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The Influence of Conjugacy Class Sizes on the Structure of Finite Groups

Ruifang Chen* and Xianhe Zhao

Abstract. Let G be a group. The question of how certain arithmetical conditions on

the sizes of the conjugacy classes of G influence the group structure has been studied

by many authors. In this paper, we investigate the influence of conjugacy class sizes

of primary and biprimary elements on the structure of G. A criterion for a group to

have abelian Sylow subgroups is given and some well-known results on Baer-groups

are generalized.

1. Introduction

All groups considered in this paper are finite. Let G be a group and x be an element in G.

We use
∣∣xG∣∣ to denote the conjugacy class size of x in G and x is said to be primary or bipri-

mary if the order of x is a prime power or is divisible by exactly two distinct primes, respec-

tively. Furthermore, we set ρ′(G) =
{
p | p is a prime and p divides

∣∣gG∣∣ for some primary

or biprimary element g in G
}

and π(G) = {p | p is a prime and p divides |G|}. If π is a

set of primes contained in π(G), we denote by ρcπ(G) =
∣∣{p | p is a prime and p divides∣∣gG∣∣ for some primary or biprimary π-element g in G

}∣∣. All other notations are standard.

In finite group theory, a classic problem is to study how the set of conjugacy class sizes

may determine properties of a group. For example, Burnside [3] showed that a group G

can not be simple if there is a non-central element x in G such that
∣∣xG∣∣ is a prime power

and Itô [8] showed that if the conjugacy class sizes of elements in G are 1 and m, where

m is an integer, then G is nilpotent, m = pa for some prime p and G = P × A, with P a

Sylow p-subgroup of G and A ≤ Z(G).

Recently, many authors attempt to obtain some properties of a group by replacing

conditions for all conjugacy class sizes by conditions referring to conjugacy class sizes of

some elements, and some useful results have been already obtained (see, e.g., [7, 9, 10]).
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In this paper, we first attempt to investigate the relation between a group and the con-

jugacy class sizes of its primary or biprimary elements, and we get the following theorem,

which generalizes some well-known results in [2, 5, 8].

Theorem 1.1. Let G be a π-separable group, where π = {p, q} with p and q two distinct

primes. If p, q ∈ ρ′(G) and pq does not divide
∣∣xG∣∣ for any primary or biprimary element

x in G, then G has abelian Sylow p- and q-subgroups.

On the other hand, inspired by a result of R. Baer [1], we investigate the structure of a

group, the conjugacy class size of whose every primary or biprimary π-element is a prime

power, where π ⊆ π(G). In fact, we have the following theorem.

Theorem 1.2. Let G be a group and π ⊆ π(G). Suppose that the conjugacy class size of

every primary or biprimary π-element in G is a prime power. Then G is π-separable and

ρcπ(G) ≤ 2. Furthermore, one of the following two possibilities occurs:

(1) the conjugacy class size of every primary or biprimary π-element in G is a power of

q, where q is a prime and q /∈ π. In this case, G has abelian Hall π-subgroups.

(2) G = H×K with H and K a Hall π-subgroup and a π-complement of G, respectively.

Moreover, H has the following possibilities:

(2a) H ≤ Z(G);

(2b) H = H1×H2, where H1 is a non-abelian Sylow subgroup of H and H2 ≤ Z(G);

(2c) H = PQ×T , with P and Q abelian Sylow p- and q-subgroups of G respectively,

QEH, P ∩ P h = Op(H) for every h ∈ H −NH(P ) and T ≤ Z(G).

2. Preliminaries

Lemma 2.1. [2, Lemma 7] Let G be a π-separable group. Then
∣∣xG∣∣ is a π′-number for

every π-element x in G if and only if G has abelian Hall π-subgroups.

Lemma 2.2. [6, Theorem 1] Let G be a group acting transitively on a set Ω with |Ω| > 1.

Then there exists a prime p and a p-element x in G such that x acts without fixed points

on Ω.

Lemma 2.3. Let G be a group and H be a subgroup of G. If
⋃
g∈GH

g contains all primary

elements of G, then G = H.

Proof. Set Ω = {Hg | g ∈ G}. Then the conjugacy action of G on Ω is transitive. Suppose

to the contrary that H < G, then |Ω| > 1. Therefore, by Lemma 2.2, there exists a prime

p and a p-element x in G such that x acts without fixed points on Ω, whence Hgx 6= Hg
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for any g ∈ G. However, by hypothesis, there exists Hh such that x ∈ Hh, and thus

Hhx = Hh, which is a contradiction.

Lemma 2.4. [5, Lemma 1.1] Let G be a group and N be a normal subgroup of G. If

x ∈ N and y ∈ G, then

(1)
∣∣xN ∣∣ ∣∣ ∣∣xG∣∣;

(2)
∣∣(yN)G/N

∣∣ ∣∣ ∣∣yG∣∣.
3. Proof of Theorem 1.1

In [8], the following theorem is given.

