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ON SHARP LOWER BOUND OF THE GAP FOR THE FIRST
TWO EIGENVALUES IN THE SCHRÖDINGER OPERATOR

Yue He

Abstract. [8] is a deep study in the sharp lower bound estimate of the gap for
the first two eigenvalues in Schrödinger operator on a smooth bounded convex
domain in R

n. In this paper we give another simple proof of the main result in
[8]. Although the methods used in here due to [8] on the whole, to some extent
we deal with the singularity of some function and also simplify greatly calculation
in [8].

1. INTRODUCTION

The study in the estimates of the eigenvalues has a long history. Meanwhile, there
are many works in this field. Among these works, Li-Yau’s results (e.g., [2-6]) and
Zhong’s results (e.g., [7, 8]) are all very well known. In 1979, the maximum principle
method was used by Li [2] in proving eigenvalue estimates for compact manifolds. To
be more precise, the maximum principle is used to deduce the gradient estimate on
the eigenfunction, and then the eigenvalue estimates is obtained via the above gradient
estimate. This method was then refined and used by many authors ([3, 7], etc) for
obtaining sharp eigenvalue estimates.

Now we state some results on the lower bound estimate of the gap for the first two
eigenvalues in Schrödinger operator on a smooth bounded convex domain in R

n.
In 1985, Yau and others [6] use the method of the gradient estimate to deduce

estimates on λ2 − λ1. one of the main results in [6] is the following theorem.

Theorem 1.1. (Singer-Wong-Yau-Yau). Let Ω be a smooth strictly convex bounded
domain in R

n and W : Ω̄ �→ R a nonnegative convex function. Suppose λ1 and λ2 are
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the first and second nonzero eigenvalues of (2.1), then the following pinch inequality
holds

(1.1)
π2

4d2
� λ2 − λ1 � 4nπ2

D2
+

4(M −m)
n

,

where d is the diameter of Ω, D = the diameter of the largest inscribed ball in Ω,

M = sup
Ω̄

W and m = inf
Ω̄
W.

Later in 1986, the above estimate of lower bound was improved by Yu-Zhong in
[8] via following the similar techniques as [6] and [7] to λ2 − λ1 � π2

d2 . Yu-Zhong’s
result was thought to be the sharp estimate of lower bound of the gap for the first two
eigenvalues under the above assumption. Next we state Yu-Zhong’s result asserted in
[8] as follows.

Theorem 1.2. (Yu− Zhong). Let Ω be a smooth strictly convex bounded domain
in R

n and W : Ω̄ �→ R a nonnegative convex function. Suppose λ1 and λ2 are the
first and second nonzero eigenvalues of (2.1). Then

(1.2) λ2 − λ1 � π2

d2
,

where d is the diameter of Ω.

In present paper we give another simple proof of Theorem 1.2. Our argument is
based on many early works, e.g., Li-Yau [5], Singer-Wong-Yau-Yau [6] and Yu-Zhong
[8]. One feature of this argument is that it avoids various kinds of trouble from the
singularity of |∇u|2 /(1 − u2) in those papers. Although our argument many ways
analogous to [8], we can readily handle the above singularity, and reduce the difficulty
in calculation to a certain extent.

2. PRELIMINARIES

Let Ω ⊂ R
n be a smooth strictly convex bounded domain and W : Ω̄ �→ R

a nonnegative convex smooth function. Consider the following Dirichlet eigenvalue
problem of Schrödinger equation

(2.1)
{ −Δf +Wf = λf in Ω,
f = 0 on ∂Ω.

According to a result of [12], the eigenvalues of the Dirichlet problem (2.1) can be
arranged in nondecreasing order as follows

0 < λ1 < λ2 � λ3 � · · · .
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Let f1 and f2 be the first and second eigenfunctions of (2.1), respectively. It is well
known that (e.g. [12]) f1(x) > 0, x ∈ Ω, and u = f2/f1 is smooth to the boundary
∂Ω of Ω (e.g. [6], p.331). Direct computation implies that

(2.2) Δu+ λu+ 2∇u · ∇(log f1) = 0 in Ω,

where λ = λ2 − λ1 > 0. Clearly, log f1 is well-defined since f1 > 0 on Ω. Without
loss of generality, we may assume that

max u = 1, min u = −k and 0 < k � 1.

