence of θ̂j

t (Yn), the solution of

φ̂j
t(Yn, θ) = h

[
Cj

t , φ̂
j
∞(Yn, θ),U(θ)

]
= 0, j ∈ {y,Δy, θ}, t= 1, . . . ,

converging to θ0 with probability one if the following conditions hold:
(i) θ0 is an interior point in some open subset Ω of Θ;
(ii) On the set Ω, fn and ḟn,yn or fn and Δyn(fn) are continuous almost surely as
j ∈ {y,Δy}, while ḟn,θ is continuous almost surely as j = θ;
(iii) there exist solutions θ̂j∞(Yn) of φ̂j∞(Yn, θ) = 0 and

θ̂j
∞(Yn)

p−→θ0;

(iv) Cj
t → ∞;

(v) the elements of the matrix functionsM1(θ),M0(θ), and U(θ) are continuous on
Ω.
(b) The convergence also holds as the estimator of θ is the minimum of the ρ function
if the conditions given in (a) hold.

The theorem analogous to the above one can be also obtained for the MRBB
functions. If the MR function is the score function and the corresponding maximum
likelihood estimator (MLE) is consistent for estimating the parameter (see Lehmann and
Casella 1998, pp. 461-465), the above theorem implies that there exists a subsequence
of estimators obtained by employing the bounded score functions converging to the
parameter with probability one.

2.6. Generalized Huber operator

The generalized Huber function is defined on the finite dimensional space. How-
ever, as the random variable of interest takes values in an infinite dimensional space,
a generalized Huber operator can be considered, i.e., a nonlinear map h(c, v,U) :
D(h) → H2,

h(c, v,U) = vmin
[
1,

‖c‖H1

‖Uv‖H4

]
,

if ||Uv||H4 	= 0 and h(c, v,U) = v if ||Uv||H4 = 0, where the domain D(h) of the
operator h is B1 ×H2 ×H3, B1 consisting of bounded functions defined on Rp ×Rq

is the bounded subset of the normed space H1, H2 is the normed space consisting of
r× 1 vector functions defined on Rp ×Rq, and H3 is the normed space consisting of
m×r matrix functions defined on Rp×Rq , Uv is assumed to fall in the normed space
H4 consisting of m× 1 vector functions defined on Rp ×Rq, and || · ||H is denoted as
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the norm in the normed space H. For given U and c, ||h(c, v,U)||H2 is bounded for
all v ∈ H2 if there exists a positive constant k satisfying ||Uv||H4 ≥ k||v||H2 for all
v ∈ H2. The other type of generalized Huber operator is h(c, v) : B1 ×H2 → H2,

h(c, v) = vmin
[
1,

‖c‖H1

‖U(v)‖H4

]
,

if ||U(v)||H4 	= 0 and h(c, v) = v if ||U(v)||H4 = 0, where U : H2 → H4 is
considered as a continuous linear operator. h(c, v) can be a bounded operator by the
following lemma. Denote the notation < ·, · >H as the inner product in the inner
product space H.
Lemma 2.1. h(c, v) is a bounded operator, i.e., ||h(c, v)||H2 is bounded by a

positive constant for all c ∈ B1 and all v ∈ H2, if the following conditions hold:
(i) H2 and H4 are Hilbert spaces and ||x||H4 = (< x,x >H4)

1/2 for x ∈ H4;
(ii) there exists a positive constant k such that < v, (U∗U)(v) >H2≥ k‖v‖2

H2
for all

v ∈ H2, where U∗ is the Hilbert-adjoint operator of U and U∗U is the composition
of the linear operators U∗ and U .

Condition (ii) is closely related to the continuous linear H2-elliptic operator (see
Aubin 2000, p. 64). In fact, the lemma is still true with condition (ii) replaced by the
following condition:
(ii)∗ the continuous linear operator g : H2 → H∗

2 defined by g(v) = fv is H2-elliptic,
where fv(u) =< u,u∗ >H2 , u∗ = (U∗U)(v), and H∗

2 is the dual space of H2.
Note that (U∗U)(v) is the representer of fv in H2. If U is the identity operator,

the above lemma holds and the generalized Huber operator is the generalization of
the Huber function given in Hampel et al. (1986, p. 239) to the infinite dimensional
Hilbert space. The generalized Huber operator can be used for the robustness of the
functions in the infinite dimensional Hilbert space, for example, the functions of interest
in nonparametric regression.

3. APPLICATIONS

Based on the results in the previous section, the proposed MRB and MRBB func-
tions are applied for diverse types of data and a variety of regression models.

3.1. Robust location and scale estimation
3.1.1. Normal MRB and MRBB functions
Let Y have a univariate normal distribution with mean ν and variance σ2. In the

location parameter problem, the M-functional is the solution of E[ψ(Y−ν)] = 0, where
ψ is an odd, non-decreasing, not identically zero function. The influence functions

φ(y, ν) = ψ(y − ν)/E[ψ̇y(Y − ν)]
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are of interest. The optimal bounded influence function, which minimizes the asymp-
totic variance, is

φ̂(y, ν) = h{k/[2Φ(k)− 1], (y− ν)/[2Φ(k)− 1], 1},

where k is a constant and Φ(·) is the cumulative distribution function of a standard
normal random variable. The optimal bounded influence function is the MRB function
in the class Fn{k/[2Φ(k) − 1], 1, 0, 1}. The corresponding M-estimator is a type of
Winsorized mean (see Serfling 1980, p. 247). In addition, the estimator minimizing
the bounded residual sum of squares

∑n
i=1 φ̂

2(Yi, ν) is a type of trimmed mean (also
see Serfling 1980, pp. 246-248; Staudte and Sheather 1990, p. 115).
By Corollary 2.3 and Corollary 2.7, the MRB function for the location-dispersion

parameters problem can be

φ̂(y, ν, σ2) =
{
h
[
ca(y, ν, σ2), y− ν, 1

]
,

h

[
cb(y, ν, σ2),

n(y − ν)2

n− 1
− σ2, 1

]}t

,

where ca and cb are bounded functions almost surely and n is the number of observations
and assumed to be known. Note that y − ν is an unbiased estimating function but
n(y − ν)2/(n − 1) − σ2 is a biased estimating function. However, the estimators
obtained from the equations

∑n
i=1(Yi − ν) = 0 and

∑n
i=1[n(Yi − ν)2/(n − 1) −

σ2] = 0 are the sample mean and sample variance, respectively. The solutions of∑n
i=1 φ̂(Yi, ν, σ

2) = 0, ν̂ and σ̂2, are two types of Winsorized means based on Yi − ν̂
and n(Yi − ν̂)2/(n−1)− σ̂2, respectively. As cb(y, ν, σ2) = Cb is a constant function,
the above estimating function φ̂ is referred to as the biased estimating function owing
to E{h[Cb, n(Y − ν)2/(n− 1) − σ2, 1]} 	= 0. Another sensible MRB function

φ̂(y, ν, σ2) =
{
h

[
c(y, ν, σ2),

y − ν

σ
, 1
]
,

h

{[
c(y, ν, σ2)

