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On Various Space-time Properties of Solutions to the One-dimensional Heat

Equation on Semi-infinite Rod

Dong-Ho Tsai

Abstract. We discuss many interesting properties of the initial-boundary value prob-

lem for the heat equation ut(x, t) = uxx(x, t) on (x, t) ∈ (0,∞)×(0,∞). In particular,

we can prescribe the space, time, and space-time oscillation limits (limsup and liminf)

of u(x, t) by choosing suitable initial data h(x) and boundary dada g(t). We also

consider singular initial-boundary value problem and oblique initial-boundary value

problem for the heat equation.

1. Introduction

The purpose of this paper is to study the space-time asymptotic behavior of solution to

the one-dimensional heat equation ut = uxx on the half space x ∈ (0,∞), i.e., solution to

the following initial-boundary value problem (ibvp):

(1.1)


ut(x, t) = uxx(x, t), (x, t) ∈ (0,∞)× (0,∞),

u(x, 0) = h(x), x ∈ (0,∞),

u(0, t) = g(t), t ∈ (0,∞),

where h(x) and g(t) are given continuous functions on (0,∞). The readers can view

this paper as a survey article and at the same time it also contains many new interesting

results not explored before.

For (1.1), since we are not interested in the existence of the limit lim(x,t)→(0+,0+) u(x, t)

in general (except in Lemma 2.3 below), h(x) and g(t) may not be defined and continuous

up to x = 0 and t = 0 respectively. In case both are defined at x = 0 and t = 0, they may

not satisfy h(0) = g(0).

As for the existence of a solution, by Theorem 4.3.1 of the book [2, p. 50], if there exist

positive constants C1, C2, α ∈ [0, 1), ε > 0 small, such that h(x) and g(t) satisfy

(1.2) |h(x)| ≤ C1e
C2|x|1+α

, ∀x ∈ (0,∞); |g(t)| ≤ C1

tα
, ∀ t ∈ (0, ε),
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then the function on (0,∞)× (0,∞):

(1.3) u(x, t) =


1√
4πt

∫∞
0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
h(ξ) dξ (space convolution)

+ x√
4π

∫ t
0

1
(t−s)3/2

e
− x2

4(t−s) g(s) ds (time convolution)

is a smooth solution of the ibvp (1.1) on the domain (0,∞)× (0,∞) and it satisfies the

initial-boundary condition in the following sense:

(1.4) lim
(x,t)→(x0,0+)

u(x, t) = h(x0), ∀x0 ∈ (0,∞)

and

(1.5) lim
(x,t)→(0+,t0)

u(x, t) = g(t0), ∀ t0 ∈ (0,∞).

That is to say, u(x, t) lies in the space

(1.6) u(x, t) ∈ C∞((0,∞)× (0,∞)) ∩ C0(([0,∞)× [0,∞)) \ {(0, 0)}).

From now on, we shall denote the two integrals for u(x, t) in (1.3) as uh(x, t) and

ug(x, t) respectively, i.e., u(x, t) = uh(x, t) + ug(x, t), where (x, t) ∈ (0,∞)× (0,∞).

The ibvp (1.1) is an old problem. There have been many papers discussing it. We

refer the readers to the references in the two classic books by Cannon [2] and Widder [15]

for related papers. Historically, the people who first studied the ibvp (1.1) with deeper

analytical tools are mostly Russian mathematicians, around the 1950–1970 period. For

papers related to heat equation ut = uxx on the half space x ∈ (0,∞), we can cite a few

Russian papers in [1, 6, 10,13].

Remark 1.1. The condition on h(x) in (1.2) automatically implies that it is bounded

near x = 0. The assumption (1.2) is to guarantee that both improper integrals in (1.3)

converge. It may not be optimal. For example, one can allow h(x) to become singular

as x → 0+ (but still satisfies |h(x)| ≤ C1e
C2|x|1+α

as x → ∞) with the order

(1.7) |h(x)| ≤ M

xp
on x ∈ (0, ε)

for some constants ε > 0, M > 0, p ∈ [0, 2). Then the space convolution integral in

(1.3) still converges. See Lemma 6.1 and Remark 6.2 below. In conclusion, as long as

h(x) satisfies (1.7) and |h(x)| ≤ C1e
C2|x|1+α

as x → ∞ and g(t) satisfies (1.2), then both

convolution integrals in (1.3) will converge.

Remark 1.2. The second integral of (1.3) is equal to

−2

∫ t

0

∂Φ

∂x
(x, t− s)g(s) ds, (x, t) ∈ (0,∞)× (0,∞),



On Various Space-time Properties of Solutions to the Heat Equation on Semi-infinite Rod 3

where Φ(x, t) = (
√
4πt)−1e−x2/(4t) is the fundamental solution of the heat equation. Also

note that

(1.8) 0 < e−
(x−ξ)2

4t − e−
(x+ξ)2

4t < 1, ∀x ∈ (0,∞), t ∈ (0,∞), ξ ∈ (0,∞)

and for fixed x ∈ (0,∞) we have

0 <
1

(t− s)3/2
e
− x2

4(t−s) ≤
(
6

e

)3/2 1

x3
, ∀ t ∈ (0,∞), s ∈ (0, t).

Remark 1.3. In the formula (1.3), u(x, t) depends on h over the whole space domain (0,∞),

but depends on g only on the time domain (0, t). This matches with the principle that

u(x, t) should not depend on future time t̃ > t.

Remark 1.4. If h(x) and g(t) are both continuous on [0,∞) with h(0) = g(0) = λ and

h(x) satisfies the growth condition in (1.2), then the function u(x, t) given by (1.3) will

satisfy the two-dimensional limit

lim
(x,t)→(0+,0+)

u(x, t) = λ.

In this case, u(x, t) is continuous up to the point (x, t) = (0, 0) if we define u(0, 0) = λ,

i.e.,

(1.9) u(x, t) ∈ C∞((0,∞)× (0,∞)) ∩ C0([0,∞)× [0,∞)).

1.1. Non-uniqueness of the ibvp (1.1)

For continuous initial-boundary data h(x) and g(t) on (0,∞) satisfying (1.2), the repre-

sentation formula (1.3) only gives one possible solution. Similar to the heat equation on

the entire space x ∈ (−∞,∞) with given initial data, without further restriction on the

growth behavior of u(x, t) on the domain (0,∞)× (0,∞), the ibvp (1.1) does not have

unique solution for given continuous initial-boundary data h(x) and g(t) on (0,∞). In

fact, it has infinitely many solutions.

In fact, as demonstrated in [2, 15], there exist several nonzero solutions u(x, t) to

the ibvp (1.1) for the case h(x) ≡ 0 and g(t) ≡ 0. One quick example is the following:

Let Φ(x, t) = (
√
4πt)−1e−x2/(4t) be the fundamental solution of the heat equation. The

function u(x, t) = ∂xΦ(x, t) satisfies the heat equation on the domain (0,∞)× (0,∞) with

lim
(x,t)→(x0,0+)

u(x, t) = 0 and lim
(x,t)→(0+,t0)

u(x, t) = 0

for fixed x0 ∈ (0,∞), t0 ∈ (0,∞), and it decays to zero as t → ∞ (for fixed x ∈ (0,∞))

and x → ∞ (for fixed t ∈ (0,∞)). However, on the parabola x =
√
4t, t > 0, we have
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u(
√
4t, t) → −∞ as t → 0+. Therefore, u(x, t) is not continuous at the corner point (0, 0)

and is unbounded on any neighborhood of (0, 0).

On the other hand, one can also find a nonzero solution u(x, t) of the ibvp (1.1)

with h(x) ≡ 0 and g(t) ≡ 0, which is smooth up to the boundary of the domain

(0,∞)× (0,∞), i.e., smooth on [0,∞)× [0,∞). Specifically, if we let v(x, t) ∈ C∞(R2) be

the Tychonoff solution (a power series solution) as constructed in pp. 211–213 of the

book [7], given by

v(x, t) =
∞∑
k=0

g(k)(t)

(2k)!
x2k, (x, t) ∈ (−∞,∞)× (−∞,∞),

where g(t) is chosen as

g(t) =

exp
(
− 1

tα

)
, t > 0, α > 1 is a constant,

0, t ≤ 0,

then v(x, t) ∈ C∞(R2) will be a solution of the heat equation on the entire space R2

with v(x, 0) ≡ 0 for all x ∈ (−∞,∞). Since for each t > 0, v(x, t) is an even function

of x ∈ (−∞,∞), we have vx(0, t) ≡ 0 for all t ∈ (−∞,∞). Therefore, the function

u(x, t) := ∂xv(x, t) ∈ C∞(R2) will be a nonzero smooth solution of the ibvp (1.1) satisfying

u(x, 0) ≡ 0 for all x ∈ [0,∞) and u(0, t) ≡ 0 for all t ∈ [0,∞).

Clearly, for h(x) ≡ g(t) ≡ 0, the above two nonzero solutions u(x, t) = ∂xΦ(x, t) and

u(x, t) = ∂xv(x, t) of (1.1) are not obtained through the representation formula (1.3).

Both solutions have defect even if the initial-boundary data are smooth on [0,∞). The

first solution blows up near the origin (0, 0) and the second solution oscillates very rapidly

as |x| → ∞. Unlike the physically correct solution u(x, t) ≡ 0 given by the representation

formula (1.3), they are “non-physical” solutions (see Evans PDE book [5, p. 59]). In

the following we mention an uniqueness criteria, which can eliminate these non-physical

solutions.

Lemma 1.5 (Uniqueness property). Assume h(x) and g(t) are continuous functions on

[0,∞) with h(0) = g(0) and h(x) also satisfies the growth condition in (1.2). Let u(x, t) be

given by the formula (1.3) (and define u(0, 0) = h(0)). Then it lies in the function space

S, given by

(1.10) S = C∞((0,∞)× (0,∞)) ∩ C0([0,∞)× [0,∞))

and satisfies the ibvp (1.1). Moreover, for each fixed T > 0, it satisfies the growth estimate

(1.11) |u(x, t)| ≤ Mebx
2
, ∀x ∈ [0,∞), t ∈ [0, T ]
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for some positive constants M , b depending on C1, C2, α in (1.2) and h, g, T . Conversely,

for the above given h(x) and g(t), if v(x, t) ∈ S is a solution of the ibvp (1.1) and for each

fixed T > 0 it satisfies (1.11) for some positive constants M , b depending on C1, C2, α,

h, g, T , then v(x, t) is given by the formula (1.3) on (x, t) ∈ (0,∞)× (0,∞).

