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NOTE ON LOCAL INTEGRATED C-COSINE FUNCTIONS AND
ABSTRACT CAUCHY PROBLEMS

Chung-Cheng Kuo

Abstract. Let α be a nonnegative number, and C : X → X a bounded linear
operator on a Banach space X. In this paper, we shall deduce some basic prop-
erties of a nondegenerate local α-times integrated C-cosine function on X and
some generation theorems of local α-times integrated C-cosine functions on X
with or without the nondegeneracy, which can be applied to obtain some equiva-
lence relations between the generation of a nondegenerate local α-times integrated
C-cosine function on X with generator A and the unique existence of solutions
of the abstract Cauchy problem:

ACP(A, f, x, y)

{
u′′(t) = Au(t) + f(t) for t ∈ (0, T0),
u(0) = x, u′(0) = y,

just as the case of α-times integrated C-cosine function when C : X → X is
injective and A : D(A) ⊂ X → X a closed linear operator in X such that
CA ⊂ AC . Here 0 < T0 ≤ ∞, x, y ∈ X, and f is an X-valued function defined
on a subset of R containing (0, T0).

1. INTRODUCTION

Let X be a Banach space over F(=R or C) with norm ‖ · ‖, and let L(X) denote
the set of all bounded linear operators from X into itself. For each 0 < T0 ≤ ∞, we
consider the following abstract Cauchy problem:

(1.1) ACP(A, f, x, y)

{
u′′(t) = Au(t) + f(t) for t ∈ (0, T0),
u(0) = x, u′(0) = y,
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where x, y ∈ X are given, A : D(A) ⊂ X → X is a closed linear operator, and f

is an X-valued function defined on a subset of R containing (0, T0). A function u is
called a strong solution of ACP(A, f, x, y), if u ∈ C2((0, T0), X) ∩ C1([0, T0), X) ∩
C((0, T0), [D(A)]), and satisfies ACP(A, f, x, y). Here [D(A)] denotes the Banach
space D(A) equipped with the graph norm |x|A = ‖x‖ + ‖Ax‖ for x ∈ D(A). For
each C ∈ L(X) and α > 0, a family C(·)(= {C(t) | 0 ≤ t < T0}) in L(X) is
called a local α-times integrated C-cosine function on X if it is strongly continuous,
C(·)C = CC(·), and satisfies

(1.2)

2C(t)C(s)x =
1

Γ(α)
[(

∫ t+s

0

−
∫ t

0

−
∫ s

0

)(t + s − r)α−1C(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α−1C(r)Cxdr

+
∫ s

|t−s|
(t − s + r)α−1C(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)α−1C(r)Cxdr]

for all 0 ≤ t, s, t + s < T0 and x ∈ X (see [12, 13]); or called a local (0-times
integrated) C-cosine function on X if it is strongly continuous, C(·)C = CC(·), and
satisfies

(1.3)
2C(t)C(s)x

=C(t + s)Cx + C(|t − s|)Cx for all 0 ≤ t, s, t + s < T0 and x ∈ X,

(see [4, 6, 18, 20]), where Γ(·) denotes the Gamma function. Moreover, we say that
C(·) is nondegenerate, if x = 0 whenever C(t)x = 0 for all 0 ≤ t < T0. In this case,
its (integral) generator A : D(A) ⊂ X → X is a closed linear operator in X defined
by

D(A)={x∈X |, there exists a yx∈X such that C(·)x−jα(·)Cx= S̃(·)yx on [0, T0)}

and Ax = yx for all x ∈ D(A). Here jα(t) = tα

Γ(α+1) , S(s)z =
∫ s
0 C(r)zdr, and

S̃(t)z =
∫ t
0 S(s)zds. In general, a local α-times integrated (resp.,0-times integrated)

C-cosine function on X is called an α-times integrated C-cosine function (resp., (0-
times integrated) C-cosine function) on X if T0 = ∞ (see [7, 10, 11, 15, 17, 23-25]
(resp., [9, 22])); or called a local α-times integrated cosine function on X if C = I,

the identity operator on X (see [14, 20]), and a local α-times integrated cosine function
on X is also called an α-times integrated cosine function on X if T0 = ∞ (see [2,
26]); or called a cosine function on X if α = 0 (see [1, 3, 5, 8, 19]). Moreover, a local
α-times integrated cosine function on X is not necessarily extendable to an α-times
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integrated cosine function onX except for α = 0 (see [5]), the nondegeneracy of a local
α-times integrated C-cosine function on X does not imply the injectivity of C except
for T0 = ∞ (see [11]), and the injectivity of C does not imply the nondegeneracy of
a local α-times integrated C-cosine function on X except for α = 0 (see [18]). Some
basic properites of a nondegenerate α-times integrated C-cosine function on X have
been established by many authors when α = 0 (see [9, 22] ), α ∈ N (see [7, 15,
17, 23-25), and α > 0 is arbitrary (see [11]), which can be applied to deduce some
equivalence relations between the generation of a nondegenerate α-times integrated C-
cosine function on X with generator A and the unique existence of strong or weak
solutions of the abstract Cauchy problem ACP(A, f, x, y) with T0 = ∞ (see [7, 10,
11, 24]). The purpose of this paper is to investigate the following basic properties of a
nondegenerate local α-times integrated C-cosine function on X when C is injective:

(1.4) C(0) = C on X if α = 0, and C(0) = 0 (, the zero operator) on X if α > 0;

(1.5) C−1AC = A;

(1.6)
S̃(t)x ∈ D(A) and AS̃(t)x

= C(t)x − jα(t)Cx for all x ∈ X and 0 ≤ t < T0;

(1.7)
C(t)x ∈ D(A) and AC(t)x

= C(t)Ax for all x ∈ D(A) and 0 ≤ t < T0;

(1.8) C(t)C(s) = C(s)C(t) for all 0 ≤ t, s, t + s < T0;

and then deduce some equivalence relations between the generation of a nondegener-
ate local α-times integrated C-cosine function C(·) on X with generator A and the
unique existence of strong solutions of ACP(A, f, x, y), just as some results in [12,13]
concerning the unique existence of strong and weak solutions of ACP(A, f, x, y). To
do these, we shall first prove an important lemma which shows that a strongly con-
tinuous family C(·)(= {C(t) | 0 ≤ t < T0}) in L(X) is a local α-times integrated
C-cosine function on X (with closed subgenerator A) is equivalent to S̃(·) is a local
(α + 2)-times integrated C-cosine function on X (with closed subgenerator A), and
then show that a strongly continuous family C(·)(= {C(t) | 0 ≤ t < T0}) in L(X)
which commutes with C on X is a local α-times integrated C-cosine function on X is
equivalent to S̃(t)[C(s) − jα(s)C]=[C(t) − jα(t)C]S̃(s) for all 0 ≤ t, s, t + s < T0.
We also show that jβ ∗ C(·) is a local (α + β + 1)-times integrated C-cosine func-
tion on X (with closed subgenerator A) if C(·) is a local α-times integrated C-cosine
function on X (with closed subgenerator A) and β > −1, which can be applied to
show that its ” only if ” part is also true when β is a nonnegative integer, where
f ∗ C(t)x =

∫ t
0 f(t − s)C(s)xds for all x ∈ X and f ∈ L1

loc([0, T0), F). In order, we
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show that the generator of a nondegenerate local α-times integrated C-cosine function
C(·) on X is the unique subgenerator of C(·) which contains all subgenerators of C(·)
and each subgenerator of C(·) is closable and its closure is also a subgenerator of C(·)
when C(·) has a subgenerator. In particular, which is also so when C is injective.
This can be applied to show that CA ⊂ AC and C(·) is a nondegenerate local α-times
integrated C-cosine function on X with generator C−1AC when C is injective and
C(·) is a strongly continuous family in L(X) with closed subgenerator A. In this case,
C−1A0C is the generator of C(·) for each subgenerator A0 of C(·). Some illustrative
examples concerning these theorems are also presented in the final part of this paper.

