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Normalized Solutions for the Fractional Choquard Equations with Lower

Critical Exponent and Nonlocal Perturbation

Zilin Chen and Yang Yang*

Abstract. We study the existence and nonexistence of normalized solutions for the

following fractional Choquard equations with Hardy–Littlewood–Sobolev lower critical

exponent and nonlocal perturbation:(−∆)su+ λu = γ(Iα ∗ |u| α
N +1)|u| α

N −1u+ µ(Iα ∗ |u|q)|u|q−2u in RN ,∫
RN |u|2 dx = c2,

where N ≥ 3, s ∈ (0, 1), α ∈ (0, N), γ, µ, c > 0 and 2α := N+α
N < q ≤ 2∗α,s := N+α

N−2s .

Iα is the Riesz potential and λ ∈ R appears as an unknown Lagrange multiplier. By

precisely restricting parameters γ, µ and c, using constrained variational method and

introducing new relevant arguments, we establish several existence and nonexistence

results. In particular, we consider the case q = 2∗α,s which corresponds to equations

involving double critical exponents, and the Hardy–Littlewood–Sobolev subcritical

approximation method is used to solve the case.

1. Introduction and main results

In this paper, we are concerned with the following lower critical fractional Choquard

equation with a nonlocal perturbation:

(1.1) (−∆)su+ λu = γ(Iα ∗ |u|
α
N
+1)|u|

α
N
−1u+ µ(Iα ∗ |u|q)|u|q−2u in RN ,

having prescribed L2-norm

(1.2)

∫
RN

|u|2 dx = c2,

where N ≥ 3, s ∈ (0, 1), α ∈ (0, N), γ, µ, c > 0, 2α < q ≤ 2∗α,s, and λ ∈ R appears

as a Lagrange multiplier and is part of the unknowns. In particular, 2α := N+α
N is
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the Hardy–Littlewood–Sobolev lower critical exponent and 2∗α,s :=
N+α
N−2s is the fractional

Hardy–Littlewood–Sobolev upper critical exponent. Here, Iα : RN \ {0} 7→ R is the Riesz

potential defined by

Iα(x) :=
Aα

|x|N−α
with Aα =

Γ
(
N−α
2

)
2απ

N
2 Γ
(
α
2

) ,
and the fractional Laplacian (−∆)s is defined for u ∈ S(RN ) by

(−∆)su(x) = CN,s P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN ,

where S(RN ) denotes the Schwartz space of rapidly decreasing smooth functions, P.V.

stands for the principle value of the integral and CN,s is the positive normalization con-

stant. The fractional Laplacian appears in many diverse domains, including optimiza-

tion, phase transitions, conservation laws, anomalous diffusion, stratified materials, ultra-

relativistic limits of quantum mechanics, crystal dislocation, water waves and so on. We

refer to [4, 11] for more applied backgrounds.

Recently, the following Choquard equation

(1.3) −∆u+ V u = (Iα ∗ |u|p)|u|p−2u in RN ,

has been investigated by many scholars. Physically speaking, Choquard equation appears

as several models in quantum mechanics. For N = 3, α = 2, p = 2 and V = 1 in (1.3),

Pekar [39] introduced it to describe the quantum theory of a polaron at rest, Choquard [29]

adopted it as a certain approximation to Hartree–Fock theory of one component plasma

to model electron trapped in its own hole, and Penrose [40] put forward its application in

investigating the self-gravitational collapse of a quantum wave function. We shall pay more

attention to the mathematical aspects. When V = 1 in (1.3), Moroz and Schaftingen [35]

established the existence, regularity and radially symmetry of ground state solutions to

(1.3) with an optimal range exponent p satisfying N+α
N < p < N+α

N−2 . For more related

topics, we advise readers to read a survey paper [36] and its references.

Meanwhile, when it comes to the fractional Choquard equations, d’Avenia et al. [10]

studied the following fractional Choquard equation:

(−∆)su+ ωu = (|x|α−N ∗ |u|p)|u|p−2u in RN ,

where ω > 0, N ≥ 3 and p > 1, and they obtained regularity, existence, nonexistence,

symmetry and decays properties of solutions. Shen et al. [42] investigated the existence

of ground state solutions for a fractional Choquard equation involving a nonlinearity

which is subcritical and satisfies the general Berestycki–Lions type conditions. Chen
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and Liu [6] considered an autonomous fractional Choquard equation via Nehari mani-

fold and concentration-compactness arguments. By using variational methods, Mukherjee

and Sreenadh [37] obtained some existence, nonexistence and regularity results for weak

solution of the Brezis–Nirenberg type problem of nonlinear fractional Choquard equa-

tion. He and Rădulescu [18] studied the critical fractional Choquard equations with small

linear perturbation, and they established a nonlocal global compactness property in the

framework of fractional Choquard equations and obtained the existence of at least one

positive solution. For more results about the fractional Choquard equations, we refer

to [2, 3, 15,33,34] and the references therein.

For the last few years, normalized solutions to nonlinear elliptic problems have been

widely concerned by scholars. Jeanjean [20] introduced a stretched functional, construct-

ing the mountain pass structure for the functional on a natural constraint related to the

Pohozaev identity to obtain the existence of at least one normalized solution for a non-

linear elliptic problem. Luo [32] approached a Hartree equation by multiple constrained

minimization methods which differs from the methods in [20]. In [43,44], Soave considered

the existence of normalized solutions to the following nonlinear Schrödinger equation with

local perturbation: −∆u = λu+ µ|u|q−2u+ |u|p−2u in RN ,∫
RN |u|2 dx = a2.

When N ≥ 1, µ ∈ R and 2 < q ≤ 2 + 4
N ≤ p ≤ 2∗ := 2N

N−2 , q ̸= p, Soave [43] proved

that if the perturbation term is small, there exists at least one normalized radial ground

state. In particular, if 2 + 4
N < p ≤ 2∗, 2 < q < 2∗ and µ > 0 small, there are two

radial positive solutions. When N ≥ 3, µ > 0, λ ∈ R and p = 2∗, in the context of

L2-subcritical, L2-critical and L2-supercritical perturbation µ|u|q−2u, Soave [44] obtained

several existence/non-existence and stability/instability results. Later, when N ≥ 3, µ >

0, p = 2∗ and 2 < q < 2 + 4
N , Jeanjean et al. [21] established the existence of ground

state and demonstrated that the set of ground states is orbitally stable. By the Sobolev

subcritical approximation approach to mass constrained problem, Li [25] got the existence

of normalized ground states with p = 2∗ for L2-critical and L2-supercritical perturbation.

Yao et al. [47] considered normalized solutions of the following Choquard equation:−∆u+ λu = γ(Iα ∗ |u|p)|u|p−2u+ µ|u|q−2u in RN ,∫
RN |u|2 dx = c2,

where p = N+α
N is the Hardy–Littlewood–Sobolev lower critical exponent. Under different

assumptions on q, p, γ and µ, they established several existence and nonexistence results.

When γ = 1 and p = 2∗α := N+α
N−2 , Li [26] considered the case 2 < q < 2 + 4

N , then the
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existence and orbital stability of the ground states were obtained. Moreover, the case
N+2+α

N < p < 2∗α and 2 + 4
N < q < 2∗ was investigated in [27].

Moreover, Ding et al. [12] explored the following equation:−∆u = λu+ (Iα ∗ |u|p)|u|p−2u+ µ(Iα ∗ |u|q)|u|q−2u in RN ,∫
RN |u|2 dx = a2,

where N ≥ 3 and N+α
N < q < p ≤ N+α

N−2 . They got the existence and nonexistence of

normalized solutions to this problem. In particular, when p = 2∗α, Ye et al. [48] and Shang

et al. [41], using the method in [44], studied the critical Choquard equation with nonlo-

cal perturbation. Then, for L2-subcritical, L2-critical and L2-supercritical perturbation

µ(Iα ∗ |u|q)|u|q−2u, the normalized ground states and mountain-pass type solutions were

obtained.

When it comes to investigating normalized solutions for the fractional Choquard equa-

tions, Li and Luo [23] studied the following equation:

(−∆)su = λu+ (Iα ∗ |u|p)|u|p−2u in RN ,

where N ≥ 3 and max
{
2, N+2s+α

N

}
< p < 2∗α,s. By using the constrained minimization

method, they got the existence of normalized ground state. For the following equation:(−∆)su = λu+ |u|q−2u+ µ(Iα ∗ |u|p)|u|p−2u in RN ,∫
RN |u|2 dx = a2,

when N ≥ 2, 2+ 4s
N < q < 2N

N−2s and N+2s+α
N < p < N+α

N−2s , Yang [46] used a refined version

of the min-max principle, and under suitable assumptions on the related parameters they

obtained the existence and asymptotic properties of normalized solutions. When 2 ≤ p <
N+2s+α

N , Li et al. [24] obtained the existence and asymptotic properties of normalized

solutions. Relied on a Lagrange formulation and new deformation arguments, Cingolani

et al. [7] obtained the existence of a symmetric ground state solution with a general

nonlinearity.

Moreover, He et al. [19] considered the following equation:(−∆)su = λu+ µ|u|q−2u+ (Iα ∗ |u|2∗α,s)|u|2∗α,s−2u in RN ,∫
RN |u|2 dx = a2.

For 2 < q < 2N
N−2s , they obtained the existence and asymptotic properties of normalized

solutions. When µ > 0 is large enough, Feng et al. [16] got the existence and multiplicity

of normalized solutions by the concentration-compactness principle and truncation tech-

nique. Besides, Yu et al. [49] researched the following fractional lower critical Choquard
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equation: (−∆)su = λu+ γ(Iα ∗ |u|2α)|u|2α−2u+ µ|u|q−2u in RN ,∫
RN |u|2 dx = a2,

where 2 < q ≤ 2N
N−2s , they got the existence and symmetry of normalized ground states.

Lan et al. [22] studied the following fractional critical Choquard equation with a nonlocal

perturbation:(−∆)su = λu+ a(Iα ∗ |u|q)|u|q−2u+ (Iα ∗ |u|2∗α,s)|u|2∗α,s−2u in RN ,∫
RN |u|2 dx = c2.

Under L2-subcritical, L2-critical and L2-supercritical perturbation a(Iα∗|u|q)|u|q−2u, they

obtained the existence of normalized ground states and mountain-pass-type solutions.