]2
,

(
y − ν

σ

)2

, 1

}
− ı(ν, σ2)

}t

can be obtained by Corollary 2.3, Corollary 2.6, and Corollary 2.7, where ı(ν, σ2) is
a function satisfying E{h{[c(Y, ν, σ2)]2, [(Y − ν)/σ]2, 1}} = ı(ν, σ2). The estimating
equations based on the MRB function are in fact the Huber’s proposal (see Huber and
Ronchetti 2009, Section 6.7; Staudte and Sheather 1990, Section 4.5) as c(y, ν, σ2) = C

is a constant function. Finally, by Theorem 2.4, the other sensible MRB function can
thus be

φ̂(y, ν, σ2) = h{c(y, ν, σ2), [y − ν, (y − ν)2 − σ2]t, I}.
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If the random vector Y has the multivariate normal distribution with mean vector
ν = (ν1, . . . , νp)t and known variance-covariance matrix Σ, the MRB function

φ̂(y, ν) = h
[
c(y, ν), y− ν,Σ−1/2

]
can be obtained by Theorem 2.1. Thus, if c(y, ν) = C and the unbiased M-estimating
functionΣ−1/2φ̂(y, ν) is used to estimate ν, the estimator ν̂ is the proposed multivari-
ate Winsorized mean of the standardized residuals ε∗i = Σ−1/2(Yi − ν̂), i = 1, . . . , n,
i.e., the sample mean vector of the modified Yi’s, where the original Yi is replaced
by ν̂ + C(Yi − ν̂)/||ε∗i || if ||ε∗i || > C. Note that C(Yi − ν̂)/||ε∗i || is a bounded
random vector. If the variance-covariance matrix Σ = σ2I and the prior densities
for independent νi are normally distributed with mean ξ and variance τ2, the MRBB
function

φ̂(yb, ν) = h [c(y, ν), yb − ν, I]
can be obtained by Corollary 2.5, where the posterior mean yb = [τ2/(σ2 + τ2)]y −
[σ2ξ/(σ2 + τ2)]l can be thought as the ”new” observed data by incorporating with the
prior information, and where l is a p× 1 vector with all elements equal to 1. Thus, if
c(y, ν) = C and the unbiased M-estimating function φ̂(yb, ν) is used to estimate ν,
the estimator ν̂ is the multivariate Winsorized mean based on Ybi − ν̂ .
3.1.2. Binomial MRB and MRBB functions
Let the random variable Y have the binomial distribution with mean mθ, where θ

is the probability of one success and m is the number of trials. The MRB function

φ̂(y, θ) = h [c(y, θ), y− θ, 1](3.1)

can be obtained by Corollary 2.3, where y = y/m. The robust estimator θ̂ minimizing
the bounded residual sum of squares

∑n
i=1 φ̂

2(Yi, θ) with c(y, θ) = C is a type of
trimmed mean based on Y i− θ̂, where Y i = Yi/m. If the biased M-estimating function
φ̂(y, θ) is used to estimate θ, the corresponding estimator is a type of Winsorized mean
based on Y i − θ̂. In addition, another sensible MRB function based on the ratio rather
than the difference

φ̂(y, θ) = h

[
c(y, θ),

y

mθ

(
m− y + 1
m−mθ + 1

)−1

− 1, 1

]

can be obtained by Corollary 2.2.
If the prior distribution for θ is assumed to be the beta distribution (see Lehmann

and Casella 1998, p. 25) with mean α/(α+β) and variance αβ/[(α+β)2(α+β+1)],
the MRBB function

φ̂(y, θ) = h [c(y, θ), yb − θ, 1](3.2)
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can be obtained by Corollary 2.5 and Corollary 2.6, where the posterior mean yb =
(y+α)/(m+α+β) can be thought as the ”new” observed data by incorporating with
the prior information.
3.1.3. Poisson MRB and MRBB functions
Let the random variable Y have the Poisson distribution with mean θ. The MRB

function

φ̂(y, θ) = h [c(y, θ), y− θ, 1](3.3)

can be obtained by Corollary 2.3. If c(y, θ) = C, the robust estimator θ̂ minimizing
the bounded residual sum of squares

∑n
i=1 φ̂

2(Yi, θ) is a type of trimmed mean based
on Yi − θ̂. If the biased M-estimating function φ̂(y, θ) is used to estimate θ, the
corresponding estimator is a type of Winsorized mean based on Yi − θ̂. On the other
hand, another sensible MRB function based on the ratio rather than the difference

φ̂(y, θ) = h
[
c(y, θ),

y

θ
− 1, 1

]
can be obtained by Corollary 2.2.
If the prior distribution for θ is assumed to be the gamma distribution with mean

αβ and variance αβ2, the MRBB function

φ̂(y, θ) = h [c(y, θ), yb − θ, 1](3.4)

can be obtained by Corollary 2.5 and Corollary 2.6, where the posterior mean yb =
(y + α)/(1 + β−1) can be thought as the ”new” observed data by incorporating with
the prior information.
3.1.4. Robust mean vector and covariance matrix
Let the random vector Y have the multivariate normal distribution with mean vector

ν and unknown variance-covariance matrix Σ in the location-scale family. Note that
the scale parameter matrix is B = Σ−1/2. Then,

ḟν

f
= B2(y − ν)

and
∂f(y|ν,B)

∂B

f(y|ν,B)
= Q(y, ν,B) +Qt(y, ν,B),

where Q(y, ν,B) = L − (1/2)diag(L) and L = B[B−2 − (y − ν)(y − ν)t]. The
estimators of ν and Σ = B−2 based on the unbiased estimating equations

n∑
i=1

B2(Yi − ν) = 0
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and
n∑

i=1

[Q(Yi, ν,B) +Qt(Yi, ν,B)] = 0

are the sample mean vector Y and the maximum likelihood estimator
∑n

i=1(Yi −
Ȳ )(Yi − Ȳ )t/n. The MRB function

φ̂(y, ν,B) = h {c(y, ν,B),{
(y − ν)t, vecst

[
Q(y, ν,B) +Qt(y, ν,B)

]}t
, I
}

can be obtained by Corollary 2.3. The other sensible MRB function

φ̂(y, ν,B) =
{
ht [ca(y, ν,B), y− ν, I] ,
ht
{
cb(y, ν,B), vecs

[
Q(y, ν,B) +Qt(y, ν,B)

]
, I
}}t

can be obtained by Corollary 2.3 and Corollary 2.7, where ca and cb are bounded
functions almost surely.
3.1.5. Large sample approximation
Let Yji, j = 1, . . . , m, i = 1, . . . , nj, be independent p × 1 random vectors with

mean vector ν and known variance-covariance matrix Σ. Then, by central limit theo-
rem, √nj(Yj − ν) d−→N (0,Σ), where Yj = (1/nj)

∑nj

i=1 Yji. By Theorem 2.2, the
function of interest is h{c(Yj, ν,Σ),√nj(Yj − ν),Σ−1/2}.
3.2. Robust regression