2. BASIC PROPERTIES FOR LOCAL α-TIMES INTEGRATED C-COSINE FUNCTIONS

We first deduce an important lemma which can be applied to obtain an equivalence
relation between the generation of a local α-times integrated C-cosine function C(·)
on X and the equality of

(2.1) S̃(t)[C(s) − jα(s)C] = [C(t) − jα(t)C]S̃(s)

for all 0 ≤ t, s, t+s < T0, just as a result in [16] for the case of local α-times integrated
C-semigroup when C(·) is a strongly continuous family in L(X) commuting with C

on X .

Lemma 2.1. Let C(·) be a strongly continuous family in L(X). Then C(·) is a
local α-times integrated C-cosine function on X if and only if S̃(·) is a local (α+2)-
times integrated C-cosine function on X .
Proof. We consider only the case α > 0, for the case α = 0 can be treated

similarly. In this case, we shall first show that

(2.2)

d

dt

1
Γ(α + 2)

[(
∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)α+1S̃(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α+1S̃(r)Cxdr

+
∫ s

|t−s|
(t − s + r)α+1S̃(r)Cxdr +

∫ |t−s|

0
(|t− s| + r)α+1S̃(r)Cxdr]

=
1

Γ(α + 1)
[(

∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)αS̃(r)Cxdr

+ sgn(s − t)
∫ t

|t−s|
(s − t + r)αS̃(r)Cxdr

+ sgn(t−s)
∫ s

|t−s|
(t−s+r)αS̃(r)Cxdr+

∫ |t−s|

0
(|t−s|+r)αS̃(r)Cxdr]
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and

(2.3)

d2

dt2
1

Γ(α + 2)
[(

∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)α+1S̃(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α+1S̃(r)Cxdr +

∫ s

|t−s|
(t − s + r)α+1S̃(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)α+1S̃(r)Cxdr] + 2jα(s)S̃(t)Cx

=
1

Γ(α)
[(

∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)α−1S̃(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α−1S̃(r)Cxdr +

∫ s

|t−s|
(t − s + r)α−1S̃(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)α−1S̃(r)Cxdr]

for all x ∈ X and 0 ≤ t, s, t + s < T0. Indeed, for 0 ≤ s ≤ t < T0 with t + s < T0,
we have

d

dt
[

1
Γ(α + 2)

(
∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)α+1S̃(r)Cxdr

+
1

Γ(α+2)

∫ t

t−s
(s−t+r)α+1S̃(r)Cxdr +

1
Γ(α+2)

∫ s

0
(t−s+r)α+1S̃(r)Cxdr]

=[
1

Γ(α + 1)
(
∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)αS̃(r)Cxdr − jα+1(s)S̃(t)Cx]

+ [jα+1(s)S̃(t)Cx − 1
Γ(α + 1)

∫ t

t−s

(s − t + r)αS̃(r)Cxdr]

+
1

Γ(α + 1)

∫ s

0
(t − s + r)αS̃(r)Cxdr

=
1

Γ(α + 1)
[(

∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)αS̃(r)Cxdr

+ sgn(s−t)
∫ t

|t−s|
(s−t+r)αS̃(r)Cxdr + sgn(t−s)

∫ s

|t−s|
(t−s+r)αS̃(r)Cxdr

+
∫ |t−s|

0

(|t − s| + r)αS̃(r)Cxdr]

and
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d

dt
[

1
Γ(α + 1)

(
∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)αS̃(r)Cxdr

− 1
Γ(α + 1)

∫ t

t−s
(s − t + r)αS̃(r)Cxdr

+
1

Γ(α + 1)

∫ s

0
(t − s + r)αS̃(r)Cxdr] + 2jα(s)S̃(t)Cx

=
1

Γ(α)
(
∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)α−1S̃(r)Cxdr − 2jα(s)S̃(t)Cx

+
1

Γ(α)

∫ t

t−s
(s − t + r)α−1S̃(r)Cxdr

+
1

Γ(α)

∫ s

0

(t − s + r)α−1S̃(r)Cxdr + 2jα(s)S̃(t)Cx

=
1

Γ(α)
(
∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)α−1S̃(r)Cxdr

+
1

Γ(α)

∫ t

t−s
(s − t + r)α−1S̃(r)Cxdr +

1
Γ(α)

∫ s

0
(t − s + r)α−1S̃(r)Cxdr

=
1

Γ(α)
[(

∫ t+s

0

−
∫ t

0

−
∫ s

0

)(t+s−r)α−1S̃(r)Cxdr +
∫ t

|t−s|
(s−t+r)α−1S̃(r)Cxdr

+
∫ s

|t−s|
(t − s + r)α−1S̃(r)Cxdr +

∫ |t−s|

0
(|t − s| + r)α−1S̃(r)Cxdr].

That is, (2.2) and (2.3) both hold for all 0 ≤ s ≤ t < T0 with t + s < T0. Similarly,
we can show that (2.2) and (2.3) both also hold when 0 ≤ t ≤ s < T0 with t+s < T0.
Clearly, the right-hand side of (2.3) is symmetric in t, s with 0 ≤ t, s, t + s < T0. It
follows that

(2.4)

d2

ds2

1
Γ(α + 2)

[(
∫ t+s

0

−
∫ t

0

−
∫ s

0

)(t + s − r)α+1S̃(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α+1S̃(r)Cxdr +

∫ s

|t−s|
(t − s + r)α+1S̃(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)α+1S̃(r)Cxdr] + 2jα(t)S̃(s)Cx

=
1

Γ(α)
[(

∫ t+s

0

−
∫ t

0

−
∫ s

0

)(t + s − r)α−1S̃(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α−1S̃(r)Cxdr +

∫ s

|t−s|
(t − s + r)α−1S̃(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)α−1S̃(r)Cxdr]
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for all x ∈ X and 0 ≤ t, s, t + s < T0. Using integration by parts twice, we obtain

(2.5)

1
Γ(α)

[(
∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)α−1S̃(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α−1S̃(r)Cxdr +

∫ s

|t−s|
(t − s + r)α−1S̃(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)α−1S̃(r)Cxdr]

=
1

Γ(α + 2)
[(

∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)α+1C(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α+1C(r)Cxdr +

∫ s

|t−s|
(t − s + r)α+1C(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)α+1C(r)Cxdr]

for all x ∈ X and 0 ≤ t, s, t + s < T0. Now if S̃(·) is a local (α + 2)-times integrated
C-cosine function on X . By (2.4) and (2.5), we have

2S̃(t)C(s)x = 2
d2

ds2
S̃(t)S̃(s)x

=
1

Γ(α + 2)
[(

∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)α+1C(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α+1C(r)Cxdr +

∫ s

|t−s|
(t − s + r)α+1C(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)α+1C(r)Cxdr]

for all x ∈ X and 0 ≤ t, s, t + s < T0, so that

(2.6)