Set {
ũ = (u− 1−k

2 )/1+k
2

a = 1−k
1+k , 0 � a < 1.

So (2.2) can be rewitten as follows

(2.3)
{

Δũ+ λ(ũ+ a) + 2∇ũ · ∇ log f1 = 0 in Ω,
max ũ = 1, min ũ = −1.

Now if we set θ = arcsin ũ, Then ũ = sin θ and −π
2 � θ � π

2 . Define a subset of
Ω̄ as follows

Σ∗ =
{
x ∈ Ω̄ : θ(x) =

π

2
or θ(x) = −π

2
}
.

By (2.3), a straight forward calculation shows that θ satisfies

(2.4) cos θ ·Δθ− sin θ · |∇θ|2 +λ(sin θ+a)+2 cos θ ·∇θ ·∇ log f1 = 0 in Ω.

In particular,

(2.5) Δθ =
sin θ
cos θ

· |∇θ|2 − λ(sinθ + a)
cos θ

− 2∇θ · ∇ logf1 in Ω \ Σ∗.

From (2.4), we know that

(2.6) |∇θ|2 = λ(1− a) as θ = −π
2
,

and

(2.7) |∇θ|2 = λ(1 + a) as θ =
π

2
.

We also define a function F : (−π
2 ,

π
2 ) �→ R as follows

(2.8) F (θ0) = max
x∈Ω, θ(x)=θ0

|∇θ(x)|2 , ∀ θ0 ∈ (−π
2
,
π

2
).
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Obviously, F is well-defined. Actually, F (θ0) is not something but an extreme value
of f with condition θ(x) = θ0. It is very easy to verify that F (θ) is continuous in
(−π

2 ,
π
2 ). Moreover, by (2.6) and (2.7), if we define

F (−π
2

) = F (−π
2

+ 0) = λ(1− a),

and
F (
π

2
) = F (

π

2
− 0) = λ(1 + a),

then F (θ) can be extended a continuous function on [−π
2 ,

π
2 ].

3. A ROUGH ESTIMATE OF |∇θ|2

Firstly, in a similar way owing to [6, 8] and [10], we get the following lemma.

Lemma 3.1. Let g(θ) be a smooth function defined on [−π
2 ,

π
2 ]. Assume that

G(x) = |∇θ|2 + g
(
θ(x)

)
arrives on its maximum at p ∈ ∂Ω \Σ∗. Then ∇θ(p) = 0.

Proof. We pick an orthonormal frame {e1, e2, · · · , en} around p such that e1
is the unit normal of ∂Ω pointing outward to Ω. We also denote below by ∂

∂x1
the

restriction on ∂Ω of the directional derivative corresponding to e1. By the maximality
of G(x) at p, we also have

(3.1) 0 � ∂G(p)
∂x1

= 2
n∑

i=1

θi(p) · θi1(p) + g′
(
θ(p)

) · θ1(p)
In addition, we know by (2.5) that

∇θ · ∇ log f1 =
∇θ · ∇f1

f1
=

1
f1

n∑
i=1

θi · (f1)i

achieves finite value on ∂Ω \ Σ∗. But f1 = 0 on ∂Ω, thus

(3.2) θ1 · (f1)1 +
n∑

i=2

θi · (f1)i =
n∑

i=1

θi · (f1)i = 0 on ∂Ω \ Σ∗.

Since f1 ≡ 0 on ∂Ω and ei (2 � i � n) are all the tangent vectors of ∂Ω,

(f1)i |∂Ω= 0 for all 2 � i � n.
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Hence, (3.2) can be reduced to

θ1 · (f1)1 = 0 on ∂Ω \ Σ∗.

However, Hopf’s lemma asserts that (f1)1(p) = ∂f1(p)
∂x1

	= 0. Therefore,

(3.3) θ1(p) = 0.