Proof. For u(x, t) = uh(x, t) + ug(x, t) given by (1.3), it lies in the space S due to Re-

mark 1.4. By (2.1) below, we can write uh(x, t) as

uh(x, t) =
1√
π

∫ ∞

−x/
√
4t
e−z2h(x+

√
4tz) dz − 1√

π

∫ ∞

x/
√
4t
e−z2h(−x+

√
4tz) dz

:= u
(1)
h (x, t)− u

(2)
h (x, t),

and by (1.2), we first obtain

|u(1)h (x, t)| ≤ 1√
π

∫ ∞

−x/
√
4t
e−z2 |h(x+

√
4tz)| dz

≤ 1√
π

∫ ∞

−x/
√
4t
e−z2C1e

C2|x+
√
4tz|1+α

dz, α ∈ [0, 1).

(1.12)

One can split the integral in (1.12) as
∫ 0
−x/

√
4t(∗) dz +

∫∞
0 (∗) dz and for the first integral

we have

1√
π

∫ 0

−x/
√
4t
e−z2C1e

C2|x+
√
4tz|1+α

dz

≤ C1e
C2x1+α 1√

π

∫ 0

−x/
√
4t
e−z2 dz ≤ 1

2
C1e

C2x1+α
.

(1.13)

As for the second integral, we can use the elementary inequality

ap + bp < (a+ b)p ≤ 2p−1(ap + bp), ∀ a > 0, b > 0, 1 < p < ∞

to get, for x ∈ [0,∞), t ∈ [0, T ], the estimate

1√
π

∫ ∞

0
e−z2C1e

C2|x+
√
4tz|1+α

dz

≤ 1√
π
C1e

C22αx1+α

∫ ∞

0
e−z2eC22α|

√
4tz|1+α

dz

≤ 1√
π
C1e

C22αx1+α

∫ ∞

0
e−z2eC22α|

√
4Tz|1+α

dz, α ∈ [0, 1).

(1.14)

By (1.13) and (1.14), u
(1)
h (x, t) clearly satisfies the estimate (1.11). The proof for u

(2)
h (x, t)

is similar and we conclude the estimate (1.11) for uh(x, t).

As for ug(x, t), by (2.1) below again, we have

ug(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2g

(
t−

( x

2z

)2)
dz, (x, t) ∈ (0,∞)× (0,∞)
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and for x ∈ [0,∞), t ∈ [0, T ], it implies

|ug(x, t)| ≤
2√
π

∫ ∞

x/
√
4t
e−z2

∣∣∣∣g(t− ( x

2z

)2)∣∣∣∣ dz
≤ max

t∈[0,T ]
|g(t)| 2√

π

∫ ∞

0
e−z2 dz = max

t∈[0,T ]
|g(t)|.

Since both uh(x, t) and ug(x, t) satisfy (1.11), u(x, t) also satisfies (1.11).

Conversely, if v(x, t) ∈ S is a solution of (1.1) and for each fixed T > 0 it satisfies

(1.11), then we look at w(x, t) = u(x, t)− v(x, t), where u(x, t) is from formula (1.3). We

have w(x, t) ∈ S with 
∂tw(x, t) = wxx(x, t) in (0,∞)× (0,∞),

w(x, 0) = 0, x ∈ (0,∞),

w(0, t) = 0, t ∈ (0,∞),

and for each T > 0 it also satisfies

|w(x, t)| ≤ Mebx
2
, ∀x ∈ [0,∞), t ∈ [0, T ]

for some positive constants M , b. By the well-known uniqueness theory for heat equation

on the semi-infinite rod (see Theorem 6.2 in Widder’s book [15, p. 29], which requires

solution continuous up to the point (x, t) = (0, 0)), we must have w(x, t) ≡ 0 for all

(x, t) ∈ [0,∞) × [0, T ]. Since T > 0 can be arbitrary, we must have w(x, t) ≡ 0 for all

(x, t) ∈ [0,∞)× [0,∞). The proof is done.

Motivated by Lemma 1.5, throughout this paper, we shall focus only on

the solution u(x, t) given by the representation formula (1.3), where the data

h(x) and g(t) are assumed to be continuous on (0,∞) satisfying the basic as-

sumption (1.2) (except in Section 6).

The main results of the paper are explained as follows. In each section below, we

explore certain interesting properties of the solution u(x, t) given by (1.3). In most sec-

tions, we discuss the space-time asymptotic behavior of the solution u(x, t) under some

assumptions on h(x) and g(t) or under some special choices of h(x) and g(t) on (0,∞).

In Section 2, we do general discussion on the solution properties of u(x, t) given by

(1.3), including its space-time energy and space-time gradient estimate.

In Section 3, we discuss the asymptotic behavior of solution u(x, t) as x → ∞ or as

t → ∞ with polynomial, trigonometric, and logarithmic initial-boundary data respectively.

In Section 4.1, we prescribe the oscillation behavior of u(x, t) as x → ∞ or as t → ∞
using certain slow-oscillation initial-boundary data.
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In Sections 5 and 6, we discuss space and time periodic solutions and solutions with

singular initial-boundary data.

Finally, we would like to mention some useful books on parabolic partial differential

equations. For one-dimensional equation, one can see [2, 15] and for high-dimensional

equation, one can see [4, 5, 7–9].

2. Solution properties of the ibvp (1.1): general discussion

2.1. Rewriting the formula (1.3)

Lemma 2.1. Assume h(x) and g(t) are continuous on (0,∞) satisfying (1.2). Then the

formula (1.3) can be rewritten as

u(x, t) = uh(x, t) + ug(x, t)

=

(
1√
π

∫ ∞

−x/
√
4t
e−z2h(x+

√
4tz) dz − 1√

π

∫ ∞

x/
√
4t
e−z2h(−x+

√
4tz) dz

)

+
2√
π

∫ ∞

x/
√
4t
e−z2g

(
t−

( x

2z

)2)
dz, (x, t) ∈ (0,∞)× (0,∞),

(2.1)

which has certain advantage for analysis and computation.

Proof. The rewriting for the integral of h is trivial. For the integral of g in (1.3), we do

the change of variables θ = t− s first and then let z = x/
√
4θ. The proof is done.

As a consequence of (2.1), we have the following corollary.

Corollary 2.2. Assume the same assumption as in Lemma 2.1. Along the parabola

P (λ) : x/
√
4t = λ, where λ ∈ (0,∞) is a parameter, we can write u(x, t) in (2.1) as

u(x, t) =

(
1√
π

∫ ∞

−λ
e−z2h

(
x
(
1 +

z

λ

))
dz − 1√

π

∫ ∞

λ
e−z2h

(
x
(
−1 +

z

λ

))
dz

)
+

2√
π

∫ ∞

λ
e−z2g

(
t

(
1−

(
λ

z

)2))
dz, (x, t) ∈ P (λ).

(2.2)

The next lemma is an immediate application of (2.2).

Lemma 2.3. Assume h(x) and g(t) are continuous on [0,∞) satisfying (1.2). Then

along each fixed parabola P (λ) : x/
√
4t = λ, λ ∈ (0,∞), the solution u(x, t) given by (1.3)

satisfies

(2.3) lim
(x,t)∈P (λ)→(0,0)

u(x, t) =

(
1√
π

∫ λ

−λ
e−z2 dz

)
h(0) +

(
2√
π

∫ ∞

λ
e−z2 dz

)
g(0),

which, by (2.7) below, is an interpolation between h(0) and g(0).
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Remark 2.4. In particular, if h(0) ̸= g(0), the limit on the right-hand side of (2.3) depends

on λ and u(x, t) cannot be continuous up to the point (0, 0). But if h(0) = g(0), the limit

is independent of λ and is equal to h(0) (same as g(0)). In such a case, u(x, t) is actually

continuous up to (0, 0) (see Remark 1.4 also).

Proof of Lemma 2.3. For (x, t) ∈ P (λ) we have x =
√
4tλ in (2.2) and by the assumption

on h(x) and g(t), the Lebesgue Dominated Convergence Theorem (denoted as “LDCT”

from now on) in analysis can be applied here. We obtain

lim
(x,t)∈P (λ)→(0,0)

u(x, t) = lim
t→0+

u(
√
4tλ, t)

=

(
1√
π

∫ λ

−λ
e−z2 dz

)
h(0) +

(
2√
π

∫ ∞

λ
e−z2 dz

)
g(0).

The proof is done.

We will make use of (2.2) again in Section 3.1.1.

2.2. The case when h(x) and g(t) are bounded on (0,∞); maximum and minimum

principle

In this section, we assume h(x) and g(t) are continuous and bounded on (0,∞) where

h(x) and g(t) may not be defined and continuous up to x = 0 and t = 0 respectively. They

clearly satisfy the basic assumption (1.2). We first observe the following simple estimate:

Lemma 2.5. We have the following simple estimate

(2.4) 0 <
2√
π

∫ ∞

x/
√
4t
e−z2 dz < e−

x2

4t , ∀ (x, t) ∈ (0,∞)× (0,∞).

Moreover, for fixed t ∈ (0,∞), we have

(2.5)
2√
π

∫ ∞

x/
√
4t
e−z2 dz = O

(√
t

x
e−

x2

4t

)
as x → ∞.

Proof. Let

F (x) =
2√
π
ex

2

∫ ∞

x
e−z2 dz, x ∈ (0,∞), F (0) = 1.

It satisfies

F ′(x) =
2√
π

(
ex

2

∫ ∞

x
2xe−z2 dz − 1

)
<

2√
π

(
ex

2

∫ ∞

x
2ze−z2 dz − 1

)
= 0, ∀x ∈ (0,∞),

which implies (2.4) if we replace x by x/
√
4t.
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For (2.5), for fixed t ∈ (0,∞), we can use L’Hospital rule to get

lim
x→∞

∫∞
x/
√
4t e

−z2 dz
√
tx−1e−x2/(4t)

= 1.