Theorem 3.1. [8, Proposition 5.1] Let G be a group and p, q be two distinct primes. If

pq does not divide
∣∣xG∣∣ for any x ∈ G, then G has abelian Sylow p- or q-subgroups.

By just investigating {p, q}-elements of G, we have the following theorem.

Theorem 3.2. Let G be a π-separable group, where π = {p, q} with p and q two distinct

primes. If pq does not divide
∣∣xG∣∣ for any π-element x in G, then G has abelian Sylow p-

or q-subgroups.

Proof. If G is a π-group, then the theorem is true by Theorem 3.1. So we may assume

that G is not a π-group. Since π = {p, q} and G is π-separable, a Hall π-subgroup of G

is solvable. Therefore, G is p-solvable and q-solvable. Furthermore, we may assume that

p |
∣∣xG∣∣ for some p-element x and q |

∣∣yG∣∣ for some q-element y. For otherwise, without

loss of generality, we can assume that p does not divide the conjugacy class size of any

p-element in G, then G has abelian Sylow p-subgroups by Lemma 2.1, and the theorem is

true.

From the above paragraph, we may choose x to be a p-element in G such that p

divides
∣∣xG∣∣. Then q does not divide

∣∣xG∣∣ by the hypothesis. Therefore, there exists

a Sylow q-subgroup Q of G such that Q ≤ CG(x). For every element y ∈ Q, we have

CG(xy) = CG(x) ∩ CG(y), and thus both
∣∣xG∣∣ and

∣∣yG∣∣ divide
∣∣(xy)G

∣∣. So p divides∣∣(xy)G
∣∣. The hypothesis implies that q does not divide

∣∣yG∣∣. Again by Lemma 2.1, we see

that the Sylow q-subgroups of G are abelian and the proof of this theorem completes.

Corollary 3.3. Let G be a π-separable group, where π = {p, q} with p, q two distinct

primes. If pq does not divide
∣∣xG∣∣ for any primary or biprimary element x in G, then G

has abelian Sylow p- or q-subgroups.

Now, we come to the proof of Theorem 1.1.
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Proof of Theorem 1.1. It is obvious that G is p-solvable and q-solvable.

By Corollary 3.3, we may assume that the Sylow q-subgroups of G are abelian. Suppose

that G is a minimal counterexample with the Sylow p-subgroups non-abelian and we will

provide a contradiction by the following two steps. Let P , Q and H be a Sylow p-subgroup,

a Sylow q-subgroup and a q-complement of G, respectively.

Step 1: Oq′(G) 6= 1.

Suppose to the contrary that Oq′(G) = 1, then Oq(G) 6= 1 since G is q-solvable.

Therefore, Q ≤ CG(Oq(G)) ≤ Oq(G) since Q is abelian, and thus Q = Oq(G) E G.

This follows that CG(Q) = Q. For every primary element x in G, since pq does not

divide
∣∣xG∣∣, we see that CG(x) contains a Sylow p-subgroup or a Sylow q-subgroup of G.

Therefore, there exists g ∈ G such that x ∈ CG(P g)∪CG(Q) = CG(P )g∪Q ⊆ CG(P )gQ =

(CG(P )Q)g. It follows that every primary element of G is contained in
⋃
g∈G(CG(P )Q)g.

So G = CG(P )Q by Lemma 2.3. It is easy to get that P ≤ CG(P ), and thus P is abelian,

which is a contradiction.

Step 2: The contradiction.

Since Oq′(G) 6= 1 by Step 1, we can choose N to be a minimal normal subgroup of G

which is contained in H. We use G to denote the group G/N . Then pq does not divide

the conjugacy class size of any primary or biprimary element in G by Lemma 2.4. If

p /∈ ρ′(G), then G has abelian Sylow p-subgroups by Lemma 2.1, and so does G, which

is a contradiction. If q ∈ ρ′(G), then G has abelian Sylow p-subgroups since G is a

minimal counterexample, which also yields to the contradiction that G has abelian Sylow

p-subgroups. Therefore, q /∈ ρ′(G). It follows that the Sylow q-subgroup of G, say Q is

contained in Z(G), and G = Q×H. Therefore, H is normal in G and [G,QN ] ≤ N . Since

[G,Q] > 1, we see that 1 < [G,QN ] and [G,QN ] is a normal subgroup of G. Notice that N

is a minimal normal subgroup of G, we have that [G,QN ] = N . Let C =
⋃
n∈N CN (Q)n.