However, there seems to be no result on normalized solutions to the fractional Choquard

equations involving Hardy–Littlewood–Sobolev lower critical exponent and a nonlocal per-

turbation in RN . For the fractional Choquard equation, the Hardy–Littlewood–Sobolev

lower critical exponent 2α is a new feature which is associated with the phenomenon of

“bubbling at infinity”, and this makes it differ from the case of the Hardy–Littlewood–

Sobolev upper critical exponent.

Motivated by the aforementioned works, especially by [41,47,49], we shall focus on the

problem (1.1) and (1.2) for four different scenarios: (i) L2-subcritical case: 2α < q < q :=
N+2s+α

N ; (ii) L2-critical case: q = q; (iii) L2-supercritical case: q < q < 2∗α,s; (iv) doubly

critical case: q = 2∗α,s, respectively.

Before we state our main results, we first introduce some notations. Throughout this

paper, Lr(RN ) denotes the Lebesgue space with the norm ∥u∥r =
( ∫

RN |u|r dx
)1/r

for any

1 ≤ r <∞. Hs(RN ) is the fractional Hilbert space defined as

Hs(RN ) :=
{
u ∈ L2(RN ) : (−∆)

s
2u ∈ L2(RN )

}
,

which is endowed with the standard inner product and norm given respectively by

⟨u, v⟩ :=
∫
RN

(
(−∆)

s
2u(−∆)

s
2 v + uv

)
dx, ∥u∥2Hs = ⟨u, u⟩ =

∥∥(−∆)
s
2

∥∥2
2
+ ∥u∥22,

where ∥∥(−∆)
s
2u
∥∥2
2
=
CN,s

2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

Define Eq(u) : H
s(RN ) → R by

Eq(u) =
1

2

∫
RN

∣∣(−∆)
s
2u
∣∣2 dx− γ

22α

∫
RN

(Iα ∗ |u|2α)|u|2α dx

− µ

2q

∫
RN

(Iα ∗ |u|q)|u|q dx.
(1.4)
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It is standard to check that the energy functional is of class C1, and a critical point of

Eq(u) restricted on the constraint

S(c) =

{
u ∈ Hs(RN ) :

∫
RN

|u|2 dx = c2
}

corresponds to a solution of the problem (1.1) and (1.2).

Now, we recall the following definitions.

Definition 1.1. We say that u ∈ Hs(RN ) is a weak solution to (1.1) if∫
RN

(−∆)
s
2u(−∆)

s
2 v dx+ λ

∫
RN

uv dx

= γ

∫
RN

(Iα ∗ |u|2α)|u|2α−2uv dx+ µ

∫
RN

(Iα ∗ |u|q)|u|q−2uv dx

for any v ∈ Hs(RN ). Moreover, (uc, λc) ∈ Hs(RN ) × R is a couple of weak solution to

(1.1) if uc is a weak solution to (1.1) with λ = λc, where λc arises as an unknown Lagrange

multiplier which depends on the solution uc.

Definition 1.2. We say that uc is a normalized ground state solution of the problem (1.1)

if (uc, λc) ∈ Hs(RN )×R is the solution to the problem (1.1), and uc has the minimal energy

among all the solutions which belong to S(c), that is,

E′
q|S(c)(uc) = 0 and Eq(uc) = inf{Eq(v) | E′

q|S(c)(v) = 0 and v ∈ S(c)}.

Here, λc depending on the solution uc is an unknown Lagrange multiplier.

Let we set

c∗ :=

(
N + α

Nγ

) N
2α

S
N+α
2α

α

and

c∗ :=

[
2qs

µC̃(Nq −N − α)

] s
(2α−1)(Nq−N−α)+2qs−2s·2α

×
[

γ(Nq −N − α)

2αS
2α
α (Nq −N − α− 2s)

] N+α+2s−Nq
2(2α−1)(Nq−N−α)+4qs−4s·2α

,

where C̃ and Sα are defined in (2.3) and (2.6) in Section 2, respectively. In addition, the

definitions of S and Cα are given in (2.1) and (2.4) respectively in Section 2.

The main results read as follows.

Theorem 1.3. Let γ, µ > 0 and 2α < q < q. It results that the infimum

σ(c) := inf
u∈S(c)

Eq(u) < − γ

22α
S−2α
α c22α
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is achieved by u∗ ∈ S(c) which is a normalized ground state solution of the problem (1.1)

and (1.2) with the corresponding Lagrange multiplier λ∗ > γ
2α
S−2α
α c

2α
N . Besides, u∗ is a

real-valued positive function in RN , which is radially symmetric and non-increasing.

Theorem 1.4. Let γ > 0 and q = q. For 0 < µ < N+2s+α

NC̃
c−

4s+2α
N , problem (1.1) and

(1.2) has no solution for any λ ∈ R.

Theorem 1.5. Let γ > 0, q < q < 2∗α,s and 0 < c < c∗. Then there exists µ̂ > 0

such that for every µ > µ̂, problem (1.1) and (1.2) possesses a normalized ground state

solution û ∈ Hs(RN ) with the corresponding Lagrange multiplier λ̂ > 0, which is positive

and radially symmetric.

Theorem 1.6. Let q = 2∗α,s, 0 < c < min{c∗, c∗}, and

γ >

(
α

α+ 2s

) α
N

S
N+α
N

α

(
CN−2s
α

SN+α

) α
N(2s+α)

µ
α(N−2s)
N(2s+α) .

Then, there exists µ̃ ≥ µ̂ such that for every µ > µ̃, problem (1.1) and (1.2) possesses a

normalized ground state solution ũ ∈ Hs(RN ) which is positive and radially symmetric,

and the corresponding Lagrange multiplier λ̃ satisfies 0 < λ̃ ≤ γS−2α
α c

2α
N .

To better understand the context of this paper, let us briefly state the strategies and

methodologies which are used to prove the above theorems. Firstly, when 2α < q < q, the

functional Eq is bounded from below on S(c). To prove that the infimum σ(c) is achieved,

we utilize the fractional concentration-compactness principle. Specifically, we rule out the

vanishing and dichotomy of the minimizing sequence to obtain the compactness of the

minimizing sequence. The dichotomy can be excluded by applying the strict inequality

σ(c) < σ(c1) + σ(c2). Moreover, we take advantage of the extremal function to make an

estimate of σ(c), which allows us to exclude the vanishing. Secondly, when q = q, we

make restriction on µ and then obtain the nonexistence result. Next, when it comes to

q ∈ (q, 2∗α,s], we find that Eq is no longer bounded from below on S(c). Hence, we make use

of the Pohozaev manifold Pq(c) as a natural constraint of Eq that contains all the critical

points of Eq restricted to S(c) to make sure that the functional Eq restricted to Pq(c) is

bounded from below. Then, for q < q < 2∗α,s, inspired by [9], we introduce the homotopy-

stable family to establish the existence of Palais–Smale sequence, and take advantage of

a similar idea in [47,49] to get the compactness result and then illustrate the existence of

normalized ground states. Finally, when it comes to the case q = 2∗α,s which involves the

interaction of the double critical terms, due to the assistance of some processes and the

solutions obtained in proving Theorem 1.5, we make full use of the Hardy–Littlewood–

Sobolev subcritical approximation method combined with the new estimate trick to achieve

our results. Due to the dual influence of fractional Laplacian and nonlocal perturbation,
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the problem becomes more complex and challenging. This requires us to precisely restrict

parameters. We further estimate accurately, mainly use constrained variational method,

and then under different assumptions on parameters we obtain new and interesting results

about the existence and nonexistence of normalized solutions for the fractional Choquard

equation.

The paper is organized as follows. In Section 2, we give some preliminary results which

will be used later. In Section 3, we deal with the case 2α < q < q and prove Theorem 1.3.

In Section 4, we consider the case q = q and prove Theorem 1.4. In Section 5, we treat the

case q < q < 2∗α,s and the case q = 2∗α,s respectively, and give the proofs of Theorems 1.5

and 1.6.

2. Preliminaries

In this section, we present various preliminary results that will be used later. Firstly, let

us recall the following fractional Sobolev embedding, see [11, Theorem 6.5].

Lemma 2.1. Let 0 < s < 1 and N > 2s. Then there exists a constant S = S(N, s) > 0

such that

(2.1) S = inf
u∈Hs(RN )\{0}

∥∥(−∆)
s
2u
∥∥2
2

∥u∥22∗s
,

where 2∗s = 2N
N−2s . Moreover, Hs(RN ) is continuously embedded into Lq(RN ) for any

q ∈ [2, 2∗s] and compactly embedded into Lq
loc(R

N ) for every q ∈ [2, 2∗s).

Next, we introduce the fractional Gagliardo–Nirenberg inequality of Hartree type es-

tablished in [15].

Lemma 2.2. Let 0 < s < 1, N > 2s and q ∈ (2α, 2
∗
α,s). Then, for all u ∈ Hs(RN ),

(2.2)

∫
RN

(Iα ∗ |u|q)|u|q dx ≤ C̃
∥∥(−∆)

s
2u
∥∥2qγq,s
2

∥u∥2q(1−γq,s)
2 ,

where γq,s =
Nq−N−α

2qs and the optimal constant C̃ is given by

(2.3) C̃ =
2sq

2sq −Nq +N + α

(
2sq −Nq +N + α

Nq −N − α

)Nq−N−α
2s

∥w∥2−2q
2 ,

where W is the ground state solution of (−∆)sW +W − (Iα ∗ |W |q)|W |q−2W = 0.

The following Hardy–Littlewood–Sobolev inequality is of importance, see [31].
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Lemma 2.3. Let α ∈ (0, N) and r, t > 1 with 1
r + 1

t = 1 + α
N . Let f ∈ Lr(RN ) and

h ∈ Lt(RN ), then there exists a constant C(r, t, α,N) such that∣∣∣∣∫
RN

∫
RN

f(x)h(y)

|x− y|N−α
dxdy

∣∣∣∣ ≤ C(r, t, α,N)∥f∥r∥h∥t.

In particular, if r = t = 2N
N+α , then

(2.4) C(r, t, α,N) = Cα := π
N−α

2
Γ
(
α
2

)
Γ
(
N+α
2

) {Γ
(
N
2

)
Γ(N)

}− α
N

.

