
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 21, No. 5, pp. 1099–1113, October 2017

DOI: 10.11650/tjm/7946

Multifractal Analysis for Maps with the Gluing Orbit Property

Xiang Shao and Zheng Yin*

Abstract. In this paper, we obtain a conditional variational principle for the topolog-

ical entropy of level sets of Birkhoff averages for maps with the gluing orbit property.

Our result can be easily extended to flows.

1. Introduction

This article is devoted to the study of multifractal analysis for maps with gluing orbit

property. Before stating our results, we first give some notations and backgrounds. By a

topological dynamical system (TDS for short) (X, f), we mean that (X, d) is a compact

metric space and f is a continuous map from X to itself. For a continuous function

ϕ : X → R, X can be divided into the following parts:

X =
⋃
α∈R

X(ϕ, α) ∪ X̂(ϕ, f),

where for α ∈ R,

X(ϕ, α) =

{
x ∈ X : lim

n→∞

1

n

n−1∑
i=0

ϕ(f ix) = α

}
and

X̂(ϕ, f) =

{
x ∈ X : lim

n→∞

1

n

n−1∑
i=0

ϕ(f ix) does not exist

}
.

The level set X(ϕ, α) is called the multifractal decomposition set of ergodic average of ϕ in

multifractal analysis. And the set X̂(ϕ, f) is called the historic set of ergodic average of ϕ.

The multifractal analysis of dynamical systems is a subfield of dimension theory. Roughly

speaking, multifractal analysis studies the complexity of the level sets with invariant local

quantities obtained from a dynamical system. There are fruitful results to describe the

size of the level sets. The quantities include Hausdorff dimension, topological entropy and

topological pressure (see [1, 2, 8–11,13]).

The concept of the gluing orbit property was introduced by Bofim and Varandas [3]

to study large deviations principles for semiflows. It is also called the weak specification
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property, which was introduced by Constantine, Lafont and Thompson [5] independently.

In this paper, we prove a variational principle for the topological entropy of the level set

X(ϕ, α) for maps with the gluing orbit property.

Let (X, f) be a TDS. For a continuous function ϕ : X → R and n ≥ 1, let Snϕ(x) :=∑n−1
i=0 ϕ(f ix), and for c > 0, we set

Var(ϕ, c) := sup {|ϕ(x)− ϕ(y)| : d(x, y) ≤ c} .

For every ε > 0, n ∈ N and a point x ∈ X, define

Bn(x, ε) =
{
y ∈ X : d(f ix, f iy) < ε, 0 ≤ i ≤ n− 1

}
and

Bn(x, ε) =
{
y ∈ X : d(f ix, f iy) ≤ ε, 0 ≤ i ≤ n− 1

}
.

Let C(X,R) be the Banach algebra of real-valued continuous functions of X equipped

with the supremum norm. Denote by M(X), M(X, f) and E(X, f) the set of all Borel

probability measures on X, the collection of all f -invariant Borel probability measures

and the collection of all ergodic measures, respectively. It is well known that (see [12])

M(X) and M(X, f) equipped with weak* topology are both convex, compact spaces. For

measures m1,m2 ∈M(X, f), we define the metric D(m1,m2) compatible with the weak*

topology by

D(m1,m2) =

∞∑
n=1

∣∣∫ fn dm1 −
∫
fn dm2

∣∣
2n ‖fn‖

,

where {fn}∞n=1 is a dense subset of C(X,R).

Definition 1.1 (Bowen’s topological entropy). [4] Given Z ⊂ X, ε > 0 and N ∈ N, let

ΓN (Z, ε) be the collection of all finite or countable covers of Z by sets of the form Bn(x, ε)

with n ≥ N . For each s ∈ R, we set

m(Z, s,N, ε) := inf

 ∑
Bn(x,ε)∈C

e−ns : C ∈ ΓN (Z, ε)


and

m(Z, s, ε) := lim
N→∞

m(Z, s,N, ε).

Define

htop(Z, ε) = inf {s ∈ R : m(Z, s, ε) = 0} = sup {s ∈ R : m(Z, s, ε) =∞}

and topological entropy of Z as

hBtop(Z) := lim
ε→0

hBtop(Z, ε).
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It is obvious that the following hold:

(1) hBtop(Z1) ≤ hBtop(Z2) for any Z1 ⊂ Z2 ⊂ X;

(2) hBtop(Z) = sup∞i=1 h
B
top(Zi), where Z =

⋃∞
i=1 Zi ⊂ X.