Lemma 2.6. Assume h(x) and g(t) are continuous bounded functions with |h(x)| ≤ M

and |g(t)| ≤ N for all x ∈ (0,∞), t ∈ (0,∞) and some positive constants M , N . Then

the solution u(x, t) given by (1.3) is also a bounded function satisfying

(2.6)

|u(x, t)| ≤

(
1√
π

∫ x/
√
4t

−x/
√
4t
e−z2 dz

)
M+

(
2√
π

∫ ∞

x/
√
4t
e−z2 dz

)
N, ∀ (x, t) ∈ (0,∞)×(0,∞),

where by the identity

(2.7)
1√
π

∫ x/
√
4t

−x/
√
4t
e−z2 dz +

2√
π

∫ ∞

x/
√
4t
e−z2 dz ≡ 1, ∀ (x, t) ∈ (0,∞)× (0,∞),

we see that the bound on |u(x, t)| in (2.6) is an interpolation between M and N .

Remark 2.7. The bound on |u(x, t)| in (2.6) is sharp in the sense that when h(x) ≡
g(t) ≡ M > 0, we have u(x, t) ≡ M and the inequality in (2.6) becomes equality for all

(x, t) ∈ (0,∞)× (0,∞).

Remark 2.8. Note that, in (2.6), the coefficient function of M tends to 1 as x → ∞ (for

fixed t) and tends to 0 as t → ∞ (for fixed x). Similarly, the coefficient function of N

tends to 0 as x → ∞ and tends to 1 as t → ∞. For general (x, t) → (∞,∞), the bound

on |u(x, t)| in (2.6) does not tend to 0 in general. Along the parabola P (λ) : x/
√
4t = λ,

λ ∈ (0,∞), we have

|u(x, t)| ≤
(

1√
π

∫ λ

−λ
e−z2 dz

)
M +

(
2√
π

∫ ∞

λ
e−z2 dz

)
N, ∀ (x, t) ∈ P (λ).

Proof of Lemma 2.6. By (1.3), (1.8), and (2.1), we have for (x, t) ∈ (0,∞) × (0,∞) the

estimate

|u(x, t)| =

∣∣∣∣∣ 1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
h(ξ) dξ +

2√
π

∫ ∞

x/
√
4t
e−z2g

(
t−

( x

2z

)2)
dz

∣∣∣∣∣
≤ M√

4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
dξ +

2N√
π

∫ ∞

x/
√
4t
e−z2 dz

= M

(
1√
π

∫ x/
√
4t

−x/
√
4t
e−z2 dz

)
+N

(
2√
π

∫ ∞

x/
√
4t
e−z2 dz

)
.

The proof is done.
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Similar to the proof of Lemma 2.6, one can obtain the following maximum principle

result. In order for u(x, t) to be continuous up to the boundary, we assume h(x) and g(t)

are continuous on [0,∞) with h(0) = g(0).

Corollary 2.9 (Maximum principle). Assume h(x) and g(t) are bounded continuous

functions on [0,∞) with h(0) = g(0), sup[0,∞) h(x) = M , sup[0,∞) g(t) = N , where M ,

N are finite numbers. If M > N , then it is impossible for the solution u(x, t) (given by

(1.3)) to have u(x0, t0) = M at some (x0, t0) ∈ (0,∞) × (0,∞). Similarly, if N > M ,

then it is impossible for u(x, t) to have u(x0, t0) = N at some (x0, t0) ∈ (0,∞) × (0,∞).

Finally, if M = N and u(x0, t0) = M at some (x0, t0) ∈ (0,∞) × (0,∞), then we must

have h(x) ≡ g(t) ≡ M for all x ∈ [0,∞) and t ∈ [0, t0] and u(x, t) ≡ M on [0,∞)× [0, t0].

Remark 2.10. Similar results hold for the minimum principle with supremum replaced

by infimum.

Proof of Corollary 2.9. By the assumption we know that u(x, t) is continuous on [0,∞)×
[0,∞) and lies in the space (1.9) and for M > N we have

u(x, t)

=
1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
h(ξ) dξ +

2√
π

∫ ∞

x/
√
4t
e−z2g

(
t−

( x

2z

)2)
dz

≤

(
1√
π

∫ x/
√
4t

−x/
√
4t
e−z2 dz

)
M +

(
2√
π

∫ ∞

x/
√
4t
e−z2 dz

)
N < M

(2.8)

for all (x, t) ∈ (0,∞) × (0,∞). By (2.8), the first assertion follows. The proof of the

second assertion is similar. For the case M = N , (2.8) implies u(x, t) ≤ M for all (x, t) ∈
(0,∞)× (0,∞). If we have u(x0, t0) = M at some (x0, t0) ∈ (0,∞)× (0,∞), the standard

strong maximum principle for the heat equation on the domain Ut0 = (0, b)×(0, t0], where

b > x0, implies that u(x, t) ≡ M on U t0 = [0, b]× [0, t0] (see Evans PDE book [5, p. 55]).

Since b > x0 is arbitrary, we must have u(x, t) ≡ M on [0,∞)× [0, t0], which also implies

h(x) ≡ g(t) ≡ M on x ∈ [0,∞) and t ∈ [0, t0]. The proof is done.

2.3. The characterization of solutions u(x, t) which are constant along each parabola

x/
√
4t = λ, λ ∈ (0,∞)

Lemma 2.11. Assume u(x, t) is a solution of the heat equation on (0,∞)× (0,∞) which

is constant along each parabola P (λ) : x/
√
4t = λ, λ ∈ (0,∞), then it must have the form

(2.9) u(x, t) = C1

∫ x/
√
4t

0
e−z2 dz + C2, (x, t) ∈ (0,∞)× (0,∞)
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for some constants C1 and C2. It satisfies the constant initial-boundary conditions:u(x, 0) = C1

√
π
2 + C2, x ∈ (0,∞),

u(0, t) = C2, t ∈ (0,∞).

Remark 2.12. Conversely, if we take h(x) = M , g(t) = N in (1.3), where M , N are

constants, then by (2.1), we have

u(x, t) =
2√
π
(M −N)

∫ x/
√
4t

0
e−z2 dz +N,

which is constant along each parabola P (λ) and has the form (2.9).

Proof of Lemma 2.11. Assume u(x, t) is a solution on (0,∞) × (0,∞) satisfying the as-

sumption. Then it can be expressed as u(x, t) = v(x/
√
4t) for some single-variable function

v(z), z ∈ (0,∞). By

ut(x, t) = v′
(

x√
4t

)
x√
4t

(
− 1

2t

)
, uxx(x, t) = v′′

(
x√
4t

)
1

4t
,

v(z) must satisfy the equation

v′′(z) + 2zv′(z) = 0, z =
x√
4t

∈ (0,∞),

which has its general solution given by

v(z) = C1

∫ z

0
e−θ2 dθ + C2, ∀ z ∈ (0,∞), z =

x√
4t

for some integration constants C1 and C2. The proof is done.

Remark 2.13. For a solution u(x, t) of the heat equation on (0,∞)×(0,∞), it is impossible

for it to be constant along each curve of the form x/tα = λ, where α > 0 is some constant

and λ ∈ (0,∞) is a parameter, unless α = 1/2. For such a solution, it must have the form

u(x, t) = v(x/tα) for some single-variable function v(z), z ∈ (0,∞) and the identity

ut(x, t) = uxx(x, t) implies

v′′(z)
1

t2α
+ zv′(z)

α

t
= 0,

which does not give rise to a self-contained equation unless α = 1/2.

2.4. Conditions on h(x) and g(t) which imply u(x, t) → 0 as x → ∞

In this section, we are interested in the convergence of u(x, t) to 0 as x → ∞ or as t → ∞.

We first need the following simple calculus fact: for fixed x ∈ (0,∞) we have

(2.10) max
θ∈(0,∞)

(
1

θ3/2
e−

x2

4θ

)
=

(
6

e

)3/2 1

x3
> 0,
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where the maximum is attained at θ = x2/6.

The following lemma is about the convergence of u(x, t) to 0 as x → ∞.

Lemma 2.14 (Conditions implying u(x, t) → 0 as x → ∞). Assume h(x) and g(t) are

continuous functions on (0,∞) satisfying (1.2). If h(x) also satisfies

(2.11) either lim
x→∞

h(x) = 0 or

∫ ∞

0
|h(x)| dx < ∞,

then we have

(2.12) lim
x→∞

u(x, t) = 0 for fixed t ∈ (0,∞).

Here u(x, t) is the solution of (1.1) given by (1.3).

Proof. Denote the two integrals for u(x, t) in (1.3) as uh(x, t) + ug(x, t), where (x, t) ∈
(0,∞)× (0,∞). We can express uh(x, t) as an integral over the whole space ξ ∈ (−∞,∞)

as

uh(x, t) =
1√
4πt

∫ ∞

−∞
e−

(x−ξ)2

4t H(ξ) dξ

=
1√
π

∫ ∞

−∞
e−z2H(x+

√
4tz) dz, (x, t) ∈ (0,∞)× (0,∞),

(2.13)

where H(ξ) is the odd extension of h(ξ) to ξ ∈ (−∞,∞) (we can define H(0) = 0).

By (2.11), we have either lim|ξ|→∞H(ξ) = 0 or
∫∞
−∞ |H(ξ)| dξ < ∞. Note that H(ξ) is

continuous on (−∞, 0) ∪ (0,∞), bounded near x = 0.

For the first case in (2.11), |H(ξ)| is a bounded function on (−∞,∞) with lim|ξ|→∞H(ξ)

= 0. Standard result for heat equation with such initial data implies limx→∞ uh(x, t) = 0

for fixed t ∈ (0,∞). The discontinuity of H(ξ) at ξ = 0 will not cause any problem. For

the second case in (2.11), we have |H(ξ)| ∈ L1(−∞,∞) and, for fixed t ∈ (0,∞), the

LDCT implies

lim
x→∞

uh(x, t) =
1√
4πt

∫ ∞

−∞

(
lim
x→∞

e−
(x−ξ)2

4t

)
H(ξ) dξ = 0.

