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NOTE ON LOCAL INTEGRATED C-COSINE FUNCTIONS AND
ABSTRACT CAUCHY PROBLEMS

Chung-Cheng Kuo

Abstract. Let a be a nonnegative number, and C : X — X a bounded linear
operator on a Banach space X. In this paper, we shall deduce some basic prop-
erties of a nondegenerate local a-times integrated C'-cosine function on X and
some generation theorems of local a-times integrated C'-cosine functions on X
with or without the nondegeneracy, which can be applied to obtain some equiva-
lence relations between the generation of a nondegenerate local a-times integrated
C-cosine function on X with generator A and the unique existence of solutions
of the abstract Cauchy problem:

u”(t) = Au(t) + f(t) fort € (0,Tp),

ACP(A, f,z,y) { u(0) = z,u/(0) =y

just as the case of a-times integrated C'-cosine function when C' : X — X is
injective and A : D(A) C X — X a closed linear operator in X such that
CA C AC. Here 0 < Ty < 00, x,y € X, and f is an X-valued function defined
on a subset of R containing (0, Tp).

1. INTRODUCTION

Let X be a Banach space over F(=R or C) with norm || - ||, and let L(X') denote
the set of all bounded linear operators from X into itself. For each 0 < T < oo, we
consider the following abstract Cauchy problem:

o/ (t) = Au(t) + f(t)  for t € (0,T0).

(L.1)  ACP(4, f,,y) { u(0) = z,u/(0) = y
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where z,y € X are given, A : D(A) C X — X is a closed linear operator, and f
is an X -valued function defined on a subset of R containing (0, 7). A function u is
called a strong solution of ACP(A, f, z,y), if u € C?((0,Ty), X) N C([0,Tp), X) N
C((0,Tp),[D(A)]), and satisfies ACP(A, f,z,y). Here [D(A)] denotes the Banach
space D(A) equipped with the graph norm |z|4 = ||z|| + ||Az| for x € D(A). For
each C' € L(X) and o > 0, a family C(-)(= {C(¢) |0 < t < Tp}) in L(X) is
called a local a-times integrated C-cosine function on X if it is strongly continuous,
C(-)C = CC(-), and satisfies

1

t+s t s
20(H)C(s)z :@K/o —/O —/O J(t+ 5 — 1) 1C(r)Cardr

+ t (s —t + 7)) LC(r)Cadr
(1.2) /'t‘s'

+/ (t —s+r)*tC(r)Cadr
It

—8|

[t—s| )
—i—/o (It = s|+7m)* " C(r)Cxdr]

forall 0 < ¢,s,t+s < Tp and x € X (see [12, 13]); or called a local (0-times
integrated) C-cosine function on X if it is strongly continuous, C(-)C' = CC(-), and
satisfies

2C(t)C(s)x

1.3
(1.3) =C(t+s)Cx+C(|t —s|)Cx forall 0 <t,s,t+s<Tpand z € X,

(see [4, 6, 18, 20]), where I'(-) denotes the Gamma function. Moreover, we say that
C'(+) is nondegenerate, if = 0 whenever C(¢t)z = 0 for all 0 < ¢ < Tp. In this case,
its (integral) generator A : D(A) C X — X is a closed linear operator in X defined

by
D(A)={zecX|, there exists a y, € X such that C(-)z—ja(-)Cz=S5(-)y, on [0,Tp)}

and Az = y, for all x € D(A). Here j,(t) = 1“(24—11)’ S(s)z = [ C(r)zdr, and

S(t)z = fg S(s)zds. In general, a local a-times integrated (resp.,0-times integrated)
C-cosine function on X is called an a-times integrated C'-cosine function (resp., (0-
times integrated) C'-cosine function) on X if Ty = oo (see [7, 10, 11, 15, 17, 23-25]
(resp., [9, 22])); or called a local a-times integrated cosine function on X if C' = I,
the identity operator on X (see [14, 20]), and a local a-times integrated cosine function
on X is also called an a-times integrated cosine function on X if Ty = oo (see [2,
26]); or called a cosine function on X if « = 0 (see [1, 3, 5, 8, 19]). Moreover, a local
a-times integrated cosine function on X is not necessarily extendable to an a-times
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integrated cosine function on X except for o = 0 (see [5]), the nondegeneracy of a local
a-times integrated C'-cosine function on X does not imply the injectivity of C' except
for Ty = oo (see [11]), and the injectivity of C' does not imply the nondegeneracy of
a local a-times integrated C'-cosine function on X except for a = 0 (see [18]). Some
basic properites of a nondegenerate a-times integrated C'-cosine function on X have
been established by many authors when o = 0 (see [9, 22] ), a € N (see [7, 15,
17, 23-25), and « > 0 is arbitrary (see [11]), which can be applied to deduce some
equivalence relations between the generation of a nondegenerate a-times integrated C-
cosine function on X with generator A and the unique existence of strong or weak
solutions of the abstract Cauchy problem ACP(A, f,z,y) with Ty = oo (see [7, 10,
11, 24]). The purpose of this paper is to investigate the following basic properties of a
nondegenerate local a-times integrated C-cosine function on X when C is injective:

(1.4) C(0) =C on X if « =0, and C(0) = 0 (, the zero operator) on X if a > 0;

(1.5) CrAC = A;
(1.6) S(t)z € D(A) and AS(t)x

. =C(t)r — jo(t)Cx forallz € X and 0 <t < Tp;
(L7 C(t)x € D(A) and AC(t)z

' = C(t)Ax forallz € D(A) and 0 <t < Tp;
(1.8) C(t)C(s) =C(s)C(t) forall0<t,s,t+s<Tp;

and then deduce some equivalence relations between the generation of a nondegener-
ate local a-times integrated C-cosine function C'(-) on X with generator A and the
unique existence of strong solutions of ACP(A, f, z, y), just as some results in [12,13]
concerning the unique existence of strong and weak solutions of ACP(A, f,z,y). To
do these, we shall first prove an important lemma which shows that a strongly con-
tinuous family C(-)(= {C(t)|0 < t < Tp}) in L(X) is a local a-times integrated
C-cosine function on X (with closed subgenerator A) is equivalent to S (+) is a local
(o 4+ 2)-times integrated C-cosine function on X (with closed subgenerator A), and
then show that a strongly continuous family C(-)(= {C(¢)|0 < ¢t < Tp}) in L(X)
which commutes with C' on X is a local a-times integrated C'-cosine function on X is
equivalent to S(¢)[C(s) — ja(s)CI=[C(t) — jau(t)C1S(s) for all 0 < ¢,s,t + s < Tp.
We also show that jg * C(-) is a local (a + 3 + 1)-times integrated C-cosine func-
tion on X (with closed subgenerator A) if C(-) is a local a-times integrated C-cosine
function on X (with closed subgenerator A) and 3 > —1, which can be applied to
show that its ” only if ” part is also true when (3 is a nonnegative integer, where
fxC(t)x =[] f(t—s)C(s)xds for all z € X and f € L}, ([0, Tp),F). In order, we
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show that the generator of a nondegenerate local a-times integrated C-cosine function
C(+) on X is the unique subgenerator of C/(-) which contains all subgenerators of C(+)
and each subgenerator of C(+) is closable and its closure is also a subgenerator of C(-)
when C(-) has a subgenerator. In particular, which is also so when C' is injective.
This can be applied to show that CA C AC and C(-) is a nondegenerate local a-times
integrated C'-cosine function on X with generator C~'AC when C is injective and
C'(-) is a strongly continuous family in L(X) with closed subgenerator A. In this case,
C~1A(C is the generator of C(-) for each subgenerator Ay of C(-). Some illustrative
examples concerning these theorems are also presented in the final part of this paper.

