DOI: 10.11650/tjm/7946

Multifractal Analysis for Maps with the Gluing Orbit Property

Xiang Shao and Zheng Yin*

Abstract. In this paper, we obtain a conditional variational principle for the topological entropy of level sets of Birkhoff averages for maps with the gluing orbit property. Our result can be easily extended to flows.

1. Introduction

This article is devoted to the study of multifractal analysis for maps with gluing orbit property. Before stating our results, we first give some notations and backgrounds. By a topological dynamical system (TDS for short) (X, f), we mean that (X, d) is a compact metric space and f is a continuous map from X to itself. For a continuous function $\varphi \colon X \to \mathbb{R}$, X can be divided into the following parts:

$$X = \bigcup_{\alpha \in \mathbb{R}} X(\varphi, \alpha) \cup \widehat{X}(\varphi, f),$$

where for $\alpha \in \mathbb{R}$,

$$X(\varphi,\alpha) = \left\{ x \in X : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \varphi(f^i x) = \alpha \right\}$$

and

$$\widehat{X}(\varphi, f) = \left\{ x \in X : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \varphi(f^i x) \text{ does not exist} \right\}.$$

The level set $X(\varphi, \alpha)$ is called the multifractal decomposition set of ergodic average of φ in multifractal analysis. And the set $\widehat{X}(\varphi, f)$ is called the historic set of ergodic average of φ . The multifractal analysis of dynamical systems is a subfield of dimension theory. Roughly speaking, multifractal analysis studies the complexity of the level sets with invariant local quantities obtained from a dynamical system. There are fruitful results to describe the size of the level sets. The quantities include Hausdorff dimension, topological entropy and topological pressure (see [1,2,8–11,13]).

The concept of the gluing orbit property was introduced by Bofim and Varandas [3] to study large deviations principles for semiflows. It is also called the weak specification

Received October 30, 2016; Accepted January 3, 2017.

Communicated by Yingfei Yi.

2010 Mathematics Subject Classification. 37B40, 37C45.

Key words and phrases. variational principle, gluing orbit property.

^{*}Corresponding author.

property, which was introduced by Constantine, Lafont and Thompson [5] independently. In this paper, we prove a variational principle for the topological entropy of the level set $X(\varphi, \alpha)$ for maps with the gluing orbit property.

Let (X, f) be a TDS. For a continuous function $\varphi \colon X \to \mathbb{R}$ and $n \ge 1$, let $S_n \varphi(x) := \sum_{i=0}^{n-1} \varphi(f^i x)$, and for c > 0, we set

$$Var(\varphi, c) := \sup \{ |\varphi(x) - \varphi(y)| : d(x, y) < c \}.$$

For every $\epsilon > 0$, $n \in \mathbb{N}$ and a point $x \in X$, define

$$B_n(x,\epsilon) = \left\{ y \in X : d(f^i x, f^i y) < \epsilon, 0 \le i \le n - 1 \right\}$$

and

$$\overline{B_n}(x,\epsilon) = \left\{ y \in X : d(f^i x, f^i y) \le \epsilon, 0 \le i \le n - 1 \right\}.$$

Let $C(X,\mathbb{R})$ be the Banach algebra of real-valued continuous functions of X equipped with the supremum norm. Denote by M(X), M(X,f) and E(X,f) the set of all Borel probability measures on X, the collection of all f-invariant Borel probability measures and the collection of all ergodic measures, respectively. It is well known that (see [12]) M(X) and M(X,f) equipped with weak* topology are both convex, compact spaces. For measures $m_1, m_2 \in M(X,f)$, we define the metric $D(m_1, m_2)$ compatible with the weak* topology by

$$D(m_1, m_2) = \sum_{n=1}^{\infty} \frac{\left| \int f_n \, dm_1 - \int f_n \, dm_2 \right|}{2^n \, ||f_n||},$$

where $\{f_n\}_{n=1}^{\infty}$ is a dense subset of $C(X,\mathbb{R})$.

Definition 1.1 (Bowen's topological entropy). [4] Given $Z \subset X$, $\epsilon > 0$ and $N \in \mathbb{N}$, let $\Gamma_N(Z,\epsilon)$ be the collection of all finite or countable covers of Z by sets of the form $B_n(x,\epsilon)$ with $n \geq N$. For each $s \in \mathbb{R}$, we set

$$m(Z, s, N, \epsilon) := \inf \left\{ \sum_{B_n(x, \epsilon) \in \mathcal{C}} e^{-ns} : \mathcal{C} \in \Gamma_N(Z, \epsilon) \right\}$$

and

$$m(Z, s, \epsilon) := \lim_{N \to \infty} m(Z, s, N, \epsilon).$$

Define

$$h_{\text{top}}(Z, \epsilon) = \inf \left\{ s \in \mathbb{R} : m(Z, s, \epsilon) = 0 \right\} = \sup \left\{ s \in \mathbb{R} : m(Z, s, \epsilon) = \infty \right\}$$

and topological entropy of Z as

$$h_{\text{top}}^B(Z) := \lim_{\epsilon \to 0} h_{\text{top}}^B(Z, \epsilon).$$

It is obvious that the following hold:

- (1) $h_{\text{top}}^B(Z_1) \leq h_{\text{top}}^B(Z_2)$ for any $Z_1 \subset Z_2 \subset X$;
- (2) $h_{\text{top}}^B(Z) = \sup_{i=1}^{\infty} h_{\text{top}}^B(Z_i)$, where $Z = \bigcup_{i=1}^{\infty} Z_i \subset X$.

Definition 1.2. [3,5] We say a continuous map $f: X \to X$ on a compact metric space X satisfying the gluing orbit property if for any $\epsilon > 0$, there exists an integer $N = N(\epsilon) \ge 1$ such that for any points $x_1, \ldots, x_k \in X$ and any positive integers n_1, \ldots, n_k , there are $p_1, \ldots, p_k \le N(\epsilon)$ and a point $x \in X$ so that $d(f^j x, f^j x_1) \le \epsilon$ for every $0 \le j < n_1$ and

$$d(f^{j+n_1+p_1+\cdots+n_{i-1}+p_{i-1}}(x), f^j(x_i)) \le \epsilon$$

for every $2 \le i \le k$ and $0 \le j < n_i$.