Next, for fixed t ∈ (0,∞), we look at

ug(x, t) =
x√
4π

∫ t

0

1

(t− s)3/2
e
− x2

4(t−s) g(s) ds =
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ) dθ,

and here we only assume g(s) is continuous on (0,∞) satisfying (1.2), which implies that

g(s) is integrable near s = 0 and so g ∈ L1(0, t). By (2.10), we have for fixed t ∈ (0,∞)

|ug(x, t)| ≤
x√
4π

(
6

e

)3/2 1

x3

∫ t

0
|g(t− θ)| dθ → 0 as x → ∞.

The proof is done.
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Remark 2.15. In case h(x) does not satisfy (2.11), then the conclusion (2.12) fails in

general. A simple example is to take h(x) = sinx and g(t) ≡ 0, then the solution u(x, t) =

e−t sinx does not satisfy (2.12).

Remark 2.16. In Lemma 2.14, if we replace the condition (2.11) as (without changing the

condition on g(t))

either lim
x→∞

h(x) = M or

∫ ∞

0
|h(x)−M | dx < ∞,

then we will have

lim
x→∞

u(x, t) = M for fixed t ∈ (0,∞).

This is due to the superposition principle if we decompose (1.1) into two problems with

initial-boundary data h(x)−M , g(t) and M , 0 respectively.

It is interesting to know that (2.11) is not a necessary condition for the conclu-

sion (2.12) to hold. To see this, let h1(x) ≥ 0, h2(x) ≥ 0, g1(t), g2(t) be four continuous

functions on (0,∞) satisfying (1.2), with

(2.14) lim
x→∞

h1(x) = 0 and

∫ ∞

0
h1(x) dx = ∞

and

(2.15) lim
x→∞

h2(x) does not exist and

∫ ∞

0
h2(x) dx < ∞.

Let u(x, t) be the solution of (1.1) given by (1.3), where now the initial-boundary data

h(x), g(t) are given by h(x) = h1(x) + h2(x), g(t) = g1(t) + g2(t). Clearly, by (2.14) and

(2.15), h(x) does not satisfy (2.11). By the superposition principle, we have u(x, t) =

u1(x, t) + u2(x, t), where ui(x, t) is the solution of (1.1) with initial-boundary data hi(x),

gi(t) respectively, i = 1, 2. By Lemma 2.14, for fixed t ∈ (0,∞), we have

lim
x→∞

u(x, t) = lim
x→∞

u1(x, t) + lim
x→∞

u2(x, t) = 0 + 0 = 0.

Therefore, u(x, t) satisfies (2.12) even if h(x) does not satisfy (2.11).

2.5. Conditions on h(x) and g(t) which imply u(x, t) → 0 as t → ∞

The following lemma is about the convergence of u(x, t) to 0 as t → ∞.

Lemma 2.17 (Conditions implying u(x, t) → 0 as t → ∞). Assume h(x) and g(t) are

continuous functions on (0,∞) satisfying (1.2). If h(x) also satisfies

(2.16) either h(x) is bounded on (0,∞) or

∫ ∞

0
|h(x)| dx < ∞
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and g(t) also satisfies

(2.17) either lim
t→∞

g(t) = 0 or

∫ ∞

0
|g(t)| dt < ∞,

then we have

(2.18) lim
t→∞

u(x, t) = 0 for fixed x ∈ (0,∞).

Here u(x, t) is the solution of (1.1) given by (1.3).

Proof. Same as in the proof of Lemma 2.14, we write u(x, t) as u(x, t) = uh(x, t)+ug(x, t),

where uh(x, t) can be expressed as (2.13).

We first estimate uh(x, t). By the assumption (2.16), H(ξ) in (2.13) is either bounded

on (−∞,∞) or
∫∞
−∞ |H(ξ)| dξ < ∞. For the first case, we have uh(0, t) = 0 for all

t ∈ (0,∞) and note that uh(x, t) satisfies the following gradient estimate∣∣∣∣∂uh∂x
(x, t)

∣∣∣∣ = ∣∣∣∣∫ ∞

−∞

1√
4πt

e−
(x−ξ)2

4t
ξ − x

2t
H(ξ) dξ

∣∣∣∣
=

∣∣∣∣ 1√
πt

∫ ∞

−∞
e−z2z ·H(x+

√
4tz) dz

∣∣∣∣
≤ M√

πt
, ∀ (x, t) ∈ (0,∞)× (0,∞),

(2.19)

where M > 0 is the bound of |H(ξ)| on (−∞,∞). By the mean value theorem, for fixed

x ∈ (0,∞), we have

|uh(x, t)| = |uh(x, t)− uh(0, t)| ≤
Mx√
πt

→ 0 as t → ∞.

For the second case, we have |H(ξ)| ∈ L1(−∞,∞); hence

|uh(x, t)| ≤
1√
4πt

∫ ∞

−∞
|H(ξ)| dξ → 0 as t → ∞.

Next we estimate ug(x, t), where g(t) satisfies (2.17). For the first case in (2.17), for

any ε > 0 there exists a number M > 0 such that |g(t)| < ε on [M,∞). We have for large

t > M > 0 the following

ug(x, t) =
x√
4π

∫ M

0

1

(t− s)3/2
e
− x2

4(t−s) g(s) ds+
x√
4π

∫ t

M

1

(t− s)3/2
e
− x2

4(t−s) g(s) ds

:= I + II

(2.20)

and since g ∈ L1(0,M), for fixed x ∈ (0,∞) we have

(2.21) |I| ≤ x√
4π

1

(t−M)3/2

∫ M

0
|g(s)| ds → 0 as t → ∞.
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On the other hand, by the change of variables z = x/
√
4(t− s), the second integral in

(2.20) satisfies

(2.22) |II| ≤ ε
x√
4π

∫ t

0

1

(t− s)3/2
e
− x2

4(t−s) ds = ε
2√
π

∫ ∞

x/
√
4t
e−z2 dz ≤ ε.

As ε > 0 can be arbitrarily small, by (2.21) and (2.22), we have ug(x, t) → 0 as t → ∞
for fixed x ∈ (0,∞).

For the second case in (2.17), we first look at ug(x, t) at t = n ∈ N and let n → ∞
eventually. For fixed x ∈ (0,∞), set

fn(s) =

 1
(n−s)3/2

e
− x2

4(n−s) g(s), s ∈ (0, n),

0, s ∈ [n,∞),

which gives

ug(x, n) =
x√
4π

∫ ∞

0
fn(s) ds, where lim

n→∞
fn(s) = 0, ∀ s ∈ (0,∞)

and note that

|fn(s)| ≤
(
6

e

)3/2 1

x3
|g(s)| ∈ L1(0,∞), ∀n, ∀ s ∈ (0,∞).

The LDCT implies

lim
n→∞

ug(x, n) =
x√
4π

lim
n→∞

∫ ∞

0
fn(s) ds

=
x√
4π

∫ ∞

0
lim
n→∞

fn(s) ds = 0 for fixed x ∈ (0,∞).

By analogy, for any sequence an → ∞, we also have limn→∞ ug(x, an) = 0. This implies

ug(x, t) → 0 as t → ∞.

Combining all of the above estimates, we have (2.18).

Remark 2.18. In case h(x) does not satisfy (2.16) or g(t) does not satisfy (2.17), then the

conclusion (2.18) fails in general. For the first example, we take h(x) ≡ x and g(t) ≡ 0,

then the solution u(x, t) = x for all (x, t) ∈ (0,∞)× (0,∞). For the second example, see

Section 3.2 with h(x) = sinx and g(t) = sin t.

Remark 2.19. In Lemma 2.17, if we replace the condition (2.17) as (without changing the

condition on h(x))

either lim
t→∞

g(t) = N or

∫ ∞

0
|g(t)−N | dt < ∞,
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then we will have

lim
t→∞

u(x, t) = N for fixed x ∈ (0,∞).

This is due to the superposition principle if we decompose (1.1) into two problems with

initial-boundary data h(x), g(t)−N and 0, N respectively.

Again, we note that, (2.16) and (2.17) are, in general, not necessary conditions for the

conclusion (2.18) to hold. To see this, let h1(x), h2(x), g1(t), g2(t) be four nonnegative

continuous functions on (0,∞) satisfying (1.2), with

h1(x) is bounded on (0,∞) and
∫∞
0 h1(x) dx = ∞,

h2(x) is unbounded on (0,∞) and
∫∞
0 h2(x) dx < ∞,

limt→∞ g1(t) = 0 and
∫∞
0 g1(t) dt = ∞,

limt→∞ g2(t) does not exist and
∫∞
0 g2(t) dt < ∞.

Let u(x, t) be the solution of (1.1) given by (1.3), where now the initial-boundary data

h(x), g(t) are given by h(x) = h1(x) + h2(x), g(t) = g1(t) + g2(t). Clearly h(x) does

not satisfy (2.16) and g(t) does not satisfy (2.17) either. By the superposition principle,

we have u(x, t) = u1(x, t) + u2(x, t), where ui(x, t) is the solution of (1.1) with initial-

boundary data hi(x), gi(t) respectively, i = 1, 2. By Lemma 2.17, for fixed x ∈ (0,∞), we

have

lim
t→∞

u(x, t) = lim
t→∞

u1(x, t) + lim
t→∞

u2(x, t) = 0 + 0 = 0.

Therefore, u(x, t) satisfies (2.18) even if h(x) does not satisfy (2.16) and g(t) does not

satisfy (2.17).

2.6. Total space and total time energy

In this section, we study the total space energy and total time energy of u(x, t). To begin

with, we collect some useful integral identities, which will be used in this section.

Lemma 2.20. We have the following integral identities:

1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
dx =

1√
π

∫ ξ/
√
4t

−ξ/
√
4t
e−z2 dz ∈ (0, 1), ∀ t, ξ > 0,(2.23a) ∫ ∞

0

1√
4πt

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
dt = min{x, ξ}, ∀x, ξ > 0,(2.23b)

x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ dθ =
2√
π

∫ ∞

x/
√
4t
e−z2 dz ∈ (0, 1), ∀x, t > 0,(2.23c)

x√
4π

∫ ∞

0

1

θ3/2
e−

x2

4θ dθ = 1, ∀x > 0,(2.23d) ∫ ∞

0

x√
4π

1

θ3/2
e−

x2

4θ dx =
1√
πθ

, ∀ θ > 0.(2.23e)
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Proof. The verifications of (2.23a), (2.23c) and (2.23d) are straightforward. For fixed

θ > 0, if we do the change of variables x =
√
4θz, z ∈ (0,∞), we can obtain (2.23e).