2. BAsIC PROPERTIES FOR LoCAL «-TIMES INTEGRATED C-COSINE FUNCTIONS

We first deduce an important lemma which can be applied to obtain an equivalence
relation between the generation of a local a-times integrated C-cosine function C/(-)
on X and the equality of

(D)[C(s) = Ja(5)C] = [C(t) = ja(t)C)S(s)

forall 0 < ¢, s,t+s < Tp, just as a result in [16] for the case of local a-times integrated
C-semigroup when C(+) is a strongly continuous family in L(X) commuting with C
on X.

)

(2.1)

Lemma 2.1. Let C(-) be a strongly continuous family in L(X). Then C(-) is a
local a-times integrated C-cosine function on X if and only zf§() is a local (o +2)-
times integrated C-cosine function on X.

Proof. We consider only the case oo > 0, for the case & = 0 can be treated
similarly. In this case, we shall first show that

%ﬁ[(/oﬂs — /Ot — /:)(t—i— s —r)*t1S(r)Cadr

+ / (s —t+ r)a+1§(r)0xdr
[t—s]|

s - [t—sl 1=
+/| (t—s+7r)*" S(r)C’xdr—i—/O (|t — s| +r)* T S(r)Cxdr]

t—s|

1 t+s t s 0
Zm[(/o _/0 _/0 )(t+s—r)*S(r)Cxdr
+ sgn(s —t) / (s —t +7)*S(r)Caxdr

[t—s]

s

(2.2)

+ sgn(t—s) /

[t=s]

~ [t—s] ~
(t—s—l—r)O‘S(r)C’xdr—i-/O (|t—s|4+r)*S(r)Cxdr]
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and
2 t+s t s .
%ﬁ[(/g —/O —/O )t + 5 — )5 (r) Cardr
t s — )t (X Cxdr ’ — s+ 7)*TLS(r)Cxdr
+A_S|( t+r) S()Cd+A_S|(t + ) S(r)Cad
[t—s| _ _
+/ (|t = s| + )2 TS (r)Cadr] + 2ja(s)S(t)Cx
(2.3) 0

:ﬁ[(/om—/ot—/os)(ws —7)*7LS(r) Cadr

t . s .
+/ (s—t—i—r)a_lS(r)der—i-/ (t—s—l—r)a_lS(r)C'a:dr
[t—s]| [t—s]|

[t—s| 1=
—i—/o (|t —s| +r)* " S(r)Cxdr]

forall z € Xand 0 < t,s,t+ s < Tpy. Indeed, for 0 < s <t < Ty with t + s < Ty,
we have

d 1 t+s t s 1
%[m(/o —/O —/O )t + 5 — )15 (r) Cardr
1 t

_ at+lg
+F(a+2) /t_s(s t+r)*"S(r)Cadr +

1 ° at+lg
F(a+2>/0 (t—s+1)* P §(r) Cadr]

1 o ' ’ ag . ~
[m% —/O —/O )(t+ 5 —r)2S(r)Cadr — joi1(s)S(t)Ca]

+ o (5)8(H)C — ﬁ /t ;(s b4 1) 5(r) Cdr]

+ ﬁ /Os(t — 54 1)%S(r)Cadr

:ﬁ[(/om—/ot—/:)(tﬂ—r>a§(r>cxdr

+ sgn(s—t) /t (s—t41)*S(r)Cadr + sgn(t—s) /8

[t—s| [t—s|

(t—s+7)*S(r)Caxdr
[t—s] ~
—i—/o (|t = s| +7r)*S(r)Cxdr]

and
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t+s
tha—i—l/ / / )(t+ s — r)*S(r)Cadr

—m/t_ (s —t +7)*S(r)Cadr

+ %ﬂ/s( — 5+ 7)2S(r)Czdr] + 2ja(s )§( t)Cx

/t+s / / )(t+ s — 1) S(r)Cadr — 2j4(s)S(t)Ca

—l-@/t (s—t+nr)*" 1S( )Cxdr

+L/ (t—s—i—r)a IS( )der‘f‘Q]a( )g( )C

/Hs/ / )t + s — )18 (r)Cadr

a—-1g 1 a—1g
+@/ts( )15 )C’xdr—l—r(a)/o( s+ 1)1 5(r)Cadr

:ﬁ[(/oﬁs—/ot—/os)(t+s—r)o‘_1§(r)(3’a:dr+/lt (s—t+r)*15(r)Cadr

t—s|
s _ [t—s| _
+/ (t—s—i—r)o‘_lS(r)C'a:dr—i-/ (It — s —i—r)o‘_lS(r)C'a:dr].
[t—s| 0

That is, (2.2) and (2.3) both hold for all 0 < s <t < Ty with t + s < Ty. Similarly,
we can show that (2.2) and (2.3) both also hold when 0 <t < s < Ty with t+s < Tj.
Clearly, the right-hand side of (2.3) is symmetric in t,s with 0 < ¢, s,t + s < 1. It

follows that
t+s +1
)(t ) S(r)Cxd
32 F (@t2) / / / +s— (r)Cxdr

—i—A Sl(s—t—i—r)o‘HS( )C’a:dr—i—/ (t — s +r)*tS(r) Cadr

[t—s]

[t—s| _ _
+ / (|t —s| + r)O‘HS(r)C’a:dr] + 25, (t)S(s)Cx
0

Zﬁ[(/otﬂ—/ot—/os)(t—i-s—r)o‘_lg(r)Ca:dr

t . s -
+/ s—t—i—r)o‘_lS(r)C'a:dr—i-/ (t — s—l—r)o‘_lS(r)C'a:dr
It

—s| [t—s|
[t—s|

+/O (t— 8] + 1) 15(r) Cadr]

(2.4)
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forall z € X and 0 < ¢, s,t 4+ s < Tj. Using integration by parts twice, we obtain

