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Duality Theorems for Quasiconvex Programming with a Reverse

Quasiconvex Constraint
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Abstract. In this paper, we study duality theorems for quasiconvex programming with

a reverse quasiconvex constraint. We introduce quasiaffine transformation methods

for a reverse quasiconvex constraint. Especially, we show a linear characterization of a

reverse quasiconvex constraint. By using transformation methods, we show necessary

optimality conditions in terms of Greenberg-Pierskalla subdifferential. In addition, we

introduce a surrogate duality theorem for quasiconvex programming with a reverse

quasiconvex constraint.

1. Introduction

In mathematical programming, a constraint set is usually defined by inequality or equality

constraints. Since equality constraints can be characterized by inequality constraints, in

this paper, we study the following constraint set:

(1.1) {x ∈ Rn | ∀ i ∈ I, gi(x) ≤ 0, ∀ j ∈ J, hj(x) ≥ 0} .

In linear programming, gi and hj are linear functions. Since −hj is also linear, the con-

straint set is always convex. However, in nonlinear programming, the constraint set is

not convex and also is not connected in many cases. Especially, in convex programming,

“hj(x) ≥ 0” is called a reverse convex constraint and has been widely studied. Many

researchers have introduced useful results, for example, characterizations of the constraint

set, duality theorems, optimality conditions and so on, see [4,13–15,30,31] and references

therein. In addition, reverse convex constraints are important research aspects in set con-

tainment characterization, see [5, 8, 16, 17]. In the research of reverse convex constraints,

characterizations of the constraint set in terms of Fenchel conjugate play a central role.

Actually, if h is real-valued convex, then h coincides with the Fenchel biconjugate of h.

Hence

{x ∈ Rn | h(x) ≥ 0} =
⋃
v∈Rn

{x ∈ Rn | 〈v, x〉 − h∗(v) ≥ 0}

Received January 21, 2016; Accepted October 17, 2016.

Communicated by Ruey-Lin Sheu.

2010 Mathematics Subject Classification. Primary: 90C26; Secondary: 26B25, 49N15.

Key words and phrases. Quasiconvex programming, Reverse quasiconvex constraint, Optimality condition,

Surrogate duality.

489

http://journal.tms.org.tw


490 Satoshi Suzuki

where h∗(v) is the Fenchel conjugate of h at v ∈ Rn. Most of results in reverse convex

constraints have been shown by using the linear characterization. By the linear char-

acterization, we can treat the reverse convex programming problem in terms of convex

subproblems with affine inequality constraints. Even if the constraint set of the reverse

convex programming problem is not convex, the constraint sets of subproblems are convex,

and we can solve subproblems by using useful duality results and optimality conditions in

convex analysis.

In quasiconvex programming, the constraint set in (1.1) is not convex in most cases.

However, there are not many results for reverse quasiconvex constraints as far as we know.

It is expected to study reverse quasiconvex constraints in terms of recent advances in qua-

siconvex analysis. In quasiconvex analysis, linear transformation methods for quasiconvex

inequality systems play an important role. In [18], we define the notion of generators of

quasiconvex functions, and show a linear transformation method for quasiconvex inequal-

ity systems. By generators and the transformation method, we show some fruitful results.

For example, the sum of quasiconvex functions is not quasiconvex in general. This causes

theoretical and numerical difficulties in quasiconvex programming. By the linear transfor-

mation method, quasiconvex inequality systems can be treated as affine inequality systems

which are closed under addition, and we show Lagrange-type duality and its constraint

qualifications, see [18, 28]. Additionally, we study optimality conditions, subdifferential

calculus, a sandwich theorem, duality theorems for vector-valued constraints, and so on,

see [18–22,24,28]. Some types of conjugate functions are closely related to the generators

and linear transformation methods for quasiconvex inequality systems, see [3,9,10,12,25].

In this paper, we study duality theorems for quasiconvex programming with a reverse

quasiconvex constraint. We introduce quasiaffine transformation methods for a reverse

quasiconvex constraint. Especially, we show a linear characterization of a reverse quasi-

convex constraint in terms of Q-conjugate. By using transformation methods, we show

necessary optimality conditions in terms of Greenberg-Pierskalla subdifferential. In ad-

dition, we introduce a surrogate duality theorem for quasiconvex programming with a

reverse quasiconvex constraint.