Finally for (2.23b) we first let t = 1/(4s2) to get∫ ∞

0

1√
4πt

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
dt =

1√
4π

∫ ∞

0

e−a2s2 − e−b2s2

s2
ds,

where a = x− ξ and b = x+ ξ. By the integration by parts, we have

1√
4π

∫ ∞

0

e−a2s2 − e−b2s2

s2
ds =

1√
4π

∫ ∞

0

(
e−a2s2 − e−b2s2

)
d

(
−1

s

)
= − 2√

4π

∫ ∞

0

(
e−a2s2a2 − e−b2s2b2

)
ds.

Note that we have ∫ ∞

0

(
e−a2s2a2

)
ds = |a|

∫ ∞

0
e−z2 dz = |a|

√
π

2

and the same for
∫∞
0

(
e−b2s2b2

)
ds. Therefore, we conclude

− 2√
4π

∫ ∞

0

(
e−a2s2a2 − e−b2s2b2

)
ds =

1

2
(|x+ ξ| − |x− ξ|) = min{x, ξ}

for all x, ξ > 0. The proof is done.

Now we discuss the total space and total time energy respectively. For the total space

energy, we have

Lemma 2.21 (Total space energy). Assume h(x) and g(t) are continuous functions on

(0,∞) satisfying (1.2) and also
∫∞
0 |h(ξ)| dξ < ∞. Let u(x, t) be the solution of (1.1)

given by (1.3). Then, for fixed t ∈ (0,∞), its total space energy, defined as Espace(t) =∫∞
0 u(x, t) dx, is finite and can be expressed as

(2.24)

Espace(t) =

∫ ∞

0

(
1√
π

∫ ξ/
√
4t

−ξ/
√
4t
e−z2 dz

)
h(ξ) dξ +

1√
π

∫ t

0

1√
θ
g(t− θ) dθ, t ∈ (0,∞).

Proof. By (1.3), we have Espace(t) = I(t) + II(t), where

I(t) =

∫ ∞

0
uh(x, t) dx =

∫ ∞

0

[
1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
h(ξ) dξ

]
dx,

II(t) =

∫ ∞

0
ug(x, t) dx =

∫ ∞

0

(
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ) dθ

)
dx.

(2.25)

We will use the classical Tonelli’s Theorem (see the book [14]) to see that we can

change the order of integration in both I(t) and II(t). The theorem says that for any
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nonnegative measurable function f(x, y) defined on an interval J = J1×J2 ⊂ Rn+m, we

always have the identity

(2.26)

∫∫
J
f(x, y) dxdy =

∫
J1

(∫
J2

f(x, y) dy

)
dx =

∫
J2

(∫
J1

f(x, y) dx

)
dy.

In particular, for f ≥ 0, the finiteness of any one of the three integrals in (2.26) implies

that of the other two. Hence for any measurable f(x, y), the finiteness of any one of the

three integrals for |f(x, y)| implies that f(x, y) is integrable on J = J1 × J2 and that all

three integrals in (2.26) are equal due to the Fubini’s Theorem.

For I(t) in (2.25), we have for x > 0 and ξ > 0 the following∣∣∣∣ 1√
4πt

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
h(ξ)

∣∣∣∣ = 1√
4πt

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
|h(ξ)|

and by (2.23a) we get∫ ∞

0

(
1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
dx

)
|h(ξ)| dξ ≤

∫ ∞

0
|h(ξ)| dξ < ∞.

Hence, by Tonelli’s and Fubini’s Theorems, we have

I(t) =

∫ ∞

0

(
1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
dx

)
h(ξ) dξ

=

∫ ∞

0

(
1√
π

∫ ξ/
√
4t

−ξ/
√
4t
e−z2 dz

)
h(ξ) dξ.

(2.27)

For II(t), by (2.23e) and the assumption on g(t) in (1.2), we have∫ t

0

(∫ ∞

0

x√
4π

1

θ3/2
e−

x2

4θ dx

)
|g(t− θ)| dθ =

1√
π

∫ t

0

1√
θ
|g(t− θ)| dθ < ∞.

Hence Tonelli’s and Fubini’s Theorems imply

(2.28) II(t) =

∫ ∞

0

(
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ) dθ

)
dx =

1√
π

∫ t

0

1√
θ
g(t− θ) dθ.

The proof of (2.24) is done due to (2.27) and (2.28).

Remark 2.22. For fixed ξ > 0, the positive quantity

1√
π

∫ ξ/
√
4t

−ξ/
√
4t
e−z2 dz ∈ (0, 1), t ∈ (0,∞)

is strictly decreasing from 1 to 0 with respect to t ∈ (0,∞). Hence, by the assumption∫∞
0 |h(x)| dx < ∞ and the LDCT, we can conclude

lim
t→0+

∫ ∞

0

(
1√
π

∫ ξ/
√
4t

−ξ/
√
4t
e−z2 dz

)
h(ξ) dξ =

∫ ∞

0
h(ξ) dξ,

lim
t→∞

∫ ∞

0

(
1√
π

∫ ξ/
√
4t

−ξ/
√
4t
e−z2 dz

)
h(ξ) dξ = 0.
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However, if we only assume g(t) satisfies the condition in (1.2), i.e.,

|g(t)| ≤ C1

tα
, ∀ t ∈ (0, ε)

for some positive constants C1, ε > 0 small, and α ∈ [0, 1), then in general, we have no

convergence of the term
∫ t
0

1√
θ
g(t − θ) dθ as t → 0+ or as t → ∞. For example, we can

take g(t) = 1/tα, t ∈ (0, ε), with α ∈ (1/2, 1), then∫ t

0

1√
θ
g(t− θ) dθ ≥ 1√

t

∫ t

0

1

(t− θ)α
dθ =

1

1− α
t
1
2
−α → ∞ as t → 0+.

Therefore, we do not have limt→0+ Espace(t) =
∫∞
0 h(ξ) dξ in general unless we put more

assumption on g(t) on (0,∞) (for example, assume g(t) is bounded near t = 0).

Remark 2.23. If g(t) = tn, n ∈ N ∪ {0}, its contribution to Espace(t) is equal to

1√
π

∫ t

0

1√
θ
(t− θ)n dθ =

(
1√
π

∫ 1

0

1√
s
(1− s)n ds

)
tn+

1
2 , n ∈ N ∪ {0}, t ∈ (0,∞).

For the total time energy, we have

Lemma 2.24 (Total time energy). Assume h(x) and g(t) are continuous functions on

(0,∞) satisfying (1.2). In addition, we also assume

(2.29)

∫ ∞

0
|h(ξ)| dξ < ∞ and

∫ ∞

0
|g(t)| dt < ∞.

Let u(x, t) be the solution of (1.1) given by (1.3). Then, for fixed x ∈ (0,∞), its total

time energy, defined as Etime(x) =
∫∞
0 u(x, t) dt, is finite and can be expressed as

(2.30) Etime(x) =

∫ x

0
ξh(ξ) dξ +

∫ ∞

x
xh(ξ) dξ +

∫ ∞

0
g(t) dt, x ∈ (0,∞).

In particular, we have

lim
x→0+

Etime(x) =

∫ ∞

0
g(t) dt.

Proof. By (1.3), we have Etime(x) = I(x) + II(x), where

I(x) =

∫ ∞

0
uh(x, t) dt =

∫ ∞

0

[
1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
h(ξ) dξ

]
dt,

II(x) =

∫ ∞

0
ug(x, t) dt =

∫ ∞

0

[
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ) dθ

]
dt.

(2.31)

Again, we use Tonelli’s Theorem to imply the change of order of integration in both I(x)

and II(x). For I(x), we first look at the integral

(2.32) Ĩ(x) :=

∫ ∞

0

[(∫ ∞

0

1√
4πt

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
dt

)
|h(ξ)|

]
dξ
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and by the assumption (2.29) and (2.23b), we have for any fixed x ∈ (0,∞) the following

Ĩ(x) =

∫ ∞

0
min{x, ξ} · |h(ξ)| dξ =

∫ x

0
ξ|h(ξ)| dξ +

∫ ∞

x
x|h(ξ)| dξ < ∞,

which implies the convergence of the improper integral for Ĩ(x) in (2.32). Hence the Fubini

Theorem is applicable to the improper integrals in I(x) in (2.31) and we have

I(x) =

∫ ∞

0

[∫ ∞

0

1√
4πt

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
dt

]
h(ξ) dξ

=

∫ x

0
ξh(ξ) dξ +

∫ ∞

x
xh(ξ) dξ.

(2.33)

For II(x) in (2.31), for fixed x ∈ (0,∞), we first look at the integral∫ M

0

(
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ |g(t− θ)| dθ
)

dt,

where M > 0 is temporarily a fixed number. By the assumption
∫∞
0 |g(t)| dt < ∞ and the

estimate (2.10), we have∫ M

0

(
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ |g(t− θ)| dθ
)

dt ≤

(
x√
4π

(
6

e

)3/2 1

x3

∫ ∞

0
|g(s)| ds

)
M,

which, by Tonelli’s Theorem, implies that the nonnegative function

x√
4π

1

θ3/2
e−

x2

4θ |g(t− θ)|

is integrable on the domain {(θ, t) ∈ R2 : 0 < θ ≤ t, 0 < t ≤ M} for any M > 0 and

Fubini’s Theorem implies

II(x) = lim
M→∞

∫ M

0

(
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ) dθ

)
dt

= lim
M→∞

∫ M

0

(
x√
4π

∫ M

θ

1

θ3/2
e−

x2

4θ g(t− θ) dt

)
dθ

= lim
M→∞

∫ M

0

(
x√
4π

1

θ3/2
e−

x2

4θ

∫ M−θ

0
g(s) ds

)
dθ.

Next, for fixed x ∈ (0,∞), let

fM (θ) =

 x√
4π

1
θ3/2

e−
x2

4θ

∫M−θ
0 g(s) ds, θ ∈ (0,M ],

0, θ ∈ (M,∞).