2C(t)C(s)x = 2
d2

dt2
S̃(t)C(s)x

=
1

Γ(α)
[(

∫ t+s

0

−
∫ t

0

−
∫ s

0

)(t + s − r)α−1C(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α−1C(r)Cxdr

+
∫ s

|t−s|
(t − s + r)α−1C(r)Cxdr

+
∫ |t−s|

0
(|t− s| + r)α−1C(r)Cxdr]
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for all x ∈ X and 0 ≤ t, s, t + s < T0. Hence C(·) is a local α-times integrated
C-cosine function on X . Conversely, if C(·) is a local α-times integrated C-cosine
function on X . We shall first apply Fubini’s theorem for double integrals twice to
obtain

(2.7)

2C(t)S̃(s)x

=
1

Γ(α + 2)
[(

∫ t+s

0
−

∫ t

0
−

∫ s

0
)(t + s − r)α+1C(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α+1C(r)Cxdr +

∫ s

|t−s|
(t − s + r)α+1C(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)α+1C(r)Cxdr] + 2jα(t)S̃(s)Cx

for all x ∈ X and 0 ≤ t, s, t + s < T0. Indeed, if x ∈ X is given, then for
0 ≤ t, s, t + s < T0 with t ≥ s, we have

(2.8)

1
Γ(α)

∫ τ

0

∫ t+s

t
(t + s − r)α−1C(r)Cxdrds

=
1

Γ(α)

∫ t+τ

t

∫ τ

r−t
(t + s − r)α−1C(r)Cxdsdr

=
1

Γ(α + 1)

∫ t+τ

t
(t + τ − r)αC(r)Cxdsdr,

(2.9)

1
Γ(α)

∫ τ

0

∫ s

0

(t + s − r)α−1C(r)Cxdrds

=
1

Γ(α)

∫ τ

0

∫ τ

r
(t + s − r)α−1C(r)Cxdsdr

=
1

Γ(α + 1)

∫ τ

0
(t + τ − r)αC(r)Cxdr − jα(t)S(τ)Cx,

(2.10)

1
Γ(α)

∫ τ

0

∫ t

t−s

(s − t + r)α−1C(r)Cxdrds

=
1

Γ(α)

∫ t

t−τ

∫ τ

t−r

(s − t + r)α−1C(r)Cxdsdr

=
1

Γ(α + 1)

∫ t

t−τ

(τ − t + r)αC(r)Cxdr,

and
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(2.11)

1
Γ(α)

∫ τ

0

∫ s

0

(t − s + r)α−1C(r)Cxdrds

=
1

Γ(α)

∫ τ

0

∫ τ

r
(t − s + r)α−1C(r)Cxdsdrs

=jα(t)S(τ)Cx − 1
Γ(α + 1)

∫ τ

0
(t − τ + r)αC(r)Cxdr.

We observe from (2.8)-(2.11) that we also have

(2.12)

1
Γ(α + 1)

∫ s

0

∫ t+τ

t

(t + τ − r)αC(r)Cxdrdτ

=
1

Γ(α + 2)

∫ t+s

t
(t + s − r)α+1C(r)Cxdr,

(2.13)

∫ s

0

[
1

Γ(α + 1)

∫ τ

0

(t + τ − r)αC(r)Cxdr − jα(t)S(τ)Cx]dτ

=
[

1
Γ(α+2)

∫ s

0
(t+s−r)α+1C(r)Cxdr−jα+1(t)S(s)Cx

]
−jα(t)S̃(s)Cx,

(2.14)

1
Γ(α + 1)

∫ s

0

∫ t

t−τ
(τ − t + r)αC(r)Cxdrdτ

=
1

Γ(α + 2)

∫ t

t−s

(s − t + r)α+1C(r)Cxdr,

and

(2.15)

∫ s

0

[jα(t)S(τ)Cx− 1
Γ(α + 1)

∫ τ

0

(t − τ + r)αC(r)Cxdr]dτ

=jα(t)S̃(s)Cx+
[

1
Γ(α+2)

∫ s

0

(t−s+r)α+1C(r)Cxdr−jα+1(t)S(s)Cx

]
.

Combining (2.12)-(2.15), we obtain (2.7) for all 0 ≤ t, s, t + s < T0 with t ≥ s.
Similarly, we can show that (2.7) also holds when 0 ≤ t, s, t + s < T0 with s ≥ t. By
(2.3), (2.5) and (2.7), we have

2C(t)S̃(s)x

=
d2

dt2
1

Γ(α + 2)
[(

∫ t+s

0

−
∫ t

0

−
∫ s

0

)(t + s − r)α+1S̃(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α+1S̃(r)Cxdr +

∫ s

|t−s|
(t − s + r)α+1S̃(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)α+1S̃(r)Cxdr]
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for all x ∈ X and 0 ≤ t, s, t + s < T0. Combining this and (2.2) with t = 0, we
conclude that S̃(·) is a local (α + 2)-times integrated C-cosine function on X .

Theorem 2.2. Let C(·) be a strongly continuous family in L(X) which commutes
with C on X . Then C(·) is a local α-times integrated C-cosine function on X if and
only if S̃(t)[ C(s)− jα(s)C ]=[ C(t) − jα(t)C ]S̃(s) for all 0 ≤ t, s, t + s < T0.

Proof. Indeed, if C(·) is a local α-times integrated C-cosine function on X . By
(2.3) and (2.4), we have 2C(t)S̃(s)x+2jα(s)S̃(t)Cx = 2S̃(t)C(s)x+2jα(t)S̃(s)Cx

for all x ∈ X and 0 ≤ t, s, t + s < T0 or equivalently, S̃(t)[C(s) − jα(s)C]=[C(t) −
jα(t)C]S̃(s) for all 0 ≤ t, s, t + s < T0. Conversely, if (2.1) holds for all 0 ≤
t, s, t + s < T0. We may assume that α > 0, then S̃(t)C(s)x − C(t)S̃(s)x =
jα(s)S̃(t)Cx − jα(t)S̃(s)Cx for all x ∈ X and 0 ≤ t, s, t + s < T0. Fix x ∈ X and
0 ≤ t, s, t + s < T0 with t ≥ s, we have

(2.16)
S̃(t + s − r)C(r)x− C(t + s − r)S̃(r)x

=jα(r)S̃(t + s − r)Cx − jα(t + s − r)S̃(r)Cx

for all 0 ≤ r ≤ t, and

(2.17)
S̃(s − t + r)C(r)x− C(s − t + r)S̃(r)x

=jα(r)S̃(s − t + r)Cx − jα(s − t + r)S̃(r)Cx

for all t−s ≤ r ≤ t. Using integration by parts to left-hand sides of the integrations of
(2.16)-(2.17) and change of variables to right-hand sides of the integrations of (2.16)-
(2.17), we obtain

(2.18)
S(t)S̃(s)x + S̃(t)S(s)x

=
(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
jα(t + s − r)S̃(r)Cxdr

and

(2.19)
S(t)S̃(s)x − S̃(t)S(s)x

=
∫ s

0
jα(t − s + r)S̃(r)Cxdr −

∫ t

t−s
jα(s − t + r)S̃(r)Cxdr,

so that

2S̃(t)S(s)x

=
(∫ t+s

0

∫ t

0
−

∫ s

0

)
jα(t + s − r)S̃(r)Cxdr

+
∫ t

t−s
jα(s − t + r)S̃(r)Cxdr −

∫ s

0
jα(t − s + r)S̃(r)Cxdr.
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Hence

2S̃(t)C(s)x

=
(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
jα−1(t + s − r)S̃(r)Cxdr

+
∫ t

t−s
jα−1(s − t + r)S̃(r)Cxdr +

∫ s

0
jα−1(t − s + r)S̃(r)Cxdr

− 2jα(t)S̃(s)Cx,

which implies that

(2.20)

2S̃(t)C(s)x + 2jα(t)S̃(s)Cx

=
1

Γ(α)

[(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
(t + s − r)α−1S̃(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α−1S̃(r)Cxdr +

∫ s

|t−s|
(t − s + r)α−1S̃(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)α−1S̃(r)Cxdr

]
.