Remark 2.4. Let r = t = 2N
N+α and f = h = |u|p ∈ Lr(RN ), then according to Lemma 2.3

the integral ∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|N−α
dxdy

is well defined. Thus, for u ∈ Hs(RN ), by Lemma 2.1, we have

N + α

N
≤ p ≤ N + α

N − 2s
.

In particular, when p = N+α
N , for any u ∈ Hs(RN ), we have

(2.5)

∫
RN

(
Iα ∗ |u|

N+α
N
)
|u|

N+α
N dx ≤ S

−N+α
N

α

(∫
RN

|u|2 dx
)N+α

N

,

where Sα is relevant to the following minimization problem:

(2.6) Sα = inf

{∫
RN

|u|2 dx : u ∈ L2(RN ) and

∫
RN

(
Iα ∗ |u|

N+α
N
)
|u|

N+α
N dx = 1

}
> 0.

Furthermore, by [31, Theorem 4.3] and [30, Theorem 3.1], Sα is achieved by the function

(2.7) Vϵ(x) = C

(
ϵ

ϵ2 + |x− z|2

)N
2

for some C ∈ R, ϵ ∈ R+, and z ∈ RN .

In what follows, we show the weak compactness result for the nonlocal nonlinearities,

see [49, Lemma 2.7].

Lemma 2.5. Suppose that q ∈
[
N+α
N , N+α

N−2s

]
. If {un} is a sequence satisfying un ⇀ u

weakly in Hs(RN ), then, for any φ ∈ Hs(RN ), we have∫
RN

(Iα ∗ |un|q)|un|q−2unφdx→
∫
RN

(Iα ∗ |u|q)|u|q−2uφdx

as n→ ∞.
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In view of the Brezis–Lieb lemma for the Riesz potential (see [10, 18]), we obtain the

following lemma.

Lemma 2.6. Let q ∈
[
N+α
N , N+α

N−2s

]
and {un} be a bounded sequence in Hs(RN ). If un → u

a.e. on RN as n→ ∞, then∫
RN

(Iα ∗ |un − u|q)|un − u|q dx =

∫
RN

(Iα ∗ |un|q)|un|q dx−
∫
RN

(Iα ∗ |u|q)|u|q dx+ on(1).

Now, we introduce the following Pohozaev identity, which can be derived from [8,28].

Proposition 2.7. Let u ∈ Hs(RN ) be a weak solution of (1.1), then u satisfies the

Pohozaev identity:

N − 2s

2

∥∥(−∆)
s
2u
∥∥2
2
+
λN

2
∥u∥22

=
γ(N + α)

22α

∫
RN

(Iα ∗ |u|2α)|u|2α dx+
µ(N + α)

2q

∫
RN

(Iα ∗ |u|q)|u|q dx.
(2.8)

Next, we show the Pohozaev manifold.

Lemma 2.8. Let u ∈ Hs(RN ) be a weak solution of (1.1), the Pohozaev manifold is the

following:

Pq(c) = {u ∈ S(c) : Pq(u) = 0},

where

Pq(u) =
∥∥(−∆)

s
2u
∥∥2
2
− µ

2s

(
N − N + α

q

)∫
RN

(Iα ∗ |u|q)|u|q dx.

Proof. In view of Proposition 2.7, we know that u satisfies the Pohozaev identity as follows:

N − 2s

2

∥∥(−∆)
s
2u
∥∥2
2
+
λN

2
∥u∥22

=
γN

2

∫
RN

(Iα ∗ |u|2α)|u|2α dx+
µ(N + α)

2q

∫
RN

(Iα ∗ |u|q)|u|q dx.

Moreover, since u is the weak solution of (1.1), we have

∥∥(−∆)
s
2u
∥∥2
2
+ λ∥u∥22 = γ

∫
RN

(Iα ∗ |u|2α)|u|2α dx+ µ

∫
RN

(Iα ∗ |u|q)|u|q dx.

Therefore, we have

∥∥(−∆)
s
2u
∥∥2
2
− µ

2s

(
N − N + α

q

)∫
RN

(Iα ∗ |u|q)|u|q dx = 0,

which finishes the proof.
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In light of Lemma 2.8, it is clear that any critical point of Eq|S(c) belongs to Pq(c).

Thus, the properties of Pq(c) are related to the minimax structure of Eq|S(c). Actually,

for each u ∈ S(c) and t ∈ R, we define

ut(x) := t
N
2 u(tx) for a.e. x ∈ RN .

It results that ut ∈ S(c). Then we define the fibering map t ∈ (0,∞) 7→ Φu(t) := Eq(ut)

given by

Φu(t) =
1

2
t2s
∥∥(−∆)

s
2u
∥∥2
2
− γ

22α

∫
RN

(Iα ∗ |u|2α)|u|2α dx

− µ

2q
tNq−N−α

∫
RN

(Iα ∗ |u|q)|u|q dx.
(2.9)

Lemma 2.9. Let u ∈ S(c), then t ∈ R is the critical point of Φu(t) if and only if ut ∈
Pq(c).

Proof. For u ∈ S(c) and t ∈ R, it is easy to check that

Φ′
u(t) = st2s−1

∥∥(−∆)
s
2u
∥∥2
2
− µ

2

(
N − N + α

q

)
tNq−N−α−1

∫
RN

(Iα ∗ |u|q)|u|q dx

=
s

t

∥∥(−∆)
s
2ut
∥∥2
2
− µ

2t

(
N − N + α

q

)∫
RN

(Iα ∗ |ut|q)|ut|q dx

=
sPq(ut)

t
.

(2.10)

Then, by Lemma 2.8, we can easily draw this conclusion.

It is natural to consider the decomposition of Pq(c) into the disjoint union Pq(c) =

P+
q (c) ∪ P0

q (c) ∪ P−
q (c), where

P+
q (c) := {u ∈ S(c) | Φ′

u(1) = 0,Φ′′
u(1) > 0},

P−
q (c) := {u ∈ S(c) | Φ′

u(1) = 0,Φ′′
u(1) < 0},

P0
q (c) := {u ∈ S(c) | Φ′

u(1) = 0,Φ′′
u(1) = 0}.

Moreover, for u ∈ Pq(c), we have

Φ′′
u(1) = s(2s− 1)

∥∥(−∆)
s
2u
∥∥2
2

− µ

2

(
N − N + α

q

)
(Nq −N − α− 1)

∫
RN

(Iα ∗ |u|q)|u|q dx

= s(2s−Nq +N + α)
∥∥(−∆)

s
2u
∥∥2
2
.

(2.11)

We now analyze the structure of the Pohozaev manifold Pq(c). Similar to the argu-

ments in [22, Lemma 3.1, Proposition 3.1] and [43], the following proposition holds.

Proposition 2.10. Assume that P0
q (c) = ∅. Then Pq(c) is a smooth manifold of codi-

mension 2 in Hs(RN ) and a smooth manifold of codimension 1 in S(c). Moreover, if

u ∈ Pq(c) is a critical point for Eq|Pq(c), then u is a critical point for Eq|S(c).
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3. The case 2α < q < q

Lemma 3.1. Let γ, µ > 0 and q ∈ (2α, q). Then the following statements are true.

(i) The functional Eq is bounded below and coercive on S(c);

(ii) σ(c) := infu∈S(c)Eq(u) < − γ
22α

S−2α
α c22α < 0;

(iii) Let c1, c2 > 0 be such that c21 + c22 = c2. Then σ(c) < σ(c1) + σ(c2).

Proof. (i) By (1.4), (2.2) and (2.5), for every u ∈ S(c), we have

Eq(u) =
1

2

∥∥(−∆)
s
2u
∥∥2
2
− γ

22α

∫
RN

(Iα ∗ |u|2α)|u|2α dx− µ

2q

∫
RN

(Iα ∗ |u|q)|u|q dx

≥ 1

2

∥∥(−∆)
s
2u
∥∥2
2
− γ

22α
S−2α
α c22α − µC̃

2q
c2q−

Nq−N−α
s

∥∥(−∆)
s
2u
∥∥Nq−N−α

s
2

.

Since 2α < q < q, we can deduce that the functional Eq is bounded below and coercive on

S(c).

(ii) By (2.5) and (2.7), we have

(3.1)

∫
RN

(Iα ∗ |Vϵ|2α)|Vϵ|2α dx = S−2α
α

(∫
RN

|Vϵ|2 dx
)2α

.

Then we define υ := c Vϵ
∥Vϵ∥2 and υt := t

N
2 υ(tx). It is clear that υ ∈ S(c) and υt ∈ S(c). By

(2.9) and (3.1), we have

Eq(υt)

=
1

2
t2s
∥∥(−∆)

s
2υ
∥∥2
2
− γ

22α

∫
RN

(Iα ∗ |υ|2α)|υ|2α dx− µ

2q
tNq−N−α

∫
RN

(Iα ∗ |υ|q)|υ|q dx

=
1

2
t2s
∥∥(−∆)

s
2υ
∥∥2
2
− µ

2q
tNq−N−α

∫
RN

(Iα ∗ |υ|q)|υ|q dx− γ

22α
S−2α
α c22α .

Thus, in view of 2α < q < q, there exists t0 ∈ (0, 1) such that 1
2 t

2s
∥∥(−∆)

s
2υ
∥∥2
2
−

µ
2q t

Nq−N−α
∫
RN (Iα ∗ |υ|q)|υ|q dx < 0. Then, we have

Eq(υt) < − γ

22α
S−2α
α c22α < 0,

namely, there exists some Υ = υt ∈ S(c) such that Eq(Υ) < − γ
22α

S−2α
α c22α < 0. Thus, we

can deduce that σ(c) < − γ
22α

S−2α
α c22α < 0.

(iii) Let {un} ⊂ S(c) be a bounded minimizing sequence for σ(c). Then for any

θ ∈ (1,
√
2) and u ∈ S(c), it holds that θu ∈ S(θc) and

Eq(θun)− θ2Eq(un) =
θ2 − θ22α

22α
γ

∫
RN

(Iα ∗ |un|2α)|un|2α dx

+
θ2 − θ2q

2q
µ

∫
RN

(Iα ∗ |un|q)|un|q dx

< 0.
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This implies that σ(θc) ≤ θ2σ(c), where the equality holds if and only if∫
RN

(Iα ∗ |un|2α)|un|2α dx+

∫
RN

(Iα ∗ |un|q)|un|q dx→ 0 as n→ ∞.