3.2.1. Robust linear regression
Consider first the model

Yi = Xiβ + εi, i = 1, . . . , n,

where Y = (Y1, . . . , Yn)t are observations, Xi = (Xi1, Xi2, . . . , Xip) are the values
of the covariates, ε = (ε1, . . . , εn)t are zero mean, correlated normal random errors
with variance-covariance matrix Σ(α), and where α is the correlation parameter. By
Theorem 2.1, the robust least squares estimators for the parameters β and α are the
minimizers of φ̂t(Y ,α,β)Σ−1(α)φ̂(Y ,α,β), where

φ̂(y,α,β) = h[c(y,α,β), e,Σ−1/2(α)]

is the MRB function in the class Fn, e = (e1, . . . , en)t, and ei = yi −Xiβ. Another
robust estimators based on Theorem 2.1 and Corollary 2.7 can be the minimizers of
φ̂t(Y ,α,β)φ̂(Y ,α,β), where

φ̂(y,α,β) = [φ̂1(y,α,β), . . . , φ̂n(y,α,β)]t,
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and where

φ̂i(y,α,β) = h [c(y,α,β), e∗i , 1](3.5)

is the MRB function in the class Fn and e∗ = Σ−1/2(α)e = (e∗1, . . . , e
∗
n)t. If

c(y,α,β) = min[C, q1−ζ(|e∗|)] with large values of C, the corresponding estimate
is the least Winsorized squares (LWS) estimate (see Rousseeuw and Leroy 1987, p.
135) under correlated errors. If c(y,α,β) = min[C1, C2q0.5(|e∗|)] with large values
of C1 and small values of C2, the corresponding estimate is the least median squares
(LMS) estimate (see Rousseeuw 1984) under correlated errors. If the MRB function
in the class Fn + ı(y,α,β) is used and c(y,α,β) = min[C, q1−ζ(|e∗|)] with large
values of C, the corresponding estimate is the least trimmed squares (LTS) estimate
(see Rousseeuw and Leroy 1987, p. 15) under correlated errors, where

ı(y,α,β) =
{

0, |e∗i | ≤ c(y,α,β),
−c(y,α,β), |e∗i | > c(y,α,β).

The other robust estimators can be the minimizers of ψt(Y ,α,β)ψ(Y ,α,β),
where

ψ(y,α,β) = [ψ1(y,α,β), . . . , ψn(y,α,β)]t

and

ψi(y,α,β) =
{

(e∗i )
2/2, |e∗i | ≤ c(α,β),

c(α,β)|e∗i | − [c(α,β)]2 /2, |e∗i | > c(α,β).

Note that

φ̂i(y,α,β) = dψi/de
∗
i = h [c(α,β), e∗i , 1]

is the MRB function by Theorem 2.1 and Corollary 2.7. If the variance of the uncorre-
lated random errors and c(α,β) are constants, the estimator for β is the one proposed
by Huber (1973).
3.2.2. Robust regression model selection
Consider the model

Yi = f(ti) + εi, i = 1, . . . , n,

where Y = (Y1, . . . , Yn)t are observations at design points ti = (ti1, ti2, . . . , tid), f(t)
is a function, and εi are zero mean, correlated normal random errors with variance-
covariance matrix Σ. Let f̂(λ) = H(λ)y be the vector of fitted values, where
λ = (λ1, . . . , λq) is a set of parameters associated with the selection of the model
and H(λ) is an n × n matrix. The parameter λj could be the subset of the discrete
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index set {1, 2, . . . , pj} in linear regression, the correlation parameter for the variance-
covariance matrix, the transformation parameter in Box-Cox transformation model (see
Box and Cox 1964), or the selection parameter in multivariate nonparametric regression,
for examples, the bandwidth in kernel-based method or the smoothing parameter in
smoothing splines. Several criteria are commonly used in statistical analysis, including
AIC (Akaike 1974), Cp (Mallows 1973), and FPE (Akaike 1970). For uncorrelated
random errors, robust AIC and Cp criteria have been proposed by Ronchetti (1985)
and Ronchetti and Staudte (1994), respectively. For correlated random errors, a class
of regression model selection criteria in terms of data values, etW (λ)e, has been used
in Wei (2008) to find the minimizer λ̂, where e = y − f̂(λ) = [I −H(λ)]y is the
vector of residuals and W (λ) is some positive definite weight matrix. By Theorem
2.1, a class of robust model selection criteria can be φ̂t(Y ,λ)W (λ)φ̂(Y ,λ), where

φ̂(y,λ) = h[c(y,λ), e,U(λ)]

is the MRB function in the class Fn. Furthermore, another class of robust selection
criteria based on Theorem 2.1 and Corollary 2.7 can be φ̂t(Y ,λ)φ̂(Y ,λ), where
φ̂(y,λ) = [φ̂1(y,λ), . . . , φ̂n(y,λ)]t, and where

φ̂i(y,λ) = h [c(y,λ), e∗i , 1]

is also the MRB function in the class Fn and e∗ = U(λ)e = (e∗1, . . . , e
∗
n)t.

The other class of robust selection criteria (also see Hampel et al. 1986, p. 367) is
ψt(Y ,λ)ψ(Y ,λ), where ψ(y,λ) = [ψ1(y,λ), . . . , ψn(y,λ)]t,

ψi(y,λ) =
{

(e∗i )
2/2, |e∗i | ≤ c(λ),

c(λ)|e∗i | − [c(λ)]2 /2, |e∗i | > c(λ).

Note that

φ̂i(y,λ) = dψ̂i/de
∗
i = h [c(λ), e∗i , 1]

is the MRB function by Theorem 2.1 and Corollary 2.7.
3.2.3. Robust IRLS (iterated reweighted least squares) for generalized linear models
Consider the standard generalized linear models (McCullagh and Nelder 1989) in

which each component of the response vector has a distribution taking the form

f(yi|θi, σ) = exp
[
yiθi − A(θi)

b(σ)
+ d(yi, σ)

]
, i = 1, . . . , n,

where θi and σ are scalar parameters and A(·), b(·), and d(·) are specific
functions. The dependence of the response yi on the associated explanatory variables
Xi can be modeled through θi = Xiβ, i.e., the canonical link. Further, b(σ) = 1 is
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assumed hereafter. The estimated (possible) values of the sth iteration β̂s is considered
as the values of the ”parameter” associated with the distribution of the responses. Then,
ḟθs/f = y − u(β̂s), where θs = Xβ̂s, u(β̂s) is the estimated mean of the response
vector Y , and where X is the covariate matrix. If the (s + 1)th iteration β̂s+1 is
considered as the additional ”parameter”,

e(y, β̂s, β̂s+1) =
[
e1(y, β̂s, β̂s+1), . . . , en(y, β̂s, β̂s+1)

]t
= Z(β̂s) −Xβ̂s+1

and

Z(β̂s) = Xβ̂s + Σ−1(β̂s)
[
y − u(β̂s)

]
,

where Σ(β̂s) is the estimated variance-covariance matrix of the response vector Y .
Then, the MRB function

φ̂(y, β̂s, β̂s+1) = h
[
c(y, β̂s, β̂s+1), e(y, β̂s, β̂s+1),Σ1/2(β̂s)

]
can be obtained by Corollary 2.3. Note that the (s+1)th IRLS estimate β̂s+1 minimizes
et(y, β̂s, β̂s+1)Σ(β̂s)e(y, β̂s, β̂s+1). The IRLS estimate β̂ at convergence satisfies the
equation X tΣ(β̂)e(y, β̂, β̂) = 0. Thus, the associated robust IRLS estimate β̂φ at
convergence satisfies the equation X tΣ(β̂φ)φ̂(y, β̂φ, β̂φ) = 0. By Corollary 2.3 and
Corollary 2.7, the other sensible MRB function is the n×1 vector with the i’th element
equal to

φ̂i(y, β̂s, β̂s+1) = h
[
c(y, β̂s, β̂s+1), ei(y, β̂s, β̂s+1), 1

]
.