ﬁ[(/otﬂ—/ot—/os)(t—i—s—r)o‘_lg(r)Ca:dr

+/| (s —t+1)*" S(r)C’a:dr—i—/ (t—s+r)*S(r)Cxdr

t—s| [t—s|

[t—s| 1=
—i—/o (|t = s| +7m)*S(r)Cxdr]

Zﬁ[(/otﬂ - /Ot - /:)(t + 5 — )T O(r)Cadr

t s
+ / (s—t+ r)O‘HC’(r)C’a:dr + / (t—s+ r)O"LlC’(r)C’a:dr
[t—s]|

[t—s]

+ /O = sl + () Cad]

(2.5)

forallz € X and 0 < t,s,¢t+s < Ty. Now if S(-) is a local (v + 2)-times integrated
C-cosine function on X. By (2.4) and (2.5), we have

25(t)C(s)x = 25—;5@)5(3)3;

Zﬁ[(/otﬂ - /Ot - /OS)(t + 5 —7r)*TCO(r)Cxdr

t s
+ / (s —t+ r)o‘“C’(r)C’a:dr + / (t—s+ r)o"LlC’(r)C’a:dr
[t—s]|

[t—s]

+ /O = s+ O Cad]

forallz € X and 0 < t,s,t4+ s < Tp, so that

20(tH)C ():;;—2 75(1)C(s)z

= (100 / / / )t + s —r)*"C(r)Cxdr

t
(2.6) +/ (s —t+r)*tC(r)Cadr
|

t—s|

+/ (t — s+ r)* 'O (r)Cadr
[t—s]

[t—s]|
+/ (|t —s|+r)* 1C’( )Cxdr]
0



964 Chung-Cheng Kuo

forall x € X and 0 < ¢,s,t + s < Tp. Hence C(-) is a local a-times integrated
C-cosine function on X. Conversely, if C(-) is a local a-times integrated C-cosine
function on X. We shall first apply Fubini’s theorem for double integrals twice to
obtain

20(t)S(s)x
1 t+s t s ot1
Tl e e
(2.7) t " °
s — )t C(r)Crdr — s+ 1) C(r)Cadr
v [ e rencecrirs [ @-s i

[t—s] ~
+ / ([t = 8| + 1) C(r)Cadr] + 2j(t)S(s)Ca
0

for all x € X and 0 < ¢,s,t +s < Ty. Indeed, if € X is given, then for
0<t,st+s<Tywitht > s, we have

ﬁ /O /tHS (t+s—r)*"tC(r)Crdrds

t+7
(2.8) :ﬁ / /T t (t+s—r)*tC(r)Cadsdr

1

t+7
:m /t (t+7—7)*C(r)Czxdsdr,

ﬁ /T /8 (t+s—r)**C(r)Crxdrds

@9 =g ), | o6 G
_m/o (t+7 —r)*C(r)Cadr — ju(t)S(1)Cx,

1 a—1
F(a / /ts —t+r)* " C(r)Cxdrds

1 1
2.10 / / —t+r)* " C(r)Cxdsdr
( ) F(Ck t—7 Jt—r ( )

—m /t_ (t—t+r)*C(r)Cxdr,

and
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ﬁ /T /8 (t—s+r)*tC(r)Crdrds
1
(7

(2.11) =

/ (t — s+ r)* *C(r)Cadsdrs
(a

) Jo
ja(8)S(r)Ca ﬁ/g( 4 ) C(r) Cadr.

We observe from (2.8)-(2.11) that we also have

1 t+7 N
m /0 /t (t+7—r)*C(r)Cxdrdr

(2.12) 1 )
“T(a+2) /t (t+s—r)*"C(r)Cadr,
/Os[ﬁ /OT (t+7—r)*C(r)Cadr — jo(t)S(7)Cxldr
(2.13) 8 ~
- [ﬁ/g (t—i—s—r)a+1C’(7“)C'a:dr—ja+1(t)S(s)Cg; —ja(®)8(s)C,
21 e [ e cca:
_m /_ (s —t+7)*"C(r)Cadr,
and
(2 15) /OS[ja(t>S(7_>C$— ﬁ/gﬁr (t_T+r>aC(T)C'xdr]dT

—ja()S(s)Ca+ [ﬁ /O (1= s+ ) Cadr — s (1)S(5)C |

Combining (2.12)-(2.15), we obtain (2.7) for all 0 < ¢,s,t + s < Ty with t > s.
Similarly, we can show that (2.7) also holds when 0 < ¢,s,t+ s < Ty with s > t. By
(2.3), (2.5) and (2.7), we have

20(t)S(s)x

=5—;ﬁ[</ot+s—/ot—/:>(t+s—r>a+1§(r>cxdr

t . s .
+/ (s —t—i—r)O‘HS(r)C’a:dr—i-/ (t — s—l—r)o‘HS(r)C’a:dr
[t—s]|

[t—s]

+ /Olt_8|(\t — o+ 1)*HE(r)Cadr]
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forall z € X and 0 < ¢,s,¢+ s < Tp. Combining this and (2.2) with ¢ = 0, we
conclude that S(-) is a local (« + 2)-times integrated C'-cosine function on X. |

Theorem 2.2. Let C(-) be a strongly continuous family in L(X ) which commutes
with C on X. Then C(-) is a local a-times integrated C-cosine function on X if and
only if S(t)[C(s) — ja(s)C|=[C(t) — jau(t)CS(s) for all 0 < t,s,t + s < Tp.

Proof. Indeed, if C(-) is a local a-times integrated C-cosine function on X. By
(2.3) and (2.4), we have 2C(t)S(s)x +2ja(s)S(t)Cx = 25(t)C(s)x + 2ja(t)S(s)Cx
for all z € X and 0 < t,s,t+ s < Tp or equivalently, S(t)[C(s) — ja(s)C]=[C(t) —
Ja(t)C]S(s) for all 0 < t,s,t + s < Typ. Conversely, if (2.1) holds for all 0 <
t,s,t +s < Tp. We may assume that o > 0, then S(t)C(s)r — C(t)S(s)z =
Ja(8)S(t)Cx — jo(t)S(s)Cx for all z € X and 0 < ¢,s,t + s < Tp. Fix z € X and
0<t,st+s<Tywitht > s, we have

St+s—rCr)x—Ct+s—r)S(r)z
=ja(r)S(t+ s —1)Cx — jo(t + s —1)8(r)Cx
for all 0 <r <t, and

S(s—t+r)C(r)x — C(s — t+r)S(r)z
—ja(r)S(s —t +7)Cx — jo(s —t +1)S(r)Ca

(2.16)

(2.17)

for all t —s < r < t. Using integration by parts to left-hand sides of the integrations of
(2.16)-(2.17) and change of variables to right-hand sides of the integrations of (2.16)-
(2.17), we obtain

