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Growth of Solutions of Higher Order Complex Linear Differential Equation

Jianren Long* and Xiubi Wu

Abstract. Some new conditions on coefficient functions Ai(z), which will guarantee

all nontrivial solutions of f (n) +An−1(z)f (n−1) + · · ·+A0(z)f = 0 are of infinite order,

are found in this paper. The first condition involves two classes of extremal functions

for some inequalities about finite asymptotic values and deficient values. The second

condition assumes that a coefficient itself is a nontrivial solution of another differential

equation w′′ + P (z)w = 0, where P (z) is a polynomial.

1. Introduction and main results

In this paper, all the functions considered are meromorphic function on the complex plane

C. Let f be a meromorphic function, its order of growth ρ(f) and lower order of growth

µ(f) (defined in terms of the Nevanlinna characteristic functions T (r, f)) are given by

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r

and

µ(f) = lim inf
r→∞

log+ T (r, f)

log r
,

respectively. If f is entire, then the Nevanlinna characteristic T (r, f) can be replaced with

logM(r, f), where M(r, f) = max|z|=r |f(z)|. We assume that the reader is familiar with

the fundamental results and standard notations in Nevanlinna theory, see [12, 16, 28] for

more details.

Here we consider the differential equation

(1.1) f (n) +An−1(z)f (n−1) + · · ·+A1(z)f ′ +A0(z)f = 0,

where A0(z) 6≡ 0, A1(z), . . . , An−1(z) are entire functions, and n ≥ 2 is an integer. It

is well known that every meromorphic solution of (1.1) is entire and from now on by a

solution of (1.1), we mean an entire solution and nontrivial solutions the nonconstant entire
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solutions. For the case of polynomial coefficients, a classical result due to Wittich [24]:

If A0(z), A1(z), . . . , An−1(z) are entire functions, then all solutions of (1.1) are of finite

order if and only if all coefficients A0(z), A1(z), . . . , An−1(z) are polynomials. Another

result due to Frei [6] for (1.1) is: if A0(z), . . . , Aj(z) are transcendental coefficients while

Aj+1(z), . . . , An−1(z) are polynomials, then there can exist at most j linearly independent

finite order solutions of (1.1). Thus it can be deduced that “most” of the solutions of (1.1)

with at least one Ai(z) transcendental have infinite order. On the other hand, there exist

equations of the form (1.1) that possess one or more nontrivial solutions of finite order.

For example: (a) f(z) = −z solves f ′′ − zezf ′ + ezf = 0, (b) f(z) = c1 sin z + c2 cos z

solves f ′′′+ezf ′′+f ′+ezf = 0, where c1, c2 are arbitrary constants, and (c) f(z) = ez +1

solves f ′′′ + 2e−zf ′′ − ezf ′ + (ez − 2)f = 0.

A natural question to ask is: What conditions on A0(z), A1(z), . . . , An−1(z) will guar-

antee that every solution of (1.1) is of infinite order? We mention that [10,13,21] contain

results on this question for equation (1.1) when n = 2. Some recent papers that inves-

tigate the growth properties of solution of (1.1) include [3, 11, 18, 20]. In this paper, we

obtain some results on this question by using two distinct approaches. To state our re-

sults, we will need some definitions. For θ ∈ R, let ∆(θ) =
{
reiθ : r ≥ 0

}
. For α < β and

r, r1, r2 ∈ (0,∞), set

S(α, β) = {z : α < arg z < β} ,

S(α, β; r) = {z : |z| < r, α < arg z < β} ,

S(α, β; r1, r2) = {z : r1 < |z| < r2, α < arg z < β} .

Let F denote the closure of F ⊂ C. We first recall the following definition due to Yang [27].

Definition 1.1. Let f be a meromorphic function of finite lower order µ(f) > 0 in C. A

ray ∆(θ) is called a Borel direction of order ≥ µ(f) of f , if for each ε > 0,

(1.2) lim sup
r→∞

log+ n(S(θ − ε, θ + ε; r), 1/(f − a))

log r
≥ µ(f)

for all a ∈ C = C∪{∞}, with at most two exceptions, where n(S(θ−ε, θ+ε; r), 1/(f−a))

denotes the number of zeros, counting the multiplicities, of f(z)− a in S(θ − ε, θ + ε; r).

The definition of Borel direction of order ρ(f) of f can be found in [31, p. 78], it

is defined similarly with the only exception that “≥ µ(f)” in (1.2) is to be replaced

with “= ρ(f)”. From [27], the following result can be derived immediately, see also [25,

Theorem A].