However, this is impossible, since otherwise we find that

0 > σ(c) = lim
n→∞

Eq(un) ≥ lim inf
n→∞

1

2

∥∥(−∆)
s
2un
∥∥2
2
≥ 0.

Therefore, we have the strict inequality σ(θc) < θ2σ(c). It follows that

σ(c) < θ2σ
( c
θ

)
= σ

( c
θ

)
+ (θ2 − 1)σ

(
1√

θ2 − 1
·
√
θ2 − 1

θ
c

)
< σ

( c
θ

)
+ σ

(√
θ2 − 1

θ
c

)
.

Then, choosing c1 = c
θ , c2 =

√
θ2−1
θ c, we have c21 + c22 = c2 and σ(c) < σ(c1) + σ(c2). The

proof is completed.

Lemma 3.2. Assume that γ, µ > 0 and 2α < q < q. Let {un} ⊂ Hs(RN ) be a sequence

such that Eq(un) → σ(c) and ∥un∥2 = cn → c. Then the sequence {un} is relatively

compact in Hs(RN ) up to translations, that is, there exist a subsequence, still denoted by

{un}, a sequence of points {yn} ⊂ RN , and a function u0 ∈ S(c) such that un( ·+yn) → u0

strongly in Hs(RN ).

Proof. It follows from Lemma 3.1(i) and cn → c that the sequence {un} is bounded in

Hs(RN ). Then according to the fractional concentration-compactness principle (see [14,

Lemma 2.4]), we take ςn := c
cn
un, and there exists a subsequence, still denoted by {ςn},

for which one of the following properties holds:

(i) Compactness: there exists a sequence {yn} in RN such that, for any ε > 0, there

exists 0 < r <∞ with ∫
|x−yn|≤r

|ςn(x)|2 dx ≥ c2 − ε.

(ii) Vanishing: for all r <∞, it follows that

lim
n→∞

sup
y∈RN

∫
|x−yn|≤r

|ςn(x)|2 dx = 0.

(iii) Dichotomy: there exist a constant c1 ∈ (0, c) and two bounded sequences {νn},
{ωn} such that

supp νn ∩ suppωn = ∅; |νn|+ |ωn| ≤ |ςn|;

∥νn∥22 → c21, ∥ωn∥22 → c22 := c2 − c21 as n→ ∞;

∥ςn − νn − ωn∥r → 0 for 2 ≤ r <
2N

N − 2s
;

lim inf
n→∞

{∥∥(−∆)
s
2 ςn
∥∥2
2
−
∥∥(−∆)

s
2 νn
∥∥2
2
−
∥∥(−∆)

s
2ωn

∥∥2
2

}
≥ 0.
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Firstly, we verify that the vanishing cannot occur. Suppose the contrary. Then by [13,

Lemma 2.2] we have that un → 0 in Lr(RN ) for 2 < r < 2∗s. Noticing q ∈ (2α, 2
∗
α,s)

implying that 2Nq
N+α ∈ (2, 2∗s), by (1.4), (2.5) and Lemma 2.3, it follows that

σ(c) + on(1)

=
1

2

∥∥(−∆)
s
2un
∥∥2
2
− γ

22α

∫
RN

(Iα ∗ |un|2α)|un|2α dx− µ

2q

∫
RN

(Iα ∗ |un|q)|un|q dx

≥ 1

2

∥∥(−∆)
s
2un
∥∥2
2
− γ

22α
S−2α
α c22α − µCα

2q
∥un∥2q2Nq

N+α

≥ 1

2

∥∥(−∆)
s
2un
∥∥2
2
− γ

22α
S−2α
α c22α + on(1)

≥ − γ

22α
S−2α
α c22α ,

which contradicts Lemma 3.1(ii).

Next we claim dichotomy cannot occur. Otherwise, according to [2, Lemma 2.14]

and [5, Proposition 1.7.6 with Lemma 1.7.5(ii)] which state that∫
RN

(Iα ∗ |ςn|q)|ςn|q dx =

∫
RN

(Iα ∗ |νn|q)|νn|q dx+

∫
RN

(Iα ∗ |ωn|q)|ωn|q dx+ on(1)

for q ∈ [2α, q). Then we have

σ(c) = lim
n→∞

Eq(un) = lim
n→∞

Eq(ςn) ≥ lim sup
n→∞

(Eq(νn) + Eq(ωn)) ≥ σ(c1) + σ(c2),

which contradicts Lemma 3.1(iii). Thus, the compactness holds, then there exist {yn} ⊂
RN and u0 ∈ S(c) such that ςn( · + yn) → u0 in L2(RN ). Since cn → c and {un} is

bounded, then we have that un := un( ·+yn) → u0 in L
2(RN ). Meanwhile, by interpolation

inequality and fractional Sobolev embedding theorem, we have

∥un − u0∥rr ≤ ∥un − u0∥θr2 ∥un − u0∥(1−θ)r
2∗s

≤ C∥un − u0∥θr2 → 0 as n→ ∞,

where r ∈ (2, 2∗s) and
1
r = θ

2 + 1−θ
2∗s

, then we have that un := un( · + yn) → u0 in Lr(RN )

for 2 ≤ r < 2∗s. Then, by Lemmas 2.6 and 2.3, we can imply that∫
RN

(Iα ∗ |un|2α)|un|2α dx =

∫
RN

(Iα ∗ |u0|2α)|u0|2α dx+ on(1),∫
RN

(Iα ∗ |un|q)|un|q dx =

∫
RN

(Iα ∗ |u0|q)|u0|q dx+ on(1).

Hence, we can deduce that

σ(c) ≤ Eq(u0) ≤ lim inf
n→∞

Eq(un) = lim inf
n→∞

Eq(un) = σ(c),

which implies that Eq(u0) = σ(c) and
∥∥(−∆)

s
2un
∥∥2
2

→
∥∥(−∆)

s
2u0
∥∥2
2
. Consequently,

through the above analysis, we have that ∥un∥Hs(RN ) → ∥u0∥Hs(RN ), namely, un( ·+yn) →
u0 strongly in Hs(RN ), and u0 is a minimizer for σ(c). We complete the proof.
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Proof of Theorem 1.3. It follows from Lemma 3.2 that there exists a minimizer u0 for Eq

on S(c). Hence, the infimum σ(c) < − γ
22α

S−2α
α c22α is achieved by u0 ∈ S(c) which is a

ground state of problem (1.1) and (1.2). Then, let u∗ denote the Schwartz rearrangement

of |u0| and we have

(3.2) ∥u∗∥22 = ∥u0∥22 = c2.

By the Riesz’s rearrangement inequality [31, Theorem 3.7], we have∫
RN

(Iα ∗ |u∗|q)|u∗|q dx ≥
∫
RN

(Iα ∗ |u0|q)|u0|q dx,(3.3) ∫
RN

(Iα ∗ |u∗|2α)|u∗|2α dx ≥
∫
RN

(Iα ∗ |u0|2α)|u0|2α dx.(3.4)

And the fractional Polya–Szegö inequality [38] shows that

(3.5)
∥∥(−∆)

s
2u∗
∥∥2
2
≤
∥∥(−∆)

s
2u0
∥∥2
2
.

Thus, u∗ ∈ S(c) and Eq(u
∗) ≤ Eq(u0) = σ(c). According to the definition of σ(c), we

have Eq(u
∗) = σ(c), which implies that σ(c) is achieved by the real-valued positive and

radially symmetric nonincreasing function. Moreover, corresponding to u∗, there exists a

Lagrange multiplier λ∗ ∈ R such that

λ∗c2 = −
∥∥(−∆)

s
2u∗
∥∥2
2
+ γ

∫
RN

(Iα ∗ |u∗|2α)|u∗|2α dx+ µ

∫
RN

(Iα ∗ |u∗|q)|u∗|q dx

= −2σ(c) +
γ(2α − 1)

2α

∫
RN

(Iα ∗ |u∗|2α)|u∗|2α dx+
µ(q − 1)

q

∫
RN

(Iα ∗ |u∗|q)|u∗|q dx

> −2σ(c),

together with Lemma 3.1(ii), we have

λ∗ >
γ

2α
S−2α
α c

2α
N .

We complete the proof.

4. The case q = q = N+2s+α
N

Proof of Theorem 1.4. Let u ∈ S(c) and t > 0. By (2.2) and (2.10), we have

Φ′
u(t) = st2s−1

∥∥(−∆)
s
2u
∥∥2
2
− µsN

N + 2s+ α
t2s−1

∫
RN

(Iα ∗ |u|q)|u|q dx

≥ st2s−1
∥∥(−∆)

s
2u
∥∥2
2
− µsNC̃

N + 2s+ α
c
4s+2α

N t2s−1
∥∥(−∆)

s
2u
∥∥2
2

=

(
s− µsNC̃

N + 2s+ α
c
4s+2α

N

)
t2s−1

∥∥(−∆)
s
2u
∥∥2
2

> 0 if µ <
N + 2s+ α

NC̃
c−

4s+2α
N := µ∗.
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This implies that the fiber map Φu(t) is strictly increasing, and then the functional Eq

has no critical point on S(c) for 0 < µ < µ∗. Hence, when 0 < µ < µ∗, problem (1.1) and

(1.2) has no solution for any λ ∈ R. We complete the proof.

5. The case q < q ≤ 2∗α,s

In this case, we notice that the functional Eq is unbounded from below on S(c). Thus, we

shall restrict it to a natural constraint manifold Pq(c) on which Eq is bounded below and

then we may find critical points of Eq.

Lemma 5.1. Assume that γ, µ > 0 and q < q ≤ 2∗α,s. Then the following statements are

true.

(i) There exists a unique t̃u := t(u) > 0 such that ut̃u ∈ Pq(c) = P−
q (c) and

Eq(ut̃u) = max
t>0

Eq(ut);

(ii) The map u ∈ S(c) 7→ t̃u ∈ R is of class C1.

Proof. (i) In view of q < q ≤ 2∗α,s and (2.11), we have Pq(c) = P−
q (c). Fix u ∈ S(c) and

we define

F (t) :=
2qs

µ(Nq −N − α)

∥∥(−∆)
s
2u
∥∥2
2
tN+α+2s−Nq for t > 0.