The remainder of the present paper is organized as follows. In Section 2, we introduce

some preliminaries and previous results. In Section 3, we study transformation methods

for a reverse quasiconvex constraint in terms of Q-conjugate. In Section 4, we show neces-

sary optimality conditions in terms of Greenberg-Pierskalla subdifferential. In Section 5,

we introduce a surrogate duality theorem for quasiconvex programming with a reverse

quasiconvex constraint.
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2. Preliminaries

Let 〈v, x〉 denote the inner product of two vectors v and x in the n-dimensional Euclidean

space Rn. Given nonempty sets A,B ⊂ Rn and Λ ⊂ R, we define A+B and ΛA as follows:

A+B = {x+ y ∈ Rn | x ∈ A, y ∈ B} ,

ΛA = {λx ∈ Rn | λ ∈ Λ, x ∈ A} .

Also, we define A + ∅ = Λ∅ = ∅A = ∅. We denote the closure, the convex hull, and the

conical hull, generated by A, by clA, coA and coneA, respectively. By convention, we

define cone ∅ = {0}. We denote the unit sphere of Rn by SRn = {x ∈ Rn | ‖x‖ = 1}. The

normal cone of A at x ∈ A is denoted by NA(x) = {v ∈ Rn | ∀ y ∈ A, 〈v, y − x〉 ≤ 0}. A

set A is said to be evenly convex if it is the intersection of some family of open halfspaces.

Note that the whole space and the empty set are evenly convex. Clearly, every evenly

convex set is convex. Furthermore, any open convex set and any closed convex set are

evenly convex.

Let f be a function from Rn to R, where R = [−∞,∞]. We denote the domain

of f by dom f , that is, dom f = {x ∈ Rn | f(x) <∞}. The epigraph of f is defined as

epi f = {(x, r) ∈ Rn × R | f(x) ≤ r}, and f is said to be convex if epi f is convex. The sub-

differential of f at x is defined as ∂f(x) = {v ∈ Rn | ∀ y ∈ Rn, f(y) ≥ f(x) + 〈v, y − x〉}.
Fenchel conjugate of f , f∗ : Rn → R, is defined as f∗(v) = supx∈Rn {〈v, x〉 − f(x)}. Define

level sets of f with respect to a binary relation � on R as

L(f, �, β) = {x ∈ Rn | f(x) � β}

for any β ∈ R. A function f is said to be quasiconvex if for all β ∈ R, L(f,≤, β) is a

convex set. Any convex function is quasiconvex, but the opposite is not true. A function

f is said to be quasiaffine if it is quasiconvex and quasiconcave.

A function f is said to be evenly quasiconvex (strictly evenly quasiconvex) if L(f,≤,
β) (L(f,<, β), respectively) is evenly convex for each β ∈ R. A function f is said to be

evenly quasiaffine if f is evenly quasiconvex and quasiconcave. It is clear that every evenly

quasiconvex function is quasiconvex. It is easy to show that every strictly evenly quasicon-

vex function is evenly quasiconvex. However, converse implications are not generally true,

in detail, see [12,17]. It is known that every lower semicontinuous (lsc) quasiconvex func-

tion is evenly quasiconvex, and every upper semicontinuous (usc) quasiconvex function is

strictly evenly quasiconvex. It is important to notice that f is evenly quasiaffine if and

only if there exist an extended real-valued nondecreasing function k on R and w ∈ Rn such

that f = k◦w. In addition, each level set of an evenly quasiaffine function is open or closed

halfspace, and each level set of a lsc quasiaffine function is closed halfspace, see [9,12] for



492 Satoshi Suzuki

more details. These results are closely related to the generators of quasiconvex functions,

see [18,28].

A function f is said to be essentially quasiconvex if f is quasiconvex and each local

minimizer x ∈ dom f of f in Rn is a global minimizer of f in Rn. Clearly, all convex

functions are essentially quasiconvex. A real-valued continuous quasiconvex function is

essentially quasiconvex if and only if it is semistrictly quasiconvex, see [1, Theorem 3.37].

The following function h−1 is said to be the hypo-epi-inverse of a nondecreasing func-

tion h:

h−1(a) = inf {b ∈ R | a < h(b)} = sup {b ∈ R | h(b) ≤ a} .

In [12], it is shown that if h has the inverse function, then the inverse and the hypo-epi-

inverse of h are the same. In the present paper, we denote the hypo-epi-inverse of h by

h−1.