S()S(s)z + S(t)S(s)z
(2.18) _ </Ot+5_ ;_/:) jult+ 5 — ) 8(r)Cadr

and

(2.19) _ /8 Ja(t — s+ r)g(r)C'g;dr — /t Ja(s —t+ T>§(T’>der’
0 t—s

so that

25(t)S(s)x

~([[7 [ - )t s nSercen
n

t . s .
/ Ja(s —t+r)S(r)Cxdr — / Ja(t —s+1)S(r)Cxdr.
t—s 0
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Hence

25(t)C(s)x

= </Ot+5 - /Ot - /05) Jo1(t+ s —7)S(r)Cadr
+ /t; Ja—1(s —1t+ r)g(r)C’a:dr + /OS Ja—1(t— s+ r)g(r)C’a:dr
—2j,(t)S(s)C,

which implies that

25(1)C(s)x + 2ja(t)

_F(1a>[</t+s / /) (t + s — 1)1 5(r) Cadr

+/| (s —t+7)*"1S(r )C’xdr—i—/ (t—s+r)* " S(r)Czdr

—_s —s
t t

(2.20)

4 /Olt_8|(\t s+ r)a—1§(r>cxdr].

Similarly, we can show that (2.20) also holds when x € X and 0 < ¢,s,t+ s < Ty
with s > ¢t. Combining this with (2.4), we have

25(t)C(s)x

CZQ[ a+2 </t+8 / /)HS r)*HS(r)Cadr

+7F(a+2) A_ |(s—t+7’)°‘+15( r)Cxdr

+ ﬁ AS |(t — s+ 1) TLS(r)Cadr
[t—s] ~
+ ﬁ/g (|t —s|+ r)o‘“S(r)C'xdr].

forall z € X and 0 < t,s,t+ s < Tp. Consequently, S(-) is a local (a + 2)-times
integrated C-cosine function on X. Similarly, we can show that the conclusion of this
theorem is also true when o = 0. ]

Proposition 2.3. Let C(-) be a local a-times integrated C-cosine function on X
and 3 > —1. Then jg* C(-) is a local (cc+ 3+ 1)-times integrated C-cosine function
on X. Moreover, C(-) is a local a-times integrated C-cosine function on X if it is a
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strongly continuous family in L(X) such that S(-) is a local (« + 1)-times integrated
C-cosine function on X.

Proof.  We set C(+) = jigxC(-) and Sg(-) = j1 *Cp(-). Then Cs(-)C = CC(-)
and S3(-)C = CSg(-), so that for z € X and 0 <t < Ty, we have

[C5(t) = jarpr1(t)C]Sa()m
= [jg * C(t) — jg * ja(t)Cljg = S()x
= jg * ([ja* C(t) — jg * ja(t)CIS()x)

g+ /0 Ja(t — 9)C(s) — jal8)CIS()ds)
g ( /0 Jalt — )8SIC() — jal)Clrds)

- /0 Ja(t = )8(5)js * [O() = jal)Clards
— jis 5(0)j < [C() ~ dal )Cla
= 55(8)(C() — Jas 1 ()Cla

on [0, s] for all 0 < s < T with t+s < Tp. Hence Cg(-) is a local (a+ 5+ 1)-times
integrated C-cosine function on X, which together with Lemma 2.1 implies that C(-) is
a local a-times integrated C'-cosine function on X if it is a strongly continuous family
in L(X) such that S(-) is a local (« + 1)-times integrated C-cosine function on X. m

Lemma 24. Let C(-) be a local a-times integrated C-cosine function on X.
Assume that CC(-)x = 0 on [0,tg) for some © € X and 0 < ty < Ty. Then
CC(-)x =0 o0n [0,Tpy). In particular, C(t)x = 0 for all 0 < t < Ty if the injectivity
of C is added.

Proof. Indeed, if 0 <t < Ty is given, then ¢ + s < T for some 0 < s < 3. By
hypothesis, we have S(s)C(t)z=C(t)S(s)x = 0 and S(s)ja(t)Cr=ju(t)CS(s)z = 0.
By (1.2) and (1.3), we also have C(s)S(t)x=S(t)C(s)x = 0. By Theorem 2.2, we have
S(5)[C(t) — ja(t)Cla =[C(5) = ja(s)CIS (1), so that ja(s)S(H)Ca = ja(s)CS(t)z =
0. Hence S(t)Cz = 0. Since 0 < ¢ < Ty is arbitrary, we conclude that CC(t)z =
C(t)Cx =0 for all 0 < t < Ty. In particular, C(t)x = 0 for all 0 < ¢t < Ty if the
injectivity of C' is added. n

Proposition 2.5. Let C(-) be a nondegenerate local a-times integrated C-cosine
function on X. Assume that C' is injective. Then (1.4)-(1.7) hold .

Proof. 1t is easy to see from (1.2)(resp.,(1.3)), the nondegeneracy of C(-) and the
injectivity of C' that (1.4) holds. Just as in the proof of [11, Prop. 1.5], we can show
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that (1.5) also holds. Next, to show that (1.6) holdgv. Indeed, if 0 < ¢y < Tp 1s fixed.
Then for each x € X and 0 < s < Ty, we set y = S(to)z. By Theorem 2.2, we have

|
QR
=
J

C(s) = ja(s)Cly

Ja(r)C1S(s)y

(r) = Ja(r)Cly

[C(r) = ja(r)C)S(ty)x)
[C(to) — ja(to)Clz)

J[C(to) — jalto)Clz

C(to) — ja(to)Clz

»
Q
=

l

Il
L U »

»

— ~
»
~— ~— ~—

|
0
=
B
3=

I
jal
=

oY

()

for all 0 < r < Ty with r + s,r + ¢ < Ty. Clearly, §() is also nondegenerate. It
follows from Lemma 2.4 that we have [C(s) — jo(s)Cly = S(s)[C(to) — ja(to)C]x.
Since 0 < s < Tj is arbitrary, we conclude that (1.6) holds. Now if z € D(A) is given.
By (1.6) and the definition of D(A), we have AS(t)z =C(t)z — ja(t)Cx =S(t) Az
for all 0 < ¢ < Ty. By the closedness of A, we also have th S(t)z € D(A) and
AC (e = AL S ()= AS(t) 2=, S(t) Aw=C(t) Az for all 0 < t < T m

Just as in the proof of [11, Lemma 1.6], the next lemma is also attained.

Lemma 2.6. Let C(-) be a nondegenerate local a-times integrated C-cosine func-
tion on X with generator A. Assume that C is injective, and u € C([0, ), X) satisfies
u(-) = Aj1 *u(-) on [0, o) for some 0 < to < Ty. Then uw =0 on [0, tp).

Proposition 2.7. Let C(-) be a nondegenerate local a-times integrated C-cosine
function on X with generator A. Assume that C' is injective. Then (1.8) holds.