Theorem 1.2. Let f be an entire function of finite lower order µ > 0. Let q denote

the number of Borel directions of order ≥ µ of f , and let p denote the number of finite

deficient values of f . Then p ≤ q/2.
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An entire function f is called an extremal function for Yang’s inequality if f satisfies

the assumptions of Theorem 1.2 with p = q/2.

For extremal functions for Yang’s inequality, the Borel directions of order ρ(f) and

Borel directions of order ≥ µ(f) are one and the same by Lemma 4.1 below. For brevity, we

call a Borel direction of order ρ(f) simply as a Borel direction, unless otherwise specified.

A simple example of an extremal function for Yang’s inequality is f(z) = ez. Then z = 0

is the one finite deficient value, ∆(θ) = arg z = ±π/2 are the two Borel directions. A

slightly more complicated example is stated in Example 2.1 below.

The idea of this paper comes from [26]. The first result in this paper is obtained by

using the properties of extremal functions for Yang’s inequality.

Theorem 1.3. Let A0(z), A1(z), . . . , An−1(z) be entire functions. Suppose that there ex-

ists an integer l ∈ {1, 2, . . . , n− 1} such that Al(z) is an extremal function for Yang’s

inequality. Suppose that A0(z) is an entire function such that µ(A0) 6= ρ(Al) and µ(A0) >

ρ(Ai) for all i 6= l, 1 ≤ i ≤ n − 1. Then every nontrivial solution of (1.1) is of infinite

order.

An analogue of Theorem 1.3 in which the assumptions µ(A0) 6= ρ(Al) and µ(A0) >

ρ(Ai) are replaced with ρ(A0) 6= ρ(Al) and ρ(A0) > ρ(Ai) respectively, can be found

in [18, Theorem 5]. The proof of Theorem 1.3 deviates from that of [18, Theorem 5] in the

sense that we require a modification of the Phragmén-Lindelöf principle, see Lemma 3.3

below.

Theorem 1.5 below relating with a conjecture due to Denjoy [4] in 1907 and a second

order differential equation. To this end, we begin with recalling the conjecture.

Conjecture 1.4 (Denjoy’s Conjecture). Let f be an entire function of finite order ρ. If

f has k distinct finite asymptotic values, then k ≤ 2ρ.

It is verified by Ahlfors [1] in 1930. An entire function f is called an extremal function

for Denjoy’s conjecture if it is of finite order ρ and has k = 2ρ distinct finite asymptotic

values. This kind of functions are investigated by Ahlfors [1], Drasin [5], Kennedy [15]

and Zhang [30]. An example of an extremal function for Denjoy’s conjecture is stated

in Example 2.2 below. Coefficient function Ai(z) itself is a nontrivial solution of second

order differential equation

(1.3) w′′ + P (z)w = 0,

where P (z) is a polynomial. This assumption yields stability on the behavior of Ai(z)

via Hille’s result, which is stated in Lemma 3.6 below. We get the following result by

combining the extremal functions for Denjoy’s conjecture with Lemma 3.6.
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Theorem 1.5. Let A0(z), A1(z), . . . , An−1(z) be entire functions. Suppose that there ex-

ists an integer l ∈ {1, 2, . . . , n− 1} such that Al(z) is a nontrivial solution of (1.3), where

P (z) = amz
m+ · · ·+a0, am 6= 0. Suppose that A0(z) is an extremal function for Denjoy’s

conjecture such that ρ(A0) 6= ρ(Al) and ρ(A0) > ρ(Ai) for all i 6= l, 1 ≤ i ≤ n− 1. Then

every transcendental solution of (1.1) is of infinite order.

We proceed to consider conditions on the coefficient A0(z) by restricting its growth.

However, we mention that the cosπρ theorem is not working if the order of growth (or

lower order) is greater than 1/2, we need new idea to cope with the case of the order of

growth (or lower order) greater than 1/2. Here we use a modification of the Phragmén-

Lindelöf principle which is stated Lemma 3.3 to prove the following result.

Theorem 1.6. Let A0(z), A1(z), . . . , An−1(z) be entire functions. Suppose that there

exists an integer l ∈ {1, 2, . . . , n− 1} such that Al(z) is a nontrivial solution of (1.3),

where P (z) = amz
m + · · · + a0, am 6= 0. Suppose that A0(z) is an entire function with

µ(A0) < 1/2 + 1/[2(m + 1)] such that ρ(A0) 6= ρ(Al) and µ(A0) > ρ(Ai) for all i 6= l,

1 ≤ i ≤ n− 1. Then every transcendental solution of (1.1) is of infinite order.