In quasiconvex analysis, various types of conjugates and subdifferentials have been

investigated. In this paper, Greenberg-Pierskalla subdifferential and Q-conjugate play

an important role. In [3], Greenberg and Pierskalla introduced the Greenberg-Pierskalla

subdifferential of f at x0 ∈ Rn as follows:

∂GP f(x0) = {v ∈ Rn | 〈v, x〉 ≥ 〈v, x0〉 implies f(x) ≥ f(x0)} .

The Q-conjugate of f , fQ : Rn+1 → R, is defined as follows: for each (v, t) ∈ Rn+1,

fQ(v, t) = − inf {f(x) | 〈v, x〉 ≥ t} .

In addition, the Q-conjugate of g : Rn+1 → R is the function gQ : Rn → R such that for

each x ∈ Rn

gQ(x) = − inf {g(v, t) | 〈v, x〉 ≥ t} ,

and the Q-biconjugate of f is the function fQQ : Rn → R such that for each x ∈ Rn

fQQ(x) = (fQ)Q(x) = − inf
{
fQ(v, t) | 〈v, x〉 ≥ t

}
.

Greenberg-Pierskalla subdifferential and Q-conjugate are special cases of Moreau’s gener-

alized conjugation, in detail, see [9–11,25]. We introduce the following previous results.

Theorem 2.1. [9–11, 25] Let f be a function from Rn to R, and x ∈ Rn. Then, the

following statements hold:

(i) f ≥ fQQ,

(ii) f = fQQ if and only if f is evenly quasiconvex,

(iii) ∂f(x) ⊂ ∂GP f(x),



Duality Theorems for QP with a Reverse Quasiconvex Constraint 493

(iv) for each v ∈ ∂GP f(x) and λ > 0, λv ∈ ∂GP f(x).

In [25], we studied the following necessary and sufficient optimality condition for es-

sentially quasiconvex programming.

Theorem 2.2. [25] Let f be an usc essentially quasiconvex function, F a nonempty convex

subset of Rn and x0 ∈ F . Then, the following statements are equivalent:

(i) f(x0) = minx∈F f(x),

(ii) 0 ∈ ∂GP f(x0) +NF (x0).

In [23, 26, 29], we studied surrogate duality for quasiconvex programming. The as-

sumption (i) in the following theorem is called the closed cone constraint qualification for

surrogate duality (S-CCCQ). S-CCCQ is a necessary and sufficient constraint qualification

for surrogate duality via quasiconvex programming.

Theorem 2.3. [23] Let I be an index set and gi a real-valued continuous convex function

on Rn for each i ∈ I. Assume that C = {x ∈ Rn | ∀ i ∈ I, gi(x) ≤ 0} 6= ∅. Then, the

following conditions are equivalent:

(i) ⋃
λ∈R(I)

+

cl cone epi

(∑
i∈I

λigi

)∗

is closed,

(ii) for each usc quasiconvex function f from Rn to R,

inf
x∈C

f(x) = max
λ∈R(I)

+

inf

{
f(x)

∣∣∣ ∑
i∈I

λigi(x) ≤ 0

}
,

where R(I)
+ =

{
λ ∈ RI | ∀ i ∈ I, λi ≥ 0, {i ∈ I | λi 6= 0} is finite

}
.

3. A reverse quasiconvex constraint

In this section, we study a reverse quasiconvex constraint. We characterize the constraint

set by quasiaffine inequality constraints in terms of Q-conjugate. As a special case of the

characterization, we show a linear characterization of a reverse quasiconvex constraint.

Let I be an index set, gi an extended real-valued lsc quasiconvex function on Rn, h

an extended real-valued strictly evenly quasiconvex function on Rn, f an extended real-

valued quasiconvex function on Rn and C = {x ∈ Rn | ∀ i ∈ I, gi(x) ≤ 0}. Assume that
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A = {x ∈ C | h(x) ≥ 0} is nonempty. We consider the following quasiconvex programming

problem with a reverse quasiconvex constraint:

(P) minimize f(x), subject to x ∈ A.

At first, we show the following lemma.

Lemma 3.1. Let h be an extended real-valued strictly evenly quasiconvex function on Rn,

v ∈ Rn and hv be the following function on R:

hv(t) = inf {h(x) | 〈v, x〉 ≥ t} .