There are two important classes of examples satisfying the gluing orbit property.

Proposition 1.3. [3,5] Let Σ be a subshift of finite type. The Σ is transitive if and only if Σ satisfies the gluing orbit property.

Proposition 1.4. [5] Let X be a compact, locally CAT(-1), geodesic metric space, with non-elementary fundamental group. Then the geodesic flow on GX satisfies the weak specification property (the gluing orbit property).

We state our result as follows.

Theorem 1.5. Suppose (X, f) is a TDS, f satisfies the gluing orbit property, $\alpha \in \mathbb{R}$, and $\varphi \in C(X, \mathbb{R})$. Then

$$h_{\text{top}}^B(X(\varphi,\alpha)) = \sup \left\{ h_{\nu}(f) : \nu \in M(X,f) \text{ and } \int \varphi \, d\nu = \alpha \right\}.$$

2. Proof of Theorem 1.5

In this section, we will prove our main result. The upper bound on $h_{\text{top}}^B(X(\varphi,\alpha))$ is easy to get. In order to obtain the lower bound on $h_{\text{top}}^B(X(\varphi,\alpha))$, we will use the gluing orbit property. The proof will be divided into the following two subsections.

2.1. Upper bound on
$$h_{\text{top}}^B(X(\varphi, \alpha))$$

Let (X, f) be a TDS. For $x \in X$, let δ_x be the unit measure concentrated on x. For $n \in \mathbb{N}$, define

$$\mathcal{E}_n(x) = \frac{\delta_x + \delta_{f(x)} + \dots + \delta_{f^{n-1}(x)}}{n}.$$

Let V(x) be the set of all limit points in M(X) of the sequence $\mathcal{E}_n(x)$.

The upper bound of $h_{\text{top}}^B(X(\varphi,\alpha))$ can be easily obtained by the following lemma.

Lemma 2.1. [4] For $t \ge 0$, consider the set

$$B(t) = \{x \in X : \exists \nu \in V(x) \text{ satisfying } h_{\nu}(f) \leq t\}.$$

Then $h_{\text{top}}^B(B(t)) \leq t$.

Let

$$t = \sup \left\{ h_{\nu}(f) : \nu \in M(X, f) \text{ and } \int \varphi \, d\nu = \alpha \right\}.$$

Then $X(\varphi, \alpha) \subset B(t)$. Thus we have

$$h_{\text{top}}^B(X(\varphi,\alpha)) \le \sup \left\{ h_{\nu}(f) : \nu \in M(X,f) \text{ and } \int \varphi \, d\nu = \alpha \right\}.$$

2.2. Lower bound on
$$h_{\text{top}}^B(X(\varphi,\alpha))$$

To get the lower bound on $h_{\text{top}}^B(X(\varphi,\alpha))$, the dynamical system needs some mild assumption such as gluing orbit property. Our strategy is inspired by the work of Takens and Verbitskiy [10], developed by Chen, Kupper and Shu [6], Pfister and Sullivan [9], Pei and Chen [8] and Thompson [11].

2.2.1. Katok's definition of metric entropy

We use the Katok's definition of metric entropy based on the following lemma.

Lemma 2.2. [7] Let (X, d) be a compact metric space, $f: X \to X$ be a continuous map and ν be an ergodic invariant measure. For $\epsilon > 0$, $\delta \in (0,1)$, denote $N^{\nu}(n, \epsilon, \delta)$ the minimum number of ϵ -Bowen balls $B_n(x, \epsilon)$, which cover a set of ν -measure larger than $1 - \delta$. Then

$$h_{\nu}(f) = \lim_{\epsilon \to 0} \liminf_{n \to \infty} \frac{1}{n} \log N^{\nu}(n, \epsilon, \delta) = \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log N^{\nu}(n, \epsilon, \delta).$$

Fix $\delta \in (0,1)$. For $\epsilon > 0$ and $\nu \in E(X,f)$, we define

$$h_{\nu}^{\mathrm{Kat}}(f,\epsilon) := \liminf_{n \to \infty} \frac{1}{n} \log N^{\nu}(n,\epsilon,\delta).$$

Then by Lemma 2.2,

$$h_{\nu}(f) = \lim_{\epsilon \to 0} h_{\nu}^{\mathrm{Kat}}(f, \epsilon).$$

If ν is non-ergodic, we will define $h_{\nu}^{\mathrm{Kat}}(f,\epsilon)$ by the ergodic decomposition of ν . The following lemma is necessary.

Lemma 2.3. Fix $\epsilon, \delta > 0$ and $n \in \mathbb{N}$, the function $s \colon E(X, f) \to \mathbb{R}$ defined by $\nu \mapsto N^{\nu}(n, \epsilon, \delta)$ is upper semi-continuous.

Proof. Let $\{\nu_k\}$ be a sequence of ergodic measures satisfying $\nu_k \to \nu$ when $k \to \infty$. Let $a > N^{\nu}(n, \epsilon, \delta)$, then there exists a set S which (n, ϵ) spans some set Z with $\nu(Z) > 1 - \delta$ such that $a > \sharp S$, where $\sharp S$ denotes the number of elements in S. If k is large enough, then $\nu_k(\bigcup_{x \in S} B_n(x, \epsilon)) > 1 - \delta$, which implies that

$$a > N^{\nu_k}(n, \epsilon, \delta).$$

Thus we obtain

$$N^{\nu}(n, \epsilon, \delta) \ge \limsup_{k \to \infty} N^{\nu_k}(n, \epsilon, \delta),$$

which completes the proof.

By Lemma 2.3, we know the function $s \colon E(X, f) \to \mathbb{R}$ defined by

$$s(m) = h_m^{\text{Kat}}(f, \epsilon)$$

is measurable.