3.2.4. Robust multivariate linear regression
Consider the linear model

Yi = Xiβ + εi, i = 1, . . . , n,

where Yi = (Yi1, . . . , Yip)t, Xi is a p × q design matrix, β = (β1, . . . , βq)t, εi are
multivariate normal random variables with zero mean vector and variance-covariance
matrix Σ(α), and where α is the correlation parameter. If εi are independent, the
S-estimators have been proposed by Van Aelst and Willems (2005), while the least
trimmed squares estimators have been given by Agulló et. al. (2008). Let ei =
yi −Xiβ and e = (et

1, . . . , e
t
n)t. The MRB function

φ̂(yi,α,β) = h
[
c(yi,α,β), ei,Σ−1/2(α)

]
can be obtained by Theorem 2.1. The robust least squares estimator can be obtained
by minimizing the sum of squares

∑n
i=1 φ̂

t(Yi,α,β)Σ−1(α)φ̂(Yi,α,β). Another
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sensible MRB functions are the generalizations of the ones given in Section 3.2.1.
As εi are correlated, let Σ(α) be also denoted as the variance-covariance matrix of
ε = (εt1, . . . , ε

t
n)t and Y = (Y t

1 , . . . ,Y
t
n)t. The MRB functions by Theorem 2.1 can

be

φ̂(y,α,β) = h[c(y,α,β),e,Σ−1/2(α)].

The other MRB function φ̂(y,α,β) = [φ̂1(y,α,β), . . . , φ̂n(y,α,β)]t can be obtained
by Theorem 2.1 and Corollary 2.7, where

φ̂i(y,α,β) = h [c(y,α,β),e∗
i , I] ,

and e∗ = Σ−1/2(α)e = [(e∗
1)

t, . . . , (e∗
n)t]t.

3.2.5. Robust variance component estimation
Consider the general linear model with fixed and random effects (see Harville 1977)

Y = Xβ + Zr + ε,

where Y is a p× 1 random vector, X and Z are matrices of regressors, β is a q × 1
vector of unknown parameters, ε has a multivariate normal distribution with zero mean
vector and variance-covariance matrix Σε(α), r uncorrelated to ε has a multivariate
normal distribution with zero mean vector and variance-covariance matrix Σr(α), and
whereα is a vector of unknown covariance parameters. Further, assume that the column
vectors of X are linearly independent. Thus, Y has a multivariate normal distribution
with zero mean vector and variance-covariance matrix Σ(α) = Σε(α) +ZtΣr(α)Z.
The restricted log-likelihood function (also see Patterson and Thompson 1971) is

l(α) = −
(

1
2

)
log [|Σ(α)|] −

(
1
2

)
log
[∣∣X tΣ−1(α)X

∣∣]
−
(

1
2

)
etΣ−1

e (α)e,

where e = Kty and Σe(α) = KtΣ(α)K is the variance-covariance matrix of the
random vector KtY , and where K is a p× (p− q) matrix whose rows are any p− q
linearly independent rows of the matrix I−X(X tX)−1X . By Theorem 2.3, the MRB
function can be

φ̂(y,α) = h
[
c(y,α),−l̇e,Σ1/2

e (α)
]
.

By Theorem 2.4, the other sensible MRB function can be

φ̂(y,α) = h
[
c(y,α), l̇α,I−1/2(α)

]
,
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where I(α) is the information matrix. The MRB functions can be developed analo-
gously for the models proposed by Laird and Ware (1982).
3.2.6. Robust generalized estimating equations
Let the ith (i = 1, . . . , n) response vector Yi = (Yi1, . . . , Yini)

t have the distribution
belonging to multivariate natural exponential families. The distribution of Yi,

f(yi|θi) = exp
[
yt

iθi −A(θi)
]
κ(yi),

takes the form similar to the one given in the expression (2.3). The dependence of the
response Yij on the associated explanatory variable Xij can be modeled through the
canonical link θij = Xijβ. By Theorem 2.4, the MRB function can be

φ̂i(yi,α,β) = h
[
c(yi,α,β), ei,Σ

−1/2
i (α)

]
,

where ei = yi − μi(β), Σi(α) is the the variance-covariance matrix of Yi, μi(β) is
the mean vector of Yi, and where α is the correlation parameter. The score equations
are
∑n

i=1X
t
iei = 0, where Xi is a matrix with the jth row equal to Xij . Therefore,

the associated robust estimating equations can be
∑n

i=1X
t
i φ̂i(yi,α,β) = 0. Note

that the score equations are equivalent to the ones for independent Yij . In addition,
the multivariate natural exponential families might not be suitable as the marginal
distribution of Yij is from the univariate exponential family. The following estimating
equations (see McCullagh and Nelder 1989, Chapter 9.3),

∑n
i=1D

t
i(β)W−1

i (α)[Yi −
μi(β)], could be used, where Di(β) = ∂Ȧθi(θi)/∂β and Wi(α), depending on a
sensibly chosen correlation matrix, might not be equal to Σi(α). A sensible robust
generalized estimating equations can thus be

n∑
i=1

Dt
i(β)W−1

i (α)φ̂i(Yi,α,β) = 0.

4. SIMULATIONS
The purpose of the following simulations is to illustrate that the robust estimators

based on the MRB and MRBB functions perform well. A range of scenarios, including
different choices of sample sizes, types of simulated data, benchmark criteria used in
the MRB and MRBB functions, and noise levels, were set up for the simulation study.
The sample sizes n used were n = 20 and n = 100. Further, in addition to the clean
data sets generated from the distribution F0, two other models were used to generate
the ”contaminated” data sets:

• mean-shift outlier model, i.e., μ∗ = μ + ı, where μ and μ∗ were the means of
the clean data and the outliers, and ı was the shift;

• mixture model, i.e., F = (1 − ε)F0 + εF1, where F was the distribution of the
contaminated data, F1 was a distribution different from F0, and 0 < ε < 1.
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The proportion of the outliers in the mean-shift outlier model was 10% (also see Hampel
et. al. 1986, Section 1.2c) and ε = 0.1 in the simulation study. Further, 500 replicates
of simulated data were generated for each model. Note that the parameters θ of interest
were the ones corresponding to the clean data. The relative error ‖θ̂−θ‖/‖θ‖ was used
for evaluating the estimates, where θ̂ was the estimate of θ. The complete simulation
results and computational details are delegated to the supplementary materials.