Putting (3.3) into (3.1), we then have

(3.4) 0 � ∂G(p)
∂x1

= 2
n∑

i=2

θi(p) · θi1(p)

Note θ1(p) = 0 and recall the definition of second fundamental form of a hyper-
surface in R

n, one can derive

(3.5) θi1 = −
n∑

j=2

hijθj ,

where (hij)2�i,j�n is the second fundamental form of ∂Ω relative to e1.
It is known that Ω is strictly convex if and only if (hij)2�i,j�n is positive definite.

Putting (3.5) into (3.4), we thus have

0 � ∂G(p)
∂x1

= −2
n∑

i,j=2

θi(p)hij(p)θj(p) � 0

Hence, θi(p) = 0, 2 � i � n. By (3.3) again, we have ∇θ(p) = 0.

As [7] points out that the estimate of the upper bound of |∇θ|2 plays an important
role in the estimate of the lower bound for λ = λ2 − λ1. In the following we establish
a rough estimate for |∇θ|2.

Lemma 3.2. (see [7]) The following estimate is valid

(3.6) |∇θ(x)|2 � λ(1 + a), ∀ x ∈ Ω.

Moreover,

(3.7) F (θ) � λ(1 + a).

Proof. Suppose that |∇θ|2 attains its local maximum at x0 ∈ Ω. Clearly, (2.6)
and (2.7) imply that (3.6) holds in the case: x0 ∈ Σ∗. Without loss of generality, we
may assume further that x0 ∈ Ω̄ \ Σ∗. Thus θ0 = θ(x0) ∈ (−π

2 ,
π
2 ). We easily know

from Lemma 3.1 that ∇θ(x0) = 0 if x0 ∈ ∂Ω\Σ∗, . Obviously, the conclusion is valid
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in this case. So, we suppose that x0 ∈ Ω \ Σ∗ in the rest of the proof. One compute
easily that

1
2

(|∇θ|2)j =
1
2

∑
i

(θ2i )j =
∑

i

θiθij ,

and

(3.8)

1
2

Δ(|∇θ|2) =
1
2

∑
j

(|∇θ|2)jj =
∑

j

(∑
i

θiθij
)
j

=
∑
i,j

(
θ2ij + θiθijj

)
=

∣∣∇2θ
∣∣2 + ∇θ · ∇(Δθ).

Putting (2.5) into (3.8), we have

1
2

Δ(|∇θ|2) =
∣∣∇2θ

∣∣2 + ∇θ · ∇[ sin θ
cos θ

· |∇θ|2 − λ(sinθ + a)
cos θ

−2∇θ · ∇ log f1
]

=
∣∣∇2θ

∣∣2 + ∇θ · ∇( sin θ
cos θ

) · |∇θ|2 + ∇θ · sin θ
cos θ

· ∇(|∇θ|2)(3.9)

−λ · ∇θ · [∇( sin θ
cos θ

)
+ a · ∇( 1

cos θ
)]

−2(∇θ · ∇2θ) · ∇ logf1 − 2∇θ · (∇θ · ∇2 log f1).

A direct calculation leads to that

(3.10) ∇( sin θ
cos θ

)
=

∇(sin θ) · cos θ − sin θ · ∇(cos θ)
cos2 θ

=
∇θ

cos2 θ
,

and

(3.11) ∇( 1
cos θ

)
=

−1
cos2 θ

· (− sin θ) · ∇θ =
sin θ · ∇θ

cos2 θ
.

Putting (3.10) and (3.11) into (3.9), we obtain

1
2

Δ(|∇θ|2) =
∣∣∇2θ

∣∣2 +
|∇θ|4
cos2 θ

+ ∇θ · sin θ
cos θ

· ∇(|∇θ|2)

−λ · |∇θ|2 · 1 + a sin θ
cos2 θ

−∇(|∇θ|2) · ∇ logf1(3.12)

−2∇θ · (∇θ · ∇2 log f1).

Since W and Ω are all convex, log f1 is concave by assumption, according to a
result of Brascamp and Liep [11], log f1 is concave, i. e., (∇2 log f1) is non-positive
definite. Thus

(3.13) ∇θ · (∇θ · ∇2 log f1) � 0.
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In addition, according to maximum principle, we easily know that at x0

(3.14) ∇(|∇θ|2) = 0 and Δ(|∇θ|2) � 0,

Noticing that (3.13) and (3.14), we deduce from (3.12) that at x0

0 � |∇θ|4
cos2 θ

− λ · |∇θ|2 · 1 + a sin θ
cos2 θ

.