Similarly, we can show that (2.20) also holds when x ∈ X and 0 ≤ t, s, t + s < T0

with s ≥ t. Combining this with (2.4), we have

2S̃(t)C(s)x

=
d2

ds2

[
1

Γ(α + 2)

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
(t + s − r)α+1S̃(r)Cxdr

+
1

Γ(α + 2)

∫ t

|t−s|
(s − t + r)α+1S̃(r)Cxdr

+
1

Γ(α + 2)

∫ s

|t−s|
(t − s + r)α+1S̃(r)Cxdr

+
1

Γ(α + 2)

∫ |t−s|

0
(|t− s| + r)α+1S̃(r)Cxdr

]
.

for all x ∈ X and 0 ≤ t, s, t + s < T0. Consequently, S̃(·) is a local (α + 2)-times
integrated C-cosine function on X. Similarly, we can show that the conclusion of this
theorem is also true when α = 0.

Proposition 2.3. Let C(·) be a local α-times integrated C-cosine function on X
and β > −1. Then jβ ∗C(·) is a local (α+β +1)-times integrated C-cosine function
on X . Moreover, C(·) is a local α-times integrated C-cosine function on X if it is a
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strongly continuous family in L(X) such that S(·) is a local (α + 1)-times integrated
C-cosine function on X .

Proof. We set Cβ(·) = jβ ∗C(·) and S̃β(·) = j1 ∗Cβ(·). Then Cβ(·)C = CCβ(·)
and S̃β(·)C = CS̃β(·), so that for x ∈ X and 0 ≤ t < T0, we have

[Cβ(t) − jα+β+1(t)C]S̃β(·)x
= [jβ ∗ C(t) − jβ ∗ jα(t)C]jβ ∗ S̃(·)x
= jβ ∗ ([jβ ∗ C(t) − jβ ∗ jα(t)C]S̃(·)x)

= jβ ∗ (
∫ t

0
jβ(t − s)[C(s) − jα(s)C]S̃(·)xds)

= jβ ∗ (
∫ t

0
jβ(t − s)S̃(s)[C(·)− jα(·)C]xds)

=
∫ t

0
jβ(t − s)S̃(s)jβ ∗ [C(·) − jα(·)C]xds

= jβ ∗ S̃(t)jβ ∗ [C(·)− jα(·)C]x

= S̃β(t)[Cβ(·)− jα+β+1(·)C]x.

on [0, s] for all 0 < s < T0 with t + s < T0. Hence Cβ(·) is a local (α+ β + 1)-times
integratedC-cosine function on X , which together with Lemma 2.1 implies that C(·) is
a local α-times integrated C-cosine function on X if it is a strongly continuous family
in L(X) such that S(·) is a local (α + 1)-times integrated C-cosine function on X .

Lemma 2.4. Let C(·) be a local α-times integrated C-cosine function on X .
Assume that CC(·)x = 0 on [0, t0) for some x ∈ X and 0 < t0 < T0. Then
CC(·)x = 0 on [0, T0). In particular, C(t)x = 0 for all 0 ≤ t < T0 if the injectivity
of C is added.

Proof. Indeed, if 0 ≤ t < T0 is given, then t + s < T0 for some 0 < s < t0. By
hypothesis, we have S̃(s)C(t)x=C(t)S̃(s)x = 0 and S̃(s)jα(t)Cx=jα(t)CS̃(s)x = 0.
By (1.2) and (1.3), we also have C(s)S̃(t)x=S̃(t)C(s)x = 0. By Theorem 2.2, we have
S̃(s)[C(t)−jα(t)C]x =[C(s)−jα(s)C]S̃(t)x, so that jα(s)S̃(t)Cx = jα(s)CS̃(t)x =
0. Hence S̃(t)Cx = 0. Since 0 ≤ t < T0 is arbitrary, we conclude that CC(t)x =
C(t)Cx = 0 for all 0 ≤ t < T0. In particular, C(t)x = 0 for all 0 ≤ t < T0 if the
injectivity of C is added.

Proposition 2.5. Let C(·) be a nondegenerate local α-times integrated C-cosine
function on X . Assume that C is injective. Then (1.4)-(1.7) hold .

Proof. It is easy to see from (1.2)(resp.,(1.3)), the nondegeneracy of C(·) and the
injectivity of C that (1.4) holds. Just as in the proof of [11, Prop. 1.5], we can show
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that (1.5) also holds. Next, to show that (1.6) holds. Indeed, if 0 ≤ t0 < T0 is fixed.
Then for each x ∈ X and 0 ≤ s < T0, we set y = S̃(t0)x. By Theorem 2.2, we have

S̃(r)[C(s) − jα(s)C]y

= [C(r)− jα(r)C]S̃(s)y

= S̃(s)[C(r) − jα(r)C]y

= S̃(s)([C(r)− jα(r)C]S̃(t0)x)

= S̃(s)(S̃(r)[C(t0) − jα(t0)C]x)

= [S̃(s)S̃(r)][C(t0) − jα(t0)C]x

= S̃(r)S̃(s)[C(t0) − jα(t0)C]x

for all 0 ≤ r < T0 with r + s, r + t < T0. Clearly, S̃(·) is also nondegenerate. It
follows from Lemma 2.4 that we have [C(s) − jα(s)C]y = S̃(s)[C(t0) − jα(t0)C]x.
Since 0 ≤ s < T0 is arbitrary, we conclude that (1.6) holds. Now if x ∈ D(A) is given.
By (1.6) and the definition of D(A), we have AS̃(t)x =C(t)x − jα(t)Cx =S̃(t)Ax

for all 0 ≤ t < T0. By the closedness of A, we also have d2

dt2
S̃(t)x ∈ D(A) and

AC(t)x = A d2

dt2 S̃(t)x= d2

dt2 AS̃(t)x= d2

dt2 S̃(t)Ax=C(t)Ax for all 0 ≤ t < T0.

Just as in the proof of [11, Lemma 1.6], the next lemma is also attained.

Lemma 2.6. Let C(·) be a nondegenerate local α-times integrated C-cosine func-
tion on X with generator A. Assume that C is injective, and u ∈ C([0, t0), X) satisfies
u(·) = Aj1 ∗ u(·) on [0, t0) for some 0 < t0 < T0. Then u ≡ 0 on [0, t0).

Proposition 2.7. Let C(·) be a nondegenerate local α-times integrated C-cosine
function on X with generator A. Assume that C is injective. Then (1.8) holds.