We are not sure whether the transcendental solution is necessary in the statements of

Theorems 1.5 and 1.6, it is just needed in proving Theorems 1.5 and 1.6 when we apply

Laine-Yang’s result [17, Theorem 2.1]. For the case n = 2, an analogue of Theorem 1.7

below in which the assumptions µ(A0) < π/ν and |A1(z)| = O(e|z|
η

) are replaced with

ρ(A0) < π/ν and |A1(z)| = O(|z|η) respectively, is proved in [10, Theorem 7]. The proof

of Theorem 1.7 is different from that of [10, Theorem 7] in the sense that we require

Lemma 3.4 in Section 3.

Theorem 1.7. Let A0(z), A1(z), . . . , An−1(z) be entire functions. Let {φk} and {θk} be

finite collections of real numbers that satisfying φ1 < θ1 < φ2 < θ2 < · · · < φm < θm <

φm+1 where φm+1 = φ1 + 2π, and set ν = max1≤k≤m {φk+1 − θk}. Suppose that there

exists an integer l ∈ {1, 2, . . . , n− 1} such that for some constant η ∈ [0, ρ(A0)), Al(z)

satisfies

(1.4) |Al(z)| = O
(
e|z|

η
)

as z →∞ in φk ≤ arg z ≤ θk for k = 1, 2, . . . ,m. Suppose that A0(z) satisfies µ(A0) < π/ν

and ρ(A0) > ρ(Ai) for all i 6= l, 1 ≤ i ≤ n− 1. Then every nontrivial solution of (1.1) is

of infinite order.

2. Examples

We will give examples which illustrate the existence of extremal functions for Yang’s

inequality and extremal functions for Denjoy’s conjecture. The following example can be
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found in [28, pp. 210–211].

Example 2.1. For an integer n ≥ 2, let

f(z) =

∫ z

0
e−t

n
dt.

Then ρ(f) = n, and f has p = n finite deficient values

al = ei
2πl
n

∫ ∞
0

e−t
n
dt, l = 1, 2, . . . , n,

and q = 2n Borel directions ∆(θk) = arg z = 2k−1
2n π, k = 1, 2, . . . , 2n. Therefore, f is an

extremal function for Yang’s inequality.

The following example shows the existence of extremal functions for Denjoy’s conjec-

ture, which can be found in [31, p. 210].

Example 2.2. Let

f(z) =

∫ z

0

sin tq

tq
dt,

where q > 0 is an integer. Then ρ(f) = q, and f has 2q distinct finite asymptotic values

al = elπi/q
∫ ∞

0

sin rq

rq
dr

with its corresponding 2q asymptotic paths being

arg z =
lπ

q
,

where l = 1, 2, . . . , 2q.

3. Auxiliary results

The following lemma of Gundersen [9] on an estimation of logarithmic derivatives plays

an important role in proving our results.

Lemma 3.1. Let f be a transcendental meromorphic function of finite order ρ(f). Let

ε > 0 be given real constant, and let k and j be integers such that k > j ≥ 0. Then there

exists a set E ⊂ [0, 2π) of linear measure zero, such that if ϕ ∈ [0, 2π) − E, there is a

constant r0 = r0(ϕ) > 1 such that for all z satisfying arg z = ϕ and |z| ≥ r0,∣∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣∣ ≤ |z|(k−j)(ρ(f)−1+ε) .
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The Lebesgue linear measure of a set E ⊂ [0,∞) is m(E) =
∫
E dt, and the logarithmic

measure of a set F ⊂ [1,∞) is ml(F ) =
∫
F

dt
t . The upper and lower logarithmic densities

of F are given, respectively, by

log dens(F ) = lim sup
r→∞

ml(F ∩ [1, r])

log r
, log dens(F ) = lim inf

r→∞

ml(F ∩ [1, r])

log r
.

The following result is due to Barry [2].

Lemma 3.2. Let f be an entire function of lower order µ(f) ∈ [0, 1), and denote m(r) =

inf |z|=r log |f(z)| and M(r) = sup|z|=r log |f(z)|. Then, for every α ∈ (µ(f), 1),

log dens({r ∈ [1,∞) : m(r) > M(r) cosπα}) ≥ 1− µ(f)

α
.

The following result is a modified Phragmén-Lindelöf principle, which can be found

in [26, Lemma 3.2].

Lemma 3.3. Let f be an entire function of lower order µ(f) ∈ [1/2,∞). Then there

exists a sector domain S(α, β) with β − α ≥ π/µ(f), such that

lim sup
r→∞

log log
∣∣f(reiθ)

∣∣
log r

≥ µ(f)

for all the rays arg z = θ ∈ (α, β), where 0 ≤ α < β ≤ 2π.