Assume $\nu \in M(X,f)$, $\nu = \int_{E(X,f)} m \, d\tau(m)$ is the ergodic decomposition of ν . Define

$$h_{\nu}^{\mathrm{Kat}}(f,\epsilon) := \int_{E(X,f)} h_{m}^{\mathrm{Kat}}(f,\epsilon) \, d\tau(m).$$

By monotone convergence theorem, we have

(2.1)
$$h_{\nu}(f) = \int_{E(X,f)} \lim_{\epsilon \to 0} h_m^{\text{Kat}}(f,\epsilon) d\tau(m) = \lim_{\epsilon \to 0} h_{\nu}^{\text{Kat}}(f,\epsilon).$$

2.2.2. Some important lemmas

Let

$$C := \sup \left\{ h_{\nu}(f) : \nu \in M(X, f) \text{ and } \int \varphi \, d\nu = \alpha \right\}.$$

We may assume that C is finite and C > 0. The case that C is infinite can be included in our proof. Fix small $0 < \delta, \eta < 1$ and $\eta < C/5$. Choose a measure $\mu \in M(X, f)$ satisfying $\int \varphi \, d\mu = \alpha$ such that

$$h_{\mu}(f) > C - \frac{\eta}{2}.$$

By (2.1), we can choose $\epsilon > 0$ sufficiently small so that

$$h_{\mu}^{\text{Kat}}(f, 4\epsilon) > C - \eta.$$

Then

$$h_{\mu}^{\text{Kat}}(f, 4\epsilon) - 4\eta > C - 5\eta > 0.$$

Let $\{\delta_k\}_{k\geq 1}$ be a sequence of positive numbers strictly decreasing to 0. We have the following lemma.

Lemma 2.4. For $\mu \in M(X, f)$, there exists a sequence of measures $\{\mu_k\}_{k>1}$, where

$$\mu_k = \sum_{i=1}^{s_k} a_{k,i} m_{k,i}, \quad \sum_{i=1}^{s_k} a_{k,i} = 1, \quad a_{k,i} \in \mathbb{Q}, \ 1 \le i \le s_k, \ m_{k,i} \in E(X, f)$$

such that

$$\left| \int \varphi \, d\mu - \int \varphi \, d\mu_k \right| < \delta_k, \quad h_{\mu}^{\text{Kat}}(f, 4\epsilon) \le \sum_{i=1}^{s_k} a_{k,i} h_{m_{k,i}}^{\text{Kat}}(f, 4\epsilon).$$

Proof. Let

$$\mu = \int_{E(X,f)} m \, d\tau(m)$$

be the ergodic decomposition of μ . Fix k. We make $\zeta_k > 0$ such that if $D(\mu_1, \mu_2) < \zeta_k$, then $\left| \int \varphi \, d\mu_1 - \int \varphi \, d\mu_2 \right| < \delta_k/2$. Let $\{A_{k,1}, \ldots, A_{k,s_k}\}$ be a partition of E(X, f) with $\operatorname{diam}(A_{k,i}) < \zeta_k$, $1 \le i \le s_k$. For any $A_{k,i}$, there exists an Ergodic measure $m_{k,i} \in A_{k,i}$ such that

$$\int_{A_{k,i}} h_m^{\text{Kat}}(f, 4\epsilon) \, d\tau(m) \le \tau(A_{k,i}) \cdot h_{m_{k,i}}^{\text{Kat}}(f, 4\epsilon), \quad 1 \le i \le s_k.$$

So

$$\int_{E(X,f)} h_m^{\mathrm{Kat}}(f,4\epsilon) \, d\tau(m) \le \sum_{i=1}^{s_k} \tau(A_{k,i}) \cdot h_{m_{k,i}}^{\mathrm{Kat}}(f,4\epsilon).$$

By the density of rational number, we can choose $a_{k,i}$ such that

$$|a_{k,i} - \tau(A_{k,i})| < \frac{1}{s_k \|\varphi\|} \frac{\delta_k}{2}, \quad 1 \le i \le s_k$$

and

$$h_{\mu}^{\mathrm{Kat}}(f, 4\epsilon) \le \sum_{i=1}^{s_k} a_{k,i} h_{m_{k,i}}^{\mathrm{Kat}}(f, 4\epsilon).$$

Let $\mu_k = \sum_{i=1}^{s_k} a_{k,i} m_{k,i}$, by Choquet representation theorem, we have

$$\begin{split} &\left| \int \varphi \, d\mu - \int \varphi \, d\mu_k \right| \\ &= \left| \int_{E(X,f)} \left(\int \varphi \, dm \right) d\tau(m) - \sum_{i=1}^{s_k} a_{k,i} \int \varphi \, dm_{k,i} \right| \\ &\leq \left| \sum_{i=1}^{s_k} \int_{A_{k,i}} \left(\int \varphi \, dm \right) d\tau(m) - \sum_{i=1}^{s_k} \int_{A_{k,i}} \left(\int \varphi \, dm_{k,i} \right) d\tau(m) \right| + \sum_{i=1}^{s_k} |a_{k,i} - \tau(A_{k,i})| \, \|\varphi\| \\ &\leq \sum_{i=1}^{s_k} \left| \int_{A_{k,i}} \left(\int \varphi \, dm \right) d\tau(m) - \int_{A_{k,i}} \left(\int \varphi \, dm_{k,i} \right) d\tau(m) \right| + \frac{\delta_k}{2} \\ &\leq \sum_{i=1}^{s_k} \frac{\delta_k}{2} \tau(A_{k,i}) + \frac{\delta_k}{2} = \delta_k. \end{split}$$

By Birkhoff ergodic theorem, we can choose a strictly increasing sequence $\{l_k\}_{k\geq 1}$ satisfying $\delta_k \to 0$ and $l_k \to \infty$ as $k \to \infty$ so that the set

$$Y_{k,i} := \left\{ x \in X : \left| \frac{1}{n} S_n \varphi(x) - \int \varphi \, dm_{k,i} \right| < \delta_k \text{ for all } n \ge l_k \right\}$$

satisfies $m_{k,i}(Y_{k,i}) > 1 - \delta$, where $1 \le i \le s_k$.

Lemma 2.5. There exist a sequence of numbers $\{\widehat{n}_k\}_{k\geq 1}$ satisfying $\widehat{n}_k \to \infty$ as $k \to \infty$, $a_{k,i}\widehat{n}_k \in \mathbb{N}$ and $N(\frac{\epsilon}{2^k})/(a_{k,i}\widehat{n}_k) \leq \delta_k$, and a countable collection of finite sets $\mathcal{S}_{k,i}$ such that each $\mathcal{S}_{k,i}$ is an $(a_{k,i}\widehat{n}_k, 4\epsilon)$ separated set for $Y_{k,i}$ and

$$\sharp \mathcal{S}_{k,i} \ge \exp\left(a_{k,i}\widehat{n}_k(h_{m_{k,i}}^{\mathrm{Kat}}(f, 4\epsilon) - 2\eta)\right),$$

where $1 \le i \le s_k$, $\eta > 0$ is a small number.