Proof. To show that C(t)C(s)x=C(s)C(t)x for all x ∈ X and 0 ≤ t, s < T0,
we need only to show that S̃(t)S̃(s)x=S̃(s)S̃(t)x for all x ∈ X and 0 ≤ t, s < T0.
Indeed, if x ∈ X and 0 ≤ s < T0 are given. By (1.7) and the closedness of A, we
have

S̃(·)S̃(s)x − Aj1 ∗ S̃(·)S̃(s)x

= jα+2(·)CS̃(s)x

= S̃(s)jα+2(·)Cx

= S̃(s)[S̃(·)x− Aj1 ∗ S̃(·)x]

= S̃(s)S̃(·)x− S̃(s)Aj1 ∗ S̃(·)x
= S̃(s)S̃(·)x− Aj1 ∗ S̃(s)S̃(·)x
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on [0, T0), and so [S̃(·)S̃(s)x− S̃(s)S̃(·)x] =Aj1 ∗ [S̃(·)S̃(s)x− S̃(s)S̃(·)x] on [0, T0).
Hence S̃(·)S̃(s)x=S̃(s)S̃(·)x on [0, T0), which implies that S̃(t)S̃(s)x=S̃(s)S̃(t)x for
all 0 ≤ t, s < T0. Consequently, (1.8) holds.

Definition 2.8. Let C(·) be a strongly continuous family in L(X). A linear operator
A in X is called a subgenerator of C(·) if

(2.21) C(t)x − jα(t)Cx =
∫ t

0

∫ s

0
C(r)Axdrds

for all x ∈ D(A) and 0 ≤ t < T0, and

(2.22)
∫ t

0

∫ s

0
C(r)xdrds∈D(A) and A

∫ t

0

∫ s

0
C(r)xdrds=C(t)x−jα(t)Cx

for all x ∈ X and 0 ≤ t < T0. A subgenerator A of C(·) is called the maximal
subgenerator of C(·) if it is an extension of each subgenerator of C(·) to D(A).

Theorem 2.9. Let C(·) be a strongly continuous family in L(X) which commutes
with C on X . Assume that C(·) has a subgenerator. Then C(·) is a local α-times
integrated C-cosine function on X . Moreover, C(·) is nondegenerate if the injectivity
of C is added.

Proof. Indeed, if A is a subgenerator of C(·). By (2.22), we have
[C(t)x − jα(t)C]S̃(·)x = S̃(t)AS̃(·)x = S̃(t)[C(·)x− jα(·)C]x

on [0, T0) for all x ∈ X and 0 ≤ t < T0. Applying Theorem 2.2, we get that C(·)
is a local α-times integrated C-cosine function on X . Now if the injectivity of C is
added, and C(·)x = 0 on [0, T0) for some x ∈ X . By (2.22), we have jα(·)Cx = 0
on [0, T0), and so Cx = 0. Hence x = 0, which implies that C(·) is nondegenerate.

Corollary 2.10. Let C(·) be a local α-times integrated C-cosine function on
X . Assume that C is injective. Then C(·) is nondegenerate if and only if it has a
subgenerator.

Theorem 2.11. Let C(·) be a local α-times integrated C-cosine function on X
which has a subgenerator. Assume that A : D(A) ⊂ X → X defined by

D(A)

= {x ∈ X| there exists a unique yx∈X such that C(·)x−jα(·)Cx= S̃(·)yx on [0, T0)}
and Ax = yx for all x ∈ D(A), is a closed linear operator in X . Then A is the
maximal subgenerator of C(·). Moreover, each subgenerator of C(·) is closable and
its closure is also a subgenerator of C(·).



Note on Local Integrated C-cosine Functions and Abstract Cauchy Problems 971

Proof. Indeed, if A0 is a subgenerator of C(·). Clearly, A0 ⊂ A. It is easy to see
from Zorn’s lemma that C(·) has a subgenerator B which is an extension of A0, but
does not have a proper extension that is still a subgenerator of C(·), which together
with the definition of A implies that B is the maximal subgenerator of C(·). To show
that A = B or equivalently, A ⊂ B, we shall first show that B is closable. Indeed, if
xk ∈ D(B), xk → 0, and Bxk → y in X . Then xk ∈ D(A) and Axk = Bxk → y.
By the closedness of A, we have y = 0. In order to show that B = B ( the closure of
B) or equivalently, B is a subgenerator of C(·). Indeed, if x ∈ D(B) is given, then
xk → x and Bxk → Bx in X for sequence {xk}∞k=1 in D(B). By (2.21), we have
C(t)xk − jα(t)Cxk =

∫ t
0

∫ s
0 C(r)Bxkdrds for all k ∈ N and 0 ≤ t < T0. Letting

k → ∞, we get C(t)x−jα(t)Cx =
∫ t
0

∫ s
0 C(r)Bxdrds for all 0 ≤ t < T0. Since B ⊂

B ⊂ A, we also have C(t)z − jα(t)Cz = B
∫ t
0

∫ s
0 C(r)zdrds = B

∫ t
0

∫ s
0 C(r)zdrds

for all z ∈ X and 0 ≤ t < T0. Consequently, the closure of B is a subgenerator of C(·).
Similarly, we can show that A is also a subgenerator of C(·) and each subgenerator of
C(·) is closable and its closure is also a subgenerator of C(·). In particular, A = B.

Corollary 2.12. Let C(·) be a nondegenerate local α-times integrated C-cosine
function on X with generator A. Assume that C(·) has a subgenerator. Then A is the
maximal subgenerator of C(·). Moreover, each subgenerator of C(·) is closable and
its closure is also a subgenerator of C(·).

Corollary 2.13. Let C(·) be a nondegenerate local α-times integrated C-cosine
function on X with generator A. Assume that C is injective. Then A is the maximal
subgenerator of C(·). Moreover, each subgenerator of C(·) is closable and its closure
is also a subgenerator of C(·).

Proof. This follows from (2.21), (2.22) and the definition of A.

Theorem 2.14. Let A be a closed subgenerator of a strongly continuous family
C(·) in L(X). Assume that C is injective. Then CA ⊂ AC, and C(·) is a nonde-
generate local α-times integrated C-cosine function on X with generator C−1AC. In
particular, C−1A0C is the generator of C(·) for each subgenerator A0 of C(·).

Proof. We first show that CA ⊂ AC. Indeed, if x ∈ D(A) is given, then
jα+2(t)Cx = S̃(t)x − j1 ∗ S̃(t)Ax ∈ D(A) and

Ajα+2(t)Cx = AS̃(t)x− Aj1 ∗ S̃(t)Ax

= AS̃(t)x− [S̃(t)Ax − jα+2(t)CAx]
= jα+2(t)CAx

for all 0 ≤ t < T0, so that CAx = ACx. Hence CA ⊂ AC. To show that C(·) is a
nondegenerate local α-times integrated C-cosine function on X . By Theorem 2.9, we
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remain only to show that CC(·) = C(·)C or equivalently, CS̃(·) = S̃(·)C. Just as in
the proof of Proposition 2.7, we have [S̃(·)Cx−CS̃(·)x] =Aj1 ∗ [S̃(·)Cx−CS̃(·)x] on
[0, T0). By a parallel argument of [11, Lemma 1.6], we also have S̃(·)Cx = CS̃(·)x
on [0, T0). Now if B denotes the generator of C(·). By Corollary 2.13, we have
A ⊂ B. By (1.5), we also have C−1AC ⊂ C−1BC = B. Conversely, if x ∈ D(B)
is given, then jα+2(t)Cx = S̃(t)x − j1 ∗ S̃(t)Bx ∈ D(A) for all 0 ≤ t < T0, so that
Cx ∈ D(A) and

Ajα+2(·)Cx = AS̃(·)x− Aj1 ∗ S̃(·)Bx

= AS̃(·)x− [S̃(·)Bx − jα+2(·)CBx]

= AS̃(·)x− [BS̃(·)x− jα+2(·)CBx]
= jα+2(·)CBx

on [0, T0). Hence ACx = CBx ∈ R(C), which implies that x ∈ D(C−1AC) and
C−1ACx = Bx. Consequently, B ⊂ C−1AC.