The following lemma comes from [7, p. 177].

Lemma 3.4. Let f be an analytic function in D and continuous in D, where D = S(α, β)∩
{z : |z| > r0}, and α, β, r0 are constants such that 0 < β − α ≤ 2π and r0 > 0. Suppose

that there exists a constant M > 0 such that |f(z)| ≤M for z ∈ ∂D. If

lim inf
r→∞

log logM(r,D, f)

log r
<

π

β − α
,

where M(r,D, f) = max|z|=r,z∈D |f(z)|, then |f(z)| ≤M for all z ∈ D.

Remark 3.5. Let f be an analytic function in D and continuous in D. Suppose that there

exists a constant M > 0 such that |f(z)| ≤M for z ∈ ∂D. If µ(f) < π/(β − α), then the

conclusion of Lemma 3.4 holds.

In order to state the following lemma, we need some concepts. Let f be an entire

function of order ρ(f) ∈ (0,∞). For simplicity, set ρ = ρ(f) and S = S(α, β). We say

that f blows up exponentially in S if for any θ ∈ (α, β)

lim
r→∞

log log
∣∣f(reiθ)

∣∣
log r

= ρ.
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We also say that f decays to zero exponentially in S if for any θ ∈ (α, β)

lim
r→∞

log log
∣∣f(reiθ)

∣∣−1

log r
= ρ.

The following lemma, originally due to Hille [14, Chapter 7.4], see also [8,22], plays an

important role in proving Theorems 1.5 and 1.6.

Lemma 3.6. Let w be a nontrivial solution of (1.3), where P (z) = amz
m + · · · + a0,

am 6= 0. Set θj = 2jπ−arg(am)
m+2 and Sj = S(θj , θj+1), where j = 0, 1, . . . ,m + 1 and

θm+2 = θ0 + 2π. Then w has the following properties.

(1) In each sector Sj, w either blows up or decays to zero exponentially.

(2) If, for some j, w decays to zero in Sj, then it must blow up in Sj−1 and Sj+1.

However, it is possible for w to blow up in many adjacent sectors.

(3) If w decays to zero in Sj, then w has at most finitely many zeros in any closed

subsector within Sj−1 ∪ Sj ∪ Sj+1.

(4) If w blows up in Sj−1 and Sj, then for each ε > 0, w has infinitely many zeros in

each sector S(θj − ε, θj + ε), and furthermore, as r →∞,

n(S(θj − ε, θj + ε; r), w = 0) = (1 + o(1))
2
√
|am|

π(m+ 2)
r(m+2)/2,

where n(S(θj − ε, θj + ε; r), w = 0) is the number of zeros of w in the region S(θj −
ε, θj + ε; r).

4. Proof of Theorem 1.3

We begin by recalling some basic properties of extremal functions for Yang’s inequality.

To this end, if Al(z) is an extremal function for Yang’s inequality, then the rays arg z = θk

are the q distinct Borel directions of Al(z), where k = 1, 2, . . . , q and 0 ≤ θ1 < θ2 < · · · <
θq < θq+1 = θ1 + 2π.

Lemma 4.1. [25, Theorem 4] Suppose that Al is an extremal function for Yang’s inequal-

ity. Then µ(Al) = ρ(Al). Moreover, for every finite deficient value ai, i = 1, 2, . . . , p, there

exists a corresponding sector domain S(θki , θki+1) such that for every ε > 0 the inequality

log
1

|Al(z)− ai|
> C(θki , θki+1, ε, δ(ai, Al))T (|z| , Al)

holds for z ∈ S(θki + ε, θki+1 − ε; r,+∞), where C(θki , θki+1, ε, δ(ai, Al)) is a positive

constant depending only on θki, θki+1, ε and δ(ai, Al).
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Lemma 4.2. [19] Let Al be an extremal function for Yang’s inequality. Suppose that there

exists a ray arg z = θ with θj < θ < θj+1, 1 ≤ j ≤ q, such that

lim sup
r→∞

log log
∣∣Al(reiθ)∣∣

log r
= ρ(Al).

Then θj+1 − θj = π/ρ(Al).

Proof of Theorem 1.3. Since the case µ(A0) > ρ(Al), A0(z) is a dominant coefficient in

equation (1.1), by using similar arguments of proving [10, Theorem 2], the assertion is

trivial, so we may assume µ(A0) < ρ(Al). Suppose on the contrary to the assertion that

there is a nontrivial solution f of (1.1) with ρ(f) < ∞. We aim for a contradiction. We

consider two cases: µ(A0) ≥ 1/2 and 0 < µ(A0) < 1/2.