Then, the following statements hold:

(i) hQ(v, 〈v, ·〉) is an evenly quasiaffine function on Rn,

(ii) if h is real-valued convex, then hv ◦ v is a convex function on Rn,

(iii) if h is real-valued, and bounded from below, then hv ◦ v is real-valued on Rn,

(iv) if h is real-valued convex and bounded from below, then hv ◦ v is continuous on Rn.

Proof. (i) We can check that

hQ(v, 〈v, x〉) = − inf {h(y) | 〈v, y〉 ≥ 〈v, x〉}

= −hv(〈v, x〉).

It is clear that hv is nondecreasing. Hence hQ(v, 〈v, ·〉) is an evenly quasiaffine function as

a composite function of the non-increasing function −hv and v ∈ Rn.

(ii) Let x, y ∈ Rn and α ∈ (0, 1). For each z1, z2 ∈ Rn with 〈v, z1〉 ≥ 〈v, x〉 and

〈v, z2〉 ≥ 〈v, y〉,

(1− α)h(z1) + αh(z2) ≥ h((1− α)z1 + αz2)

≥ inf {h(z) | 〈v, z〉 ≥ 〈v, (1− α)x+ αy〉}

= hv(〈v, (1− α)x+ αy〉).

Hence,

hv(〈v, (1− α)x+ αy〉) ≤ (1− α) inf {h(z1) | 〈v, z1〉 ≥ 〈v, x〉}

+ α inf {h(z2) | 〈v, z2〉 ≥ 〈v, y〉} ,

that is, hv ◦ v((1− α)x+ αy) ≤ (1− α)hv ◦ v(x) + αhv ◦ v(y).
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(iii) Assume that h is bounded from below. Then there exists m ∈ R such that h ≥ m.

For each x ∈ Rn,

−∞ < m ≤ inf {h(z) | 〈v, z〉 ≥ 〈v, x〉} ≤ h(x) <∞.

Hence, hv ◦ v(x) = inf {h(z) | 〈v, z〉 ≥ 〈v, x〉} ∈ R.

(iv) By the statements (ii) and (iii), if h is real-valued convex and bounded from below,

then hv ◦ v is continuous since hv ◦ v is a real-valued convex function.

In the following theorem, we show characterizations of the constraint set A by quasi-

affine or affine inequality constraints in terms of Q-conjugate.

Theorem 3.2. Let h be an extended real-valued strictly evenly quasiconvex function on Rn

and C be a closed convex subset of Rn. Assume that A = {x ∈ C | h(x) ≥ 0} is nonempty.

Then, the following sets are equal:

(i) A = {x ∈ C | h(x) ≥ 0},

(ii)
⋃
v∈Rn

{
x ∈ C | hQ(v, 〈v, x〉) ≤ 0

}
,

(iii)
⋃
v∈SRn

{
x ∈ C | hQ(v, 〈v, x〉) ≤ 0

}
.

Furthermore, if hQ(v, 〈v, ·〉) is lsc, then

A =
⋃
v∈Rn

{
x ∈ C | 〈−v, x〉 − (hv)

−1(0) ≤ 0
}
,

where hv is the following nondecreasing function, hv(t) = −hv(−t) = − inf{h(x) | 〈v, x〉 ≥
−t} for each t ∈ R.

Proof. Let x ∈ Rn. By the strictly evenly quasiconvexity of h,

h(x) = hQQ(x) = max
v∈Rn

(−hQ(v, 〈v, x〉)).

Actually, by Theorem 2.1, h(x) = hQQ(x) = − inf
{
hQ(v, t) | 〈v, x〉 ≥ t

}
. If L(h,<, h(x))

= ∅, then

h(x) = inf
y∈Rn

h(y) = −hQ(0, 〈0, x〉).

Assume that L(h,<, h(x)) 6= ∅. Then L(h,<, h(x)) is a nonempty evenly convex set and

x /∈ L(h,<, h(x)). By the definition of evenly convexity, there exist v0 ∈ Rn \ {0} and

t ∈ R such that for each y ∈ L(h,<, h(x)),

〈v0, x〉 ≥ t > 〈v0, y〉 .
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This shows that

〈v0, y〉 ≥ 〈v0, x〉 =⇒ y /∈ L(h,<, h(x)) =⇒ h(y) ≥ h(x),

that is,

−hQ(v0, 〈v0, x〉) ≥ h(x)

= hQQ(x)

= − inf
{
hQ(v, t) | 〈v, x〉 ≥ t

}
≥ sup

v∈Rn
(−hQ(v, 〈v, x〉)).