Remark 2.15. Let C(·) be a strongly continuous family in L(X). Then C(·) is
a local α-times integrated C-cosine function on X with closed subgenerator A if and
only if S(·) is a local (α + 1)-times integrated C-cosine function on X with closed
subgenerator A.

Remark 2.16. A strongly continuous family in L(X) may not have a subgener-
ator; a local α-times integrated C-cosine function on X is degenerate when it has a
subgenerator but does not have a maximal subgenerator; and a closed linear operator
in X generates at most one nondegenerate local α-times integrated C-cosine function
on X when C is injective.

3. ABSTRACT CAUCHY PROBLEMS

In the following, we always assume that α > 0, C ∈ L(X) is injective, and A a
closed linear operator in X such that CA ⊂ AC. We first note some basic properties
concerning the strong solutions of ACP(A, f, x, y), just as results in [11] when A is
the generator of a nondegenerate α-times integrated C-cosine function on X .

Proposition 3.1. Let A be a closed subgenerator of a nondegenerate local (α+1)-
times integrated C-cosine function C(·) on X . Then for each x ∈ D(A) C(·)x is the
unique solution of ACP(jα−1(·)Cx, 0, 0) in C([0, T0), [D(A)]).

Proposition 3.2. Let A be a closed subgenerator of a nondegenerate local α-times
integrated C-cosine function C(·) on X and C1 = {x ∈ X

∣∣ C(·)x is continuously
differentiable on (0, T0)}. Then
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(i) S(t)C1 ⊂ D(A) for all 0 < t < T0;
(ii) for each x ∈C1 S(·)x is the unique solution of ACP(jα−1(·)Cx, 0, 0);
(iii) for each x ∈ D(A) S(·)x is the unique solution of ACP(jα−1(·)Cx, 0, 0)

in C1([0, T0), [D(A)]).

Proposition 3.3. Let A be the generator of a nondegenerate local α-times in-
tegrated C-cosine function C(·) on X and x ∈ X . Assume that C(t)x ∈ R(C)
for all 0 ≤ t < T0, and C−1C(·)x is continuously differentiable on (0, T0). Then
C−1S(t)x ∈ D(A) for all 0 < t < T0, and C−1S(·)x is the unique solution of
ACP(jα−1(·)x, 0, 0).
Applying Theorem 2.14, we can investigate an important result concerning the re-

lation between the generation of a nondegenerate local α-times integrated C-cosine
function on X with generator A and the unique existence of strong solutions of
ACP(A, f, x, y), which has been established by another method in [11] when T0 = ∞
or in [9] when α = 0 and T0 = ∞.

Theorem 3.4. The following statements are equivalent :

(i) A is a subgenerator of a nondegenerate local α-times integrated C-cosine func-
tion C(·) on X;

(ii) for each x ∈ X and g ∈ L1
loc([0, T0), X) the problem ACP(jα(·)Cx + jα ∗

Cg(·), 0, 0) has a unique solution in C2([0, T0), X) ∩ C([0, T0), [D(A)]);
(iii) for each x ∈ X the problem ACP(jα(·)Cx, 0, 0) has a unique solution in

C2([0, T0), X)∩ C([0, T0), [D(A)]);
(iv) for each x ∈ X the integral equation v(·)=Aj1 ∗ v(·) + jα(·)Cx has a unique

solution v(·; x) in C([0, T0), X).

In this case, S̃(·)x+ S̃ ∗ g(·) is the unique solution of ACP(jα(·)Cx+ jα ∗Cg(·), 0, 0)
and v(·; x) = C(·)x.

Proof. We first show that “(i)⇒(ii)” holds. Indeed, if x ∈ X and g ∈
L1

loc([0, T0), X) are given. We set u(·) = S̃(·)x + S̃ ∗ g(·), then u ∈ C2([0.T0), X)∩
C([0, T0), [D(A)]), u(0) = u′(0) = 0, and

Au(t) = AS̃(t)x + A

∫ t

0
S̃(t − s)g(s)ds

= C(t)x − jα(t)Cx +
∫ t

0

[C(t − s) − jα(t − s)C]g(s)ds

= C(t)x +
∫ t

0

C(t − s)g(s)ds− [jα(t)Cx + jα ∗ Cg(t)]

= u′′(t) − [jα(t)Cx + jα ∗ Cg(t)]
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for all 0 ≤ t < T0. Hence u is a solution of ACP(jα(·)Cx + jα ∗ Cg(·), 0, 0) in
C2([0, T0), X) ∩ C([0, T0), [D(A)]). The uniqueness of solutions for ACP(jα(·)Cx +
jα ∗ Cg(·), 0, 0) follows directly from the uniqueness of solutions for ACP(0, 0, 0).
Clearly, ”(ii)⇒(iii)” holds, and (iii) and (iv) both are equivalent. We remain only to
show that ”(iv)⇒(i)” holds. Indeed, if C(t) : X → X is defined by C(t)x = v(·; x)
for all x ∈ X and 0 ≤ t < T0. Clearly, C(·) is strongly continuous, and satisfies
(2.22). Combining the uniqueness of solutions for the integral equation v(·)=Aj1 ∗
v(·) + jα(·)Cx with the assumption CA ⊂ AC, we have v(·; Cx) = Cv(·; x) for
each x ∈ X , which implies that C(t) for 0 ≤ t < T0 are linear, and commute with
C. Now let {tk}∞k=1 be an increasing sequence in (0, T0) such that tk → T0, and

C([0, T0), X) a Frechet space with the quasi-norm | · | defined by |v| =
∞∑

k=1

‖v‖k

2k(1+‖v‖k)

for v ∈ C([0, T0), X). Here ‖v‖k = max
t∈[0,tk]

‖v(t)‖ for all k ∈ N. To show that C(·) is
a family in L(X), we need only to the linear map η : X → C([0, T0), X) defined by
η(x) = v(·; x) for x ∈ X , is continuous or equivalently, η : X → C([0, T0), X) is a
closed linear operator. Indeed, if {xk}∞k=1 is a sequence in X such that xk → x in X
and η(xk) → v in C([0, T0), X), then v(·; xk)=Aj1 ∗ v(·; xk) + jα(·)Cxk on [0, T0).
Combining the closedness of A with the uniform convergence of {η(xk)}∞k=1 on [0, tk],
we have v(·)=Aj1 ∗ v(·) + jα(·)Cx on [0, T0). By the uniqueness of solutions for
integral equations, we have v(·)=v(·; x)=η(x). Consequently, η : X → C([0, T0), X)
is a closed linear operator. To show that A is a subgenerator of C(·), we remain only
to show that S̃(t)A ⊂ AS̃(t) for all 0 ≤ t < T0. Indeed, if x ∈ D(A) is given, then
S̃(t)x − jα+2(t)Cx=Aj1 ∗ S̃(t)x=j1 ∗ AS̃(t)x for all 0 ≤ t < T0, and so

S̃(t)Ax − Aj1 ∗ S̃(t)Ax

= jα+2(t)CAx

= Ajα+2(t)Cx

= AS̃(t)x − Aj1 ∗ S̃(t)Ax

for all 0 ≤ t < T0. Hence Aj1 ∗ [S̃(·)Ax − AS̃(·)x]=S̃(·)Ax − AS̃(·)x on [0, T0).
By the uniqueness of solutions of ACP(0, 0, 0), we have S̃(·)Ax=AS̃(·)x on [0, T0).
Applying Theorem 2.11, we get that C(·) is a nondegenerate local α-times integrated
C-cosine function on X with subgenerator A.