Proof. For $A \subset X$, we define

$$Q_n(A, 4\epsilon) = \inf \{ \sharp S : S \text{ is an } (n, 4\epsilon) \text{ spanning set for } A \},$$

 $P_n(A, 4\epsilon) = \sup \{ \sharp S : S \text{ is an } (n, 4\epsilon) \text{ separated set for } A \}.$

Since $m_{k,i}(Y_{k,i}) > 1 - \delta$, we have

$$P_n(Y_{k,i}, 4\epsilon) \ge Q_n(Y_{k,i}, 4\epsilon) \ge N^{m_{k,i}}(n, 4\epsilon, \delta).$$

Thus

$$\liminf_{n \to \infty} \frac{1}{n} \log P_n(Y_{k,i}, 4\epsilon) \ge \liminf_{n \to \infty} \frac{1}{n} \log N^{m_{k,i}}(n, 4\epsilon, \delta)
= h_{m_{k,i}}^{\text{Kat}}(f, 4\epsilon), \quad k \in \mathbb{N}, \ 1 \le i \le s_k.$$

Choose $\widehat{n}_k \to \infty$ such that $a_{k,i}\widehat{n}_k \in \mathbb{N}$ and $N(\frac{\epsilon}{2^k})/(a_{k,i}\widehat{n}_k) \leq \delta_k$. We have

$$\frac{1}{a_{k,i}\widehat{n}_k}\log P_n(Y_{k,i}, 4\epsilon) \ge h_{m_{k,i}}^{\mathrm{Kat}}(f, 4\epsilon) - \eta.$$

Let $S_{k,i}$ be the $(a_{k,i}\hat{n}_k, 4\epsilon)$ separated set for $Y_{k,i}$, and satisfying

$$\sharp \mathcal{S}_{k,i} \ge \exp\left\{a_{k,i}\widehat{n}_k(h_{m_{k,i}}^{\mathrm{Kat}}(f, 4\epsilon) - 2\eta)\right\}.$$

The desired result follows.

We now use the gluing orbit property to define the set S_k as follows. Let $y_i \in S_{k,i}$, and define $x = x(y_1, \ldots, y_{s_k})$ to be a choice of point which satisfies

(2.2)
$$d_{a_{k,l}\widehat{n}_k}(y_l, f^{a_l}(x)) \le \frac{\epsilon}{2^k}$$

for all $l \in \{1, 2, ..., s_k\}$, where $a_1 = 0$, $a_l = \sum_{i=1}^{l-1} a_{k,i} \widehat{n}_k + \sum_{i=1}^{l-1} p_{k,i}$, $p_{k,i} \leq N(\frac{\epsilon}{2^k})$ for $l \in \{2, \ldots, s_k\}$. Denote \mathcal{S}_k be the set of all points constructed in this way. We set $n_k = \sum_{i=1}^{s_k} a_{k,i} \hat{n}_k + \sum_{i=1}^{s_k-1} p_{k,i}$. Then n_k is the amount of time for which the orbit of points in \mathcal{S}_k has been prescribed and we have $\frac{n_k}{\widehat{n}_k} \to 1$ as $k \to \infty$. One can verify that \mathcal{S}_k is $(n_k, 3\epsilon)$ separated, so $\sharp \mathcal{S}_k = \sharp \mathcal{S}_{k,1} \cdots \sharp \mathcal{S}_{k,s_k}$.

Lemma 2.6. Let $\mu \in M(X, f)$, $\alpha = \int \varphi d\mu$. For sufficiently large k, we have

- (1) $\sharp \mathcal{S}_{k,1} \cdots \sharp \mathcal{S}_{k,s_k} \ge \exp\{n_k(C-5\eta)\};$
- (2) if $x \in \mathcal{S}_k$, then

$$\left| \frac{1}{n_k} S_{n_k} \varphi(x) - \alpha \right| < \operatorname{Var}(\varphi, \epsilon/2^k) + \frac{n_k + \widehat{n}_k}{n_k} \delta_k + \frac{1}{n_k} \sum_{i=2}^{s_k} p_{k,i} \|\varphi\| + \frac{n_k - \widehat{n}_k}{n_k} \|\varphi\|.$$

Proof. (1) By Lemmas 2.4 and 2.5, for sufficiently large k we have

$$\sharp \mathcal{S}_{k,1} \cdots \sharp \mathcal{S}_{k,s_k} \ge \exp\left\{ \sum_{i=1}^{s_k} a_{k,i} \widehat{n}_k (h_{m_{k,i}}^{\text{Kat}}(f, 4\epsilon) - 2\eta) \right\}$$

$$= \exp\left\{ \widehat{n}_k \left(\sum_{i=1}^{s_k} a_{k,i} (h_{m_{k,i}}^{\text{Kat}}(f, 4\epsilon) - 2\eta) \right) \right\}$$

$$\ge \exp\left\{ \widehat{n}_k (h_{\mu}^{\text{Kat}}(f, 4\epsilon) - 2\eta) \right\}$$

$$\ge \exp\left\{ \widehat{n}_k (h_{\mu}(f, \psi) - 3\eta) \right\}$$

$$\ge \exp\left\{ \widehat{n}_k (C - 4\eta) \right\}$$

$$\ge \exp\left\{ n_k (C - 5\eta) \right\}.$$

The last line follows from $\frac{n_k}{\widehat{n}_k} \to 1$ as $k \to \infty$. (2) Suppose $x = x(y_1, \dots, y_{s_k}) \in \mathcal{S}_k$, then from Lemma 2.4 and (2.2), we have

$$|S_{n_{k}}\varphi(x) - n_{k}\alpha| = \left|S_{n_{k}}\varphi(x) - n_{k}\int\varphi d\mu\right|$$

$$\leq \left|S_{n_{k}}\varphi(x) - n_{k}\int\varphi d\mu_{k}\right| + \left|n_{k}\int\varphi d\mu_{k} - n_{k}\int\varphi d\mu\right|$$