Definition 1.2. [3,5] We say a continuous map f : X → X on a compact metric space X

satisfying the gluing orbit property if for any ε > 0, there exists an integer N = N(ε) ≥ 1

such that for any points x1, . . . , xk ∈ X and any positive integers n1, . . . , nk, there are

p1, . . . , pk ≤ N(ε) and a point x ∈ X so that d(f jx, f jx1) ≤ ε for every 0 ≤ j < n1 and

d(f j+n1+p1+···+ni−1+pi−1(x), f j(xi)) ≤ ε

for every 2 ≤ i ≤ k and 0 ≤ j < ni.

There are two important classes of examples satisfying the gluing orbit property.

Proposition 1.3. [3, 5] Let Σ be a subshift of finite type. The Σ is transitive if and only

if Σ satisfies the gluing orbit property.

Proposition 1.4. [5] Let X be a compact, locally CAT(-1), geodesic metric space, with

non-elementary fundamental group. Then the geodesic flow on GX satisfies the weak

specification property (the gluing orbit property).

We state our result as follows.

Theorem 1.5. Suppose (X, f) is a TDS, f satisfies the gluing orbit property, α ∈ R, and

ϕ ∈ C(X,R). Then

hBtop(X(ϕ, α)) = sup

{
hν(f) : ν ∈M(X, f) and

∫
ϕdν = α

}
.

2. Proof of Theorem 1.5

In this section, we will prove our main result. The upper bound on hBtop(X(ϕ, α)) is easy

to get. In order to obtain the lower bound on hBtop(X(ϕ, α)), we will use the gluing orbit

property. The proof will be divided into the following two subsections.

2.1. Upper bound on hBtop(X(ϕ, α))

Let (X, f) be a TDS. For x ∈ X, let δx be the unit measure concentrated on x. For n ∈ N,

define

En(x) =
δx + δf(x) + · · ·+ δfn−1(x)

n
.

Let V (x) be the set of all limit points in M(X) of the sequence En(x).

The upper bound of hBtop(X(ϕ, α)) can be easily obtained by the following lemma.
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Lemma 2.1. [4] For t ≥ 0, consider the set

B(t) = {x ∈ X : ∃ ν ∈ V (x) satisfying hν(f) ≤ t} .

Then hBtop(B(t)) ≤ t.

Let

t = sup

{
hν(f) : ν ∈M(X, f) and

∫
ϕdν = α

}
.

Then X(ϕ, α) ⊂ B(t). Thus we have

hBtop(X(ϕ, α)) ≤ sup

{
hν(f) : ν ∈M(X, f) and

∫
ϕdν = α

}
.

2.2. Lower bound on hBtop(X(ϕ, α))

To get the lower bound on hBtop(X(ϕ, α)), the dynamical system needs some mild assump-

tion such as gluing orbit property. Our strategy is inspired by the work of Takens and

Verbitskiy [10], developed by Chen, Kupper and Shu [6], Pfister and Sullivan [9], Pei and

Chen [8] and Thompson [11].

2.2.1. Katok’s definition of metric entropy

We use the Katok’s definition of metric entropy based on the following lemma.

Lemma 2.2. [7] Let (X, d) be a compact metric space, f : X → X be a continuous map

and ν be an ergodic invariant measure. For ε > 0, δ ∈ (0, 1), denote Nν(n, ε, δ) the

minimum number of ε-Bowen balls Bn(x, ε), which cover a set of ν-measure larger than

1− δ. Then

hν(f) = lim
ε→0

lim inf
n→∞

1

n
logNν(n, ε, δ) = lim

ε→0
lim sup
n→∞

1

n
logNν(n, ε, δ).

Fix δ ∈ (0, 1). For ε > 0 and ν ∈ E(X, f), we define

hKat
ν (f, ε) := lim inf

n→∞

1

n
logNν(n, ε, δ).

Then by Lemma 2.2,

hν(f) = lim
ε→0

hKat
ν (f, ε).