Proof.  To show that C(t)C(s)x=C(s)C(t)x for all z € X and 0 < ¢,s < Ty,
we need only to show that S(t)S(s)z=5(s)S(t)z for all z € X and 0 < t,s < T.
Indeed, if x € X and 0 < s < Ty are given. By (1.7) and the closedness of A, we
have

S()S(s)x — Ajy % S()S(s)w
= Jat2()CS(s)x
= S(8)jas2(")C
= S()[S()z — Ajy % S(-)a]
= S(s)S(x — S(s)Ajy x S(-)x
= S(s)S(a — Ajy * S(s)S(-)z
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on [0, Tp), and so [S(-)S(s)z — S(s)S(-)x] =Aj1 *[S(-)S(s)z — :Si(s)g(_)a:] on [0, Tp).

X
Hence S(-)S(s)z=S(s)S(-)z on [0, Ty), which implies that S(t)S(s)z=S(s)S(t)x for
all 0 <t, s < Ty. Consequently, (1.8) holds. ]

Definition 2.8. Let C/(-) be a strongly continuous family in L(X'). A linear operator
A in X is called a subgenerator of C(-) if

(2.21) Ct)x — ja(t)Cx = /Ot /OS C(r)Axdrds

forall z € D(A) and 0 < ¢t < Tp, and

t rs
(2.22) // C(r)zdrdse D(A) andA// C(r)zdrds=C(t)x—j.(t)Cx
00

forall 2 € X and 0 < t < Tj. A subgenerator A of C(-) is called the maximal
subgenerator of C(-) if it is an extension of each subgenerator of C(-) to D(A).

Theorem 2.9. Let C(-) be a strongly continuous family in L(X ) which commutes
with C on X. Assume that C(-) has a subgenerator. Then C(-) is a local a-times
integrated C-cosine function on X. Moreover, C(-) is nondegenerate if the injectivity
of C is added.

Proof. Indeed, if A is a subgenerator of C(-). By (2.22), we have
[C(t)x = ja(t)C)S()z = S(HAS()z = S(1)[C()x = jal-)Cla

on [0,7p) for all z € X and 0 < ¢ < Ty. Applying Theorem 2.2, we get that C(+)
is a local a-times integrated C-cosine function on X. Now if the injectivity of C' is
added, and C(-)x = 0 on [0,T}) for some = € X. By (2.22), we have j,(-)Cz = 0
on [0, 7)), and so Cx = 0. Hence x = 0, which implies that C(-) is nondegenerate. m

Corollary 2.10. Let C(-) be a local a-times integrated C-cosine function on
X. Assume that C is injective. Then C(-) is nondegenerate if and only if it has a
subgenerator.

Theorem 2.11. Let C(-) be a local a-times integrated C-cosine function on X
which has a subgenerator. Assume that A : D(A) C X — X defined by

D(4)
= {x € X| there exists a unique y, € X such that C(-)x—jo(-)Cx=5(-)y, on [0,TH)}

and Ax = vy, for all x € D(A), is a closed linear operator in X. Then A is the
maximal subgenerator of C(-). Moreover, each subgenerator of C(-) is closable and
its closure is also a subgenerator of C(-).
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Proof. Indeed, if Ay is a subgenerator of C'(-). Clearly, Ag C A. It is easy to see
from Zorn’s lemma that C'(-) has a subgenerator B which is an extension of A, but
does not have a proper extension that is still a subgenerator of C(-), which together
with the definition of A implies that B is the maximal subgenerator of C(-). To show
that A = B or equivalently, A C B, we shall first show that B is closable. Indeed, if
xy € D(B), z, — 0, and Bz, — y in X. Then z; € D(A) and Axy = By — y.
By the closedness of A, we have y = 0. In order to show that B = B ( the closure of
B) or equivalently, B is a subgenerator of C(-). Indeed, if z € D(B) is given, then
zp — z and Bxy, — Bz in X for sequence {z}3°, in D(B). By (2.21), we have
C(t)ak — ja(t)Caxx = [} [s C(r)Baydrds for all k € Nand 0 < ¢ < Tp. Letting
k — oo, we get C(t)x —jqo(t)Cx = fg Jo C(r)Badrds for all 0 < ¢ < T. Since B C
B C A, we also have C(t)z — jo(t)Cz = B [} |5 C(r)zdrds = B [} [ C(r)zdrds
forall z € X and 0 < ¢t < Tj. Consequently, the closure of B is a subgenerator of C(-).
Similarly, we can show that A is also a subgenerator of C'(-) and each subgenerator of
C'(-) is closable and its closure is also a subgenerator of C/(+). In particular, A = B. m

Corollary 2.12. Let C(-) be a nondegenerate local a-times integrated C-cosine
function on X with generator A. Assume that C(-) has a subgenerator. Then A is the
maximal subgenerator of C(-). Moreover, each subgenerator of C(+) is closable and
its closure is also a subgenerator of C(-).

Corollary 2.13. Let C(-) be a nondegenerate local a-times integrated C-cosine
function on X with generator A. Assume that C' is injective. Then A is the maximal
subgenerator of C(-). Moreover, each subgenerator of C(-) is closable and its closure
is also a subgenerator of C(-).

Proof.  This follows from (2.21), (2.22) and the definition of A. |

Theorem 2.14. Let A be a closed subgenerator of a strongly continuous family
C(+) in L(X). Assume that C' is injective. Then CA C AC, and C(-) is a nonde-
generate local a-times integrated C-cosine function on X with generator C~1AC. In
particular, C~YAyC is the generator of C(-) for each subgenerator Ay of C(-).

Proof. ~ We first show that CA C AC. Indeed, if z € D(A) is given, then
Jat2(t)Cx = S(t)x — j1 x S(t)Ax € D(A) and
Ajpia(t)Cx = AS(t)x — Ajy = S(t) Az
= AS(t)x — [S(t) Az — jais(t)C Axl]
= Ja+2 (t>CAx

~ ~—

for all 0 < ¢ < Ty, so that CAz = ACxz. Hence CA C AC. To show that C(-) is a
nondegenerate local a-times integrated C-cosine function on X. By Theorem 2.9, we
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remain only to show that CC(-) = C(:)C or equivalently, cS () = S(-)C. Just as in
the proof of Proposition 2.7, we have [S(-)Cz —CS(-)z] =Ajy * [S(-)Cz —CS(-)z] on
[0,Tp). By a parallel argument of [11, Lemma 1.6], we also have S(-)Cx = CS(")x
on [0,7p). Now if B denotes the generator of C(-). By Corollary 2.13, we have
A C B. By (1.5), we also have C~'AC ¢ C~'BC = B. Conversely, if 2 € D(B)
is given, then j,42(t)Cx = S(t)x — j1 % S(t)Bx € D(A) for all 0 <t < T, so that
Cz € D(A) and

Ajoro(-)Cx = AS(-)x — Ajy * S(-)Ba
= AS()x = [S(-)Bz — ja+2(-)CBa]
= AS()x = [BS()x = ja+2(-)CBa]
= Jat2(-)CBx

on [0,Tp). Hence ACx = CBz € R(C), which implies that x € D(C~tAC) and
C~'ACzx = Bz. Consequently, B c C~1AC. |

Remark 2.15. Let C(-) be a strongly continuous family in L(X). Then C(-) is
a local a-times integrated C-cosine function on X with closed subgenerator A if and
only if S(-) is a local (a + 1)-times integrated C-cosine function on X with closed
subgenerator A.