(1) Suppose that µ(A0) ≥ 1/2. By Lemma 3.3, there exists a sector domain S(α, β)

with β − α ≥ π/µ(A0), 0 ≤ α < β ≤ 2π, such that

(4.1) lim sup
r→∞

log log
∣∣A0(reiθ)

∣∣
log r

≥ µ(A0)

for all the rays arg z = θ ∈ (α, β).

Let ε ∈ (0, µ(A0)/2) be given constant. Since ρ(Ai) < µ(A0) for all i 6= l and 1 ≤ i ≤
n− 1, then there exists an R1 > 1 such that

(4.2) |Ai(z)| < exp(rµ(A0)−2ε)

for all |z| = r > R1.

Applying the assumption on Al(z), suppose that ai, i = 1, 2, . . . , p, are all the finite

deficient values of Al(z). Thus we have 2p sectors Sj = S(θj , θj+1), j = 1, 2, . . . , 2p, such

that Al(z) has the following properties. In each sector Sj , either there exists an ai such

that

(4.3) log
1

|Al(z)− ai|
> C(θj , θj+1, ε, δ(ai, Al))T (|z| , Al)

for z ∈ S(θj + ε, θj+1 − ε; r,+∞), where C(θj , θj+1, ε, δ(ai, Al)) is a positive constant

depending only on θj , θj+1, ε and δ(ai, Al), or there exists a ray arg z = θ ∈ (θj , θj+1)

such that

(4.4) lim sup
r→∞

log log
∣∣Al(reiθ)∣∣

log r
= ρ(Al).

For the sake of simplicity, in the sequel we use C to represent C(θj , θj+1, ε, δ(ai, Al)).

Note that if there exists an ai such that (4.3) holds in Sj , then there exist two rays

arg z = θ (θ′) such that (4.4) holds in Sj−1 and Sj+1, respectively. If there exists a ray
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arg z = θ ∈ (θj , θj+1) such that (4.4) holds, then there are ai (ai′) such that (4.3) holds in

Sj−1 and Sj+1, respectively.

Without loss of generality, we assume that there is a ray arg z = θ in S1 such that (4.4)

holds. Therefore, there exists a ray in each sector S3, S5, . . . , S2p−1, such that (4.4) holds.

By using Lemma 4.2, we know that all the sectors have the same magnitude π/ρ(Al).

Note that ρ(Al) > µ(A0). It is not hard to see that there exists a subsector S(α′, β′),

where α < α′ < β′ < β, and finite deficient value aj0 such that

(4.5) log
1

|Al(reiθ)− aj0 |
> CT (r,Al)

for all θ ∈ [α′, β′]. By using Lemma 3.1, there exists θ0 ∈ [α′, β′] and R2 > 1 such that

(4.6)

∣∣∣∣∣f (k)(reiθ0)

f(reiθ0)

∣∣∣∣∣ ≤ rnρ(f), k = 1, 2, . . . , n,

for all r > R2. Note that (4.1) and (4.2) hold for θ = θ0. Thus there exists a sequence rj

in the set F = (max {R1, R2} ,∞) with rj →∞ as j →∞, such that (4.2) and (4.5) hold

for |z| = r = rj , and

(4.7)
∣∣∣A0(rje

iθ0)
∣∣∣ ≥ exp(r

µ(A0)−ε
j ).

It follows from (4.2), (4.5)–(4.7) and (1.1) that

exp(r
µ(A0)−ε
j ) ≤

∣∣∣A0(rje
iθ0)
∣∣∣

≤

∣∣∣∣∣f (n)(rje
iθ0)

f(rjeiθ0)

∣∣∣∣∣+ · · ·+

∣∣∣∣∣f (l)(rje
iθ0)

f(rjeiθ0)

∣∣∣∣∣ (∣∣∣Al(rjeiθ0)− aj0
∣∣∣+ |aj0 |

)
+ · · ·+

∣∣∣∣f ′(rjeiθ0)

f(rjeiθ0)

∣∣∣∣ ∣∣∣A1(rje
iθ0)
∣∣∣

≤ rnρ(f)
j

(
1 + |aj0 |+ exp(−CT (rj , Al)) + (n− 2) exp(r

µ(A0)−2ε
j )

)
for all sufficiently large j. Obviously, this is a contradiction.