If ν is non-ergodic, we will define hKat
ν (f, ε) by the ergodic decomposition of ν. The

following lemma is necessary.

Lemma 2.3. Fix ε, δ > 0 and n ∈ N, the function s : E(X, f) → R defined by ν 7→
Nν(n, ε, δ) is upper semi-continuous.
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Proof. Let {νk} be a sequence of ergodic measures satisfying νk → ν when k → ∞. Let

a > Nν(n, ε, δ), then there exists a set S which (n, ε) spans some set Z with ν(Z) > 1− δ
such that a > ]S, where ]S denotes the number of elements in S. If k is large enough,

then νk(
⋃
x∈S Bn(x, ε)) > 1− δ, which implies that

a > Nνk(n, ε, δ).

Thus we obtain

Nν(n, ε, δ) ≥ lim sup
k→∞

Nνk(n, ε, δ),

which completes the proof.

By Lemma 2.3, we know the function s : E(X, f)→ R defined by

s(m) = hKat
m (f, ε)

is measurable.

Assume ν ∈M(X, f), ν =
∫
E(X,f)mdτ(m) is the ergodic decomposition of ν. Define

hKat
ν (f, ε) :=

∫
E(X,f)

hKat
m (f, ε) dτ(m).

By monotone convergence theorem, we have

(2.1) hν(f) =

∫
E(X,f)

lim
ε→0

hKat
m (f, ε) dτ(m) = lim

ε→0
hKat
ν (f, ε).

2.2.2. Some important lemmas

Let

C := sup

{
hν(f) : ν ∈M(X, f) and

∫
ϕdν = α

}
.

We may assume that C is finite and C > 0. The case that C is infinite can be included in

our proof. Fix small 0 < δ, η < 1 and η < C/5. Choose a measure µ ∈M(X, f) satisfying∫
ϕdµ = α such that

hµ(f) > C − η

2
.

By (2.1), we can choose ε > 0 sufficiently small so that

hKat
µ (f, 4ε) > C − η.

Then

hKat
µ (f, 4ε)− 4η > C − 5η > 0.

Let {δk}k≥1 be a sequence of positive numbers strictly decreasing to 0. We have the

following lemma.
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Lemma 2.4. For µ ∈M(X, f), there exists a sequence of measures {µk}k≥1, where

µk =

sk∑
i=1

ak,imk,i,

sk∑
i=1

ak,i = 1, ak,i ∈ Q, 1 ≤ i ≤ sk, mk,i ∈ E(X, f)

such that ∣∣∣∣∫ ϕdµ−
∫
ϕdµk

∣∣∣∣ < δk, hKat
µ (f, 4ε) ≤

sk∑
i=1

ak,ih
Kat
mk,i

(f, 4ε).

Proof. Let

µ =

∫
E(X,f)

mdτ(m)

be the ergodic decomposition of µ. Fix k. We make ζk > 0 such that if D(µ1, µ2) < ζk,

then
∣∣∫ ϕdµ1 −

∫
ϕdµ2

∣∣ < δk/2. Let {Ak,1, . . . , Ak,sk} be a partition of E(X, f) with

diam(Ak,i) < ζk, 1 ≤ i ≤ sk. For any Ak,i, there exists an Ergodic measure mk,i ∈ Ak,i
such that ∫

Ak,i

hKat
m (f, 4ε) dτ(m) ≤ τ(Ak,i) · hKat

mk,i
(f, 4ε), 1 ≤ i ≤ sk.

So ∫
E(X,f)

hKat
m (f, 4ε) dτ(m) ≤

sk∑
i=1

τ(Ak,i) · hKat
mk,i

(f, 4ε).

By the density of rational number, we can choose ak,i such that

|ak,i − τ(Ak,i)| <
1

sk ‖ϕ‖
δk
2
, 1 ≤ i ≤ sk

and

hKat
µ (f, 4ε) ≤

sk∑
i=1

ak,ih
Kat
mk,i

(f, 4ε).