Remark 2.16. A strongly continuous family in L(X) may not have a subgener-
ator; a local a-times integrated C-cosine function on X is degenerate when it has a
subgenerator but does not have a maximal subgenerator; and a closed linear operator
in X generates at most one nondegenerate local a-times integrated C-cosine function
on X when C is injective.

3. ABSTRACT CAUCHY PROBLEMS

In the following, we always assume that o > 0, C' € L(X) is injective, and A a
closed linear operator in X such that CA C AC. We first note some basic properties
concerning the strong solutions of ACP(A, f,z,y), just as results in [11] when A is
the generator of a nondegenerate a-times integrated C-cosine function on X.

Proposition 3.1. Let A be a closed subgenerator of a nondegenerate local (a+1)-
times integrated C-cosine function C(-) on X. Then for each x € D(A) C()x is the
unique solution of ACP(j,,_,(-)Cz,0,0) in C([0,Ty), [D(A))).

Proposition 3.2. Let A be a closed subgenerator of a nondegenerate local a-times
integrated C-cosine function C(-) on X and C' = {x € X ’ C(-)x is continuously
differentiable on (0,Ty)}. Then
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(i) S(t)C' € D(A) for all 0 < t < Ty;
(ii) for each x €C*  S(-)x is the unique solution of ACP(j.,_(-)Cx,0,0);

(iii) for each x € D(A) S(-)x is the unique solution of ACP(j,_,(-)Cx,0,0)
in C'([0, To), [D(A))).

Proposition 3.3. Let A be the generator of a nondegenerate local a-times in-
tegrated C-cosine function C(-) on X and x € X. Assume that C(t)x € R(C)
for all 0 < t < Ty, and C~*C(-)x is continuously differentiable on (0,Ty). Then
C1S(t)yx € D(A) for all 0 < t < Ty, and C~*S(-)x is the unique solution of
ACP(j,_1(-)x,0,0).

Applying Theorem 2.14, we can investigate an important result concerning the re-
lation between the generation of a nondegenerate local a-times integrated C-cosine
function on X with generator A and the unique existence of strong solutions of
ACP(A, f,z,y), which has been established by another method in [11] when T = co
or in [9] when a = 0 and Ty = oo.

Theorem 3.4. The following statements are equivalent :

(i) A is a subgenerator of a nondegenerate local a-times integrated C-cosine func-
tion C(-) on X;

(ii) for each * € X and g € L}, .([0,T0), X) the problem ACP(j,(-)Cz + j, *
Cyg(-),0,0) has a unique solution in C([0, Tp), X) N C([0, Ty), [D(A)]);

(iii) for each x € X the problem ACP(j,(-)Cz,0,0) has a unique solution in
C2([0, To), X) N ([0, To), [D(A)));

(iv) for each x € X the integral equation v(-)=Aj1 * v(-) +j,(-)Cx has a unique
solution v(+; x) in C([0,Tp), X).

In this case, S(-)x+ S % g(-) is the unique solution of ACP(j,,(-)Cx 4, * Cg(-),0,0)
and v(-;z) = C(+)z.

Proof. We first show that “(i)=(i1)” holds. Indeed, if z € X and g €
L} .([0,Tp), X) are given. We set u(-) = S(-)z+ S * g(-), then u € C2([0.Tp), X) N
C([0, Tv), [D(A)]), u(0) = u'(0) = 0, and
~ t ~
Au(t) = AS(H)z + A/ St — s)g(s)ds
0
t
= C(0)z = Ju0)Cr + [ [0t = 5) = jult = )Cla(s)ds

x—i—/C’t—s 5)ds — [ja(t)Cx 4 jo * Cg(t)]
=u’ Ja(t)Cx + jo x Cy(t)]
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for all 0 < t < Ty. Hence u is a solution of ACP(j,(-)Cx + jo * Cg(+),0,0) in
C2%([0,Tp), X) N C([0, Tp), [D(A)]). The uniqueness of solutions for ACP(j,(-)Cx +
Ja * Cg(+),0,0) follows directly from the uniqueness of solutions for ACP(0, 0, 0).
Clearly, ”(ii)=-(iii)” holds, and (i77) and (iv) both are equivalent. We remain only to
show that ”(iv)=-(i)” holds. Indeed, if C(¢) : X — X is defined by C(t)z = v(-;x)
forall x € X and 0 < t < Tj. Clearly, C(-) is strongly continuous, and satisfies
(2.22). Combining the uniqueness of solutions for the integral equation v(-)=Aj; *
v(-) + jo(-)Cz with the assumption CA C AC, we have v(-;Cx) = Cuv(-;z) for
each € X, which implies that C(¢) for 0 < t < Tj are linear, and commute with
C. Now let {t;}32, be an increasing sequence in (0,7p) such that ¢, — T, and

o0
C([0,Tp), X) a Frechet space with the quasi-norm | - | defined by |v| = ) %
k=1

for v € C([0, Tp), X ). Here ||v|x = e |v(t)]| for all k € N. To show that C(-) is
tel0,t

Lk

a family in L(X ), we need only to the linear map 7 : X — C([0,Tp), X ) defined by
n(z) = v(-;z) for x € X, is continuous or equivalently, n : X — C([0,Tp), X) is a
closed linear operator. Indeed, if {1}, is a sequence in X such that x; — 2 in X
and n(z;) — v in C([0, Tp), X), then v(-; xx)=Aj1 * v(-; xk) + jol(-)Cxy on [0, Tp).
Combining the closedness of A with the uniform convergence of {n(xx)}3; on [0, tx],
we have v(-)=Aj;1 * v(-) + jo(-)Cx on [0,Tp). By the uniqueness of solutions for
integral equations, we have v(-)=v(-; z)=n(x). Consequently, n : X — C([0,Ty), X)
is a closed linear operator. To show that A is a subgenerator of C(-), we remain only
to show that S(t)A C AS(t) for all 0 < t < Tp. Indeed, if z € D(A) is given, then
S(t)x — jat2(t)Cax=Aj1 x S(t)z=j1 x AS(t)x for all 0 < ¢t < Tp, and so

S(t) Az — Ajy = S(t) Az
= Ja+2(t)CAz
= Aja+2(t)Cx
= AS(t)x — Ajy = S(t) Az
for all 0 < t < Tp. Hence Ajy * [S(-)Ax — AS(-)x]=S(-)Az — AS(-)z on [0, Ty).
By the uniqueness of solutions of ACP(0,0,0), we have S(-)Az=AS(-)x on [0, Tp).