$$\leq \left|S_{n_{k}}\varphi(x) - \sum_{i=1}^{s_{k}}a_{k,i}n_{k}\int\varphi dm_{k,i}\right| + n_{k}\delta_{k}$$

$$\leq \left|S_{n_{k}}\varphi(x) - \sum_{i=1}^{s_{k}}S_{a_{k,i}\widehat{n}_{k}}\varphi(y_{i})\right| + \left|\sum_{i=1}^{s_{k}}S_{a_{k,i}\widehat{n}_{k}}\varphi(y_{i}) - \sum_{i=1}^{s_{k}}a_{k,i}n_{k}\int\varphi dm_{k,i}\right| + n_{k}\delta_{k}$$

$$\leq \widehat{n}_{k}\operatorname{Var}(\varphi, \epsilon/2^{k}) + \sum_{i=1}^{s_{k}-1}p_{k,i}\|\varphi\| + \sum_{i=1}^{s_{k}}a_{k,i}\widehat{n}_{k}\delta_{k} + (n_{k} - \widehat{n}_{k})\|\varphi\| + n_{k}\delta_{k}$$

$$\leq \widehat{n}_{k}\operatorname{Var}(\varphi, \epsilon/2^{k}) + (n_{k} + \widehat{n}_{k})\delta_{k} + \sum_{i=1}^{s_{k}-1}p_{k,i}\|\varphi\| + (n_{k} - \widehat{n}_{k})\|\varphi\|.$$

The desired result follows.

Thus we obtain the following lemma.

Lemma 2.7. We can choose $n_k \to \infty$ such that $N(\frac{\epsilon}{2^k})/n_k \to 0$, and $\gamma_k \to 0$, and a countable collection of finite sets S_k such that each S_k is an $(n_k, 3\epsilon)$ separated set and

$$\sharp S_k \geq \exp(n_k(C-5\eta)),$$

and for any $x \in \mathcal{S}_k$,

$$\left| \frac{1}{n_k} S_{n_k} \varphi(x) - \int \varphi \, d\mu \right| < \gamma_k.$$

2.2.3. Construction of the fractal F

Let us choose a sequence N_k increasing to ∞ sufficiently quickly so that

(2.3)
$$\lim_{k \to \infty} \frac{n_{k+1} + p_{k+1}}{N_k} = 0, \quad \lim_{k \to \infty} \frac{N_1(n_1 + p_1) + \dots + N_k(n_k + p_k)}{N_{k+1}} = 0,$$

where $p_i \leq N(\frac{\epsilon}{2^i})$, $i \geq 1$ satisfying Definition 1.2.

We enumerate the points in the set S_k , i.e., $S_k = \{x_i^k : i = 1, 2, ..., \sharp S_k\}$. For $k \geq 1$, we consider the set $S_k^{N_k}$. For any N_k points $x_1^k, x_2^k, ..., x_{N_k}^k$ in S_k , we denote $\underline{x}_k = (x_1^k, x_2^k, ..., x_{N_k}^k) \in S_k^{N_k}$.

Define

$$a_1 = n_1,$$
 $b_1 = a_1 + p_1,$ $a_2 = b_1 + n_1,$ $b_2 = a_2 + p_1,$ \vdots \vdots $a_{N_1-1} = b_{N_1-2} + n_1,$ $b_{N_1-1} = a_{N_1-1} + p_1.$

By the gluing orbit property, there exists a $z \in X$ such that

$$d(f^{j}x_{1}^{1}, f^{j}z) \leq 2^{-1}\epsilon, \qquad 0 \leq j < n_{1},$$

$$d(f^{j}x_{2}^{1}, f^{j+b_{1}}z) \leq 2^{-1}\epsilon, \qquad 0 \leq j < n_{1},$$

$$\vdots \qquad \qquad \vdots$$

$$d(f^{j}x_{N_{1}}^{1}, f^{j+b_{N_{1}-1}}z) \leq 2^{-1}\epsilon, \qquad 0 \leq j < n_{1}.$$

Denote $l_1 = N_1 n_1 + (N_1 - 1) p_1$,

$$L_1 = \left\{ z = z(\underline{x}_1) : \underline{x}_1 = (x_1^1, x_2^1, \dots, x_{N_1}^1) \in \mathcal{S}_1^{N_1} \right\}.$$

We will define recursively L_k and l_k as follows. Suppose we have already defined the set L_k , then

$$L_{k+1} = \left\{ z = z(x, \underline{y}_{k+1}) : x \in L_k, \underline{y}_{k+1} = (y_1^{k+1}, y_2^{k+1}, \dots, y_{N_{k+1}}^{k+1}) \in \mathcal{S}_{k+1}^{N_{k+1}} \right\},\,$$

where $z = z(x, \underline{y}_{k+1})$ is a point such that

$$d_{l_k}(x,z) \leq \frac{\epsilon}{2^{k+1}} \quad \text{and} \quad d_{n_{k+1}}(y_j^{k+1},f^{l_k+p_{k+1}+m_j}(z)) \leq \frac{\epsilon}{2^{k+1}},$$

and $m_j = (j-1)(p_{k+1} + n_{k+1})$, $j = 1, 2, ..., N_{k+1}$. Such a point z exists because the map f satisfies the gluing orbit property. Let $l_{k+1} = l_k + N_{k+1}(p_{k+1} + n_{k+1})$, then $l_{k+1} = \sum_{i=1}^{k+1} N_i(p_i + n_i) - p_1$.