According to Lemma 2.9, we have ut ∈ Pq(c) if and only if F (t) =
∫
RN (Iα ∗ |u|q)|u|q dx.

We notice that F (t) is decreasing on (0,+∞), limt→0+ F (t) = +∞, limt→+∞ F (t) = 0.

This implies that there exists a unique t̃u > 0 such that ut̃u ∈ Pq(c). Furthermore, we

also obtain that Φ′
u(t) > 0 on (0, t̃u) and Φ′

u(t) < 0 on (t̃u,+∞), namely, Eq(ut̃u) =

maxt>0Eq(ut).

(ii) By a direct application of the implicit function theorem on the C1 function G : R×
S(c) → R defined by G(t, u) = Φ′

u(t), we easily reach the conclusion.

Lemma 5.2. Assume that γ, µ > 0 and q ∈ (q, 2∗α,s]. Then the functional Eq is bounded

below and coercive on Pq(c) for 0 < c < c∗, where c∗ is defined as

c∗ :=

[
2qs

µC̃(Nq −N − α)

] s
(2α−1)(Nq−N−α)+2qs−2s·2α

×
[

γ(Nq −N − α)

2αS
2α
α (Nq −N − α− 2s)

] N+α+2s−Nq
2(2α−1)(Nq−N−α)+4qs−4s·2α

.

Proof. Let u ∈ Pq(c), then we have∥∥(−∆)
s
2u
∥∥2
2
=

µ

2s

(
N − N + α

q

)∫
RN

(Iα ∗ |u|q)|u|q dx.
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Combined with Lemma 2.2, then

∥∥(−∆)
s
2u
∥∥2
2
≥

(
2qs

µC̃(Nq −N − α)
· c−

2qs+N+α−Nq
s

) 2s
Nq−N−α−2s

.

It follows that

Eq(u)

=
1

2

∥∥(−∆)
s
2u
∥∥2
2
− γ

22α

∫
RN

(Iα ∗ |u|2α)|u|2α dx− µ

2q

∫
RN

(Iα ∗ |u|q)|u|q dx

=

(
1

2
− s

Nq −N − α

)∥∥(−∆)
s
2u
∥∥2
2
− γ

22α

∫
RN

(Iα ∗ |u|2α)|u|2α dx

≥
(
1

2
− s

Nq −N − α

)∥∥(−∆)
s
2u
∥∥2
2
− γ

22α
S−2α
α c22α

≥
(
1

2
− s

Nq −N − α

)(
2qs

µC̃(Nq −N − α)
· c−

2qs+N+α−Nq
s

) 2s
Nq−N−α−2s

− γ

22α
S−2α
α c22α

> 0,

provided that c < c∗. We complete the proof.

Through the above discussion, we can define

mq(c) := inf
u∈Pq(c)

Eq(u).

We now work in the subspace of functions in Hs(RN ) which are radially symmetric

with respect to 0, denoted by Hs
r (RN ), and we define

Sr(c) := S(c) ∩Hs
r (RN ) and Pr

q (c) := Pq ∩Hs
r (RN ).

Lemma 5.3. Suppose that γ, µ > 0 and q ∈ (q, 2∗α,s]. Then for 0 < c < c∗, the following

statements are true.

(i) mq(c) = infu∈Pq(c)Eq(u) = infu∈Pr
q (c)

Eq(u) > 0;

(ii) If mq(c) is achieved, then it is achieved by a Schwarz symmetric function.

Proof. (i) Since Pr
q (c) ⊂ Pq(c), then we obtain that

(5.1) inf
u∈Pq(c)

Eq(u) ≤ inf
u∈Pr

q (c)
Eq(u).

Next, we claim that infu∈Pq(c)Eq(u) ≥ infu∈Pr
q (c)

Eq(u). Indeed, by Lemma 5.1(i), it is

clear to see that

(5.2) mq(c) = inf
u∈Pq(c)

Eq(u) = inf
u∈S(c)

max
t>0

Eq(ut)
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and Eq(ut̃u) = maxt>0Eq(ut). Let u ∈ S(c) and ϑ ∈ S(c) be the Schwartz rearrangement

of |u|. Then by (3.2)–(3.5), we obtain that

Φϑ(t) =
1

2
t2s
∥∥(−∆)

s
2ϑ
∥∥2
2
− γ

22α

∫
RN

(Iα ∗ |ϑ|2α)|ϑ|2α dx

− µ

2q
tNq−N−α

∫
RN

(Iα ∗ |ϑ|q)|ϑ|q dx

≤ 1

2
t2s
∥∥(−∆)

s
2u
∥∥2
2
− γ

22α

∫
RN

(Iα ∗ |u|2α)|u|2α dx

− µ

2q
tNq−N−α

∫
RN

(Iα ∗ |u|q)|u|q dx

= Φu(t).

(5.3)

Moreover, we also have Φ′
ϑ(t) ≤ Φ′

u(t) for t ∈ (0,+∞), which implies t̃ϑ ≤ t̃u. Then it

follows from (5.3) that

(5.4) inf
u∈Pr

q (c)
Eq(u) ≤ max

t>0
Eq(ϑt) = Φϑ(t̃ϑ) ≤ Φu(t̃ϑ) = Eq(ut̃ϑ) ≤ max

t>0
Eq(ut).

Then,by (5.2) and (5.4), we have

(5.5) inf
u∈Pq(c)

Eq(u) ≥ inf
u∈Pr

q (c)
Eq(u).

Thus, it follows from (5.1), (5.5) and Lemma 5.2 that

inf
u∈Pq(c)

Eq(u) = inf
u∈Pr

q (c)
Eq(u) > 0.

(ii) Let v ∈ Pq(c) satisfy Eq(v) = mq(c), and let κ be the Schwartz rearrangement of |v|.
Indeed, according to (3.2)–(3.5), if

∥∥(−∆)
s
2κ
∥∥2
2
<
∥∥(−∆)

s
2 v
∥∥2
2
, or

∫
RN (Iα ∗ |κ|q)|κ|q dx >∫

RN (Iα ∗ |v|q)|v|q dx, or
∫
RN (Iα ∗ |κ|2α)|κ|2α dx >

∫
RN (Iα ∗ |v|2α)|v|2α dx hold, then, based

on (5.2) and (5.4), we can deduce that

mq(c) = inf
κ∈S(c)

max
t>0

Eq(κt) ≤ max
t>0

Eq(κt) = Φκ(t̃κ) < Φv(t̃κ) = Eq(vt̃κ) ≤ Eq(v) = mq(c),

which is a contradiction. As a result, we have

∥∥(−∆)
s
2κ
∥∥2
2
=
∥∥(−∆)

s
2 v
∥∥2
2
,

∫
RN

(Iα ∗ |κ|q)|κ|q dx =

∫
RN

(Iα ∗ |v|q)|v|q dx,∫
RN

(Iα ∗ |κ|2α)|κ|2α dx =

∫
RN

(Iα ∗ |v|2α)|v|2α dx.

Then combined with (3.2) we can imply that κ ∈ Pr
q (c) and Eq(κ) = Eq(v) = mq(c). We

complete the proof.
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Next, we shall take advantage of the homotopy-stable family and some related known

results in order to establish the existence of Palais–Smale sequence.

Definition 5.4. [45, Definition 3.1] Let D be a closed subset of a metric space X. We

say that a class F of compact subsets of X is a homotopy-stable family with boundary D
provided that

(i) every set in F contains D;

(ii) for any set Ξ ∈ F and any E ∈ C([0, 1] × X,X) satisfying E(t, x) = x for all

(t, x) ∈ ({0} ×X) ∪ ([0, 1]×D), we have that E({1} × Ξ) ∈ F .

In particular, the above definition is still valid if the boundary D is empty.

Lemma 5.5. For u ∈ Sr(c), t ∈ R, the map

TuSr(c) → Tut̃u
Sr(c), ψ 7→ ψt̃u

is an linear isomorphism, where TuSr(c) denotes the tangent space to Sr(c) in u.

Proof. The proof is standard, see [47, Lemma 5.5] or [1, Lemma 3.6], so we omit the

details.

Now we define the functional J : Sr(c) 7→ R by

J (u) = Eq(ut̃u).

According to Lemma 5.1(ii), we obtain that the functional J is of class C1.

Lemma 5.6. It holds that

J ′(u)[ψ] = E′
q(ut̃u)[ψt̃u

]

for any u ∈ Sr(c) and ψ ∈ TuSr(c).

Proof. The proof is similar to [9, Lemma 3.15]; we omit it here.

Then, the result for the existence of Palais–Smale sequences to a general homotopy-

stable family is as follows.

Lemma 5.7. Let F be a homotopy-stable family of compact subsets of Sr(c) with closed

boundary D, and let

eF := inf
Ξ∈F

max
u∈Ξ

J (u).

Assume that D is contained in a connected component of Pr
q (c) and

max{supJ (D), 0} < eF <∞.

Then there exists a Palais–Smale sequence {un} ⊂ Pr
q (c) for Eq restricted to Sr(c) at level

eF .
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Proof. By Lemmas 5.5 and 5.6, similar to the arguments of [9, Lemma 3.16], we can easily

obtain the conclusion.

Lemma 5.8. Suppose that γ, µ > 0 and q ∈ (q, 2∗α,s]. Then for 0 < c < c∗, there exists a

Palais–Smale sequence {un} ⊂ Pr
q (c) for Eq restricted to Sr(c) at level mq(c) > 0.

Proof. Let F1 be a family of all singletons belonging to Sr(c). Clearly, the boundary D is

empty. Then, by Definition 5.4 it is clearly a homotopy-stable family of compact subsets

of Sr(c) (without boundary). Besides, by Lemma 5.3 one has

eF1 = inf
Ξ∈F1

max
u∈Ξ

J (u) = inf
u∈Sr(c)

J (u) = inf
u∈Pr

q (c)
Eq(u) = inf

u∈Pq(c)
Eq(u) = mq(c).

Consequently, choosing F = F1, the lemma follows directly from Lemma 5.7. We complete

the proof.

5.1. The subcritical perturbation

Lemma 5.9. Let γ, µ > 0, q ∈ (q, 2∗α,s) and {un} ⊂ Pr
q (c) be a bounded Palais–Smale

sequence for Eq restricted to Sr(c) at level mq(c) > 0. Then there exists a constant µ̂ > 0

such that for every µ > µ̂, up to a subsequence, un → û strongly in Hs
r (RN ) for 0 < c < c∗.