Applying Theorem 2.11, we get that C(+) is a nondegenerate local a-times integrated
C-cosine function on X with subgenerator A. ]

By slightly modifying the proof of [11, Theorem 2.4], we can apply Theorem 3.4
to obtain the next result.

Theorem 3.5. Assume that R(C') C R(A — A) for some \ € F, and ACP(j,_(-)
x,0,0) has a unique solution in C([0, Tp), [D(A)]) for each x € D(A) with (A—A)x €
R(C). Then A is a subgenerator of a nondegenerate local (o + 1)-times integrated
C-cosine function on X.



Note on Local Integrated C-cosine Functions and Abstract Cauchy Problems 975

Proof.  Clearly, it suffices to show that the integral equation

(3.1) v(-) = A/O. /Osv(r)drds+ja+1(~)0x

has a (unique) solution v(-;z) in C([0,Tp), X)) for each z € X. Indeed, if v € X
is given, then there exists a y, € D(A) such that (A — A)y, = Cz. By hypothe-
sis, ACP(ja—1(*)ya, 0, 0) has a unique solution u(-;y,) in C([0, Tp), [D(A)]). By the
closedness of A and the continuity of Au(-), we have [ [ u(r; y,)drds € D(A) and

t s t s
A/ / u(r; yy,)drds = / / Au(r; yg)drds = u(t; yz) — jat1(t)y. € D(A)
0o Jo 0 Jo

for all 0 <t < Ty, so that

O Aultig) = - AA [ [ ulrs g)drds + o (]
[ formsnci

t prs
= A/ / (A — A)u(r; yg)drds + jo+1(t)Cx
0o Jo

for all 0 < ¢ < Typ. Hence v(-;2) = (A — A)u(-;y,) is a solution of (3.1) in
C([0,Tp), X). u

Combining Theorem 3.4 with Theorem 3.5, the next theorem is also attained.

Theorem 3.6. Assume that R(C)) C R(\ — A) for some \ € F, and ACP(j,_,(-)
z,0,0) has a unique solution in C*([0, Ty), [D(A)]) for each x € D(A) with (A\—A)x €
R(C). Then A is a subgenerator of a nondegenerate local a-times integrated C-cosine
function on X.

Proof.  Indeed, if z € X is given, and u(-;y,) and v(-;x) both are given as
in the proof of Theorem 3.5. By hypothesis, v(-; x) is continuously differentiable on
[0,Tp) and v'(t;z) = (A — A)u/(t;y,) for all 0 < ¢t < Ty. By (3.2), we also have
V()= A fg v(r;z)dr+ jo(t)Cx for all 0 < t < Tp. In particular, v'(0; z) = 0, and
so V(-5 2)=Aj1 %V (+;2) + jo(-)Cz on [0, Tp). Hence v/(+; x) is a (unique) solution of
the integral equation v(-)=A471 * v(:) + jo(-)Cz in C(]0, Tp), X). |

Since C"AC = A and R((A — A)71C) = C(D(A)) if p(A) # 0 (see [21]),
we can apply Proposition 3.1, Theorem 3.5 and Theorem 3.6 to obtain the next two
corollaries.

Corollary 3.7. Let A : D(A) — X be a closed linear operator with nonempty
resolvent set. Then A is the generator of a nondegenerate local (a+1)-times integrated
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C-cosine function on X if and only if for each x € D(A) ACP(j,_,(-)Cz,0,0) has a
unique solution in C([0,Tp), [D(4)]).

Corollary 3.8. Let A : D(A) — X be a closed linear operator with nonempty
resolvent set. Then A is the generator of a nondegenerate local a-times integrated
C-cosine function on X if and only if for each x € D(A) ACP(j,,_,(-)Cz,0,0) has a
unique solution in C*([0,Ty), [D(A)]).

Just as in [11, Theorems 2.9 and 2.10], we can apply Theorem 3.4 to obtain the
next two theorems.

Theorem 3.9. Let A : D(A) — X be a densely defined closed linear operator.
Then the following are equivalent :

(i) A is a subgenerator of a nondegenerate local (a+ 1)-times integrated C-cosine
Sunction S(-) on X;

(ii) for each x € D(A) ACP(j,_,(-)Cz,0,0) has a unique solution u(-; Cz) in
C([0,Ty), [D(A)]) which depends continuously on z. That is, if {xp}02, is a
Cauchy sequence in (D(A), |- ||), then {u(-; Czy)}5% converges uniformly on
compact subsets of [0, Tp).

Proof.  (1)=(ii). It is easy to see from the definition of a subgenerator of S(-)
that S(-)z is the unique solution of ACP(j,—1(-)Cz,0,0) in
C([0,Tp), [D(A)]) which depends continuously on € D(A). (ii)=-(i). In view of
Theorem 3.4, we need only to show that for each x € X (3.1) has a unique solution
v(;z) in C([0,Tp), X). Indeed, if x € X is given. By the denseness of D(A),
we have z,, — =z in X for some sequence {z,,}3°_; in D(A). We set u(-; Czp,)
to denote the unique solution of ACP(jo—1(-)Czp,,0,0) in C([0,Tp), [D(A)]). By
hypothesis, we have u(-; Cz,,) — () uniformly on compact subsets of [0,7}) for
some u € C([0,Tp), X), so that [ [ u(r; Cap)drds — [, [ w(r)drds uniformly on
compact subsets of [0, 7p). Since Au(-; Cxyy) = u”(+; Cxpy) — jo—1(-) Cxy, o0 (0, Tp),

we have
A//u(r;C’xm)drds
0 Jo

(3.3) b
= / / Au(r; Czp)drds = u(+; Cxy) — jat1(:)Cxpy,
0 Jo

on [0,7Tp) for all m € N. Clearly, the right-hand side of the last equality of (3.3)
converges uniformly to u(:) — jo+1(-)Cz on compact subsets of [0, 7p). It follows
from the closedness of A that [ [ u(r)drds € D(A) for all 0 < ¢ < Ty and
A [y [ u(r)drds=u(-) = jat1(-)Cx on [0, Tp), which implies that u(-) is a (unique)
solution of (3.1) in C([0, Tp), X). ]
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Theorem 3.10. Let A : D(A) — X be a densely defined (closed) linear operator.
Then the following are equivalent :

(i) A is a subgenerator of a nondegenerate local a-times integrated C-cosine func-
tion C(+) on X;

(ii) for each x € D(A) ACP(j,_,(-)Cx,0,0) has a unique solution u(-; Cx) in
CY([0,Tv), [D(A)]) which depends continuously differentiable on x. That is, if
{zn}o2 is a Cauchy sequence in (D(A), | - ), then {u(-; Cx,)}52, and
{u/(+; Cxp)}5°, both converge uniformly on compact subsets of [0, Ty).