(2) Suppose that 0 < µ(A0) < 1/2. By Lemma 3.2, for any α ∈ (µ(A0), 1), there exists

a set E1 ⊂ [1,∞) with log dens(E1) ≥ 1− µ(A0)/α, such that

(4.8) |A0(z)| > exp(rµ(A0)−ε)

for all |z| = r ∈ E1 ∩ (R3,∞), where R3 > 1 is a constant.

By using Lemma 3.1, there exists θ0 ∈ [0, 2π)−E2, where E2 ⊂ [0, 2π) and m(E2) = 0,

such that (4.6) holds. Note that (4.2), (4.5) and (4.8) hold for θ = θ0. Thus there exists

a sequence rj in E1 ∩ (R3,∞) with rj → ∞ as j → ∞, such that (4.2), (4.5), (4.6) and

(4.8) hold for |z| = r = rj . By the similar reasoning of the case of µ(A0) ≥ 1/2, we

get a contradiction. Hence every nontrivial solution of (1.1) is of infinite order, and this

completes the proof.



970 Jianren Long and Xiubi Wu

5. Proof of Theorem 1.5

We begin by recalling some properties of extremal functions for Denjoy’s conjecture.

Lemma 5.1. [31, Theorem 4.11] Let f be an extremal function for Denjoy’s conjecture.

Then, for any θ ∈ (0, 2π), either ∆(θ) is a Borel direction of f , or there exists a constant

σ ∈ (0, π/4), such that

lim
|z|→∞

z∈(S(θ−σ,θ+σ)−E)

log log |f(z)|
log |z|

= ρ(f),

where E denotes a subset of S(θ − σ, θ + σ), and satisfies

lim
r→∞

m(S(θ − σ, θ + σ; r,∞) ∩ E) = 0.

For proving Theorem 1.5, we also need the following auxiliary result.

Lemma 5.2. Let f be an entire function of order ρ ∈ (0,∞), and let S(φ1, φ2) be a sector

with φ2 − φ1 < π/ρ. If there exists a Borel direction of f in S(φ1, φ2), then for at least

one of the two rays Lj : arg z = φj, j = 1, 2, say L2, we have

lim sup
r→∞

log log
∣∣f(reiφ2)

∣∣
log r

= ρ.

Lemma 5.2 is Lemma 1 in [29], which can be proved by using a result in [23, pp. 119–

120].

Proof of Theorem 1.5. We may assume ρ(A0) < ρ(Al) due to the proof of Theorem 1.3.

Suppose on the contrary to the assertion that there is a transcendental solution f of

(1.1) with ρ(f) < ∞. We aim for a contradiction. We consider two cases appearing in

Lemma 3.6.

(1) Suppose that Al(z) blows up exponentially in each sector Sj = S(θj , θj+1), where

θj = 2jπ−arg(am)
m+2 , j = 0, 1, . . . ,m+ 1 and θm+2 = θ0 + 2π. That is, for any θ ∈ (θj , θj+1),

we have

lim
r→∞

log log
∣∣Al(reiθ)∣∣

log r
= ρ(Al) =

m+ 2

2
.

Then for any given constant ε ∈ (0, π/(8ρ(Al))) and η ∈ (0, (ρ(Al)− ρ(A0))/4), we have

|Al(z)| ≥ exp
{

(1 + δ)α |z|(m+2)/2−η
}

and

|At(z)| ≤ exp(|z|ρ(A0)+η) ≤ exp(|z|ρ(Al)−2η) ≤ exp
{
δα |z|(m+2)/2−η

}
,
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as z → ∞ in Sj(ε/2) = {z : θj + ε/2 ≤ arg z ≤ θj+1 − ε/2}, j = 0, 1, . . . ,m + 1, t =

0, . . . , l− 1, l+ 1, . . . , n− 1, where δ is a positive constant satisfying δn < 1, and α > 0 is

also constant.

For each Sj , j = 0, 1, . . . ,m+ 1, applying [17, Theorem 2.1], there exists s ∈ {1, 2, . . . ,
l − 1} and bs 6= 0 such that∣∣∣f (s)(z)− bs

∣∣∣ ≤ exp
{
−(1− nδ)α |z|(m+2)/2−η

}
,

as z →∞ in Sj(ε). For each integer p ≥ s+ 1,∣∣∣f (p)(z)
∣∣∣ ≤ exp

{
−(1− nδ)α |z|(m+2)/2−η

}
,

as z → ∞ in Sj(3ε/2). Hence
∣∣f (l)(z)

∣∣ must be bounded in the whole complex plane by

the Phragmén-Lindelöf principle. By Liouville theorem, f has to be a polynomial. This

is a contradiction.