Let µk =
∑sk

i=1 ak,imk,i, by Choquet representation theorem, we have∣∣∣∣∫ ϕdµ−
∫
ϕdµk

∣∣∣∣
=

∣∣∣∣∣
∫
E(X,f)

(∫
ϕdm

)
dτ(m)−

sk∑
i=1

ak,i

∫
ϕdmk,i

∣∣∣∣∣
≤

∣∣∣∣∣
sk∑
i=1

∫
Ak,i

(∫
ϕdm

)
dτ(m)−

sk∑
i=1

∫
Ak,i

(∫
ϕdmk,i

)
dτ(m)

∣∣∣∣∣+

sk∑
i=1

|ak,i − τ(Ak,i)| ‖ϕ‖

≤
sk∑
i=1

∣∣∣∣∣
∫
Ak,i

(∫
ϕdm

)
dτ(m)−

∫
Ak,i

(∫
ϕdmk,i

)
dτ(m)

∣∣∣∣∣+
δk
2

≤
sk∑
i=1

δk
2
τ(Ak,i) +

δk
2

= δk.
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By Birkhoff ergodic theorem, we can choose a strictly increasing sequence {lk}k≥1

satisfying δk → 0 and lk →∞ as k →∞ so that the set

Yk,i :=

{
x ∈ X :

∣∣∣∣ 1nSnϕ(x)−
∫
ϕdmk,i

∣∣∣∣ < δk for all n ≥ lk
}

satisfies mk,i(Yk,i) > 1− δ, where 1 ≤ i ≤ sk.

Lemma 2.5. There exist a sequence of numbers {n̂k}k≥1 satisfying n̂k → ∞ as k → ∞,

ak,in̂k ∈ N and N( ε
2k

)/(ak,in̂k) ≤ δk, and a countable collection of finite sets Sk,i such that

each Sk,i is an (ak,in̂k, 4ε) separated set for Yk,i and

]Sk,i ≥ exp
(
ak,in̂k(h

Kat
mk,i

(f, 4ε)− 2η)
)
,

where 1 ≤ i ≤ sk, η > 0 is a small number.

Proof. For A ⊂ X, we define

Qn(A, 4ε) = inf {]S : S is an (n, 4ε) spanning set for A} ,

Pn(A, 4ε) = sup {]S : S is an (n, 4ε) separated set for A} .

Since mk,i(Yk,i) > 1− δ, we have

Pn(Yk,i, 4ε) ≥ Qn(Yk,i, 4ε) ≥ Nmk,i(n, 4ε, δ).

Thus

lim inf
n→∞

1

n
logPn(Yk,i, 4ε) ≥ lim inf

n→∞

1

n
logNmk,i(n, 4ε, δ)

= hKat
mk,i

(f, 4ε), k ∈ N, 1 ≤ i ≤ sk.

Choose n̂k →∞ such that ak,in̂k ∈ N and N( ε
2k

)/(ak,in̂k) ≤ δk. We have

1

ak,in̂k
logPn(Yk,i, 4ε) ≥ hKat

mk,i
(f, 4ε)− η.

Let Sk,i be the (ak,in̂k, 4ε) separated set for Yk,i, and satisfying

]Sk,i ≥ exp
{
ak,in̂k(h

Kat
mk,i

(f, 4ε)− 2η)
}
.

The desired result follows.

We now use the gluing orbit property to define the set Sk as follows. Let yi ∈ Sk,i,
and define x = x(y1, . . . , ysk) to be a choice of point which satisfies

(2.2) dak,ln̂k
(yl, f

al(x)) ≤ ε

2k
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for all l ∈ {1, 2, . . . , sk}, where a1 = 0, al =
∑l−1

i=1 ak,in̂k +
∑l−1

i=1 pk,i, pk,i ≤ N( ε
2k

) for

l ∈ {2, . . . , sk}. Denote Sk be the set of all points constructed in this way. We set

nk =
∑sk

i=1 ak,in̂k +
∑sk−1

i=1 pk,i. Then nk is the amount of time for which the orbit of

points in Sk has been prescribed and we have nk
n̂k
→ 1 as k →∞. One can verify that Sk

is (nk, 3ε) separated, so ]Sk = ]Sk,1 · · · ]Sk,sk .