Hence h(x) = −hQ(v0, 〈v0, x〉) = maxv∈Rn(−hQ(v, 〈v, x〉)). We can check that

A = {x ∈ C | h(x) ≥ 0}

=

{
x ∈ C

∣∣∣ max
v∈Rn

(−hQ(v, 〈v, x〉)) ≥ 0

}
=

{
x ∈ C

∣∣∣ min
v∈Rn

hQ(v, 〈v, x〉) ≤ 0

}
=
⋃
v∈Rn

{
x ∈ C

∣∣ hQ(v, 〈v, x〉) ≤ 0
}
.

Since v0 6= 0, by the similar way in the first half of the proof, we show that h(x) =

maxv∈SRn (−hQ(v, 〈v, x〉)). Hence

A =
⋃

v∈SRn

{
x ∈ C | hQ(v, 〈v, x〉) ≤ 0

}
.

If hQ(v, 〈v, ·〉) is lsc, by Lemma 3.1, hQ(v, 〈v, ·〉) is lsc quasiaffine. Hence {x ∈ Rn |
hQ(v, 〈v, x〉) ≤ 0} is a closed halfspace. By the closedness of the halfspace {x ∈ Rn |
hQ(v, 〈v, x〉) ≤ 0},{

x ∈ Rn | hQ(v, 〈v, x〉) ≤ 0
}

= {x ∈ Rn | −hv(〈v, x〉) ≤ 0}

=
{
x ∈ Rn | hv(〈−v, x〉) ≤ 0

}
=
{
x ∈ Rn | 〈−v, x〉 ≤ (hv)

−1(0)
}

=
{
x ∈ Rn | 〈−v, x〉 − (hv)

−1(0) ≤ 0
}
.

This completes the proof.

We define the following problem (Pv) for each v ∈ Rn:

(Pv) minimize f(x), subject to ∀ i ∈ I, gi(x) ≤ 0, hQ(v, 〈v, x〉) ≤ 0.
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The constraint set Av =
{
x ∈ C | hQ(v, 〈v, x〉) ≤ 0

}
of (Pv) is an evenly convex set as

the intersection of the closed convex set C = {x ∈ Rn | ∀ i ∈ I, gi(x) ≤ 0} and the open

or closed halfspace
{
x ∈ Rn | hQ(v, 〈v, x〉) ≤ 0

}
. If hQ(v, 〈v, ·〉) is lsc, especially if h is

real-valued convex and bounded from below, then Av is closed convex.

By Theorem 3.2, we show the following theorem.

Theorem 3.3. Let I be an index set, gi an extended real-valued lsc quasiconvex function on

Rn, h an extended real-valued strictly evenly quasiconvex function on Rn, f an extended

real-valued quasiconvex function on Rn and C = {x ∈ Rn | ∀ i ∈ I, gi(x) ≤ 0}. Assume

that A = {x ∈ C | h(x) ≥ 0} is nonempty. Then, the following equation holds:

inf
x∈A

f(x) = inf
v∈Rn

inf
{
f(x) | x ∈ C, hQ(v, 〈v, x〉) ≤ 0

}
.

4. Optimality condition

In this section, we study optimality conditions for quasiconvex programming with a reverse

quasiconvex constraint. We show a necessary optimality condition in terms of Greenberg-

Pierskalla subdifferential. Additionally, we investigate a necessary optimality condition in

terms of constraint qualifications.

At first, in Theorem 4.1, we show a necessary optimality condition under the assump-

tion “infx∈A f(x) > infx∈C f(x).” If the assumption holds, then we can characterize a

global minimizer of f in A by the necessary optimality condition in Theorem 4.1. If

infx∈A f(x) = infx∈C f(x), then we can characterize a global minimizer of f in A by the

following necessary and sufficient optimality condition: let x0 ∈ A, then x0 is a global

minimizer of f in A if and only if

0 ∈ ∂GP f(x0) +NC(x0).

By Theorem 2.2, we can prove the above statement. The proof is easy and omitted.