Dividing by |∇θ|2 and multiplying by cos2 θ successively, it follows that at x0

0 � |∇θ|2 − λ(1 + a sin θ).

Hence we have
|∇θ(x0)|2 � λ(1 + a sin θ0) � λ(1 + a).

The proof is complete.

4. THE ESTIMATE OF F (θ)

In the sequel, without loss of generality, we may assume 0 < a < 1. In fact,
F (θ) � λ is the best estimate of F when a = 0. What we want now is get a more
precise estimate on F (θ) than Lemma 3.2. For this purpose, let us introduce the
function φ(θ) : Ω �→ R such that

(4.1) F (θ) = λ[1 + aφ(θ)].

By Lemma 3.2, it is also easy to see that φ(θ) � 1. We shall also need the following
technique lemma to estimate accurately φ(θ).

Lemma 4.1. (see [7]) Assume that h : [−π
2 ,−π

2 ] �→ R is a nondecreasing function,
i.e., h′(θ) � 0, and satisfies

(1) h(θ) � φ(θ),
(2) there exists some θ0 ∈ (−π

2 ,−π
2 ), such that h(θ0) = φ(θ0) � −1.

Then the following estimate holds

(4.2) φ(θ0) � sin θ0 − sin θ0 · cos θ0 · h′(θ0) +
cos2 θ0

2
· h′′(θ0).

Proof. Set
E(x) =

1
2

{
|∇θ(x)|2 − λ

[
1 + ah

(
θ(x)

)]}
.

Obviously, E(x) � 0 for all x ∈ Ω̄. By (2.8), we know that there exists some
x0 ∈ Ω̄ \ Σ∗ such that θ(x0) = θ0 and F (θ0) = |∇θ(x0)|2. Thus E(x) achieves its
maximum 0 at x0, i. e.,
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(4.3) |∇θ(x0)|2 = λ[1 + aφ(θ0)] = λ[1 + ah(θ0)].

Obviously, it is easy to verify that the hypothesis of Lemma 3.1 is satisfied if 2 E(x)
is being used in place of G(x). By Lemma 3.1, if x0 ∈ ∂Ω \ Σ∗, then ∇θ(x0) = 0.
Since 0 < a < 1 and φ(θ0) � −1,

0 = E(x0) =
1
2

{
|∇θ(x0)|2 − λ

[
1 + ah(θ0)

]}
� −λ(1− a)

2
< 0.

But this is a contradiction. Hence, x0 ∈ Ω \ Σ∗. It is obvious that at x0

(4.4) ∇E = 0 and ΔE � 0,

by maximum principle again. Direct computation shows that

Ej =
∑

i

θi · θij − λa

2
h′(θ) · θj ,

namely,

∇E =
1
2

[∇(|∇θ|2) − λah′(θ) · ∇θ] = ∇θ · ∇2θ − λa

2
h′(θ) · ∇θ.

Since ∇E = 0 at x0,

(4.5) ∇(|∇θ|2) = 2∇θ · ∇2θ = λah′(θ0) · ∇θ at x0.

By directly calculating and applying (2.5), we also obtain

1
2

Δ
[
λ(1 + ah)

]
=

1
2

∑
j

[
λ(1 + ah)

]
jj

=
λa

2

∑
j

(
h′ · θj

)
j

=
λa

2

∑
j

(h′′ · θ2j + h′ · θjj) =
λa

2
(h′′ · |∇θ|2 + h′ · Δθ)(4.6)

=
λa

2

{
h′′ · |∇θ|2 + h′ · [ sin θ

cos θ
· |∇θ|2 − λ(sinθ + a)

cos θ
−2∇θ · ∇ logf1

]}
.