Lemma 2.8. For any $x \in L_k$, $\underline{y} = (y_1^{k+1}, y_2^{k+1}, \dots, y_{N_{k+1}}^{k+1})$, $\underline{y'} = (y_1'^{k+1}, y_2'^{k+1}, \dots, y_{N_{k+1}}'^{k+1})$ $\in \mathcal{S}_{k+1}^{N_{k+1}}$ with $\underline{y} \neq \underline{y'}$, it follows

$$d_{l_k}(z(x,\underline{y}),z(x,\underline{y'})) \leq \frac{\epsilon}{2^k} \quad and \quad d_{l_{k+1}}(z(x,\underline{y}),z(x,\underline{y'})) > 2\epsilon.$$

Proof. First, obviously we have $d_{l_k}(z(x,\underline{y}),z(x,\underline{y'})) \leq d_{l_k}(z(x,\underline{y}),x) + d_{l_k}(x,z(x,\underline{y'})) \leq \frac{\epsilon}{2^{k+1}} + \frac{\epsilon}{2^{k+1}} = \frac{\epsilon}{2^k}.$

Since $\underline{y} \neq \underline{y'}$, there exists $j \in \{1, 2, \dots, N_{k+1}\}$ such that $y_j^{k+1} \neq y_j'^{k+1}$. We may assume $j \geq 2$, then

$$d_{n_{k+1}}(y_j^{k+1}, f^{l_k + p_{k+1} + m_j}(z(x, \underline{y}))) \le \frac{\epsilon}{2^{k+1}},$$

$$d_{n_{k+1}}(y_j'^{k+1}, f^{l_k + p_{k+1} + m_j}(z(x, \underline{y}'))) \le \frac{\epsilon}{2^{k+1}}.$$

Together with $d_{n_{k+1}}(y_j^{k+1}, y_j'^{k+1}) > 3\epsilon$, we have

$$\begin{split} d_{l_{k+1}}(z(x,\underline{y}),z(x,\underline{y'})) &\geq d_{n_{k+1}}(f^{l_k+p_{k+1}+m_j}(z(x,\underline{y})),f^{l_k+p_{k+1}+m_j}(z(x,\underline{y'}))) \\ &\geq d_{n_{k+1}}(y_j^{k+1},y_j'^{k+1}) - d_{n_{k+1}}(y_j^{k+1},f^{l_k+p_{k+1}+m_j}(z(x,\underline{y}))) \\ &- d_{n_{k+1}}(y_j'^{k+1},f^{l_k+p_{k+1}+m_j}(z(x,\underline{y'}))) \\ &> 3\epsilon - \frac{\epsilon}{2} - \frac{\epsilon}{2} = 2\epsilon. \end{split}$$

By Lemma 2.8, L_k is a $(l_k, 2\epsilon)$ separated set. In particular, if $z, z' \in L_k$, then $\overline{B}_{l_k}(z, \frac{\epsilon}{2^{k-1}}) \cap \overline{B}_{l_k}(z', \frac{\epsilon}{2^{k-1}}) = \emptyset$.

Lemma 2.9. For $z = z(x, \underline{y}) \in L_{k+1}$, where $x \in L_k$ and $\underline{y} = (y_1^{k+1}, y_2^{k+1}, \dots, y_{N_{k+1}}^{k+1}) \in S_{k+1}^{N_{k+1}}$, we have

$$\overline{B}_{l_{k+1}}\left(z,\frac{\epsilon}{2^k}\right)\subset \overline{B}_{l_k}\left(x,\frac{\epsilon}{2^{k-1}}\right).$$

Proof. Let $z' \in \overline{B}_{l_{k+1}}(z, \frac{\epsilon}{2^k})$, then

$$d_{l_k}(z',x) \le d_{l_k}(z',z) + d_{l_k}(x,z) \le \frac{\epsilon}{2^k} + \frac{\epsilon}{2^{k+1}} \le \frac{\epsilon}{2^{k-1}}.$$

For every $k \geq 1$, put

$$F_k = \bigcup_{x \in L_k} \overline{B}_{l_k} \left(x, \frac{\epsilon}{2^{k-1}} \right).$$

By Lemma 2.9, $F_{k+1} \subset F_k$, i.e., $\{F_k\}_{k\geq 1}$ is a decreasing sequence of compact sets. Hence the intersection $F = \bigcap_{k=1}^{\infty} F_k$ is non-empty.

For $q \in \mathbb{N}$, we define the sequence M_q as follows:

$$M_{q} = \begin{cases} n_{1} + (q-1)(p_{1} + n_{1}), & \text{if } 0 < q \leq N_{1}, \\ n_{1} + (N_{1} - 1)(p_{1} + n_{1}) + (q - N_{1})(p_{2} + n_{2}), & \text{if } N_{1} < q \leq N_{1} + N_{2}, \\ \dots \\ -p_{1} + \sum_{i=1}^{k} N_{i}(p_{i} + n_{i}) + (q - \sum_{i=1}^{k} N_{i})(p_{k+1} + n_{k+1}), & \text{if } \sum_{i=1}^{k} N_{i} < q \leq \sum_{i=1}^{k+1} N_{i}, \\ \dots \end{cases}$$

Lemma 2.10. For any $y \in F$, $\lim_{n\to\infty} \frac{1}{n} \sum_{i=0}^{n-1} \varphi(f^i y) = \alpha$, where $\alpha = \int \varphi d\mu$, $\mu \in M(X, f)$.

Proof. By (2.3), it suffices to show that

$$\lim_{q \to \infty} \frac{1}{M_q} \sum_{i=0}^{M_q - 1} \varphi(f^i y) = \alpha.$$

We assume that $M_q = -p_1 + \sum_{k=1}^{j} N_k (p_k + n_k) + t(p_{j+1} + n_{j+1})$, where $0 < t = q - \sum_{k=1}^{j} N_k \le N_{j+1}$. For $y \in F$, by the gluing orbit property, there exists $(\underline{x}_1, \dots, \underline{x}_{j+1}) \in \mathcal{S}_1^{N_1} \times \dots \times \mathcal{S}_{j+1}^{N_{j+1}}$ such that $y \in \overline{B(\underline{x}_1, \dots, \underline{x}_{j+1})}$, where $\underline{x}_i = (x_1^i, \dots, x_{N_i}^i) \in \mathcal{S}_i^{N_i}$,

$$B(\underline{x}_1) = B_{n_1}\left(x_1^1, \frac{\epsilon}{2}\right) \cap f^{-n_1-p_1}B_{n_1}\left(x_2^1, \frac{\epsilon}{2}\right) \cap \dots \cap f^{-(N_1-1)(n_1+p_1)}B_{n_1}\left(x_{N_1}^1, \frac{\epsilon}{2}\right),$$