Theorem 4.1. Let h be an extended real-valued strictly evenly quasiconvex function on

Rn, f an extended real-valued usc essentially quasiconvex function on Rn, C a closed

convex subset of Rn, x0 ∈ A = {x ∈ C | h(x) ≥ 0} and Av =
{
x ∈ C | hQ(v, 〈v, x〉) ≤ 0

}
for each v ∈ Rn. Assume that infx∈A f(x) > infx∈C f(x) and for each v ∈ Rn,

(4.1) NC∩L(v,≥,〈v,x0〉) = NC(x0) + R+ {−v} ,

where R+ = {t ∈ R | t ≥ 0}.
If x0 is a global minimizer of f in A, then

∂GPh(x0) ⊂ ∂GP f(x0) +NC(x0).
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Proof. Assume that x0 is a global minimizer of f in A and let v ∈ ∂GPh(x0). For each

x ∈ L(v,≥, 〈v, x0〉),

hQ(v, 〈v, x〉) = − inf {h(y) | 〈v, y〉 ≥ 〈v, x〉}

≤ − inf {h(y) | 〈v, y〉 ≥ 〈v, x0〉}

= hQ(v, 〈v, x0〉)

= −h(x0)

≤ 0.

This shows that x0 ∈ C ∩ L(v,≥, 〈v, x0〉) ⊂ Av ⊂ A. Since x0 is a global minimizer of f

in A,

f(x0) = inf
x∈A

f(x) ≤ inf
x∈C∩L(v,≥,〈v,x0〉)

f(x) ≤ f(x0).

This shows that x0 is a global minimizer of f in C ∩ L(v,≥, 〈v, x0〉).
By Theorem 2.2,

0 ∈ ∂GP f(x0) +NC∩L(v,≥,〈v,x0〉)(x0).

Hence there exists w ∈ ∂GP f(x0) such that −w ∈ NC∩L(v,≥,〈v,x0〉)(x0). By the assump-

tion (4.1), −w ∈ NC(x0) + R+ {−v}, that is, there exist u ∈ NC(x0) and λ ≥ 0 such that

−w = u− λv. We show that λ > 0. Actually, if λ = 0,

0 = w + u ∈ ∂GP f(x0) +NC(x0).

By Theorem 2.2, x0 is a global minimizer of f in C. Hence f(x0) = infx∈A f(x) =

infx∈C f(x). This is a contradiction.

Since the statement (iv) of Theorem 2.1 holds and NC(x0) is a cone,

v =
1

λ
w +

1

λ
u ∈ ∂GP f(x) +NC(x0).

This completes the proof.

Remark 4.2. The assumption (4.1) of Theorem 4.1 is called strong conical hull intersection

property (strong CHIP). We can check easily that strong CHIP holds if and only if

NC∩L(v,≥,〈v,x0〉) ⊂ NC(x0) + R+ {−v} .

The strong CHIP is closely related to the subdifferential sum formula, and is widely studied

as a constraint qualification for convex programming. Furthermore, it is known that the

assumption (4.1) of Theorem 4.1 holds if C is polyhedral set, see [2, 6, 7].



Duality Theorems for QP with a Reverse Quasiconvex Constraint 499

Remark 4.3. By using the notion of generators of quasiconvex functions, we study con-

straint qualifications for quasiconvex programming in [18,19,22,24,27,28].

A set G = {(kj , wj) | j ∈ J} ⊂ Q×Rn is said to be a generator of f if f = supj∈J kj◦wj ,
where Q =

{
h : R→ R | h is lsc and nondecreasing

}
. All lsc quasiconvex functions have

at least one generator, see [9, 12,18].

Let {gi | i ∈ I} be a family of lsc quasiconvex functions on Rn,
{

(k(i,j), w(i,j)) | j ∈ Ji
}
⊂

Q × Rn a generator of gi for each i ∈ I, T = {t = (i, j) | i ∈ I, j ∈ Ji} and C = {x ∈
Rn | ∀ i ∈ I, gi(x) ≤ 0}. The inequality system {gi(x) ≤ 0 | i ∈ I} is said to satisfy

the basic constraint qualification for quasiconvex programming (Q-BCQ) with respect to

{(kt, wt) | t ∈ T} at x ∈ C if

NC(x) = cone co
⋃

t∈T (x)

{wt} ,

where T (x) =
{
t ∈ T | 〈wt, x〉 = k−1t (0)

}
. Q-BCQ is a necessary and sufficient constraint

qualification for Lagrange-type min-max duality, see [19,28] for more details.