4.1. MRB and MRBB functions

The binomial and Poisson MRB and MRBB estimators are compared with the MLE
and posterior means in this section. The parameters of interest are the probability of
one success and the mean given in Section 3.1.2 and Section 3.1.3, respectively. For the
clean data sets, the random samples for the Poisson distribution with means 1 and 10
were generated, while the ones for the binomial distribution with the number of trials
equal to 10 and the probabilities of a success equal to 0.1 and 0.5 were generated.
The shifts were 3

√
θ for the Poisson random samples and 4 for the binomial random

samples. F1 was the distributions for the random variables with means μ∗, while F0

was the ones with means μ. The prior distributions for the means of Poisson random
samples were gamma distributions with mean θ and variance 0.1θ, while the prior
distributions for the parameter θ of binomial random samples were beta distributions
with means 0.1 (α = 5 and β = 45) and 0.5 (α = 100 and β = 100). Parts of these
results are provided in Table 1. The first number in the parenthesis is the average
relative error of the maximum likelihood estimate or posterior mean and the other
three numbers are the ones of the robust estimates with the benchmark criteria, 90th
percentile, three sigma, and box plot, respectively. In general, for Poisson and binomial
random samples generated from the mean-shift outlier model and the mixture model,
the average relative errors of the estimates corresponding to the MRB and MRBB
functions given in the expressions (3.1), (3.3), (3.2), and (3.4) are smaller than the
maximum likelihood estimates and the posterior means. The average relative errors of
the robust estimates based on the MRB functions are slightly larger than the ones of
the maximum likelihood estimates for the clean data. However, the average relative
errors of the robust estimates based on MRBB functions are larger than the ones of
the posterior means for the clean data. Among the three benchmark criteria, the robust
estimates using the 90th percentile and three sigma criteria perform more stable than
the ones using the box plot criterion. For the clean data, the robust estimates using the
box plot criterion tend to over-downweight the observations.
Since the proportion of the outliers in the mean-shift outlier model was 10% and ε =

0.1 in the mixture model, it may be expected that the corresponding robust estimators
based on the 90th percentile benchmark perform well in such settings. Therefore,
different percentile benchmarks, including the 75th percentile, the 80th percentile, the
85 percentile, the 90th percentile, and the 95th percentile, were used to verify the effects
of the benchmark choice on the performance of both the MRB estimators and MRBB
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Table 1. Average relative errors for the MLE, posterior means, MRB estimators, and
MRBB estimators with n = 100.

Poisson θ = 1 θ = 1
MLE and MRBE Posterior Mean and MRBBE

Clean Data (0.0815,0.1119,0.0951,0.3190) (0.0794,0.2528,0.2533,0.2530)
Mean-Shift (0.2927,0.1505,0.1729,0.1952) (0.5134,0.2621,0.2637,0.2546)
Mixture (0.2929,0.1588,0.1794,0.2052) (0.5179,0.2645,0.2652,0.2566)
Binomial θ = 0.1 θ = 0.1

MLE and MRBE Posterior Mean and MRBBE
Clean Data (0.0717,0.0962,0.0796,0.3020) (0.0762,0.3502,0.3499,0.3574)
Mean-Shift (0.3973,0.2074,0.2462,0.1782) (0.4826,0.3757,0.3773,0.3595)
Mixture (0.4015,0.2362,0.2634,0.1832) (0.4821,0.3799,0.3807,0.3611)

estimators. Besides the scenarios for the simulations used in the above simulation study,
the settings for adding more extreme outliers corresponding to the shifts 5

√
θ for the

Poisson random samples and 8 for the binomial random samples were also used. These
results corresponding to the proportion of the outliers equal to 10% and ε = 0.1 are
given in the supplementary materials. The numbers in the parenthesis are the ratios of
average relative errors of the robust estimates using the 90th percentile benchmark to
the ones using other percentile benchmarks. For example, the number 0.5 indicates that
the average relative error of the robust estimate using the 90th percentile benchmark is
twice as large as the one corresponding to another percentile benchmark. For the robust
estimates based on the MRBB functions, the ratios are not significantly larger or smaller
than 1. This implies that the robust estimates based on the MRBB functions are quite
insensitive to the choices of the percentile benchmarks. Since the postulated observed
data yb, the posterior means in Section 3.1.2 and Section 3.1.3, could be considered
as the stabilized data, the effect of the choice of the percentile benchmark might be
small. On the other hand, the performance of the robust estimates based on the MRB
functions might depend on the choices of the percentile benchmarks. In general, for
the clean data, the ratios corresponding to the 95th percentile benchmark are smaller
than 1 in most settings. This implies that the robust estimates obtained by trimming
less data might perform better, as expected intuitively. On the other hand, as n = 100,
the ratios corresponding to the low percentile benchmarks are smaller than 1. In some
settings, the ratios are even significantly smaller than 1. This implies that the MRB
estimators obtained by trimming more data being not around the ”center” (the estimated
mean) might perform better than the ones obtained by trimming less data. However,
as n = 20, the ratios corresponding to the percentile benchmarks, ranged from the
80th percentile benchmark to the 90th percentile benchmark, i.e., trimming 10% to
20 % of the data, are smaller than the ones corresponding to the other two percentile
benchmarks. Finally, as considering the settings for adding more extreme outliers, the
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results are similar to the ones with the outliers corresponding to the shifts 3
√
θ for the

Poisson random samples and 4 for the binomial random samples in most settings. In
particular, for n = 100 and the smaller means, i.e., θ = 1 for the Poisson distribution
and θ = 0.1 for the binomial distribution, the MRB estimators obtained by trimming
more data being not around the center might perform significantly better than the ones
obtained by trimming less data. For the proportion of the outliers in the mean-shift
outlier model being 15% and ε = 0.15 in the mixture model, the percentile benchmarks,
including the 70th percentile, the 75th percentile, the 80 percentile, the 85th percentile,
and the 90th percentile, were used. Generally, the results are quite similar to the ones for
the proportion of the outliers being 10% in the mean-shift outlier model and ε = 0.1
in the mixture model, i.e., the MRBB estimators being insensitive to the choices of
the percentile benchmarks, the MRB estimators using the 90th percentile benchmark
performing better than the ones using the other percentile benchmarks for the clean data
in most settings, and the MRB estimators using the percentile benchmarks ranged from
the 75th percentile benchmark to the 85th percentile benchmark performing better than
the ones using the other percentile benchmarks for the contaminated data. However,
the MRB estimators using the 70th percentile benchmarks, i.e., trimming 30% of the
data, could not perform better than the ones using the other percentile benchmarks in
most settings even as n = 100 or adding the more extreme outliers corresponding to
the shifts 5

√
θ for the Poisson random samples and 8 for the binomial random samples.

This implies that the MRB estimators obtained by trimming too large proportion of the
data might not perform well.