 $l_1 = n_1 + (N_1 - 1)(p_1 + n_1),$

$$B(\underline{x}_{1}, \dots, \underline{x}_{k}) = B(\underline{x}_{1}) \cap \left(\bigcap_{i=1}^{N_{2}} f^{-l_{1} - (i-1)(p_{2} + n_{2}) - p_{2}} B_{n_{2}} \left(x_{i}^{2}, \frac{\epsilon}{2^{2}} \right) \right) \cap \cdots$$

$$\cap \left(\bigcap_{i=1}^{N_{k}} f^{-l_{1} - \sum_{j=2}^{k-1} N_{j}(p_{j} + n_{j}) - (i-1)(p_{k} + n_{k}) - p_{k}} B_{n_{k}} \left(x_{i}^{k}, \frac{\epsilon}{2^{k}} \right) \right).$$

For $1 \le k \le j$, let $y_k = f^{-p_1 + \sum_{i=1}^{k-1} N_i(p_i + n_i)} y$. Let $a_m = p_k + (m-1)(n_k + p_k)$, $c_k = N_k n_k + (N_k - 1)p_k$, we have

$$\left| S_{c_k} \varphi(y_k) - c_k \int \varphi \, d\mu \right| \leq \left| \sum_{l=1}^{N_k} S_{n_k} \varphi(f^{a_l} y_k) - c_k \int \varphi \, d\mu \right| + p_k (N_k - 1) \|\varphi\|$$

$$\leq \sum_{l=1}^{N_k} \left| S_{n_k} \varphi(f^{a_l} y_k) - S_{n_k} \varphi(x_l^k) \right| + \sum_{l=1}^{N_k} \left| S_{n_k} \varphi(x_l^k) - n_k \int \varphi \, d\mu \right|$$

$$+ 2p_k(N_k - 1) \|\varphi\|$$

$$\leq N_k n_k \left\{ \operatorname{Var} \left(\varphi, \frac{\epsilon}{2^k} \right) + \gamma_k \right\} + 2p_k(N_k - 1) \|\varphi\|.$$

Let $y_{j+1} = f^{-p_1 + \sum_{i=1}^{j} N_i(n_i + p_i)} y$. Similarly, we have

$$\left| S_{t(p_{j+1}+n_{j+1})} \varphi(y_{j+1}) - t(p_{j+1}+n_{j+1}) \int \varphi \, d\mu \right|$$

$$\leq t n_{j+1} \left\{ \operatorname{Var} \left(\varphi, \frac{\epsilon}{2^{j+1}} \right) + \gamma_{j+1} \right\} + 2t p_{j+1} \left\| \varphi \right\|.$$

Thus we have

$$\left| S_{M_q} \varphi(y) - M_q \int \varphi \, d\mu \right| \leq \sum_{k=1}^j \left| S_{c_k} \varphi(y_k) - c_k \int \varphi \, d\mu \right|$$

$$+ \left| S_{t(p_{j+1} + n_{j+1})} \varphi(y_{j+1}) - t(p_{j+1} + n_{j+1}) \int \varphi \, d\mu \right| + 2 \sum_{k=2}^j p_k \|\varphi\|$$

$$\leq \sum_{k=1}^j N_k n_k \left\{ \operatorname{Var} \left(\varphi, \frac{\epsilon}{2^k} \right) + \gamma_k \right\} + t n_{j+1} \left\{ \operatorname{Var} \left(\varphi, \frac{\epsilon}{2^{j+1}} \right) + \gamma_{j+1} \right\}$$

$$+ 2 \left(\sum_{k=1}^j p_k N_k + t p_{j+1} \right) \|\varphi\| .$$

It follows from (2.3) and the fact

$$\lim_{k \to \infty} \operatorname{Var}\left(\varphi, \frac{\epsilon}{2^k}\right) = 0, \quad \lim_{k \to \infty} \frac{p_k}{n_k} \le \lim_{k \to \infty} \frac{N(\frac{\epsilon}{2^k})}{n_k} = 0 \quad \text{and} \quad \lim_{k \to \infty} \gamma_k = 0,$$

we have

$$\lim_{q \to \infty} \frac{1}{M_q} \sum_{i=0}^{M_q - 1} \varphi(f^i y) = \alpha.$$

Thus the desired result follows.

2.2.4. Computation of the topological entropy of the fractal F

Next we compute the topological entropy of F. Let $z', z'' \in F$. We appoint $L_0 = \emptyset$. Assume that for $k \geq 0$, $z' \in \overline{B}_{l_{k+1}}(z_1, \frac{\epsilon}{2^k})$ and $z'' \in \overline{B}_{l_{k+1}}(z_2, \frac{\epsilon}{2^k})$, where $z_1 = z_1(x, \underline{x}_{k+1}) \in L_{k+1}$ and $z_2 = z_2(y, \underline{y}_{k+1}) \in L_{k+1}$. If $\underline{x}_{k+1} \neq \underline{y}_{k+1} \in \mathcal{S}_{k+1}^{N_{k+1}}$, by Lemma 2.7, we have $d_{l_{k+1}}(z', z'') > \epsilon$. For $k \geq 2$, we define

$$M_{k,i} = l_{k-1} + i(p_k + n_k), \quad 1 \le i \le N_k.$$

Since F is compact we can consider finite covers C of F with the property that if $B_n(x, \epsilon/2) \in C$, then $B_n(x, \epsilon/2) \cap F \neq \emptyset$. By definition

$$m(F, s, N, \epsilon/2) = \inf \left\{ \sum_{B_n(x, \epsilon/2) \in \mathcal{C}} e^{-ns} : \mathcal{C} \in \Gamma_N(F, \epsilon/2) \right\}$$

for each $C \in \Gamma_N(F, \epsilon/2)$, we can define a new cover C' in which for $M_{k,i} \leq n < M_{k,i+1}$, $B_n(x, \epsilon/2)$ is replaced by $B_{M_{k,i}}(x, \epsilon/2)$. Here we appoint $M_{k,N_k+1} = M_{k+1,0}$. Then

$$m(F,s,N,\epsilon/2) = \inf_{\mathcal{C} \in \Gamma_N(Z,\epsilon/2)} \sum_{B_n(x,\epsilon/2) \in \mathcal{C}} e^{-ns} \geq \inf_{\mathcal{C} \in \Gamma_N(F,\epsilon/2)} \sum_{B_{M_{k,i}}(x,\epsilon/2) \in \mathcal{C}'} e^{-M_{k,i+1}s}.$$