Combining (3.12) with (4.6), we hence obtain

(4.7)

ΔE =
∣∣∇2θ

∣∣2 +
|∇θ|4
cos2 θ

+ ∇θ · sin θ
cos θ

· ∇(|∇θ|2)

−λ · |∇θ|2 · 1 + a sin θ
cos2 θ

− 2(∇θ · ∇2θ) · ∇ log f1

−2∇θ · (∇θ · ∇2 log f1) − λa

2

{
h′′ · |∇θ|2

+h′ · [ sin θ
cos θ

· |∇θ|2 − λ(sin θ + a)
cos θ

− 2∇θ · ∇ log f1
]}
.
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Inserting (4.5) into (4.7), it is easy to deduce that at x0

ΔE =
∣∣∇2θ

∣∣2 +
|∇θ|4
cos2 θ

+ λah′ · sin θ
cos θ

· |∇θ|2

−λ · |∇θ|2 · 1 + a sin θ
cos2 θ

− λah′ · ∇θ · ∇ log f1

−2∇θ · (∇θ · ∇2 log f1) − λa

2

{
h′′ · |∇θ|2

+h′ · [ sin θ
cos θ

· |∇θ|2 − λ(sin θ + a)
cos θ

− 2∇θ · ∇ log f1
]}
.

Rearranging the terms, the above equality reduces to

ΔE =
∣∣∇2θ

∣∣2 +
|∇θ|4
cos2 θ

+ λah′ · sin θ
cos θ

· |∇θ|2

−λ · |∇θ|2 · 1 + a sin θ
cos2 θ

− 2∇θ · (∇θ · ∇2 log f1)(4.8)

−λa
2

{
h′′ · |∇θ|2 + h′ · [ sin θ

cos θ
· |∇θ|2 − λ(sinθ + a)

cos θ
]}
.

By virtue of (4.3) and (4.4), we derive from (4.8) that at x0

0 �
∣∣∇2θ

∣∣2 +
λ2(1 + ah)2

cos2 θ
+ λ2ah′(1 + ah)

sin θ
cos θ

−λ2(1 + ah)
1 + a sin θ

cos2 θ
− 2∇θ · (∇θ · ∇2 log f1)

−λa
2

{
h′′ · |∇θ|2 + h′ · [ sin θ

cos θ
· |∇θ|2 − λ(sin θ + a)

cos θ
]}

=
∣∣∇2θ

∣∣2 +
λ2(1 + ah)2

cos2 θ
− λ2(1 + ah)

1 + a sin θ
cos2 θ

(4.9)

−2∇θ · (∇θ · ∇2 log f1) +
λ2a

2

{
− h′′(1 + ah)

+h′ · [ sin θ
cos θ

(1 + ah) +
(sin θ + a)

cos θ
]}
.

Obviously, we easily know by (3.13) that the first term and the fourth term on the
right-hand side can be dropped because they are nonnegative. After dividing by λ2a,
multiplying by cos2 θ and rearranging the terms successively, we are led to



10 Yue He

(4.10)

0 � (1 + ah)2

a
− (1 + ah)(1 + a sin θ)

a
− h′′(1 + ah) cos2 θ

2

+
h′(1 + ah) cos θ sin θ

2
+
h′ cos θ(sin θ + a)

2

= (1 + ah)(h− sin θ) − h′′(1 + ah) cos2 θ
2

+
h′ cos θ

2
[(1 + ah) sin θ + (sin θ + a)].

Since h(θ0) = φ(θ0) � −1 and φ(θ0) = φ
(
θ(x0)

)
� 1, then |h(θ0)| � 1.

From |h| = |h(θ)| � 1 at x0, and 0 < a < 1, it follows that at x0

a � ah sin θ and 1 + ah > 0.

Thus, at x0

(4.11) sin θ + a � sin θ + ah sin θ = (1 + ah) sin θ

Hence, under the assumption that h′(θ) � 0, using (4.11), we proceed by tackling with
(4.10) at x0 as follows

0 � (1 + ah)(h− sin θ) + h′(1 + ah) cos θ sin θ − h′′(1 + ah) cos2 θ
2

.

Dividing by 1 + ah, we have at x0

(4.12) 0 � (h− sin θ) + h′ cos θ sin θ − h′′ cos2 θ
2

.

Obviously, (4.2) follows from (4.12) immediately.