4.2. Robust regression for the data with correlated errors

In the simulation, the values of 3 input variables, X1, X2, and X3, were generated
from the standard normal distribution and the observations were generated from the
model

Yi = νi + εi = 1 + 3−1/2Xi1 + 3−1/2Xi2 + 3−1/2Xi3 + εi, i = 1, . . . , n,

where εi were zero mean random errors. The errors were generated from both Gaussian
AR(1) and MA(1) processes with standard deviations of uncorrelated Gaussian errors,
σ, equal to 0.2 and 1. The autocorrelation values at lag 1 for the Gaussian AR(1)
process, ρ(1), were -0.8, -0.2, 0.2, and 0.8, while -0.4, -0.2, 0.2, and 0.4 for the
Gaussian MA(1) process. The shift, equal to three standard deviations of the random
variable 1+3−1/2X1 +3−1/2X2+3−1/2X3, was 3. Similar to the previous simulation,
the means of the clean data and the outliers were νi and νi +3, respectively. F1 was the
distributions for the random variables with means νi + 3. The regression coefficients
were of interest and thus Σ(α) was assumed to be known. For each sample, the
weighted least squares estimate and the robust estimate based on the MRB, function
given in the expression (3.5) were computed. The 90th percentile benchmark criterion
was used for computing the robust estimates. As indicated in the second table of the
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Table 2. Average weighted mean square errors for the weighted least squares esti-
mators and the MRB estimators with n = 20.

σ = 0.2
AR(1) ρ(1) = −0.8 ρ(1) = −0.2

Clean Data (0.2027,0.2470) (0.1974,0.2294)
Mean-Shift (14.7447,1.2154) (7.4743,0.3151)
Mixture (18.5197,12.5445) (8.5405,6.0891)
MA(1) ρ(1) = 0.2 ρ(1) = 0.4

Clean Data (0.2053,0.2568) (0.2032,0.2285)
Mean-Shift (4.2499,0.3206) (0.8952,0.3244)
Mixture (15.5882,12.0111) (4.8228,3.3397)

σ = 1
AR(1) ρ(1) = 0.2 ρ(1) = 0.8

Clean Data (0.1953,0.2384) (0.2022,0.2190)
Mean-Shift (0.3541,0.2994) (0.3229,0.3019)
Mixture (0.4196,0.3661) (0.4589,0.4113)
MA(1) ρ(1) = −0.4 ρ(1) = −0.2

Clean Data (0.1925,0.2278) (0.2054,0.2282)
Mean-Shift (0.3492,0.3254) (0.4727,0.3042)
Mixture (0.6971,0.5879) (1.0407,0.7391)

supplementary materials, both the weighted least squares estimates and the robust es-
timates perform comparably well in terms of the average relative errors for the clean
data. On the other hand, for the contaminated data, the average relative errors of the
robust estimates are smaller than the ones of the weighted least squares estimates in
most situations. For the responses with small variances and small autocorrelations, the
effects of the aberrant data on the weighed least squares estimates could be signifi-
cant. Thus, the MRB estimators make a notable improvement over the weighted least
squares estimators. In addition to the relative error, the weighted mean square error,
(ν̂−ν)tΣ−1(α)(ν̂−ν)/n, was also used for evaluating different estimating methods,
where ν = (ν1, . . . , νn)t and ν̂ was a vector of fitted values. In Table 2, the first
number in the parenthesis is the average weighted mean square error of the weighted
least squares estimate and the other number is the one of the robust estimate. The
results based on the weighted mean square error criterion are quite similar to the ones
based on the relative error.

5. DISCUSSIONS

The bounded M-estimation function based on the asymptotic minimax principle
was proposed in the classical paper by Huber. Hampel further proposed the bounded
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likelihood score function (see Morgenthaler 2007). The works by Huber and Hampel
laid the sound foundations for the modern robustness theory. This article is intended
to further enhance the bounded function approach. As presented in Section 3, the
bounded function approach has wide applications. In addition, the robust estimators
perform well in the simulation study.
The proposed MRB functions can be considered as the robust version of MR func-

tions, which take the derivatives of the objective functions into account. In addition,
as implied by Theorem 2.6, the estimator based on the MR function incorporating with
the first derivative information is the MLE. This provides another support for the use
of the MRB functions. Although only the MRB and MR functions involving the first
derivatives of the objective functions are developed, the MRB and MR functions in
the classes of functions with smoothness conditions involving higher order derivatives
can be obtained analogously. Thus, more robust estimators and results based on these
MRB functions can be derived.
The range of the operator h given in Section 2.6 is bounded, as indicated by Lemma

2.1. Further, if the range of the operator is a closed convex subset of H2, the existence
of the estimator v̂ = argmin

v∈H2

F [h(c, v)], possibly not unique, can be guaranteed for a

broad class of real-valued functions F defined on H2 by Theorem 25.1 of Deimling
(1985, p. 321) or Proposition 1.2 of Ekeland and Témam (1976, p. 35).

6. PROOFS

Hereafter, the arguments Y and θ of the functions in the proofs have been sup-
pressed for the succinctness, for example, φ(Y , θ) being replaced with φ, except for
the ones of Theorem 2.7. In addition, the abbreviated notations for φn(Yn, θ) and
φ̂(Yn, θ) are φn and φ̂n, respectively. The notation Tr(M) is denoted as the trace of
the square matrixM .

6.1. Theorem 2.1

To prove Theorem 2.1, the following lemma is required.

Lemma 6.1. Let E[|g(Y )|] <∞, E[|ġyi(Y )|] <∞, and Y = Σ1/2X+ν, where
g is a measurable function defined on Rp, X = (X1, . . . , Xp)t has a multivariate
normal distribution with zero mean vector and identity variance-covariance matrix,
and ν and Σ are the mean vector and variance-covariance matrix of Y , respectively.
Then,

E[g(Y )Xi] = colti(Σ
1/2)E [ġy(Y )] ,

where coli(M) is the ith column of a matrixM .

6.1.1. Proofs of Lemma 6.1
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Using integration by part,

E [g(Y )Xi] = EX(i)

{
E
[
g(Y )Xi |X(i)

]}
= EX(i)

[∫
ġxi(Y )

1√
2π

exp
(−x2

i

2

)
dxi

]
= E

[
ġt

y(Y )
]
coli(Σ1/2),

where ġxi(y) = ∂g(Σ1/2x + ν)/∂xi, X(i) is the random vector X without the ith
element, and the expected values are finite by the conditions E[|g(Y )|] < ∞ and
E[|ġyi(Y )|] <∞.
6.1.2. Proofs of Theorem 2.1
By conditions (i), (ii), and (iii), h is a well defined and bounded function almost

surely, E(|ḣyi |) <∞, and h ∈ Fn. Next, let Y = Σ1/2X+ν and φtWφ = [φ∗]tφ∗,
where X = (X1, . . . , Xp)t have a multivariate normal distribution with zero mean
vector and identity variance-covariance matrix and φ∗ = Uφ. Then,

E
[
||φ∗ −U(M1Y +M0)||2

]
= E

(
φtWφ

)− 2E
(
φtWM1Y

)−
2μ̂tWM0 + ||U(M1ν +M0)||2 + Tr(WM1ΣM t

1).