Lemma 2.6. Let µ ∈M(X, f), α =
∫
ϕdµ. For sufficiently large k, we have

(1) ]Sk,1 · · · ]Sk,sk ≥ exp {nk(C − 5η)};

(2) if x ∈ Sk, then∣∣∣∣ 1

nk
Snk

ϕ(x)− α
∣∣∣∣ < Var(ϕ, ε/2k) +

nk + n̂k
nk

δk +
1

nk

sk∑
i=2

pk,i ‖ϕ‖+
nk − n̂k
nk

‖ϕ‖ .

Proof. (1) By Lemmas 2.4 and 2.5, for sufficiently large k we have

]Sk,1 · · · ]Sk,sk ≥ exp

{
sk∑
i=1

ak,in̂k(h
Kat
mk,i

(f, 4ε)− 2η)

}

= exp

{
n̂k

(
sk∑
i=1

ak,i(h
Kat
mk,i

(f, 4ε)− 2η)

)}
≥ exp

{
n̂k(h

Kat
µ (f, 4ε)− 2η)

}
≥ exp {n̂k(hµ(f, ψ)− 3η)}

≥ exp {n̂k(C − 4η)}

≥ exp {nk(C − 5η)} .

The last line follows from nk
n̂k
→ 1 as k →∞.

(2) Suppose x = x(y1, . . . , ysk) ∈ Sk, then from Lemma 2.4 and (2.2), we have

|Snk
ϕ(x)− nkα| =

∣∣∣∣Snk
ϕ(x)− nk

∫
ϕdµ

∣∣∣∣
≤
∣∣∣∣Snk

ϕ(x)− nk
∫
ϕdµk

∣∣∣∣+

∣∣∣∣nk ∫ ϕdµk − nk
∫
ϕdµ

∣∣∣∣
≤

∣∣∣∣∣Snk
ϕ(x)−

sk∑
i=1

ak,ink

∫
ϕdmk,i

∣∣∣∣∣+ nkδk

≤

∣∣∣∣∣Snk
ϕ(x)−

sk∑
i=1

Sak,in̂k
ϕ(yi)

∣∣∣∣∣+

∣∣∣∣∣
sk∑
i=1

Sak,in̂k
ϕ(yi)−

sk∑
i=1

ak,ink

∫
ϕdmk,i

∣∣∣∣∣+ nkδk

≤ n̂k Var(ϕ, ε/2k) +

sk−1∑
i=1

pk,i ‖ϕ‖+

sk∑
i=1

ak,in̂kδk + (nk − n̂k) ‖ϕ‖+ nkδk

≤ n̂k Var(ϕ, ε/2k) + (nk + n̂k)δk +

sk−1∑
i=1

pk,i ‖ϕ‖+ (nk − n̂k) ‖ϕ‖ .

The desired result follows.
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Thus we obtain the following lemma.

Lemma 2.7. We can choose nk → ∞ such that N( ε
2k

)/nk → 0, and γk → 0, and a

countable collection of finite sets Sk such that each Sk is an (nk, 3ε) separated set and

]Sk ≥ exp(nk(C − 5η)),

and for any x ∈ Sk, ∣∣∣∣ 1

nk
Snk

ϕ(x)−
∫
ϕdµ

∣∣∣∣ < γk.

2.2.3. Construction of the fractal F

Let us choose a sequence Nk increasing to ∞ sufficiently quickly so that

(2.3) lim
k→∞

nk+1 + pk+1

Nk
= 0, lim

k→∞

N1(n1 + p1) + · · ·+Nk(nk + pk)

Nk+1
= 0,

where pi ≤ N( ε
2i

), i ≥ 1 satisfying Definition 1.2.

We enumerate the points in the set Sk, i.e., Sk =
{
xki : i = 1, 2, . . . , ]Sk

}
. For k ≥

1, we consider the set SNk
k . For any Nk points xk1, x

k
2, . . . , x

k
Nk

in Sk, we denote xk =

(xk1, x
k
2, . . . , x

k
Nk

) ∈ SNk
k .

Define
a1 = n1, b1 = a1 + p1,

a2 = b1 + n1, b2 = a2 + p1,

...
...

aN1−1 = bN1−2 + n1, bN1−1 = aN1−1 + p1.

By the gluing orbit property, there exists a z ∈ X such that

d(f jx1
1, f

jz) ≤ 2−1ε, 0 ≤ j < n1,

d(f jx1
2, f

j+b1z) ≤ 2−1ε, 0 ≤ j < n1,

...
...

d(f jx1
N1
, f j+bN1−1z) ≤ 2−1ε, 0 ≤ j < n1.