The remaining part of the present paper works exactly as in [7] and [8]. For
the completeness we briefly sketch a proof of Theorem 1.2 below which only use the
methods owing to [7] and [8]. We refer the reader to consult [7], [8] and [10] for more
details.

Lemma 4.2. (see [7]) Define function ψ as follows

(4.13)

{
ψ(θ) =

4
π

(θ+cos θ sin θ)−2 sin θ

cos2 θ , θ ∈ (−π
2 ,

π
2 ),

ψ(−π
2 ) = −1, ψ(π

2 ) = 1.
Then ψ ∈ C0[−π

2 ,
π
2 ] ∩C2(−π

2 ,
π
2 ), satisfies ψ′(θ) � 0 and

ψ(θ) − sin θ + sin θ · cos θ · ψ′(θ) − cos2 θ
2

· ψ′′(θ) = 0.

Moreover, the following properties
(4.14) |ψ(θ)| � 1 and ψ(−θ) = −ψ(θ).
hold for any θ ∈ [−π

2 ,
π
2 ].
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Using Lemma 4.1, Lemma 4.2 and the method of proof by contradiction, we easily
deduce the following lemma. For convenience of the reader, we give a proof below
which is due to Zhong-Yang [7].

Lemma 4.3. (see [7]). Assume that φ(θ) and ψ(θ) are defined by (4.1) and (4.13),
respectively. Then

(4.15) φ(θ) � ψ(θ).

Proof. Assume that (4.15) is not true. Since φ(±π
2 ) = ±1 = ψ(±π

2 ), then there
exists some θ0 ∈ (−π

2 ,
π
2 ) such that

(4.16) σ = φ(θ0)− ψ(θ0) = max
−π

2
�θ�π

2

{φ(θ) − ψ(θ)} > 0.

Set h̃(θ) = ψ(θ) + σ. Obviously, h̃′(θ) = ψ′(θ) � 0,

h̃(θ) = ψ(θ) + σ � φ(θ)

and
h̃(θ0) = φ(θ0) = ψ(θ0) + σ � −1 + σ > −1.

In place of h(θ) in Lemma 4.1 by h̃(θ), we therefore get by Lemma 4.1 and Lemma
4.2 that

φ(θ0) � sin θ0 − sin θ0 · cos θ0 · h̃′(θ0) +
cos2 θ0

2
· h̃′′(θ0)

= sin θ0 − sin θ0 · cos θ0 · ψ′(θ0) +
cos2 θ0

2
· ψ′′(θ0) = ψ(θ0).

But this contradicts (4.16).

Corollary 4.1. (see [7]). The following estimate holds.

(4.17) F (θ) � λ[1 + aψ(θ)],

where F (θ) and ψ(θ) are defined by (2.8) and (4.13), respectively.

Our argument above establishes the inequality (4.17), which is the refined estimate
of the upper bound for F (θ) as required.

5. PROOF OF THEOREM 1.2

We stress here that although a reasoning similar to the one in [7] and [8] will give
the claim, our proof is slightly different from [7] , [8] and [10]. We now use the
estimate of F (θ) to prove Theorem 1.2 in the following.

Proof. (4.17) implies that
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(5.1) λ
1
2 � |F (θ)| 12√

1 + aψ(θ)
� |∇θ|√

1 + aψ(θ)
,

where ψ(θ) is defined by (4.13).
Take x1, x2 ∈ Ω such that θ(x1) = −π

2 , θ(x2) = π
2 . We denote by d′ the length of

the straight line γ joining x1 and x2. Obviously, d′ � d.
Using (4.14) and the the following inequality of analysis

1√
1 − x

+
1√

1 + x
� 2, ∀ x ∈ (−1, 1),

we derive from integrating (5.1) along the straight line γ that

λ
1
2d � λ

1
2d′ =

∫
γ
λ

1
2 ds �

∫
γ

1√
1 + aψ(θ)

|∇θ| ds

�
∫

γ

1√
1 + aψ(θ)

dθ =
∫ π

2

−π
2

1√
1 + aψ(θ)

dθ

=
∫ π

2

0

[ 1√
1 − aψ(θ)

+
1√

1 + aψ(θ)

]
dθ

�
∫ π

2

0
2 dθ = π.

This concludes the proof of the theorem.
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