By Lemma 6.1,

E(φkXi) = colti(Σ
1/2)colk(μ̂1),

where μ̂1 is a p×m matrix with ikth element μ̂1,ik. Therefore,

E
(
φtWM1Y

)
= E

[
φtWM1(Σ1/2X + ν)

]
= vect

(
WM1Σ1/2

)
vec
(
μ̂t

1Σ
1/2
)

+ μ̂tWM1ν,

is the same for all feasible functions φ ∈ Fn.
Thus, the minimizer of E(φtWφ) = E[(φ∗)tφ∗)], equivalent to the one of

E[‖φ∗ −U(M1Y +M0)‖2], is

φ̂∗ = h [c,U(M1Y +M0), I] .

This implies

φ̂ = h(c,M1Y +M0,U).

6.2. Theorem 2.2

To prove Theorem 2.2, the following lemma is required.
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Lemma 6.2. Let {Yn = (Yn1, Yn2, . . . , Ynp), n = 1, . . . , } be a sequence of
random vectors. Suppose {Y 2

ni} and {Y 2
nj} are both uniformly integrable. Then,

(a) the sequence {YniYnj} is uniformly integrable and
(b) the sequence {gn(Yn)Yni} is uniformly integrable if |gn(Yn)| ≤ C a.s. for all n,
where gn are measurable functions defined on Rp and C is some constant.

6.2.1. Proofs of Lemma 6.2
Let

IB(x) =
{

1 x ∈ B
0 x 	∈ B

be the indicator function associated with the set B and I(B) will be used for IB with
the argument x being suppressed. To prove (a), by Hölder’s inequality,

E [|YniYnj | I(|YniYnj | > c)]

≤ E
[
|YniYnj | I(|Yni| > c1/2)

]
+E

[
|YniYnj | I(|Ynj | > c1/2)

]
≤
{
E
[
Y 2

niI(|Yni| > c1/2)
]}1/2 [

E
(
Y 2

nj

)]1/2 +{
E
[
Y 2

njI(|Ynj | > c1/2)
]}1/2 [

E
(
Y 2

ni

)]1/2
.

Therefore,

0 ≤ lim
c→∞ sup

n
E [|YniYnj | I(|YniYnj | > c)]

≤ lim
c→∞ sup

n

{
E
[
Y 2

niI(|Yni| > c1/2)
]}1/2

sup
n

[
E
(
Y 2

nj

)]1/2 +

lim
c→∞ sup

n

{
E
[
Y 2

njI(|Ynj | > c1/2)
]}1/2

sup
n

[
E
(
Y 2

ni

)]1/2

= 0.

To prove (b), since

E [|gn(Yn)Yni| I(|gn(Yn)Yni| > c)] ≤ CE [|Yni| I(|Yni| > c/C)] ,

thus

0 ≤ lim
c→∞ sup

n
E [|gn(Yn)Yni| I(|gn(Yn)Yni| > c)]

≤ lim
c→∞ sup

n
CE [|Yni| I(|Yni| > c/C)]

≤ lim
c→∞ sup

n
CE
[
Y 2

niI(Y
2
ni > c2/C2)

]
= 0.
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6.2.2. Proofs of Theorem 2.2
Let φt

nWφn = (φ∗
n)tφ∗

n, where φ∗
n = Uφn. Then, for large n,

E
[
||φ∗

n −U(M1Yn +M0)||2
]

= E
(
φt

nWφn

)− 2E
(
φt

nWM1Yn

)−
2E
(
φt

n

)
WM0 + ||U(M1νn +M0)||2 + Tr(WM1ΣnM

t
1),

where E(Yn) = νn and Cov(Yn) = Σn. Since Yn
d−→Y and E(Y 2

ni) → E(Y 2
i ) <

∞ by condition (i), {Y 2
ni} are uniformly integrable. By Lemma 6.2, {YniYnj} and

{φnkYni} are uniformly integrable, where φnk is the kth element of φn. This implies
E(YniYnj) → E(YiYj) and E(φnkYni) → E(φkYi). Thus, there exists N such that
for n > N ,

E
(
φt

nWM1Yn

)
= E

(
φtWM1Y

)
+ ε1n,

E
(
φt

n

)
WM0 = E

(
φt
)
WM0 + ε2n,

||U(M1νn +M0)||2 = ||U(M1ν +M0)||2 + ε3n,

T r(WM1ΣnM
t
1) = Tr(WM1ΣM t

1) + ε4n,

where for any ε > 0 and max{|ε1n|, |ε2n|, |ε3n|, |ε4n|} < ε. Then, by condition (ii),

E
[
||φ∗

n −U(M1Yn +M0)||2
]

= E
(
φt

nWφn

)− 2
[
vect

(
WM1Σ1/2

)
vec
(
μ̂t

1Σ
1/2
)

+

μ̂tW (M1ν +M0)
]
+ ||U(M1ν +M0)||2 + Tr(WM1ΣM t

1) +
(ε3n + ε4n − 2ε1n − 2ε2n),

where ν and Σ are the mean vector and variance-covariance matrix of Y , respectively.
By the continuity of φ̂ with probability one for any given θ ∈ Θ, φ̂n

d−→ φ̂ and
thus the above equation also holds for φ̂n. Since (ε3n + ε4n − 2ε1n − 2ε2n) can
be as small as possible, R(φn) − R(φ̂n) mainly depends on the difference between
E[‖φ∗

n−U(M1Yn+M0)‖2] and E[‖φ̂∗
n−U(M1Yn+M0)‖2], where φ̂∗

n = Uφ̂n .
Thus, the proof is complete.
6.3. Theorem 2.3
The following lemma, which generalizes the Stein’s identity (see Lehmann and

Casella 1998, Lemma 5.15, p. 31) under different situations, is given. The lemma can
be used to prove Theorem 2.3, which gives the MRB functions.
Lemma 6.3. Let E(|g|)<∞, where g is a measurable function defined on Rp.

(a) Let E(|ġyi|) <∞ and the support of Y be (−∞,∞) × · · · × (−∞,∞). Then,

E

[
g

(
ḟy

f

)]
= −E (ġy) .
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If the support of Y is the product of bounded intervals (a1, b1) × · · · × (ap, bp), then
the above equation also holds if gf → 0 as yi → ai or yi → bi.
(b) Let Yi take values in the set {0, 1, 2, · · ·} and E[|Δ+

yi
(g)|]<∞. Then,

E(gη) = E
[
Δ+

y (g)
]
,

where η = Δy(f)/f if f > 0 and η = 0 otherwise.