Denote l1 = N1n1 + (N1 − 1)p1,

L1 =
{
z = z(x1) : x1 = (x1

1, x
1
2, . . . , x

1
N1

) ∈ SN1
1

}
.

We will define recursively Lk and lk as follows. Suppose we have already defined the set

Lk, then

Lk+1 =
{
z = z(x, y

k+1
) : x ∈ Lk, yk+1

= (yk+1
1 , yk+1

2 , . . . , yk+1
Nk+1

) ∈ SNk+1

k+1

}
,
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where z = z(x, y
k+1

) is a point such that

dlk(x, z) ≤ ε

2k+1
and dnk+1

(yk+1
j , f lk+pk+1+mj (z)) ≤ ε

2k+1
,

and mj = (j − 1)(pk+1 + nk+1), j = 1, 2, . . . , Nk+1. Such a point z exists because the

map f satisfies the gluing orbit property. Let lk+1 = lk + Nk+1(pk+1 + nk+1), then

lk+1 =
∑k+1

i=1 Ni(pi + ni)− p1.

Lemma 2.8. For any x ∈ Lk, y =
(
yk+1

1 , yk+1
2 , . . . , yk+1

Nk+1

)
, y′ =

(
y′k+1

1 , y′k+1
2 , . . . , y′k+1

Nk+1

)
∈ SNk+1

k+1 with y 6= y′, it follows

dlk(z(x, y), z(x, y′)) ≤ ε

2k
and dlk+1

(z(x, y), z(x, y′)) > 2ε.

Proof. First, obviously we have dlk(z(x, y), z(x, y′)) ≤ dlk(z(x, y), x) + dlk(x, z(x, y′)) ≤
ε

2k+1 + ε
2k+1 = ε

2k
.

Since y 6= y′, there exists j ∈ {1, 2, . . . , Nk+1} such that yk+1
j 6= y′k+1

j . We may assume

j ≥ 2, then

dnk+1
(yk+1
j , f lk+pk+1+mj (z(x, y))) ≤ ε

2k+1
,

dnk+1
(y′k+1
j , f lk+pk+1+mj (z(x, y′))) ≤ ε

2k+1
.

Together with dnk+1
(yk+1
j , y′k+1

j ) > 3ε, we have

dlk+1
(z(x, y), z(x, y′)) ≥ dnk+1

(f lk+pk+1+mj (z(x, y)), f lk+pk+1+mj (z(x, y′)))

≥ dnk+1
(yk+1
j , y′k+1

j )− dnk+1
(yk+1
j , f lk+pk+1+mj (z(x, y)))

− dnk+1
(y′k+1
j , f lk+pk+1+mj (z(x, y′)))

> 3ε− ε

2
− ε

2
= 2ε.

By Lemma 2.8, Lk is a (lk, 2ε) separated set. In particular, if z, z′ ∈ Lk, then

Blk(z, ε
2k−1 ) ∩Blk(z′, ε

2k−1 ) = ∅.

Lemma 2.9. For z = z(x, y) ∈ Lk+1, where x ∈ Lk and y =
(
yk+1

1 , yk+1
2 , . . . , yk+1

Nk+1

)
∈

SNk+1

k+1 , we have

Blk+1

(
z,

ε

2k

)
⊂ Blk

(
x,

ε

2k−1

)
.

Proof. Let z′ ∈ Blk+1
(z, ε

2k
), then

dlk(z′, x) ≤ dlk(z′, z) + dlk(x, z) ≤ ε

2k
+

ε

2k+1
≤ ε

2k−1
.
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For every k ≥ 1, put

Fk =
⋃
x∈Lk

Blk

(
x,

ε

2k−1

)
.

By Lemma 2.9, Fk+1 ⊂ Fk, i.e., {Fk}k≥1 is a decreasing sequence of compact sets. Hence

the intersection F =
⋂∞
k=1 Fk is non-empty.