Proof. Since {un} ⊂ Pr
q (c) is a bounded Palais–Smale sequence, then there exists û ∈

Hs
r (RN ) such that

(5.6) un ⇀ û in Hs
r (RN ), un → û in Lr(RN ) for 2 < r < 2∗s, un → û a.e. on RN .

Based on the Lagrange multipliers rule, there exists λn ∈ R such that for every φ ∈
Hs

r (RN ), ∫
RN

(−∆)
s
2un(−∆)

s
2φdx+ λn

∫
RN

unφdx− γ

∫
RN

(Iα ∗ |un|2α)|un|2α−2unφdx

− µ

∫
RN

(Iα ∗ |un|q)|un|q−2unφdx

= on(1)∥φ∥.

(5.7)

It follows that

λnc
2 = λn∥un∥22 = γ

∫
RN

(Iα ∗ |un|2α)|un|2α dx

+ µ

∫
RN

(Iα ∗ |un|q)|un|q dx−
∥∥(−∆)

s
2un
∥∥2
2
+ on(1),

(5.8)

which implies that {λn} is bounded. Then, up to a subsequence, there exists λ̂ ∈ R such

that λn → λ̂ as n → ∞. In view of q ∈ (q, 2∗α,s), (5.8) and the fact of Pq(un) = on(1), we
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have

λ̂c2 = lim
n→∞

λnc
2

= lim
n→∞

[
γ

∫
RN

(Iα ∗ |un|2α)|un|2α dx

+ µ

(
1− Nq −N − α

2qs

)∫
RN

(Iα ∗ |un|q)|un|q dx
]

≥ 0,

(5.9)

which implies λ̂ ≥ 0. Then, we claim that λ̂ ̸= 0. Otherwise, by (5.9), we have that∫
RN (Iα ∗ |un|2α)|un|2α dx = on(1) and

∫
RN (Iα ∗ |un|q)|un|q dx = on(1), and then combined

with Pq(un) = on(1) we deduced that
∥∥(−∆)

s
2un
∥∥2
2
= on(1). Thus, we have Eq(un) =

mq(c) + on(1) = on(1), which is contradictory to mq(c) > 0. Consequently, λ̂ > 0.

Next, we claim that û ̸= 0. Suppose by contradiction that û = 0, obviously we

have
∥∥(−∆)

s
2un
∥∥2
2

= on(1). Moreover, by Lemma 2.3 and (5.6), we have
∫
RN (Iα ∗

|un|q)|un|q dx = on(1). Then, in view of (5.8) and λ̂ > 0, we have

0 < λ̂c2 = lim
n→∞

γ

∫
RN

(Iα ∗ |un|2α)|un|2α dx,

which contradicts

0 < mq(c) = lim
n→∞

Eq(un) = − γ

22α
lim
n→∞

∫
RN

(Iα ∗ |un|2α)|un|2α dx.

As a consequence, û ̸= 0.

Now, according to un ⇀ û in Hs
r (RN ), (5.7) and Lemma 2.5, it follows that û is a

weak solution such that

(5.10) (−∆)sû+ λ̂û = γ(Iα ∗ |û|2α)|û|2α−2û+ µ(Iα ∗ |û|q)|û|q−2û in RN .

Then, it follows from Lemma 2.8 that Pq(û) = 0.

Let vn := un − û, then by (5.6) we have vn ⇀ 0 weakly in Hs
r (RN ). Thus, one has

(5.11)
∥∥(−∆)

s
2un
∥∥2
2
=
∥∥(−∆)

s
2 û
∥∥2
2
+
∥∥(−∆)

s
2 vn
∥∥2
2
+ on(1).

Moreover, it follows from Lemma 2.6 and (5.6) that∫
RN

(Iα ∗ |un|2α)|un|2α dx =

∫
RN

(Iα ∗ |û|2α)|û|2α dx+

∫
RN

(Iα ∗ |vn|2α)|vn|2α dx+ on(1),∫
RN

(Iα ∗ |un|q)|un|q dx =

∫
RN

(Iα ∗ |û|q)|û|q dx+

∫
RN

(Iα ∗ |vn|q)|vn|q dx+ on(1),

and then by Lemma 2.3 we know that

lim
n→∞

∫
RN

(Iα ∗ |vn|q)|vn|q dx = 0,
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which implies that

(5.12)

∫
RN

(Iα ∗ |un|q)|un|q dx =

∫
RN

(Iα ∗ |û|q)|û|q dx+ on(1).

By (5.11), (5.12) and the fact of Pq(un) = on(1), we have

∥∥(−∆)
s
2 û
∥∥2
2
+
∥∥(−∆)

s
2 vn
∥∥2
2
=

µ

2s

(
N − N + α

q

)∫
RN

(Iα ∗ |û|q)|û|q dx+ on(1),

which shows that
∥∥(−∆)

s
2 vn
∥∥2
2
= on(1) by the fact of Pq(û) = 0.

Moreover, by (5.10), we have that

(5.13) E′
q(û)φ+ λ̂

∫
RN

ûφdx = 0

for every φ ∈ Hs
r (RN ). Taking φ = vn in (5.7) and (5.13), and then subtracting, we have

∥∥(−∆)
s
2 vn
∥∥2
2
+ λ̂∥vn∥22 = µ

∫
RN

(Iα ∗ |vn|q)|vn|q dx+ γ

∫
RN

(Iα ∗ |vn|2α)|vn|2α dx+ on(1),

which implies that

(5.14) L := lim
n→∞

λ̂∥vn∥22 = lim
n→∞

γ

∫
RN

(Iα ∗ |vn|2α)|vn|2α dx,

where we also have used the fact that
∥∥(−∆)

s
2 vn
∥∥2
2
= on(1) and

∫
RN (Iα ∗ |vn|q)|vn|q dx =

on(1). It follows from (5.14) and (2.5) that either L = 0 or L ≥ γ−
N
α (λ̂Sα)

N+α
α .

If L = 0, by (5.14) and
∥∥(−∆)

s
2 vn
∥∥2
2
= on(1), then we obtain un → û in Hs

r (RN ).

If L ≥ γ−
N
α (λ̂Sα)

N+α
α , firstly, similar to the argument of Lemma 5.2, according to

Pq(û) = 0 and ∥û∥2 ≤ c, we can easily deduce Eq(û) > 0 for 0 < c < c∗. Then, for one

thing, we have

mq(c) +
λ̂

2
c2 = mq(c) +

1

2
lim
n→∞

λn∥un∥22 ≥ mq(c) +
1

2
lim
n→∞

λn∥vn∥22

= Eq(û) + lim
n→∞

(
Eq(vn) +

λn
2
∥vn∥22

)
= Eq(û) + lim

n→∞

(
λn
2
∥vn∥22 −

γ

22α

∫
RN

(Iα ∗ |vn|2α)|vn|2α dx

)
= Eq(û) + lim

n→∞

γα

2(N + α)

∫
RN

(Iα ∗ |vn|2α)|vn|2α dx

≥ Eq(û) +
α

2(N + α)
γ−

N
α (λ̂Sα)

N+α
α >

α

2(N + α)
γ−

N
α (λ̂Sα)

N+α
α .

(5.15)

For another, we make use of the extremal function Vε in (2.7) to estimate mq(c) +
λ̂
2 c

2.

We define τ := c Vϵ
∥Vϵ∥2 and τt := t

N
2 τ(tx). Clearly, τ ∈ S(c) and τt ∈ S(c). It follows
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from Lemma 5.1 that there exists a unique t̃τ > 0 such that τt̃τ ∈ Pq(c) and Eq(τt̃τ ) =

maxt>0Eq(τt), then we have

mq(c) ≤ max
t>0

Eq(τt) = Eq(τt̃τ ).

Moreover, by (2.9) and (3.1) we have

mq(c) ≤ Eq(τt̃τ )

=
1

2
(t̃τ )

2s
∥∥(−∆)

s
2 τ
∥∥2
2
− γ

22α

∫
RN

(Iα ∗ |τ |2α)|τ |2α dx

− µ

2q
(t̃τ )

Nq−N−α

∫
RN

(Iα ∗ |τ |q)|τ |q dx

=
1

2
(t̃τ )

2s
∥∥(−∆)

s
2 τ
∥∥2
2
− µ

2q
(t̃τ )

Nq−N−α

∫
RN

(Iα ∗ |τ |q)|τ |q dx− γ

22α
S−2α
α c22α .

Then, we choose

µ̂ :=
q
∥∥(−∆)

s
2 τ
∥∥2
2∫

RN (Iα ∗ |τ |q)|τ |q dx
(t̃τ )

2s+N+α−Nq.

Thus, for every µ > µ̂, there holds that

mq(c) < − γ

22α
S−2α
α c22α ,

which implies that

(5.16) mq(c) +
λ̂

2
c2 < − Nγ

2(N + α)
S
−N+α

N
α c

2(N+α)
N +

λ̂

2
c2.

Let us consider the function K : R+ → R given by

(5.17) K(c) := − Nγ

2(N + α)
S
−N+α

N
α c

2(N+α)
N +

λ̂

2
c2.

By a direct calculation, we have that K has a unique critical point c0 =
(
λ̂
γ

) N
2αS

N+α
2α

α , which

is also a global maximum point. Then, the maximum of K is

(5.18) K(c0) =
α

2(N + α)
γ−

N
α (λ̂Sα)

N+α
α .

It follows from (5.16), (5.17) and (5.18) that

(5.19) mq(c) +
λ̂

2
c2 <

α

2(N + α)
γ−

N
α (λ̂Sα)

N+α
α ,

which contradicts (5.15), that is, L ≥ γ−
N
α (λ̂Sα)

N+α
α is not true. Consequently, we have

un → û in Hs
r (RN ). The proof is completed.
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Proof of Theorem 1.5. By Lemmas 5.2 and 5.8, for 0 < c < c∗, there exists a Palais–

Smale sequence {un} ⊂ Pr
q (c) for Eq restricted to Sr(c) at level mq(c) > 0. Then in view

of Lemma 5.9, we have that there exists a constant µ̂ > 0 such that for every µ > µ̂, up to

a subsequence, un → û strongly in Hs
r (RN ) for 0 < c < c∗. Combined with Lemma 5.3(i),

we can deduce that û is a ground state normalized solution of (1.1) for some λ̂ > 0.