If the Q-BCQ at x0 ∈ C and strong CHIP for each v ∈ Rn hold, then we can show the

following necessary optimality condition: if x0 is a global minimizer of an usc essential

quasiconvex function f in A = {x ∈ Rn | ∀ i ∈ I, gi(x) ≤ 0, h(x) ≥ 0},

∂GPh(x0) ⊂ ∂GP f(x0) + cone co
⋃

t∈T (x)

{wt} .

The proof is similar to the proof of Theorem 4.1 and omitted.

5. Surrogate duality

In the following theorem, we study surrogate duality for quasiconvex programming with

a reverse quasiconvex constraint.

Theorem 5.1. Let I be an index set, gi a real-valued convex function on Rn, h an ex-

tended real-valued strictly evenly quasiconvex function on Rn, f an usc extended real-

valued quasiconvex function on Rn and C = {x ∈ Rn | ∀ i ∈ I, gi(x) ≤ 0}. Assume that

A = {x ∈ C | h(x) ≥ 0} is nonempty, hQ(v, 〈v, ·〉) is lsc and

⋃
(µ,λ)∈R+×R(I)

+

cl cone epi

(
µ(−v − (hv)

−1(0)) +
∑
i∈I

λigi

)∗

is closed for each v ∈ Rn. Then,

inf
x∈A

f(x) = inf
v∈Rn

max
(µ,λ)∈R+×R(I)

+

inf

{
f(x)

∣∣∣ µ(〈−v, x〉 − (hv)
−1(0)) +

∑
i∈I

λigi(x) ≤ 0

}
.
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Proof. By Theorem 3.2,

A =
⋃
v∈Rn

{
x ∈ C | 〈−v, x〉 − (hv)

−1(0) ≤ 0
}
.

By the assumption,
{
gi(x) ≤ 0, 〈−v, x〉 − (hv)

−1(0) ≤ 0 | i ∈ I
}

satisfies the S-CCCQ for

each v ∈ Rn. Hence, by Theorem 2.3,

inf
x∈Av

f(x) = max
(µ,λ)∈R+×R(I)

+

inf

{
f(x)

∣∣∣ µ(〈−v, x〉 − (hv)
−1(0)) +

∑
i∈I

λigi(x) ≤ 0

}
.

By Theorem 3.3,

inf
x∈A

f(x) = inf
v∈Rn

inf
x∈Av

f(x)

= inf
v∈Rn

max
(µ,λ)∈R+×R(I)

+

inf

{
f(x)

∣∣∣ µ(〈−v, x〉 − (hv)
−1(0)) +

∑
i∈I

λigi(x) ≤ 0

}
.

This completes the proof.

Remark 5.2. By Lemma 3.1, if h is real-valued convex and bounded from below, then

hQ(v, 〈v, ·〉) is lsc. Hence in this case, we can transform the reverse convex constraint

“h(x) ≥ 0” to affine constraints in terms of Q-conjugate as follows:

A =
⋃
v∈Rn

{
x ∈ C | 〈−v, x〉 − (hv)

−1(0) ≤ 0
}
.

For a quasiconvex inequality system {gi(x) ≤ 0 | i ∈ I},
∑

i∈I λigi is not always qua-

siconvex. Hence in Theorem 5.1, we assume that gi is convex. However, even if gi is

quasiconvex, we can transform the quasiconvex inequality system to an affine inequality

system by using the notion of generators. Actually, by the definition of the generator, we

show the following linear characterization of quasiconvex inequality constraints:

C = {x ∈ Rn | ∀ i ∈ I, gi(x) ≤ 0}

= {x ∈ Rn | ∀ t ∈ T, kt ◦ wt(x) ≤ 0}

=
{
x ∈ Rn | ∀ t ∈ T, 〈wt, x〉 − k−1t (0) ≤ 0

}
.

We can regard C as a closed convex set defined by (possibly infinitely many) affine in-

equalities, see [18,19,22,24,27,28] for more details.

Summarizing the above mentioned, if h is real-valued convex and bounded from below,

and
{

(k(i,j), w(i,j)) | j ∈ Ji
}
⊂ Q × Rn is a generator of a lsc quasiconvex function gi for

each i ∈ I, then the following equation holds:

A =
⋃
v∈Rn

{
x ∈ Rn | ∀ t ∈ T, 〈wt, x〉 − k−1t (0) ≤ 0, 〈−v, x〉 − (hv)

−1(0) ≤ 0
}
.

Since these constraint functions are affine, we can consider a surrogate duality theorem

with its constraint qualification, S-CCCQ.
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