For q ∈ N, we define the sequence Mq as follows:

Mq =



n1 + (q − 1)(p1 + n1), if 0 < q ≤ N1,

n1 + (N1 − 1)(p1 + n1) + (q −N1)(p2 + n2), if N1 < q ≤ N1 +N2,

· · ·

−p1 +
∑k

i=1Ni(pi + ni) + (q −
∑k

i=1Ni)(pk+1 + nk+1), if
∑k

i=1Ni < q ≤
∑k+1

i=1 Ni,

· · ·

Lemma 2.10. For any y ∈ F , limn→∞
1
n

∑n−1
i=0 ϕ(f iy) = α, where α =

∫
ϕdµ, µ ∈

M(X, f).

Proof. By (2.3), it suffices to show that

lim
q→∞

1

Mq

Mq−1∑
i=0

ϕ(f iy) = α.

We assume that Mq = −p1 +
∑j

k=1Nk(pk + nk) + t(pj+1 + nj+1), where 0 < t = q −∑j
k=1Nk ≤ Nj+1. For y ∈ F , by the gluing orbit property, there exists (x1, . . . , xj+1) ∈

SN1
1 × · · · × SNj+1

j+1 such that y ∈ B(x1, . . . , xj+1), where xi = (xi1, . . . , x
i
Ni

) ∈ SNi
i ,

B(x1) = Bn1

(
x1

1,
ε

2

)
∩ f−n1−p1Bn1

(
x1

2,
ε

2

)
∩ · · · ∩ f−(N1−1)(n1+p1)Bn1

(
x1
N1
,
ε

2

)
,

l1 = n1 + (N1 − 1)(p1 + n1),

B(x1, . . . , xk) = B(x1) ∩

(
N2⋂
i=1

f−l1−(i−1)(p2+n2)−p2Bn2

(
x2
i ,
ε

22

))
∩ · · ·

∩

(
Nk⋂
i=1

f−l1−
∑k−1

j=2 Nj(pj+nj)−(i−1)(pk+nk)−pkBnk

(
xki ,

ε

2k

))
.

For 1 ≤ k ≤ j, let yk = f−p1+
∑k−1

i=1 Ni(pi+ni)y. Let am = pk + (m − 1)(nk + pk),

ck = Nknk + (Nk − 1)pk, we have∣∣∣∣Sckϕ(yk)− ck
∫
ϕdµ

∣∣∣∣ ≤
∣∣∣∣∣
Nk∑
l=1

Snk
ϕ(falyk)− ck

∫
ϕdµ

∣∣∣∣∣+ pk(Nk − 1) ‖ϕ‖

≤
Nk∑
l=1

∣∣∣Snk
ϕ(falyk)− Snk

ϕ(xkl )
∣∣∣+

Nk∑
l=1

∣∣∣∣Snk
ϕ(xkl )− nk

∫
ϕdµ

∣∣∣∣
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+ 2pk(Nk − 1) ‖ϕ‖

≤ Nknk

{
Var

(
ϕ,

ε

2k

)
+ γk

}
+ 2pk(Nk − 1) ‖ϕ‖ .

Let yj+1 = f−p1+
∑j

i=1Ni(ni+pi)y. Similarly, we have∣∣∣∣St(pj+1+nj+1)ϕ(yj+1)− t(pj+1 + nj+1)

∫
ϕdµ

∣∣∣∣
≤ tnj+1

{
Var

(
ϕ,

ε

2j+1

)
+ γj+1

}
+ 2tpj+1 ‖ϕ‖ .

Thus we have∣∣∣∣SMq
ϕ(y)−Mq

∫
ϕdµ

∣∣∣∣ ≤ j∑
k=1

∣∣∣∣Sckϕ(yk)− ck
∫
ϕdµ

∣∣∣∣
+

∣∣∣∣St(pj+1+nj+1)ϕ(yj+1)− t(pj+1 + nj+1)

∫
ϕdµ

∣∣∣∣+ 2

j∑
k=2

pk ‖ϕ‖

≤
j∑

k=1

Nknk

{
Var

(
ϕ,

ε

2k

)
+ γk

}
+ tnj+1

{
Var

(
ϕ,

ε

2j+1

)
+ γj+1

}

+ 2

(
j∑

k=1

pkNk + tpj+1

)
‖ϕ‖ .