It satisfies

lim
M→∞

fM (θ) =
x√
4π

1

θ3/2
e−

x2

4θ

∫ ∞

0
g(s) ds, ∀ θ ∈ (0,∞),
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∫ ∞

0
fM (θ) dθ =

∫ M

0

(
x√
4π

1

θ3/2
e−

x2

4θ

∫ M−θ

0
g(s) ds

)
dθ,

|fM (θ)| ≤ x√
4π

1

θ3/2
e−

x2

4θ

∫ ∞

0
|g(s)| ds, ∀ θ,M ∈ (0,∞),

where, by the identity (2.23d), the function (x/
√
4π)θ−3/2e−x2/4θ

∫∞
0 |g(s)| ds is integrable

with respect to θ ∈ (0,∞) for all x ∈ (0,∞) with∫ ∞

0

(
x√
4π

1

θ3/2
e−

x2

4θ

∫ ∞

0
|g(s)| ds

)
dθ =

∫ ∞

0
|g(s)| ds, ∀x ∈ (0,∞).

The LDCT implies for any x ∈ (0,∞) that

II(x) = lim
M→∞

∫ ∞

0
fM (θ) dθ =

∫ ∞

0
lim

M→∞
fM (θ) dθ

=

∫ ∞

0

(
x√
4π

1

θ3/2
e−

x2

4θ

∫ ∞

0
g(s) ds

)
dθ =

∫ ∞

0
g(s) ds.

(2.34)

The proof of the identity (2.30) is done due to (2.33) and (2.34).

Remark 2.25. If we have h(x) ≡ 0 in (2.30), then

Etime(x) =

∫ ∞

0
g(t) dt, ∀x ∈ (0,∞),

which is a constant independent of x ∈ (0,∞).

2.7. Gradient estimate of u(x, t)

In this section, we do estimate on ut and ux under the assumption that both h(x) and

g(t) are bounded continuous functions on (0,∞).

Lemma 2.26 (Space derivative estimate). Assume h(x) and g(t) are bounded continuous

functions with |h(x)| ≤ M and |g(t)| ≤ N for all x ∈ (0,∞) and t ∈ (0,∞). Then the

solution u(x, t) given by (1.3) is a bounded solution on (x, t) ∈ (0,∞)× (0,∞) satisfying

the estimate

(2.35) |ux(x, t)| ≤
M√
π
· 1√

t
+

(
2N√
π

∫ ∞

x/
√
4t
e−y2(1 + 2y2) dy

)
· 1
x

for all (x, t) ∈ (0,∞)× (0,∞).

Remark 2.27. As one can see from Theorem 3.10 or from Remark 3.15 below, the assump-

tion that h(x) and g(t) are bounded is necessary for (2.35) to be valid. Also note that, for

fixed t ∈ (0,∞) and fixed x ∈ (0,∞) respectively, we have

(2.36) lim sup
x→∞

|ux(x, t)| ≤
M√
π

1√
t
, lim sup

t→∞
|ux(x, t)| ≤

(
2N√
π

∫ ∞

0
e−y2(1 + 2y2) dy

)
1

x
.
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For bounded trigonometric initial-boundary data, the solution u(x, t) may oscillate along

x-direction and also along t-direction. Therefore, both limsup limits in (2.36) are not

zero in general. See Lemma 3.12 below.

Remark 2.28. Similar to estimate (2.4), one can check that for any number σ ∈ (0, 1)

there is a constant C(σ) > 0 such that

(2.37)

∫ ∞

x/
√
4t
e−y2(1 + 2y2) dy ≤ C(σ)e−σ x2

4t , ∀ (x, t) ∈ (0,∞)× (0,∞).

Proof of Lemma 2.26. Let H(ξ) be the odd extension of h(ξ) to ξ ∈ (−∞,∞) (we can

define H(0) = 0). We have

u(x, t) =
1√
4πt

∫ ∞

−∞
e−

(x−ξ)2

4t H(ξ) dξ +
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ) dθ

:= I(x, t) + II(x, t), (x, t) ∈ (0,∞)× (0,∞)

(2.38)

and so ux(x, t) = Ix(x, t) + IIx(x, t). Since |H(ξ)| ≤ M for all ξ ∈ (−∞,∞), we have

|Ix(x, t)| ≤
M√
4πt

∫ ∞

−∞
e−

(x−ξ)2

4t
|x− ξ|
2t

dξ =
M√
π

1√
t

∫ ∞

−∞
e−z2 |z| dz =

M√
π

1√
t

and

|IIx(x, t)| =
∣∣∣∣ 1√

4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ) dθ +
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ

(
− x

2θ

)
g(t− θ) dθ

∣∣∣∣
≤ N√

4π

∫ t

0

1

θ3/2
e−

x2

4θ dθ +
x2N

2
√
4π

∫ t

0

1

θ5/2
e−

x2

4θ dθ

=
N√
4π

4

x

∫ ∞

x/
√
4t
e−y2 dy +

x2N

2
√
4π

16

x3

∫ ∞

x/
√
4t
e−y2y2 dy

=
N√
π

2

x

∫ ∞

x/
√
4t
e−y2(1 + 2y2) dy,

which implies the conclusion.

Lemma 2.29 (Time derivative estimate). Assume h(x) and g(t) are bounded continuous

functions with |h(x)| ≤ M and |g(t)| ≤ N for all x ∈ (0,∞) and t ∈ (0,∞). Then the

solution u(x, t) given by (1.3) is a bounded solution on (x, t) ∈ (0,∞)× (0,∞) satisfying

the estimate

(2.39) |ut(x, t)| ≤ M · 1
t
+

(
12N√

π

∫ ∞

x/
√
4t
e−y2y2

(
1 +

2

3
y2
)

dy

)
· 1

x2

for all (x, t) ∈ (0,∞)× (0,∞).
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Remark 2.30. Similar to (2.37), for any number σ ∈ (0, 1), we have the estimate∫ ∞

x/
√
4t
e−y2y2

(
1 +

2

3
y2
)

dy ≤ C(σ)e−σ x2

4t , ∀ (x, t) ∈ (0,∞)× (0,∞),

where C(σ) > 0 is a constant depending only on σ.

Remark 2.31. By Lemmas 2.26 and 2.29, we have

lim
(x,t)→(∞,∞)

ux(x, t) = lim
(x,t)→(∞,∞)

ut(x, t) = 0

for bounded continuous functions h(x) and g(t) on (0,∞).

Proof of Lemma 2.29. In this case, by (2.38), we need to look at It(x, t) and IIt(x, t). We

first have

It(x, t) =
−1

2
√
4π

1

t3/2

∫ ∞

−∞
e−

(x−ξ)2

4t H(ξ) dξ +
1√
4πt

∫ ∞

−∞
e−

(x−ξ)2

4t
(x− ξ)2

4t2
H(ξ) dξ

=
−1

2
√
π

1

t

∫ ∞

−∞
e−z2H(x+

√
4tz) dz +

1√
π

1

t

∫ ∞

−∞
e−z2z2H(x+

√
4tz) dz,

which gives

|It(x, t)| ≤
M

2t
+

M

2t
=

M

t
.

Next, we look at

IIt(x, t) = IIxx(x, t) =
∂2

∂x2

(
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ) dθ

)
=

∂

∂x

(
1√
4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ) dθ +
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ

(
− x

2θ

)
g(t− θ) dθ

)
= − 3x

2
√
4π

∫ t

0

1

θ5/2
e−

x2

4θ g(t− θ) dθ +
x3

4
√
4π

∫ t

0

1

θ7/2
e−

x2

4θ g(t− θ) dθ

and conclude

|IIt(x, t)| ≤
3xN

2
√
4π

∫ t

0

1

θ5/2
e−

x2

4θ dθ +
x3N

4
√
4π

∫ t

0

1

θ7/2
e−

x2

4θ dθ

=
3xN

2
√
4π

16

x3

∫ ∞

x/
√
4t
e−y2y2 dy +

x3N

4
√
4π

64

x5

∫ ∞

x/
√
4t
e−y2y4 dy

=
12N√

π

1

x2

∫ ∞

x/
√
4t
e−y2

(
y2 +

2

3
y4
)

dy.

The proof is done.

Motivated by (2.35) and (2.39), we have the following interesting result.
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Corollary 2.32. Assume h(x) and g(t) are bounded continuous functions with |h(x)| ≤
M and |g(t)| ≤ N for all x ∈ (0,∞) and t ∈ (0,∞) and let u(x, t) be the bounded function

given by (1.3). Then the function

(2.40) xux(x, t) + 2tut(x, t), (x, t) ∈ (0,∞)× (0,∞)

is also a solution of the heat equation on (0,∞)× (0,∞). Moreover, along the parabola

P (λ) : x/
√
4t = λ, where λ ∈ (0,∞) is a parameter, we have the estimate

|xux(x, t) + 2tut(x, t)| ≤
[
2λ

M√
π
+

(
2N√
π

∫ ∞

λ
e−y2(1 + 2y2) dy

)]
+

[
2M +

1

2λ2

(
12N√

π

∫ ∞

λ
e−y2y2

(
1 +

2

3
y2
)

dy

)](2.41)

for all (x, t) ∈ P (λ). Note that the bound in (2.41) depends only on M , N and λ.

Proof. By parabolic scaling, for each constant c > 0, the function U(x, t, c) := u(cx, c2t)

is a solution of the heat equation on (0,∞)× (0,∞). By this, the function

(2.42)
∂U

∂c
(x, t, c) = x · ux(cx, c2t) + 2ct · ut(cx, c2t)

will also be a solution of the heat equation on (0,∞)× (0,∞) for each c ∈ (0,∞). Taking

c = 1 in (2.42) will give rise to the solution in (2.40). As for the estimate in (2.41), it is a

consequence of (2.35) and (2.39).

2.8. Derivative up to the boundary

In this section, we discuss the values of the derivative ux(x, t) and ut(x, t) on the boundary

of the domain (0,∞) × (0,∞) (except at the corner point (0, 0)). For our purpose of

discussion, h(x) and g(t) are assumed to be at least continuously differentiable on [0,∞).

Since we have u(x, t) = uh(x, t) + ug(x, t), we look at uh(x, t) and ug(x, t) separately.