We use the lexicographical order for the set $\{(k,i): k, i \in \mathbb{N}, 1 \leq i \leq N_k\}$. Let

$$(k_0, i_0) = \max \{(k, i) : B_{M_{k,i}}(x, \epsilon/2) \in \mathcal{C}'\}.$$

For $k \geq 2$, define

$$\mathcal{W}_{k,i} := \left(\prod_{j=1}^{k-1} \mathcal{S}_j^{N_j}\right) imes \mathcal{S}_k^i, \quad \overline{\mathcal{W}_{k_0,i_0}} := \bigcup_{(k,i) \leq (k_0,i_0)} \mathcal{W}_{k,i}.$$

Each $x \in B_{M_{k,i}} \cap F$ corresponds to a unique point in $\mathcal{W}_{k,i}$. For $(k,i) \leq (k_0,i_0)$, each $w \in \mathcal{W}_{k,i}$ is the prefix of exactly $\sharp \mathcal{W}_{k_0,i_0}/\sharp \mathcal{W}_{k,i}$ elements of \mathcal{W}_{k_0,i_0} . If $\mathcal{W} \subset \overline{\mathcal{W}_{k_0,i_0}}$ contains a prefix of each element of \mathcal{W}_{k_0,i_0} , then

$$\sum_{(k,i)\leq (k_0,i_0)} \sharp (\mathcal{W}\cap \mathcal{W}_{k,i}) \frac{\sharp \mathcal{W}_{k_0,i_0}}{\sharp \mathcal{W}_{k,i}} \geq \sharp \mathcal{W}_{k_0,i_0},$$

i.e.,

$$\sum_{(k,i)\leq (k_0,i_0)} \frac{\sharp(\mathcal{W}\cap\mathcal{W}_{k,i})}{\sharp\mathcal{W}_{k,i}} \geq 1.$$

It follows from

$$\sharp \mathcal{S}_k \ge \exp(n_k(C - 5\eta)),$$

that

$$\sharp \mathcal{W}_{k,i} \ge (\sharp \mathcal{S}_1)^{N_1} (\sharp \mathcal{S}_2)^{N_2} \cdots (\sharp \mathcal{S}_{k-1})^{N_{k-1}} (\sharp \mathcal{S}_k)^i$$

$$\ge \exp \left\{ (n_1 N_1 + n_2 N_2 + \dots + n_{k-1} N_{k-1} + n_k i) (C - 5\eta) \right\}.$$

One can readily verify that

$$\lim_{k \to \infty} \frac{n_1 N_1 + n_2 N_2 + \dots + n_{k-1} N_{k-1} + n_k i}{M_{k,i+1}} = 1.$$

Since C' is a cover, each point of W_{k_0,i_0} has a prefix associated with some $B_{M_{k,i}} \in C'$. When N is large enough, we have

$$\begin{split} m(F, C - 6\eta, N, \epsilon/2) &\geq \sum_{B_{M_{k,i}}(x, \epsilon/2) \in \mathcal{C}'} \exp\left\{-M_{k,i+1}(C - 6\eta)\right\} \\ &\geq \sum_{B_{M_{k,i}}(x, \epsilon/2) \in \mathcal{C}'} \left\{-(n_1N_1 + n_2N_2 + \dots + n_{k-1}N_{k-1} + n_ki)(C - 5\eta)\right\} \\ &\geq \sum_{B_{M_{k,i}}(x, \epsilon/2) \in \mathcal{C}'} \frac{1}{\sharp \mathcal{W}_{k,i}} \geq 1, \end{split}$$

which implies that

$$h_{\text{top}}\left(F, \frac{\epsilon}{2}\right) \ge C - 6\eta.$$

Since ϵ and η is arbitrary, we have $h_{\text{top}}^B(X(\varphi,\alpha)) \geq h_{\text{top}}^B(F) \geq C$, which completes the proof of Theorem 1.5.

References

- L. Barreira and B. Saussol, Variational principles and mixed multifractal spectra,
 Trans. Amer. Math. Soc. 353 (2001), no. 10, 3919–3944.
 https://doi.org/10.1090/S0002-9947-01-02844-6
- [2] L. Barreira, B. Saussol and J. Schmeling, Higher-dimensional multifractal analysis,
 J. Math. Pures Appl. (9) 81 (2002), no. 1, 67–91.
 https://doi.org/10.1016/s0021-7824(01)01228-4
- [3] T. Bomfim and P. Varandas, The gluing orbit property, uniform hyperbolicity and large deviations principles for semiflows, preprint. arXiv:1507.03905
- [4] R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125–136. https://doi.org/10.2307/1996403
- [5] D. Constantine, J.-F. Lafont and D. Thompson, The weak specification property for geodesic flows on CAT(-1) spaces, preprint. arXiv:1606.06253
- [6] C. Ercai, T. Küpper and S. Lin, Topological entropy for divergence points, Ergodic Theory Dynam. Systems. 25 (2005), no. 4, 1173–1208. https://doi.org/10.1017/s0143385704000872
- [7] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), no. 1, 137–173.
 https://doi.org/10.1007/bf02684777
- [8] Y. Pei and E. Chen, On the variational principle for the topological pressure for certain non-compact sets, Sci. China Math. 53 (2010), no. 4, 1117–1128. https://doi.org/10.1007/s11425-009-0109-4
- [9] C.-E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 929–956. https://doi.org/10.1017/s0143385706000824

- [10] F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Systems 23 (2003), no. 1, 317–348. https://doi.org/10.1017/s0143385702000913
- [11] D. Thompson, A variational principle for topological pressure for certain non-compact sets, J. Lond. Math. Soc. (2) 80 (2009), no. 3, 585–602. https://doi.org/10.1112/jlms/jdp041
- [12] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer-Verlag, New York, 1982. https://doi.org/10.1007/978-1-4612-5775-2
- [13] X. Zhou and E. Chen, Multifractal analysis for the historic set in topological dynamical systems, Nonlinearity 26 (2013), no. 7, 1975–1997. https://doi.org/10.1088/0951-7715/26/7/1975

Xiang Shao

School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China

and

College of Tongda, Nanjing University of Posts and Telecommunications, Yangzhou 225127, Jiangsu, China

E-mail address: tdshxi@njupt.edu.cn

Zheng Yin

School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China *E-mail address*: zhengyinmail@126.com