By slightly modifying the proof of [11, Theorem 2.4], we can apply Theorem 3.4
to obtain the next result.

Theorem 3.5. Assume that R(C) ⊂ R(λ − A) for some λ ∈ F, and ACP(jα−1(·)
x, 0, 0) has a unique solution in C([0, T0), [D(A)]) for each x ∈ D(A) with (λ−A)x ∈
R(C). Then A is a subgenerator of a nondegenerate local (α + 1)-times integrated
C-cosine function on X .
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Proof. Clearly, it suffices to show that the integral equation

(3.1) v(·) = A

∫ ·

0

∫ s

0
v(r)drds + jα+1(·)Cx

has a (unique) solution v(·; x) in C([0, T0), X) for each x ∈ X . Indeed, if x ∈ X
is given, then there exists a yx ∈ D(A) such that (λ − A)yx = Cx. By hypothe-
sis, ACP(jα−1(·)yx, 0, 0) has a unique solution u(·; yx) in C([0, T0), [D(A)]). By the
closedness of A and the continuity of Au(·), we have ∫ t

0

∫ s
0 u(r; yx)drds ∈ D(A) and

A

∫ t

0

∫ s

0
u(r; yx)drds =

∫ t

0

∫ s

0
Au(r; yx)drds = u(t; yx) − jα+1(t)yx ∈ D(A)

for all 0 ≤ t < T0, so that

(3.2)
(λ − A)u(t; yx) = (λ − A)[A

∫ t

0

∫ s

0
u(r; yx)drds + jα+1(t)yx]

= A

∫ t

0

∫ s

0
(λ − A)u(r; yx)drds + jα+1(t)Cx

for all 0 ≤ t < T0. Hence v(·; x) = (λ − A)u(·; yx) is a solution of (3.1) in
C([0, T0), X).

Combining Theorem 3.4 with Theorem 3.5, the next theorem is also attained.

Theorem 3.6. Assume that R(C) ⊂ R(λ − A) for some λ ∈ F, and ACP(jα−1(·)
x, 0, 0) has a unique solution in C1([0, T0), [D(A)]) for each x ∈ D(A) with (λ−A)x ∈
R(C). Then A is a subgenerator of a nondegenerate local α-times integrated C-cosine
function on X.

Proof. Indeed, if x ∈ X is given, and u(·; yx) and v(·; x) both are given as
in the proof of Theorem 3.5. By hypothesis, v(·; x) is continuously differentiable on
[0, T0) and v′(t; x) = (λ − A)u′(t; yx) for all 0 ≤ t < T0. By (3.2), we also have
v′(t; x) = A

∫ t
0 v(r; x)dr+jα(t)Cx for all 0 ≤ t < T0. In particular, v′(0; x) = 0, and

so v′(·; x)=Aj1 ∗ v′(·; x)+ jα(·)Cx on [0, T0). Hence v′(·; x) is a (unique) solution of
the integral equation v(·)=Aj1 ∗ v(·) + jα(·)Cx in C([0, T0), X).

Since C−1AC = A and R((λ − A)−1C) = C(D(A)) if ρ(A) 
= ∅ (see [21]),
we can apply Proposition 3.1, Theorem 3.5 and Theorem 3.6 to obtain the next two
corollaries.

Corollary 3.7. Let A : D(A) → X be a closed linear operator with nonempty
resolvent set. Then A is the generator of a nondegenerate local (α+1)-times integrated
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C-cosine function on X if and only if for each x ∈ D(A) ACP(jα−1(·)Cx, 0, 0) has a
unique solution in C([0, T0), [D(A)]).

Corollary 3.8. Let A : D(A) → X be a closed linear operator with nonempty
resolvent set. Then A is the generator of a nondegenerate local α-times integrated
C-cosine function on X if and only if for each x ∈ D(A) ACP(jα−1(·)Cx, 0, 0) has a
unique solution in C1([0, T0), [D(A)]).

Just as in [11, Theorems 2.9 and 2.10], we can apply Theorem 3.4 to obtain the
next two theorems.

Theorem 3.9. Let A : D(A) → X be a densely defined closed linear operator.
Then the following are equivalent :

(i) A is a subgenerator of a nondegenerate local (α+1)-times integrated C-cosine
function S(·) on X;

(ii) for each x ∈ D(A) ACP(jα−1(·)Cx, 0, 0) has a unique solution u(·; Cx) in
C([0, T0), [D(A)]) which depends continuously on x. That is, if {xn}∞n=1 is a
Cauchy sequence in (D(A), ‖ · ‖), then {u(·; Cxn)}∞n=1 converges uniformly on
compact subsets of [0, T0).

Proof. (i)⇒(ii). It is easy to see from the definition of a subgenerator of S(·)
that S(·)x is the unique solution of ACP(jα−1(·)Cx, 0, 0) in
C([0, T0), [D(A)]) which depends continuously on x ∈ D(A). (ii)⇒(i). In view of
Theorem 3.4, we need only to show that for each x ∈ X (3.1) has a unique solution
v(·; x) in C([0, T0), X). Indeed, if x ∈ X is given. By the denseness of D(A),
we have xm → x in X for some sequence {xm}∞m=1 in D(A). We set u(·; Cxm)
to denote the unique solution of ACP(jα−1(·)Cxm, 0, 0) in C([0, T0), [D(A)]). By
hypothesis, we have u(·; Cxm) → u(·) uniformly on compact subsets of [0, T0) for
some u ∈ C([0, T0), X), so that

∫ ·
0

∫ s
0 u(r; Cxm)drds → ∫ ·

0

∫ s
0 u(r)drds uniformly on

compact subsets of [0, T0). Since Au(·; Cxm) = u′′(·; Cxm)−jα−1(·)Cxm on (0, T0),
we have

(3.3)
A

∫ ·

0

∫ s

0
u(r; Cxm)drds

=
∫ ·

0

∫ s

0
Au(r; Cxm)drds = u(·; Cxm) − jα+1(·)Cxm

on [0, T0) for all m ∈ N. Clearly, the right-hand side of the last equality of (3.3)
converges uniformly to u(·) − jα+1(·)Cx on compact subsets of [0, T0). It follows
from the closedness of A that

∫ t
0

∫ s
0 u(r)drds ∈ D(A) for all 0 ≤ t < T0 and

A
∫ ·
0

∫ s
0 u(r)drds=u(·)− jα+1(·)Cx on [0, T0), which implies that u(·) is a (unique)

solution of (3.1) in C([0, T0), X).
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Theorem 3.10. Let A : D(A) → X be a densely defined (closed) linear operator.
Then the following are equivalent :

(i) A is a subgenerator of a nondegenerate local α-times integrated C-cosine func-
tion C(·) on X;

(ii) for each x ∈ D(A) ACP(jα−1(·)Cx, 0, 0) has a unique solution u(·; Cx) in
C1([0, T0), [D(A)]) which depends continuously differentiable on x. That is, if
{xn}∞n=1 is a Cauchy sequence in (D(A), ‖ · ‖), then {u(·; Cxn)}∞n=1 and
{u′(·; Cxn)}∞n=1 both converge uniformly on compact subsets of [0, T0).