Lemma 2.33 (Derivative of uh(x, t) on the boundary t = 0). Assume h ∈ C1[0,∞) ∩
C2(0,∞) and |h(x)|, |h′(x)|, |h′′(x)| all satisfy the growth condition in (1.2). Then we

have

(2.43)
∂uh
∂x

(x, 0) = h′(x),
∂uh
∂t

(x, 0) = h′′(x), ∀x ∈ (0,∞).

Proof. The first identity in (2.43) is obvious since uh(x, 0) = h(x) for all x ∈ (0,∞). For

the second identity, since both |h′(x)| and |h′′(x)| satisfy the growth condition (1.2), we
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have

(2.44)
∂uh

∂t
(x, t) =

∂2uh

∂x2
(x, t)

=
∂2

∂x2

(
1√
π

∫ ∞

−x/
√
4t

e−z2

h(x+
√
4tz) dz − 1√

π

∫ ∞

x/
√
4t

e−z2

h(−x+
√
4tz) dz

)

=
∂

∂x

[
1√
πt

e−
x2

4t h(0) +
1√
π

(∫ ∞

−x/
√
4t

e−z2

h′(x+
√
4tz) dz +

∫ ∞

x/
√
4t

e−z2

h′(−x+
√
4tz) dz

)]

=
1√
πt

e−
x2

4t

(
− x

2t

)
h(0) +

1√
π

[∫ ∞

−x/
√
4t

e−z2

h′′(x+
√
4tz) dz −

∫ ∞

x/
√
4t

e−z2

h′′(−x+
√
4tz) dz

]

and for fixed x ∈ (0,∞) we obtain limt→0+
(
∂uh/∂t

)
(x, t) = h′′(x). By the mean value

theorem, there exists θ(t) ∈ (0, t) such that

(2.45)
∂uh
∂t

(x, 0) = lim
t→0+

uh(x, t)− uh(x, 0)

t
= lim

t→0+

∂uh
∂t

(x, θ(t)) = h′′(x), x ∈ (0,∞).

Hence
(
∂uh/∂t

)
(x, 0) exists and the second identity is verified.

Remark 2.34. Be careful that we cannot use the identity (2.13) to derive the conclusion

since the extended function H(ξ), ξ ∈ (−∞,∞), is not even continuous at ξ = 0 if h(0) ̸= 0

and one cannot move the differentiation into the integral sign. Also, one cannot prove the

second identity using the following argument

∂uh
∂t

(x, 0) =
∂2uh
∂x2

(x, 0) = h′′(x), x ∈ (0,∞),

since uh(x, t) satisfies the heat equation only on the domain (0,∞)× (0,∞).

Lemma 2.35 (Derivative of uh(x, t) on the boundary x = 0). Assume h ∈ C1[0,∞) and

both |h(x)| and |h′(x)| satisfy the growth condition in (1.2). Then we have

(2.46)
∂uh
∂x

(0, t) =
1√
πt

h(0) +
2√
π

∫ ∞

0
e−z2h′(

√
4tz) dz,

∂uh
∂t

(0, t) = 0, ∀ t ∈ (0,∞).

Remark 2.36. By integration by parts, we can also express
(
∂uh/∂x

)
(0, t) as

∂uh
∂x

(0, t) =
2√
πt

∫ ∞

0
(ze−z2)h(

√
4tz) dz.

Proof of Lemma 2.35. The second identity in (2.46) is obvious due to uh(0, t) = 0 for all

t ∈ (0,∞). As for the first identity, by (2.44), we have

∂uh
∂x

(x, t) =
1√
πt

e−
x2

4t h(0)

+
1√
π

(∫ ∞

−x/
√
4t
e−z2h′(x+

√
4tz) dz +

∫ ∞

x/
√
4t
e−z2h′(−x+

√
4tz) dz

)(2.47)
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and letting x → 0+ we obtain

(2.48) lim
x→0+

∂uh
∂x

(x, t) =
1√
πt

h(0) +
2√
π

∫ ∞

0
e−z2h′(

√
4tz) dz.

The first identity in (2.46) will follow due to (2.48) and the mean value theorem argument

similar to (2.45).

In the following we use two examples to verify the correctness of the formulas in

Lemmas 2.33 and 2.35.

Example 2.37. We choose h(x) = xm, where m = 2k+1, k ∈ N∪{0}, is an odd natural

number. By (3.12) below, we have

uh(x, t) = xm +m(m− 1)xm−2t+ · · ·+ m!

3!(k − 1)!
x3tk−1 +

m!

k!
xtk,

which gives

∂uh
∂x

(x, t) = mxm−1 +m(m− 1)(m− 2)xm−3t+ · · ·+ m!

3!(k − 1)!
3x2tk−1 +

m!

k!
tk,

∂uh
∂t

(x, t) = m(m− 1)xm−2 + · · ·+ m!

3!(k − 1)!
x3(k − 1)tk−2 +

m!

k!
xktk−1,

and hence

(2.49)

∂uh
∂x

(x, 0) = mxm−1,
∂uh
∂t

(x, 0) = m(m− 1)xm−2,

∂uh
∂x

(0, t) =
m!

k!
tk,

∂uh
∂t

(0, t) = 0.

To see that (2.49) is consistent with (2.43) and (2.46), it suffices to check that

∂uh
∂x

(0, t) =
m!

k!
tk =

2√
π

∫ ∞

0
e−z2m(

√
4tz)m−1 dz, m = 2k + 1,

which is equivalent to the identity

(2.50)

∫ ∞

0
e−z2z2k dz =

1

22k+1

(2k)!

k!

√
π, k ∈ N ∪ {0}.

One can verify (2.50) using the identities
∫∞
0 z2e−z2 dz =

√
π/4 and∫ ∞

0
z2k+2e−z2 dz =

2k + 1

2

∫ ∞

0
z2ke−z2 dz,

together with the mathematical induction.
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Example 2.38. We choose h(x) = sinx, x ∈ (0,∞), and obtain uh(x, t) = e−t sinx. We

see that

∂uh
∂x

(x, 0) = cosx,
∂uh
∂t

(x, 0) = − sinx,
∂uh
∂x

(0, t) = e−t,
∂uh
∂t

(0, t) = 0.

Again, to check the correctness of (2.46) and (2.43), it suffices to check that

(2.51) e−t =
2√
π

∫ ∞

0
e−z2 cos(

√
4tz) dz, ∀ t ∈ (0,∞).

However, we note that (2.51) is a consequence of the familiar identity

e−t cosx =
1√
4πt

∫ ∞

−∞
e−

(x−y)2

4t cos y dy, (x, t) ∈ (0,∞)× (0,∞).

Lemma 2.39 (Derivative of ug(x, t) on the boundary t = 0). Assume g ∈ C1[0,∞) (which

will satisfy (1.2) automatically). Then we have

(2.52)
∂ug
∂x

(x, 0) = 0,
∂ug
∂t

(x, 0) = 0, ∀x ∈ (0,∞).

Proof. The first identity in (2.52) is obvious due to ug(x, 0) = 0 for all x ∈ (0,∞). For

the second identity, we compute

∂ug
∂t

(x, t) =
1√
πt

e−
x2

4t g(0)
x

2t
+

2√
π

∫ ∞

x/
√
4t
e−z2g′

(
t−

( x

2z

)2)
dz

and for fixed x ∈ (0,∞) we have limt→0+
(
∂ug/∂t

)
(x, t) = 0. Hence we have

(
∂ug/∂t

)
(x, 0)

= 0 due to the mean value theorem.

Lemma 2.40 (Derivative of ug(x, t) on the boundary x = 0). Assume g ∈ C1[0,∞).

Then we have

(2.53)
∂ug
∂x

(0, t) = − 1√
πt

g(0)− 1√
π

∫ t

0

g′(s)√
t− s

ds,
∂ug
∂t

(0, t) = g′(t), ∀ t ∈ (0,∞).

Remark 2.41. One can also express
(
∂ug/∂x

)
(0, t) as

(2.54)
∂ug
∂x

(0, t) = − 1√
πt

g(0)− 2
√
t√
π

∫ 1

0
g′(t(1− θ2)) dθ.

Proof of Lemma 2.40. The second identity in (2.53) is obvious due to ug(0, t) = g(t) for

all t ∈ (0,∞). For the first identity, we compute

∂ug
∂x

(x, t) =
∂

∂x

(
2√
π

∫ ∞

x/
√
4t
e−z2g

(
t−

( x

2z

)2)
dz

)

= − 1√
πt

e−
x2

4t g(0) +
2√
π

∫ ∞

x/
√
4t
e−z2g′

(
t−

( x

2z

)2)(
− x

2z2

)
dz.
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For fixed t ∈ (0,∞), if we do the change of variables s = t−
(

x
2z

)2
, we will get

2√
π

∫ ∞

x/
√
4t
e−z2g′

(
t−

( x

2z

)2)(
− x

2z2

)
dz = − 1√

π

∫ t

0
e
− x2

4(t−s)
g′(s)√
t− s

ds

with

(2.55) lim
x→0+

(
− 1√

π

∫ t

0
e
− x2

4(t−s)
g′(s)√
t− s

ds

)
= − 1√

π

∫ t

0

g′(s)√
t− s

ds.

By (2.55), we conclude

lim
x→0+

∂ug
∂x

(x, t) = − 1√
πt

g(0)− 1√
π

∫ t

0

g′(s)√
t− s

ds,

which implies the first identity in (2.53) due to the mean value theorem.

Combining Lemmas 2.33, 2.35, 2.39, 2.40, and (2.54), we can conclude the following

theorem.

Theorem 2.42 (Derivative of u(x, t) on the boundary x = 0 and t = 0). Assume h ∈
C1[0,∞) ∩ C2(0,∞), g ∈ C1[0,∞), and |h(x)|, |h′(x)|, |h′′(x)| all satisfy the growth

condition in (1.2). Let u(x, t) = uh(x, t)+ug(x, t), (x, t) ∈ (0,∞)× (0,∞), be the solution

given by (1.3). Then we have

∂u

∂x
(x, 0) = h′(x),

∂u

∂t
(x, 0) = h′′(x)

and

∂u

∂x
(0, t) =

1√
πt

(
h(0) + 2

√
t

∫ ∞

0
e−z2h′(

√
4tz) dz

)
− 1√

πt

(
g(0) + 2t

∫ 1

0
g′(t(1− θ2)) dθ

)
,

∂u

∂t
(0, t) = g′(t)

(2.56)

for all x ∈ (0,∞) and all t ∈ (0,∞).