Moreover, by Lemma 5.3(ii) and the maximum principle (see [17, Theorem 8.19]), û is a

positive radial ground state normalized solution of (1.1) for some λ̂ > 0.

5.2. The critical perturbation

In this part, we consider the case of q = 2∗α,s =
N+α
N−2s , which corresponds to the fractional

doubly critical Choquard equation with prescribed L2-norm. Here, we mainly apply the

Hardy–Littlewood–Sobolev approximation method to study the problem. We first present

a relevant property of mq(c).

Lemma 5.10. Assume that γ, µ > 0 and q < q < 2∗α,s. Then

lim sup
q→2∗−α,s

mq(c) ≤ m2∗α,s
(c).

Proof. By the definition of m2∗α,s
(c), for any ε ∈ (0, 1), there exists u ∈ P2∗α,s

(c) such that

(5.20) E2∗α,s
(u) < m2∗α,s

(c) + ε.

It follows from (2.9) that there exists t1 > 0 large enough such that E2∗α,s
(ut1) ≤ −2.

Moreover, by the Young inequality, we have

(5.21) |u|q ≤
2∗α,s − q

2∗α,s − p
|u|p + q − p

2∗α,s − p
|u|2∗α,s for q < p < q < 2∗α,s.

By the Lebesgue dominated convergence theorem, we have that

µ

2q
tNq−N−α

∫
RN

(Iα ∗ |u|q)|u|q dx

is continuous on q ∈ [p, 2∗α,s] uniformly with respect to t ∈ (0, t1]. Therefore, for any ε > 0,

there exists δ > 0 such that

(5.22) |Eq(ut)− E2∗α,s
(ut)| < ε

for q ∈ [2∗α,s − δ, 2∗α,s] and t ∈ (0, t1], which implies that Eq(ut1) ≤ −1 for any q ∈
[2∗α,s − δ, 2∗α,s]. Then it follows from Lemma 5.1(i) that there exists a unique critical point

t∗ ∈ (0, t1) of Eq(ut) such that Pq(ut∗) = 0. Noticing that u ∈ P2∗α,s
(c), we deduce that

(5.23) E2∗α,s
(u) = max

t>0
E2∗α,s

(ut).
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As a consequence, by (5.20), (5.22) and (5.23), we have

mq(c) ≤ Eq(ut∗) ≤ E2∗α,s
(ut∗) + ε ≤ E2∗α,s

(u) + ε < m2∗α,s
(c) + 2ε

for any q ∈ [2∗α,s − δ, 2∗α,s]. Hence, lim supq→2∗−α,s
mq(c) ≤ m2∗α,s

(c).

Lemma 5.11. Let q = 2∗α,s, c
∗ =

(
N+α
Nγ

) N
2αS

N+α
2α

α , 0 < c < min{c∗, c∗}, and

γ >

(
α

α+ 2s

) α
N

S
N+α
N

α

(
CN−2s
α

SN+α

) α
N(2s+α)

µ
α(N−2s)
N(2s+α) .

Then, there exists a constant µ̃ ≥ µ̂ such that for every µ > µ̃, the infimum m2∗α,s
(c) is

achieved by ũ, where µ̂ is as in Lemma 5.9.

Proof. Let qn → 2∗−α,s as n → ∞. According to Theorem 1.5 and Lemma 5.10, for every

µ > µ̂, there exists a sequence of positive and radially functions {un := uqn} ⊂ Prqn(c)

such that

Eqn(un) = mqn(c) ≤ m2∗α,s
(c) + 1,

and then combining Lemma 5.2 we have that {un} is bounded in Hs
r (RN ). Thus, there

exists u ∈ Hs
r (RN ) such that, up to a subsequence, un ⇀ u in Hs

r (RN ), un → u in Lr(RN )

for 2 < r < 2∗s, and un → u a.e. on RN . Then by the Lagrange multipliers rule, there

exists λn ∈ R such that for every φ ∈ Hs
r (RN ),∫

RN

(−∆)
s
2un(−∆)

s
2φdx+ λn

∫
RN

unφdx− γ

∫
RN

(Iα ∗ |un|2α)|un|2α−2unφdx

− µ

∫
RN

(Iα ∗ |un|qn)|un|qn−2unφdx

= on(1)∥φ∥.

(5.24)

There holds that

λnc
2 = γ

∫
RN

(Iα ∗ |un|2α)|un|2α dx+ µ

∫
RN

(Iα ∗ |un|qn)|un|qn dx−
∥∥(−∆)

s
2un
∥∥2
2
+ on(1),

which shows that {λn} is bounded. Similar to the argument in Lemma 5.9, we know that

there exists λ ∈ R such that λn → λ as n→ ∞ and λ > 0.

Now, we claim that u ̸= 0. Assume by contradiction that u = 0. Similar to the

inequality (5.21) we have

(5.25) |un|qn ≤
2∗α,s − qn

2∗α,s − p
|un|p +

qn − p

2∗α,s − p
|un|2

∗
α,s for q < p < qn.

Moreover, since {un} is bounded and un → u in Lr(RN ) for 2 < r < 2∗s, using the

Hardy–Littlewood–Sobolev inequality in Lemma 2.3, we have

(5.26)

∫
RN

(Iα ∗ |un|p)|un|2
∗
α,s dx = on(1),

∫
RN

(Iα ∗ |un|p)|un|p dx = on(1)
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for q < p < qn. Hence, we conclude that∫
RN

(Iα ∗ |un|qn)|un|qn dx ≤
(
qn − p

2∗α,s − p

)2 ∫
RN

(Iα ∗ |un|2
∗
α,s)|un|2

∗
α,s dx+ on(1)

≤
∫
RN

(Iα ∗ |un|2
∗
α,s)|un|2

∗
α,s dx+ on(1),

(5.27)

where we have used (5.25), (5.26) and 0 < qn−p
2∗α,s−p < 1. Besides, it follows from Lemmas 2.1

and 2.3 that

(5.28)

∫
RN

(Iα ∗ |un|2
∗
α,s)|un|2

∗
α,s dx ≤ Cα∥un∥

22∗α,s

2∗s
≤ CαS

−2∗α,s
∥∥(−∆)

s
2un
∥∥22∗α,s

2
.

Thus, by Pqn(un) = 0, (5.27), (5.28) and qn → 2∗ −
α,s , we can infer that∥∥(−∆)

s
2un
∥∥2
2
=

µ

2s

(
N − N + α

qn

)∫
RN

(Iα ∗ |un|qn)|un|qn dx

≤ µ

2s

(
N − N + α

qn

)
CαS

−2∗α,s
∥∥(−∆)

s
2un
∥∥22∗α,s

2
+ on(1)

≤ µCαS
−2∗α,s

∥∥(−∆)
s
2un
∥∥22∗α,s

2
+ on(1).

(5.29)

Since lim infn→∞
∥∥(−∆)

s
2un
∥∥2
2
> 0, then it follows from (5.29) that

(5.30) lim sup
n→∞

∥∥(−∆)
s
2un
∥∥2
2
≥ (µCα)

−N−2s
α+2s S

N+α
α+2s .

Then, by Lemma 5.10, (5.30), (2.5) and Pqn(un) = 0, we have

m2∗α,s
(c) ≥ lim sup

n→∞
mqn(c)

= lim sup
n→∞

[
1

2

∥∥(−∆)
s
2un
∥∥2
2
− γ

22α

∫
RN

(Iα ∗ |un|2α)|un|2α dx

− s

Nqn −N − α

∥∥(−∆)
s
2un
∥∥2
2

]
≥ lim sup

n→∞

[(
1

2
− s

Nqn −N − α

)∥∥(−∆)
s
2un
∥∥2
2
− γ

22α
S−2α
α c22α

]
= lim sup

n→∞

[(
1

2
− s

N · 2∗α,s −N − α

)∥∥(−∆)
s
2un
∥∥2
2
− γ

22α
S−2α
α c22α

]
= lim sup

n→∞

[
α+ 2s

2(N + α)

∥∥(−∆)
s
2un
∥∥2
2
− γ

22α
S−2α
α c22α

]
≥ α+ 2s

2(N + α)
(µCα)

−N−2s
α+2s S

N+α
α+2s − γ

22α
S−2α
α c22α .

(5.31)

Moreover, similar to the process of (5.19) in Lemma 5.9 with q = 2∗α,s and λ̂ = 1, there

holds that

(5.32) m2∗α,s
(c) <

α

2(N + α)
γ−

N
α S

N+α
α

α − 1

2
c2.
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However, in view of

γ >

(
α

α+ 2s

) α
N

S
N+α
N

α

(
CN−2s
α

SN+α

) α
N(2s+α)

µ
α(N−2s)
N(2s+α) and 0 < c < c∗ :=

(
N + α

Nγ

) N
2α

S
N+α
2α

α ,

we get

α+ 2s

2(N + α)
(µCα)

−N−2s
α+2s S

N+α
α+2s − γ

22α
S−2α
α c22α >

α

2(N + α)
γ−

N
α S

N+α
α

α − 1

2
c2,

which is contradictory to (5.31) and (5.32). Thus, u ̸= 0.

Next, we claim that u is a weak solution of (1.1) with q = 2∗α,s. Note r̃ :=
2N
N+α . Since{∣∣|un|qn−2un − |u|2∗α,s−2u

∣∣r̃} is bounded in L
2∗α,s

2∗α,s−1 (RN ) and |un|qn−2un − |u|2∗α,s−2u → 0

a.e. on RN , we can infer that
∣∣|un|qn−2un − |u|2∗α,s−2u

∣∣r̃ ⇀ 0 in L
2∗α,s

2∗α,s−1 (RN ), and then∥∥(|un|qn−2un − |u|2∗α,s−2u)φ
∥∥
r̃
→ 0 for any φ ∈ Hs(RN ). Since {|un|qn} is bounded in

Lr̃(RN ), by the Hardy–Littlewood–Sobolev inequality, we have

(5.33)

∫
RN

(Iα ∗ |un|qn)
(
|un|qn−2un − |u|2∗α,s−2u

)
φdx→ 0.