It follows from (2.3) and the fact

lim
k→∞

Var
(
ϕ,

ε

2k

)
= 0, lim

k→∞

pk
nk
≤ lim

k→∞

N( ε
2k

)

nk
= 0 and lim

k→∞
γk = 0,

we have

lim
q→∞

1

Mq

Mq−1∑
i=0

ϕ(f iy) = α.

Thus the desired result follows.

2.2.4. Computation of the topological entropy of the fractal F

Next we compute the topological entropy of F . Let z′, z′′ ∈ F . We appoint L0 = ∅.
Assume that for k ≥ 0, z′ ∈ Blk+1

(z1,
ε

2k
) and z′′ ∈ Blk+1

(z2,
ε

2k
), where z1 = z1(x, xk+1) ∈

Lk+1 and z2 = z2(y, y
k+1

) ∈ Lk+1. If xk+1 6= y
k+1
∈ SNk+1

k+1 , by Lemma 2.7, we have

dlk+1
(z′, z′′) > ε. For k ≥ 2, we define

Mk,i = lk−1 + i(pk + nk), 1 ≤ i ≤ Nk.

Since F is compact we can consider finite covers C of F with the property that ifBn(x, ε/2) ∈
C, then Bn(x, ε/2) ∩ F 6= ∅. By definition

m(F, s,N, ε/2) = inf

 ∑
Bn(x,ε/2)∈C

e−ns : C ∈ ΓN (F, ε/2)


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for each C ∈ ΓN (F, ε/2), we can define a new cover C′ in which for Mk,i ≤ n < Mk,i+1,

Bn(x, ε/2) is replaced by BMk,i
(x, ε/2). Here we appoint Mk,Nk+1 = Mk+1,0. Then

m(F, s,N, ε/2) = inf
C∈ΓN (Z,ε/2)

∑
Bn(x,ε/2)∈C

e−ns ≥ inf
C∈ΓN (F,ε/2)

∑
BMk,i

(x,ε/2)∈C′
e−Mk,i+1s.

We use the lexicographical order for the set {(k, i) : k, i ∈ N, 1 ≤ i ≤ Nk}. Let

(k0, i0) = max
{

(k, i) : BMk,i
(x, ε/2) ∈ C′

}
.

For k ≥ 2, define

Wk,i :=

k−1∏
j=1

SNj

j

× Sik, Wk0,i0 :=
⋃

(k,i)≤(k0,i0)

Wk,i.

Each x ∈ BMk,i
∩ F corresponds to a unique point in Wk,i. For (k, i) ≤ (k0, i0), each

w ∈ Wk,i is the prefix of exactly ]Wk0,i0/]Wk,i elements of Wk0,i0 . If W ⊂Wk0,i0 contains

a prefix of each element of Wk0,i0 , then∑
(k,i)≤(k0,i0)

](W ∩Wk,i)
]Wk0,i0

]Wk,i
≥ ]Wk0,i0 ,

i.e., ∑
(k,i)≤(k0,i0)

](W ∩Wk,i)

]Wk,i
≥ 1.

It follows from

]Sk ≥ exp(nk(C − 5η)),

that

]Wk,i ≥ (]S1)N1(]S2)N2 · · · (]Sk−1)Nk−1(]Sk)i

≥ exp {(n1N1 + n2N2 + · · ·+ nk−1Nk−1 + nki)(C − 5η)} .

One can readily verify that

lim
k→∞

n1N1 + n2N2 + · · ·+ nk−1Nk−1 + nki

Mk,i+1
= 1.

Since C′ is a cover, each point of Wk0,i0 has a prefix associated with some BMk,i
∈ C′.

When N is large enough, we have

m(F,C − 6η,N, ε/2) ≥
∑

BMk,i
(x,ε/2)∈C′

exp {−Mk,i+1(C − 6η)}

≥
∑

BMk,i
(x,ε/2)∈C′

{−(n1N1 + n2N2 + · · ·+ nk−1Nk−1 + nki)(C − 5η)}

≥
∑

BMk,i
(x,ε/2)∈C′

1

]Wk,i
≥ 1,
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which implies that

htop

(
F,
ε

2

)
≥ C − 6η.

Since ε and η is arbitrary, we have hBtop(X(ϕ, α)) ≥ hBtop(F ) ≥ C, which completes the

proof of Theorem 1.5.
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