Proof.  (1)=(ii). For each 0 <t < Ty and = € X, we set S(t)z = fg C(r)zdr.
Then S(-)x is the unique solution of ACP(j,_1(-)Cx,0,0) in C'([0,Tp), [D(A)]).
Now if {z,}>2, is a Cauchy sequence in (D(A), |- ||). We set u(-; Cxy,) = S(-)zn
for n € N, then {u(-;Czy,)}5%, and {u/(-; Cx,)}52, both converge uniformly on
compact subsets of [0,7p). (ii)=-(i). For each z € X and 0 < ¢t < Ty, we define
u(t) = nlerolo u(t; Cxy,) whenever {z, }22 , is a sequence in D(A) which converges to x
in X. By hypothesis, u(-; Cz;,) — u(-) and u/(+; Czp,) — 4/ (+) uniformly on compact
subsets of [0, Tp) for some u € C([0, Tp), X). Just as in the proof of Theorem 3.9,
we also have

t s t
(3.4) A/ / u'(r; Copy)drds = A/ u(r; Czp)drds = u'(+; Czp) — jol-)Capy,
0o Jo 0

on [0,Tp) for all m € N. Similarly, we also have A [; [Ju/(r)drds=u/(-) — jo(-)Cx
on [0, 7)), which implies that «/(-) is a solution of the integral equation v(-)=Aj; *
v(-) 4+ ja(-)Cz in C([0, Tp), X ). The uniqueness of solutions for the integral equation
v(-)=Aj1 * v(:) + ja(:)Cz in C([0,Tp), X) follows from the uniqueness of solutions
for the integral equation (3.1) in C([0, Tp), X). |

We end this paper with several illustrative examples.

Example 1. Let X = C(R), and C(¢) for ¢ > 0 be bounded linear operators on X
defined by C(t) f(z) = 3[f(z +t) + f(z —t)] for all z € R. Then for each 8 > —1,

jg* C(-) is a (B + 1)-times integrated cosine function on X with generator %2, but
C(-) is not a cosine function on X.

Example 2. Let k be a fixed nonnegative integer, and let C(¢) for ¢ > 0 and
C' be bounded linear operators on ¢y ( the family of all convergent sequences in
with limit 0 ) defined by C(t)z = {z,(n — k)e™ fg Ja—1(t — s) coshnsds}>° | and
Cr = {x,(n —k)e ™}, for all z = {z,}52; € ¢o, then {C()|0 < ¢ < 1}
is a local a-times integrated C-cosine function on ¢y which is degenerate except for

k = 0 and generator A defined by Az = {n?z,}°°, for all z = {,}°°, €
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with {n%z,}°° | € co, and for each r > 1 {C(¢)|0 < ¢t < r} is not a local a-times
integrated C-cosine function on ¢g. Now if £ € N, then A, : ¢g — ¢o for a € F
defined by A,z = {n?y,}°, for all z = {x,}52, € co with {n?z,}>2, € ¢, are
subgenerators of {C(¢)|0 < ¢ < 1} which do not have proper extensions that are still
subgenerators of {C(t)|0 < t < 1}. Here y, = ak’zy, if n = k, and y,, = n’z,
otherwise. Consequently, {C(¢)|0 <t < 1} does not have a maximal subgenerator.

Example 3. Let C € L(X) be fixed, and let C(-) be an a-times integrated C-cosine
function on X defined by C(t) = j,(¢t)C for ¢t > 0. Then C(+) is nondegenerate with
generator 0 ( the zero operator on X) if and only if C is injective. Now if D(-) is a
nondegenerate local a-times integrated D-cosine function on a Banach space Y over
F. Then C(-) defined by C(t)(z,y) = (C(t)x, D(t)y) for all 0 < t < Ty and (z,y) €
X xY, is alocal a-times integrated (C,D)-cosine function on the product Banach space
X xY. Here (C,D): X xY — X xY is defined by (C, D)(x,y) = (Cz, Dy) for
all (z,y) € X x Y. In this case, C(-) is nondegenerate with generator (0, D) defined
by (0, D)(z,y) = (0, Dy) for all z € X and y € D if and only if C' is injective. Next
if X is the direct sum of X; and X5 for some nonzero subspaces X; and Xo of X,
C : X — X is the projection of X to a nonzero subspace of X1, and A : X — X is the
projection of X to a nonzero subspace of X9, then A : X — X and the zero operator
on X are subgenerators of C(-) which do not have common proper extensions that are
still subgenerators of {C(¢)|0 < ¢ < 1}. In particular, C(-) does not have a maximal
subgenerator. Similarly, we can show that (0, D) and (A, D) are subgenerators of the
degenerate local a-times integrated (C, D)-cosine function C'(-) on X x Y which do
not have common proper extensions that are still subgenerators of C(-). In particular,

C'(+) does not have a maximal subgenerator.

Example 4. Let X = Cy(R)( or L>®(R)), and A be the maximal differential

k A
operator in X defined by Au = > ajD’u on R for all w € D(A), then UCy(R)
7=0
(or Co(R)) = D(A). Here ag, a1, ,a; € C and Diu(z) = ul)(x) for all
x € R. It is shown in [2, Theorem 6.7] that A generates an exponentially bounded,
norm continuous 1-times integrated cosine function C(-) on X which is defined by
(Ct)f)(z) = \/%_W(qﬁt « f)(x) for all f € X and t > 0 if the real-valued polynomial

k A ~
p(x) = > a;(iz)’ satisfies sup p(x) < co. Here ¢; denotes the inverse Fourier trans-
7=0 rzeR

form of ¢, with ¢(z) = fg cosh(+/p(x)s)ds. Applying Theorem 3.4, we get that for

each f € X and continuous function g on [0, Tp) x R with fg sup |g(s, z)|ds < oo for
zeR

all 0 < ¢ < T, the function u on [0, Tp) x R defined by u(t,) = —i= [y [, (t -

8)bs(x = ) f(W)dyds + =[5 Jo 7" [Z5 (8 = 7 = )6 = y)g(s, y)dydsdr for all
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0 <t<Tyand x € R, is the unique solution of

0?u(t, x)
ot?

k t
:Zaj(a%:)ju(t, a:)—l—tf(a:)—i—/o (t—s)g(s,z)ds for te(0,Tp) and a.e. z€R,
=0

3}
u(0,2z) = 0 and 8—?(0,3}) =0 forae z€R
\

in C2([07 TO>7 X) N C([07 TO>7 [D(A>D
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