6.3.1. Proofs of Lemma 6.3
To prove (a), using integration by part (also see Billingsley 1995, pp. 236-237),

E

[
g

(
ḟyi

f

)]
=
∫ [∫

g(y)df
]
dy(i) = −E [ġyi(Y )] ,

where dy(i) = dy1 · · ·dyi−1dyi+1 · · ·dyp and the expected values are finite by the
conditions E(|g|) < ∞ and E(|ġyi|) < ∞. If the support of Y is the product of
bounded intervals, the proofs follow analogously. To prove (b),

E(gηi) =
∑
y(i)

∞∑
yi=0

g(y)Δyi(f) =
∑
y(i)

∞∑
yi=0

Δ+
yi

(g)f = E
[
Δ+

yi
(g)
]
,

where η = (η1, . . . , ηp)t,
∑
y(i)

=
∑
y1

· · ·
∑
yi−1

∑
yi+1

· · ·
∑
yp

,

and the expected values are finite by the conditions E(|g|)<∞ and E[|Δ+
yi

(g)|]<∞.
6.3.2. Proofs of Theorem 2.3
By conditions (ii), (iii), (iv), and (v), h is a well defined and bounded function

almost surely, E(|ḣyi|) < ∞, and h ∈ F y. Next, let φtWφ = [φ∗]tφ∗, where
φ∗ = Uφ. Then,

E

⎧⎨
⎩
∣∣∣∣∣
∣∣∣∣∣φ∗ −U

[
M1

(
ḟy

f

)
+M0

]∣∣∣∣∣
∣∣∣∣∣
2
⎫⎬
⎭

= E
(
φtWφ

) − 2μ̂tWM0 − 2E

[
φtWM1

(
ḟy

f

)]
+

∣∣∣∣∣
∣∣∣∣∣U
[
M1E

(
ḟy

f

)
+M0

]∣∣∣∣∣
∣∣∣∣∣
2

+ Tr

{
WCov

[
M1

(
ḟy

f

)]}
,
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where the covariance matrix ofM1(ḟy/f) with finite elements exists by conditions (v)
and (vi). The expected value,

E

[
φtWM1

(
ḟy

f

)]
,

is the same for all functions in the class F y since it is a linear combination of
E[φk(ḟyi/f)], and by Lemma 6.3 (a),

E

[
φk

(
ḟyi

f

)]
= −μ̂1,ik.

Thus, the result that the minimizer of E[φtWφ] is equivalent to the one of

E

⎧⎨
⎩
∣∣∣∣∣
∣∣∣∣∣φ∗ −U

[
M1

(
ḟy

f

)
+M0

]∣∣∣∣∣
∣∣∣∣∣
2
⎫⎬
⎭

gives

φ̂ = h

[
c,M1

(
ḟy

f

)
+M0,U

]
.

The proofs of (b) and (c) are very similar to the ones of (a). For the proofs of (c),
the main difference is to use Lemma 6.3 (b) to prove that the expected value,

E(φtWM1η),

is the same for all functions in the class FΔy , where η is defined in Lemma 6.3.

6.4. Proofs of Theorem 2.4

The proofs of this theorem are similar to the ones given in Theorem 2.3. By
conditions (i), (ii), (iii), and (iv), h is a well defined and bounded function almost
surely, E(ḣθi) < ∞, and h ∈ F θ. Next, for ease of exposition, let f > 0. By
differentiating E(φ) with respect to θ under the integral sign, the following equations
can be obtained:

E

[
φk

(
ḟθi

f

)]
= μ̂0,ik − μ̂1,ik,

where μ̂0,k is the kth element of μ̂ and μ̂0,ik = ∂μ̂0,k/∂θi. Thus, the expected value,

E

{
φtW

[
M1

(
ḟθ

f

)]}
,
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is the same for all functions in the class F θ since it is a linear combination of
E[φk(ḟθi/f)]. Therefore, the result that the minimizer of E[φtWφ] is equivalent
to the one of

E

⎧⎨
⎩
∣∣∣∣∣
∣∣∣∣∣φ∗ −U

[
M1

(
ḟθ

f

)
+M0

]∣∣∣∣∣
∣∣∣∣∣
2
⎫⎬
⎭

gives

φ̂ = h

[
c,M1

(
ḟθ

f

)
+M0,U

]
.

6.5. Proofs of Corollary 2.3 (b)

The derivations mainly depend on the following formulae. If bij are distinct,

∂ |B|
∂B

= |B| (B−1
)t
.

On the other hand, if B is symmetric,

∂ |B|
∂B

= |B| [2B−1 − diag
(
B−1

)]
.

6.6. Proofs of Theorem 2.6

Since

E
[
(φ− φ̂)tW (φ− φ̂)

]
= E

(
φtWφ

)− vect(W )vec(I),

the minimizer of E(φtWφ), equivalent to the one of E[(φ− φ̂)tW (φ− φ̂)], is the
score function.

6.7. Proofs of Theorem 2.7
Since θ̂j∞(Yn)

p−→θ0, there exists a sequence {nk} of integers increasing to infinity
such that θ̂j∞(Ynk)

w.p.1−→ θ0, where
w.p.1−→ is denoted as the convergence with probability

one. Then, in the sample space, there exists a subset of which probabilitymeasure equal
to 1 such that θ̂j∞[Ynk(w)]−→θ0 and condition (ii) holds, where w is the sample point
in the set. Further, there exists N such that ‖θ̂j∞[Ynk∗ (w)] − θ0‖ < ε1, for k∗ > N

and any ε1 > 0. Then,

φ̂j
∞{Ynk∗ (w), θ̂j

∞[Ynk∗ (w)]} = 0,

and
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∣∣∣∣∣∣φ̂j
∞
{
Ynk∗ (w), θ̂j

∞
[
Ynk∗ (w)

]} − φ̂j
∞
[
Ynk∗ (w), θ0

]∣∣∣∣∣∣
=
∣∣∣∣∣∣φ̂j

∞
[
Ynk∗ (w), θ0

]∣∣∣∣∣∣ < ε2

for any ε2 > 0 since φ̂j∞ is continuous on Ω by conditions (ii) and (v). Therefore, by
condition (i), there exists a compact set Ω∗ ⊂ Ω such that ‖φ̂j∞[Ynk∗ (w), θ]‖ < ∞
for θ ∈ Ω∗ and both θ0, θ̂

j∞[Ynk∗ (w)] ∈ Ω∗. Since Cj
t → ∞ and a continuous

function is bounded on a compact set, there exists

Cj
t∗ ≥ ‖Uφ̂j

∞[Ynk∗ (w), θ]‖

such that φ̂j
t∗ [Ynk∗ (w), θ] = φ̂j∞[Ynk∗ (w), θ] for θ ∈ Ω∗. This implies that

θ̂j
t∗ [Ynk∗ (w)] = θ̂j

∞[Ynk∗ (w)]

and ‖θ̂j
t∗[Ynk∗ (w)]− θ0‖ < ε1. That is, limt,k→∞ θ̂

j
t [Ynk(w)] = θ0.

The proofs for (b) are analogous to the ones for (a).
6.8. Proofs of Lemma 2.1
By conditions (i) and (ii),

‖U(v)‖2
H4

=< U(v), U(v)>H4=< v, (U
∗U)(v) >H2≥ k‖v‖2

H2
.

Therefore, for any c ∈ B1 and v ∈ H2,

‖h(c, v)‖H2 ≤ k−1/2C,

where C is any bound for the set B1.

REFERENCES
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