(2) There exists at least one sector of the m+ 2 sectors, such that Al(z) decays to zero

exponentially, say Sj0 = {z : θj0 < arg z < θj0+1}, 0 ≤ j0 ≤ m + 1. This shows that for

any θ ∈ (θj0 , θj0+1),

(5.1) lim
r→∞

log log 1

|Al(reiθ)|
log r

=
m+ 2

2
.

Since ρ(Ai) < ρ(A0) for all i 6= l and 1 ≤ i ≤ n− 1, then there exists an R1 > 1 such that

(5.2) |Ai(z)| < exp(rρ(A0)−2ε)

for all |z| = r > R1. Applying Lemma 3.1, there exists a set E1 ⊂ [0, 2π) with m(E1) = 0

such that if θ0 ∈ [0, 2π) − E1, then there is a constant R2 = R2(θ0) > 1 such that for all

z satisfying arg z = θ0 and |z| ≥ R2, the inequality (4.6) holds. Next we consider the two

cases appearing in Lemma 5.1.

(i) Suppose that the ray arg z = θ is a Borel direction of A0(z), where θ ∈ (θj0 , θj0+1).

Choose φ1 ∈ (θj0 , θ) − E1 and φ2 ∈ (θ, θj0+1) − E1. Then φ2 − φ1 < π/ρ(Al) < π/ρ(A0).

By Lemma 5.2, at least one of two rays L1 : arg z = φ1 and L2 : arg z = φ2, say L1,

satisfies

lim sup
r→∞

log log
∣∣A0(reiφ1)

∣∣
log r

= ρ(A0).

Note that (5.1) holds for θ = φ1. Thus there exists a sequence of points zj = rje
iφ1 with

rj →∞ as j →∞, such that

(5.3) lim
j→∞

log log
∣∣A0(rje

iφ1)
∣∣

log rj
= ρ(A0),
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and (4.6), (5.1) and (5.2) hold for z = zj = rje
iφ1 . Combining (4.6), (5.1)–(5.3) and (1.1),

we arrive at a contradiction as in the proof of Theorem 1.3.

(ii) Suppose that the ray arg z = θ is not a Borel direction of A0(z), where θ ∈
(θj0 , θj0+1). By Lemma 5.1, there exists a constant σ ∈ (0, ζ), where ζ = min{(θ− θj0)/2,

(θj0+1 − θ)/2, π/4}, such that

lim
|z|→∞

z∈(S(θ−σ,θ+σ)−E2)

log log |A0(z)|
log |z|

= ρ(A0),

where E2 denotes a subset of S(θ − σ, θ + σ), and satisfies

lim
r→∞

m(S(θ − σ, θ + σ; r,∞) ∩ E2) = 0.

Let ∆ = {z : arg z = ψ,ψ ∈ E1}. We can easily see that there exists a sequence of points

zj with zj →∞ as j →∞, {zj} ⊂ (S(θ − σ, θ + σ)− E2) ∩ (Sj0 −∆), such that

lim
j→∞

log log |A0(zj)|
log |zj |

= ρ(A0),(5.4)

lim
j→∞

log log 1
|Al(zj)|

log |zj |
=
m+ 2

2
(5.5)

and ∣∣∣∣∣f (k)(zj)

f(zj)

∣∣∣∣∣ ≤ |zj |nρ(f) , k = 1, 2, . . . , n,(5.6)

|Ai(zj)| < exp(|zj |ρ(A0)−2ε).(5.7)

Combining (5.4)–(5.7) and (1.1), we arrive at a contradiction as in the proof of Theo-

rem 1.3. This completes the proof.

6. Proof of Theorem 1.6

We may assume ρ(A0) < ρ(Al) due to the proof of Theorem 1.3. Suppose on the contrary

to the assertion that there is a transcendental solution f of (1.1) with ρ(f) <∞. We aim

for a contradiction. We consider two cases appearing in Lemma 3.6.

(1) Suppose that Al(z) blows up exponentially in each sector Sj = S(θj , θj+1), where

θj = 2jπ−arg(am)
m+2 , j = 0, 1, . . . ,m + 1 and θm+2 = θ0 + 2π. We get a contradiction by the

similar reasoning in the proving Theorem 1.5.

(2) There exists at least one sector of the m + 2 sectors, such that Al(z) decays to

zero exponentially, say Sj0 = {z : θj0 < arg z < θj0+1}, 0 ≤ j0 ≤ m + 1. That is, for any

θ ∈ (θj0 , θj0+1), (5.1) holds.
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Let ε ∈ (0, µ(A0)/2) be given constant. Since ρ(Ai) < µ(A0) for all i 6= l and 1 ≤ i ≤
n− 1, then there exists an R1 > 1 such that (4.2) holds for all |z| = r > R1.