Since QN E G, for every element g ∈ G, there exists n ∈ N such that Qg = Qn, so

C =
⋃
g∈GCN (Q)g. If C = N , then CN (Q) = N . Since [Q,H] ≤ [G,QN ] = N , we

conclude that Q acts trivially on H/N . Therefore, (hN)w = hN for every h ∈ H and

w ∈ Q, so there exists n ∈ N such that h = hwn. Let |w| = t. Then h = hnt. It

follows that n = 1 since (|w| , |n|) = 1, and thus Q acts trivially on H. Now we have that

Q ≤ Z(G), which is a contradiction. So C < N . Let y be a primary element in N − C
such that q divides

∣∣yG∣∣. Then the hypothesis implies that p does not divide
∣∣yG∣∣. Choose

P v to be a Sylow p-subgroup of G which is contained in CG(y). Since P v is not abelian,

there exists z ∈ P v such that p divides
∣∣zG∣∣. Therefore, pq divides

∣∣(yz)G∣∣, which is a

contradiction.
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4. Proof of Theorem 1.2

In [1], R. Baer took interest in a group whose conjugacy class size of every primary element

is a prime power, and we call such a group a Baer-group. In the same paper, he gave the

structure of such a group. In 1998, A. R. Camina and R. D. Camina [4] investigated q-

Baer groups, the conjugacy class sizes of whose q-elements, for just one prime q, are prime

powers. Later, A. Beltrán and M. J. Felipe [2] investigated the structure of a group G if

the conjugacy class sizes of its π-elements are prime powers, where π is a set of primes.

In the rest of this paper, we are just interested in the conjugacy class sizes of primary

or biprimary π-elements for some primes set π, and we obtain Theorem 1.2.

Proof of Theorem 1.2. If |π| = 1, then the theorem is true by [4, Theorem A]. Therefore,

we can suppose that |π| > 1. Furthermore, we can assume that G does not have central

Hall π-subgroup. Since G is not simple, the hypothesis holds for every proper normal

subgroup and every factor group of G, and thus every proper normal subgroup and every

factor group of G is π-separable by induction. It follows that G is π-separable.

First suppose that there exists a prime p ∈ π and a p-element x ∈ G such that
∣∣xG∣∣ is

a power of q with q a prime not in π. Then CG(x) contains a Sylow r-subgroup R of G for

every prime r ∈ π − p. If y ∈ R, then CG(xy) = CG(x) ∩ CG(y). Since
∣∣(xy)G

∣∣ is a prime

power and
∣∣xG∣∣ is a power of q, we see that

∣∣yG∣∣ is also a power of q. On the other hand,

the conjugacy class size of every p-element is a power of q by [4, Theorem 2]. Therefore,

G has abelian Hall π-subgroups by [11, Theorem 3.3].

Now, suppose that the conjugacy class size of every primary or biprimary π-element

in G is a π-number. Then by [11, Theorem 3.1], G = H ×K with H a Hall π-subgroup

and K a π-complement of G, respectively. Therefore, the conjugacy class size of every

primary element of H is a prime power by Lemma 2.4. It follows that H is a Baer-

group, and thus H = H1 × · · · × Ht such that (|Hi| , |Hj |) = 1 for i 6= j and that if Hi

is not of prime power order, then the order of Hi is divisible by exactly two different

primes and its Sylow subgroups are abelian by [1, Theorem]. If two direct factors, say

H1 and H2, are not contained in Z(G), then we can choose x ∈ H1 and y ∈ H2. It

follows that CG(xy) = CG(x)∩CG(y), and thus both
∣∣xG∣∣ and

∣∣yG∣∣ divide
∣∣(xy)G

∣∣, which

contradicts the fact that
∣∣(xy)G

∣∣ is a prime power. Therefore, there is at most one direct

factor of H which is not contained in Z(G). Now we conclude that the conjugacy class

size of every π-element of H is a prime power, and thus H has the described structure

by [5, Theorem 2].

Corollary 4.1. Let G be a group. Then the conjugacy class size of every primary or

biprimary element of G is a prime power if and only if the conjugacy class size of every

element of G is a prime power.



724 Ruifang Chen and Xianhe Zhao

Proof. Let π = π(G) in Theorem 1.2. Then G is abelian or G = H×K, where (|H| , |K|) =

1, K ≤ Z(G) and H is a Sylow subgroup of G or |H| is divisible by exactly two different

primes and its Sylow subgroups are abelian. In particular, the conjugacy class size of

every element in G is a prime power.

Remark 4.2. Let n > 1 be a natural number and n =
∏k
i=1 p

ai
i , where pi are distinct primes

and ai > 0 for all i = 1, 2, . . . , k. We define σ(n) = k. Furthermore, for a group G, we

set σ′(G) = maxg∈G∗ σ(|gG|), where G∗ = {g ∈ G | g is a primary or biprimary element}.
We see that G is solvable if σ′(G) = 1. However, we cannot derive that G is solvable, or

we cannot even have that G is non-simple if σ′(G) = 2 since G = A5 is an example.
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