Proof. (i)⇒(ii). For each 0 ≤ t < T0 and x ∈ X , we set S(t)x =
∫ t
0 C(r)xdr.

Then S(·)x is the unique solution of ACP(jα−1(·)Cx, 0, 0) in C1([0, T0), [D(A)]).
Now if {xn}∞n=1 is a Cauchy sequence in (D(A), ‖ · ‖). We set u(·; Cxn) = S(·)xn

for n ∈ N, then {u(·; Cxn)}∞n=1 and {u′(·; Cxn)}∞n=1 both converge uniformly on
compact subsets of [0, T0). (ii)⇒(i). For each x ∈ X and 0 ≤ t < T0, we define
u(t) = lim

n→∞ u(t; Cxn) whenever {xn}∞n=1 is a sequence inD(A) which converges to x

inX . By hypothesis, u(·; Cxm) → u(·) and u′(·; Cxm) → u′(·) uniformly on compact
subsets of [0, T0) for some u ∈ C1([0, T0), X). Just as in the proof of Theorem 3.9,
we also have

(3.4) A

∫ t

0

∫ s

0
u′(r; Cxm)drds = A

∫ t

0
u(r; Cxm)drds = u′(·; Cxm)− jα(·)Cxm

on [0, T0) for all m ∈ N. Similarly, we also have A
∫ ·
0

∫ s
0 u′(r)drds=u′(·) − jα(·)Cx

on [0, T0), which implies that u′(·) is a solution of the integral equation v(·)=Aj1 ∗
v(·)+ jα(·)Cx in C([0, T0), X). The uniqueness of solutions for the integral equation
v(·)=Aj1 ∗ v(·) + jα(·)Cx in C([0, T0), X) follows from the uniqueness of solutions
for the integral equation (3.1) in C([0, T0), X).

We end this paper with several illustrative examples.

Example 1. Let X = Cb(R), and C(t) for t ≥ 0 be bounded linear operators on X
defined by C(t)f(x) = 1

2 [f(x + t) + f(x − t)] for all x ∈ R. Then for each β > −1,
jβ ∗ C(·) is a (β + 1)-times integrated cosine function on X with generator d2

dx2 , but
C(·) is not a cosine function on X.

Example 2. Let k be a fixed nonnegative integer, and let C(t) for t ≥ 0 and
C be bounded linear operators on c0 ( the family of all convergent sequences in F

with limit 0 ) defined by C(t)x = {xn(n − k)e−n
∫ t
0 jα−1(t − s) cosh nsds}∞n=1 and

Cx = {xn(n − k)e−n}∞n=1 for all x = {xn}∞n=1 ∈ c0, then {C(t)|0 ≤ t < 1}
is a local α-times integrated C-cosine function on c0 which is degenerate except for
k = 0 and generator A defined by Ax = {n2xn}∞n=1 for all x = {xn}∞n=1 ∈ c0
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with {n2xn}∞n=1 ∈ c0, and for each r > 1 {C(t)|0 ≤ t < r} is not a local α-times
integrated C-cosine function on c0. Now if k ∈ N, then Aa : c0 → c0 for a ∈ F

defined by Aax = {n2yn}∞n=1 for all x = {xn}∞n=1 ∈ c0 with {n2xn}∞n=1 ∈ c0, are
subgenerators of {C(t)|0 ≤ t < 1} which do not have proper extensions that are still
subgenerators of {C(t)|0 ≤ t < 1}. Here yn = ak2xk if n = k, and yn = n2xn

otherwise. Consequently, {C(t)|0 ≤ t < 1} does not have a maximal subgenerator.

Example 3. Let C ∈ L(X) be fixed, and let C(·) be an α-times integrated C-cosine
function on X defined by C(t) = jα(t)C for t ≥ 0. Then C(·) is nondegenerate with
generator 0 ( the zero operator on X) if and only if C is injective. Now if D(·) is a
nondegenerate local α-times integrated D-cosine function on a Banach space Y over
F. Then C̃(·) defined by C̃(t)(x, y) = (C(t)x, D(t)y) for all 0 ≤ t < T0 and (x, y) ∈
X×Y , is a local α-times integrated (C,D)-cosine function on the product Banach space
X × Y . Here (C, D) : X × Y → X × Y is defined by (C, D)(x, y) = (Cx, Dy) for
all (x, y) ∈ X × Y . In this case, C̃(·) is nondegenerate with generator (0, D) defined
by (0, D)(x, y) = (0, Dy) for all x ∈ X and y ∈ D if and only if C is injective. Next
if X is the direct sum of X1 and X2 for some nonzero subspaces X1 and X2 of X ,
C : X → X is the projection ofX to a nonzero subspace of X1, and A : X → X is the
projection of X to a nonzero subspace of X2, then A : X → X and the zero operator
on X are subgenerators of C(·) which do not have common proper extensions that are
still subgenerators of {C(t)|0 ≤ t < 1}. In particular, C(·) does not have a maximal
subgenerator. Similarly, we can show that (0, D) and (A, D) are subgenerators of the
degenerate local α-times integrated (C, D)-cosine function C̃(·) on X × Y which do
not have common proper extensions that are still subgenerators of C̃(·). In particular,
C̃(·) does not have a maximal subgenerator.

Example 4. Let X = Cb(R)( or L∞(R)), and A be the maximal differential

operator in X defined by Au =
k∑

j=0
ajD

ju on R for all u ∈ D(A), then UCb(R)

(or C0(R)) = D(A). Here a0, a1, · · · , ak ∈ C and Dju(x) = u(j)(x) for all
x ∈ R. It is shown in [2, Theorem 6.7] that A generates an exponentially bounded,
norm continuous 1-times integrated cosine function C(·) on X which is defined by
(C(t)f)(x) = 1√

2π
(φ̃t ∗ f)(x) for all f ∈ X and t ≥ 0 if the real-valued polynomial

p(x) =
k∑

j=0
aj(ix)j satisfies sup

x∈R

p(x) < ∞. Here φ̃t denotes the inverse Fourier trans-

form of φt with φt(x) =
∫ t
0 cosh(

√
p(x)s)ds. Applying Theorem 3.4, we get that for

each f ∈ X and continuous function g on [0, T0)×R with
∫ t
0 sup

x∈R

|g(s, x)|ds < ∞ for

all 0 ≤ t < T0, the function u on [0, T0) × R defined by u(t, x) = 1√
2π

∫ t
0

∫ ∞
−∞(t −

s)φ̃s(x − y)f(y)dyds + 1√
2π

∫ t
0

∫ t−r
0

∫ ∞
−∞(t − r − s)φ̃s(x − y)g(s, y)dydsdr for all
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0 ≤ t < T0 and x ∈ R, is the unique solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u(t, x)
∂t2

=
k∑

j=0

aj(
∂

∂x
)ju(t, x)+tf(x)+

∫ t

0
(t−s)g(s, x)ds for t∈(0, T0) and a.e. x∈R,

u(0, x) = 0 and
∂u

∂t
(0, x) = 0 for a.e. x ∈ R

in C2([0, T0),X) ∩ C([0, T0), [D(A)]).
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