We proceed to divide into two situations. If 1/2 ≤ µ(A0) < 1/2 + 1/[2(m + 1)], by

Lemma 3.3, there exists a sector S(α, β) with β − α ≥ π/µ(A0) > π/[1
2 + 1

2(m+1) ] =

2π − 2π/(m+ 2), such that

(6.1) lim sup
r→∞

log log
∣∣A0(reiθ)

∣∣
log r

≥ µ(A0)

for all θ ∈ (α, β). Thus, there exists a subsector S(α′, β′) ⊂ Sj0 ∩S(α, β), where α < α′ <

β′ < β, such that (5.1) and (6.1) hold for any θ ∈ (α′, β′).

By Lemma 3.1, there exists a set E1 ⊂ [0, 2π) of linear measure zero, such that if

ψ0 ∈ [0, 2π)− E1, then there is a constant R2 = R2(ψ0) > 1 such that for all z satisfying

arg z = ψ0 and |z| ≥ R2, we have (4.6). Thus there exists a sequence of points zj = rje
iψ0

with rj →∞ as j →∞, where ψ0 ∈ (α′, β′)− E1 and rj ∈ (max {R1, R2} ,∞), such that

(6.2)
∣∣∣A0(rje

iψ0)
∣∣∣ > r

µ(A0)−ε
j ,

and (4.2), (4.6) and (5.1) hold for z = zj = rje
iψ0 . Combining (4.2), (4.6), (5.1), (6.2)

and (1.1), we get a contradiction.

If 0 < µ(A0) < 1/2, by Lemma 3.2, for every α ∈ (µ(A0), 1), there exists a set

E2 ⊂ [1,∞) with log dens(E2) ≥ 1− µ(A0)/α, such that

(6.3) |A0(z)| ≥ |z|µ(A0)−ε

for all |z| = r ∈ E2 − [0, R3], where R3 > 1 is a constant. Thus, there exists a sequence of

points zj = rje
iθ0 with rj →∞ as j →∞, such that (4.2), (4.6), (5.1) and (6.3) hold for

z = zj = rje
iθ0 , where θ0 ∈ (θj0 , θj0+1)− E1, rj ∈ E2 − [0,max {R1, R2, R3}]. Combining

(4.2), (4.6), (5.1), (6.3) and (1.1), we get a contradiction. The proof is completed.

7. Proof of Theorem 1.7

Suppose on the contrary to the assertion that there is a nontrivial solution f of (1.1) with

ρ(f) <∞. We aim for a contradiction. Let η be a constant satisfying

max
1≤i≤n−1

i 6=l

{ρ(Ai)} < η < ρ(A0).

Then there exists a R > 1 such that

|Ai(z)| < exp(rη), i 6= l, 1 ≤ i ≤ n− 1,

for all |z| = r > R.
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Applying Lemma 3.1, there exists a set E ⊂ [0, 2π) with m(E) = 0 such that∣∣∣∣∣f (j)(z)

f(z)

∣∣∣∣∣ ≤ O(|z|nρ(f)), j = 1, 2, . . . , n,

as z →∞ along arg z = θ0 ∈ [φk, θk]− E, k = 1, 2, . . . ,m. It follows from (1.1) and (1.4)

that

(7.1) |A0(z)| ≤

∣∣∣∣∣f (n)(z)

f(z)

∣∣∣∣∣+ · · ·+
∣∣∣∣f ′(z)f(z)

∣∣∣∣ |A1(z)| ≤ O(exp(|z|η))

as z →∞ along arg z = θ0.

Let ε > 0 be a small constant that satisfies µ(A0) < π/(ν + 2ε). Applying Phragmén-

Lindelöf principle on (7.1),

(7.2) |A0(z)| = O(exp(|z|η))

as z →∞ in φk+ε ≤ arg z ≤ θk−ε, k = 1, 2, . . . ,m. Since µ(A0) < π/(ν+2ε), this implies

that φk+1 − θk + 2ε < π/µ(A0) for all k, 1 ≤ k ≤ m. Hence by using Lemma 3.4, (7.2)

holds as z →∞ in θk−ε ≤ arg z ≤ φk+1+ε, k = 1, 2, . . . ,m. Applying Phragmén-Lindelöf

principle again, (7.2) holds in the whole complex plane. This means that ρ(A0) ≤ η. This

is a contradiction with the choice of η, and the proof is complete.
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