Since |u|2∗α,s−2uφ ∈ Lr̃(RN ), we have Iα ∗ (|u|2∗α,s−2uφ) ∈ L
2N

N−α (RN ). Besides, |un|qn ⇀
|u|2∗α,s in Lr̃(RN ). Therefore, we have

(5.34)

∫
RN

(
Iα ∗ (|u|2∗α,s−2uφ)

)
(|un|qn − |u|2∗α,s) dx→ 0.

It follows from (5.33) and (5.34) that

(5.35)

∫
RN

(Iα ∗ |un|qn)|un|qn−2unφdx→
∫
RN

(Iα ∗ |u|2∗α,s)|u|2∗α,s−2uφdx.

Then, by Lemma 2.5, (5.24) and (5.35), we have

(5.36) E′
qn(un)φ+ λn

∫
RN

unφdx→ E′
2∗α,s

(u)φ+ λ

∫
RN

uφdx = 0 as n→ ∞,

which implies that u is a weak solution of (1.1) with q = 2∗α,s. Then, it follows from

Lemma 2.8 that P2∗α,s
(u) = 0.

Finally, we shall prove that m2∗α,s
(c) is achieved. Set

∫
RN |u|2 dx = β2 ≤ c2 and define

ũ(x) =

(
β

c

)N
2s

−1

u

((
β

c

) 1
s

x

)
.

By a direct calculation, we have∫
RN

|ũ|2 dx = c2,
∥∥(−∆)

s
2 ũ
∥∥2
2
=
∥∥(−∆)

s
2u
∥∥2
2
,(5.37) ∫

RN

(Iα ∗ |ũ|2∗α,s)|ũ|2∗α,s dx =

∫
RN

(Iα ∗ |u|2∗α,s)|u|2∗α,s dx,(5.38)
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and ∫
RN

(Iα ∗ |ũ|2α)|ũ|2α dx =

(
β

c

)− 2(N+α)
N

∫
RN

(Iα ∗ |u|2α)|u|2α dx

≥
∫
RN

(Iα ∗ |u|2α)|u|2α dx.

(5.39)

Thus, ũ ∈ Sr(c). Moreover, by P2∗α,s
(u) = 0, (5.37) and (5.38), we have

∥∥(−∆)
s
2 ũ
∥∥2
2
=
∥∥(−∆)

s
2u
∥∥2
2
=

µ

2s

(
N − N + α

q

)∫
RN

(Iα ∗ |u|q)|u|q dx

=
µ

2s

(
N − N + α

q

)∫
RN

(Iα ∗ |ũ|q)|ũ|q dx,

which implies that ũ ∈ Pr
2∗α,s

(c). According to Proposition 2.7 and (5.36), we have

N − 2s

2

∥∥(−∆)
s
2u
∥∥2
2
+
λN

2
∥u∥22

=
γN

2

∫
RN

(Iα ∗ |u|2α)|u|2α dx+
µ(N + α)

2q

∫
RN

(Iα ∗ |u|q)|u|q dx,

which shows that

N − 2s

2

∥∥(−∆)
s
2 ũ
∥∥2
2
+
λN

2

(
β

c

)2

∥ũ∥22

=
γN

2

(
β

c

) 2(N+α)
N

∫
RN

(Iα ∗ |ũ|2α)|ũ|2α dx+
µ(N + α)

2q

∫
RN

(Iα ∗ |ũ|q)|ũ|q dx,

(5.40)

where we have used (5.37), (5.38) and (5.39). Then, by (5.37)–(5.40) and the Fatou’s

lemma, we have

m2∗α,s
(c) ≤ E2∗α,s

(ũ)

=
1

2

∥∥(−∆)
s
2 ũ
∥∥2
2
− γN

2(N + α)

∫
RN

(Iα ∗ |ũ|2α)|ũ|2α dx− µ

2q

∫
RN

(Iα ∗ |ũ|q)|ũ|q dx

=
γN

2

 1

N − 2s

(
β

c

) 2(N+α)
N

− 1

N + α

∫
RN

(Iα ∗ |ũ|2α)|ũ|2α dx

+
µ(2s+ α)

2q(N − 2s)

∫
RN

(Iα ∗ |ũ|q)|ũ|q dx− λN

2(N − 2s)

(
β

c

)2

∥ũ∥22

=
γN

2

 1

N − 2s
− 1

N + α

(
β

c

)− 2(N+α)
N

∫
RN

(Iα ∗ |u|2α)|u|2α dx

+
µ(2s+ α)

2q(N − 2s)

∫
RN

(Iα ∗ |u|q)|u|q dx− λN

2(N − 2s)
β2
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=
γN

2

(
1

N − 2s
− 1

N + α

)∫
RN

(Iα ∗ |u|2α)|u|2α dx

+
µ(2s+ α)

2q(N − 2s)

∫
RN

(Iα ∗ |u|q)|u|q dx− λN

2(N − 2s)
β2

+
γN

2(N + α)

1− (β
c

)− 2(N+α)
N

∫
RN

(Iα ∗ |u|2α)|u|2α dx

≤ lim inf
n→∞

[
γN

2

(
1

N − 2s
− 1

N + α

)∫
RN

(Iα ∗ |un|2α)|un|2α dx

+
µ(2s+ α)

2qn(N − 2s)

∫
RN

(Iα ∗ |un|qn)|un|qn dx
]
− λN

2(N − 2s)
β2

+
γN

2(N + α)

1− (β
c

)− 2(N+α)
N

∫
RN

(Iα ∗ |u|2α)|u|2α dx.

Moreover, by the Pohozaev identity in (2.8), we know that

γN

2

(
1

N − 2s
− 1

N + α

)∫
RN

(Iα ∗ |un|2α)|un|2α dx

+
µ(2s+ α)

2qn(N − 2s)

∫
RN

(Iα ∗ |un|qn)|un|qn dx

=
γN

2(N − 2s)

∫
RN

(Iα ∗ |un|2α)|un|2α dx+
µ(N + α)

2qn(N − 2s)

∫
RN

(Iα ∗ |un|qn)|un|qn dx

− γN

2(N + α)

∫
RN

(Iα ∗ |un|2α)|un|2α dx− µ

2qn

∫
RN

(Iα ∗ |un|qn)|un|qn dx

=
1

2

∥∥(−∆)
s
2un
∥∥2
2
+

λn ·N
2(N − 2s)

∥un∥22 −
γN

2(N + α)

∫
RN

(Iα ∗ |un|2α)|un|2α dx

− µ

2qn

∫
RN

(Iα ∗ |un|qn)|un|qn dx

= Eqn(un) +
λn ·N

2(N − 2s)
∥un∥22.

Therefore, from the above, we can conclude that

m2∗α,s
(c) ≤ E2∗α,s

(ũ)

≤ lim inf
n→∞

Eqn(un) +
λN

2(N − 2s)
(c2 − β2)

+
γN

2(N + α)

1− (β
c

)− 2(N+α)
N

∫
RN

(Iα ∗ |u|2α)|u|2α dx

≤ lim sup
n→∞

mqn(c) ≤ m2∗α,s
(c),
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provided that

λN

2(N − 2s)
(c2 − β2) +

γN

2(N + α)

1− (β
c

)− 2(N+α)
N

∫
RN

(Iα ∗ |u|2α)|u|2α dx ≤ 0.

If β = c, then we can clearly obtain that m2∗α,s
(c) is achieved by ũ for all γ > 0. If β < c,

then m2∗α,s
(c) is achieved by ũ when

(5.41) γ ≥ λ(c2 − β2)(N + α)

(N − 2s)
((β

c

)− 2(N+α)
N − 1

) ∫
RN (Iα ∗ |u|2α)|u|2α dx

.

Note that

γ >

(
α

α+ 2s

) α
N

S
N+α
N

α

(
CN−2s
α

SN+α

) α
N(2s+α)

µ
α(N−2s)
N(2s+α) ,

then there exists µ̃ ≥ µ̂ such that (5.41) holds. Thus, for every µ > µ̃, the infimum

m2∗α,s
(c) is achieved.

Proof of Theorem 1.6. According to Lemma 5.11 we know that m2∗α,s
(c) is achieved by ũ,

then there exist λ̃, η ∈ R such that

⟨E′
2∗α,s

(ũ), φ⟩+ λ̃

∫
RN

ũφdx = η⟨P ′
2∗α,s

(ũ), φ⟩ for every φ ∈ Hs
r (RN ).

It follows that ũ satisfies

(−∆)sũ+ λ̃ũ− γ(Iα ∗ |ũ|2α)|ũ|2α−2ũ− µ(Iα ∗ |ũ|2∗α,s)|ũ|2∗α,s−2ũ

= η
[
2(−∆)sũ− 2µ · 2∗α,s(Iα ∗ |ũ|2∗α,s)|ũ|2∗α,s−2ũ

]
,

(5.42)

that is,

(1− 2η)(−∆)sũ+ λ̃ũ = γ(Iα ∗ |ũ|2α)|ũ|2α−2ũ+ µ(1− 2η · 2∗α,s)(Iα ∗ |ũ|2∗α,s)|ũ|2∗α,s−2ũ.

Similar to Lemma 2.8, ũ satisfies the following identity

(1− 2η)
∥∥(−∆)

s
2 ũ
∥∥2
2
= µ(1− 2η · 2∗α,s)

∫
RN

(Iα ∗ |ũ|2∗α,s)|ũ|2∗α,s dx.

Together with ũ ∈ Pr
2∗α,s

(c), we can infer that

2µη(2∗α,s − 1) = 0,

which implies that η = 0. Moreover, it follows from (5.42) and P2∗α,s
(ũ) = 0 that

λ̃ =
1

c2

[
−
∥∥(−∆)

s
2 ũ
∥∥2
2
+ γ

∫
RN

(Iα ∗ |ũ|2α)|ũ|2α dx+ µ

∫
RN

(Iα ∗ |ũ|2∗α,s)|ũ|2∗α,s dx

]
=

γ

c2

∫
RN

(Iα ∗ |ũ|2α)|ũ|2α dx ≤ γS−2α
α c

2α
N .

Thus, ũ ∈ Hs(RN ) is a normalized ground state solution to the problem (1.1) and (1.2),

and the corresponding Lagrange multiplier λ̃ satisfies 0 < λ̃ ≤ γS−2α
α c

2α
N . Moreover, by

Lemma 5.3(ii), ũ is positive and radially symmetric. We complete the proof.
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