Example 2.43. Again, we use a simple example to check the correctness of
(
∂u/∂x

)
(0, t)

in (2.56). We choose h(x) = ex, x ∈ (0,∞), and g(t) = et, t ∈ (0,∞). The solution u(x, t)

of the ibvp (1.1), given by (1.3), is equal to u(x, t) = ex+t. To verify the correctness of

(2.56), we need to check the identity

(2.57) et =
1√
πt

(
2
√
t

∫ ∞

0
e−z2e

√
4tz dz − 2t

∫ 1

0
et(1−θ2) dθ

)
, ∀ t ∈ (0,∞).
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We first note that∫ ∞

0
e−z2e

√
4tz dz = et

∫ ∞

0
e−(z−

√
t)2 dz = et

∫ ∞

−
√
t
e−s2 ds

and ∫ 1

0
et(1−θ2) dθ = et

∫ 1

0
e−tθ2 dθ =

et√
t

∫ √
t

0
e−s2 ds.

Hence the right-hand side of (2.57) is equal to

2et√
π

(∫ ∞

−
√
t
e−s2 ds−

∫ √
t

0
e−s2 dθ

)
=

2et√
π

∫ ∞

0
e−s2 ds = et, ∀ t ∈ (0,∞),

as verified.

2.9. Monotonicity of uh(x, t) and ug(x, t)

In this section, we discuss the monotonicity of uh(x, t) and ug(x, t) under suitable assump-

tions on h(x) and g(t). However, the monotonicity of u(x, t) is, in general, very difficult

to determine even if we know that of uh(x, t) and ug(x, t).

Lemma 2.44 (Monotonicity of uh(x, t) in space direction). Assume h ∈ C1[0,∞) and

both |h(x)| and |h′(x)| satisfy the growth condition in (1.2). If h(0) ≥ 0, h′(x) ≥ 0 on

(0,∞), and h(x) is not identically zero, then, for fixed t ∈ (0,∞), uh(x, t) is positive for

all x ∈ (0,∞) and is strictly increasing in x ∈ (0,∞).

Remark 2.45. h(x) is increasing (strictly increasing) on (0,∞) means that, for 0 < x1 < x2,

we have h(x1) ≤ h(x2) (h(x1) < h(x2)).

Proof of Lemma 2.44. For fixed t ∈ (0,∞), by (1.3) and (1.8), uh(x, t) is clearly positive

for all x ∈ (0,∞). Also, by (2.47), we have
(
∂uh/∂x

)
(x, t) > 0 for all x ∈ (0,∞) due to

the assumption on h(x). The proof is done.

The monotonicity of uh(x, t) in the time direction will depend on the sign of h′′(x) on

(0,∞). However, the sign of h′(x) on (0,∞) is irrelevant as one can see from Example 2.47

below.

Lemma 2.46 (Monotonicity of uh(x, t) in time direction). Assume h ∈ C1[0,∞) ∩
C2(0,∞) and |h(x)|, |h′(x)|, |h′′(x)| all satisfy the growth condition in (1.2). If h(0) ≤ 0,

h′′(x) ≥ 0 on (0,∞), then, for fixed x ∈ (0,∞), uh(x, t) is increasing in t ∈ (0,∞).

Proof. Assume h(0) ≤ 0 and h′′(x) ≥ 0 on (0,∞). By (2.44), we have, for fixed x ∈ (0,∞),

the following

∂uh
∂t

(x, t) =
∂2uh
∂x2

(x, t)
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=
1√
πt

e−
x2

4t

(
− x

2t

)
h(0)

+
1√
π

(∫ ∞

−x/
√
4t
e−z2h′′(x+

√
4tz) dz −

∫ ∞

x/
√
4t
e−z2h′′(−x+

√
4tz) dz

)
(2.58)

=
1√
πt

e−
x2

4t

(
− x

2t

)
h(0) +

1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
h′′(ξ) dξ

≥ 0, t ∈ (0,∞).

The conclusion follows due to (1.8) and the assumption on h(x).

Example 2.47. Assume h(x) = sinx, x ∈ (0,∞), h(0) = 0. The corresponding uh(x, t)

is given by

uh(x, t) = e−t sinx, (x, t) ∈ (0,∞)× (0,∞), uh(0, t) ≡ 0, uh(x, 0) = sinx.

For fixed x ∈ (0,∞) with sinx > 0 (i.e., h′′(x) < 0), uh(x, t) is decreasing in t ∈ (0,∞)

and for fixed x ∈ (0,∞) with sinx < 0 (i.e., h′′(x) > 0), uh(x, t) is increasing in t ∈ (0,∞).

The sign of h′(x) does not come into play at all.

Corollary 2.48. Assume h ∈ C1[0,∞) ∩ C2(0,∞) and |h(x)|, |h′(x)|, |h′′(x)| all satisfy
the growth condition in (1.2). If h(x) satisfies the assumption in Lemma 2.44 and also

h′(x) + h′′(x) ≥ 0 on (0,∞), then on the region {(x, t) ∈ (0,∞) × (0,∞) : x < 2t}, we
have

(2.59)

(
∂uh
∂x

+
∂uh
∂t

)
(x, t) > 0.

Proof. By (2.47) and (2.58), we have(
∂uh
∂x

+
∂uh
∂t

)
(x, t)

=
(
1− x

2t

) 1√
πt

e−
x2

4t h(0) +
1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t + e−
(x+ξ)2

4t

)
h′(ξ) dξ

+
1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
h′′(ξ) dξ, (x, t) ∈ (0,∞)× (0,∞).

Since h′(x) ≥ 0 on (0,∞), we have(
∂uh
∂x

+
∂uh
∂t

)
(x, t) ≥

(
1− x

2t

) 1√
πt

e−
x2

4t h(0)

+
1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
(h′(ξ) + h′′(ξ)) dξ

(2.60)

and note that the equality sign in (2.60) occurs only when h′(x) ≡ 0 on (0,∞) and it will

imply h(0) > 0. By this, under the assumption on h(x), we must have (2.59) on the region

x < 2t. The proof is done.
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Example 2.49. Take h(x) ≡ 1 in Corollary 2.48. We have

uh(x, t) =
1√
π

∫ x/
√
4t

−x/
√
4t
e−z2 dz, (x, t) ∈ (0,∞)× (0,∞)

and obtain (
∂uh
∂x

+
∂uh
∂t

)
(x, t) =

1√
πt

e−
x2

4t

(
1− x

2t

)
> 0 if x < 2t.

This example says that the condition x < 2t in Corollary 2.48 is necessary.

Lemma 2.50 (Monotonicity of ug(x, t) in time direction). Assume g ∈ C0(0,∞) and

satisfies (1.2). If g(t) is positive and increasing on (0,∞), then, for fixed x ∈ (0,∞),

ug(x, t) is strictly increasing in t ∈ (0,∞). Moreover, we have

(2.61) 0 < ug(x, t) < g(t), ∀ (x, t) ∈ (0,∞)× (0,∞).

Proof. For fixed x ∈ (0,∞) and 0 < t1 < t2, we have

ug(x, t2) =
x√
4π

∫ t1

0

1

θ3/2
e−

x2

4θ g(t2 − θ) dθ +
x√
4π

∫ t2

t1

1

θ3/2
e−

x2

4θ g(t2 − θ) dθ

>
x√
4π

∫ t1

0

1

θ3/2
e−

x2

4θ g(t2 − θ) dθ ≥ x√
4π

∫ t1

0

1

θ3/2
e−

x2

4θ g(t1 − θ) dθ = ug(x, t1).

Hence ug(x, t) is strictly increasing in t ∈ (0,∞). For (2.61), we note that

0 < ug(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2g

(
t−

( x

2z

)2)
dz ≤ 2√

π

∫ ∞

x/
√
4t
e−z2g(t) dz < g(t)

for all (x, t) ∈ (0,∞)× (0,∞). The proof is done.

Lemma 2.51 (Monotonicity of ug(x, t) in space direction). We have the following two

results:

(1) Assume g ∈ C0(0,∞) and satisfies (1.2). If g(t) is positive on (0,∞), then, for fixed

t ∈ (0,∞), ug(x, t) is strictly decreasing in x ∈ (
√
2t,∞).

(2) Assume g ∈ C0[0,∞)∩C1(0,∞) and g′(t) also satisfies (1.2). If g(t) is positive and

increasing on (0,∞), then, for fixed t ∈ (0,∞), ug(x, t) is strictly decreasing in

x ∈ (0,∞).

Proof. For (1), to avoid the differentiation on g, we use the formula for ug(x, t) in (1.3)

and get, for fixed t ∈ (0,∞) and for x ∈ (
√
2t,∞), the following

∂ug
∂x

(x, t) =
∂

∂x

(
x√
4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ) dθ

)
=

1√
4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ)

(
1− x2

2θ

)
dθ

<
1√
4π

∫ t

0

1

θ3/2
e−

x2

4θ g(t− θ)

(
1− x2

2t

)
dθ < 0.
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The proof is done.

For (2), since we assume g ∈ C0[0,∞)∩C1(0,∞), we can differentiate it. Now we use

a different formula for ug(x, t) and get

∂ug
∂x

(x, t) =
∂

∂x

(
2√
π

∫ ∞

x/
√
4t
e−z2g

(
t−

( x

2z

)2)
dz

)

= − 1√
πt

e−
x2

4t g(0) +
2√
π

∫ ∞

x/
√
4t
e−z2g′

(
t−

( x

2z

)2)(
− x

2z2

)
dz < 0,

(2.62)

for all x ∈ (0,∞). Note that the integral in (2.62) converges since g′(t) satisfies the

condition in (1.2) near t = 0. The inequality in (2.62) is due to the assumption that g(t)

is positive and increasing on (0,∞). The proof is done.

The following result is analogous to Corollary 2.48.

Corollary 2.52. Assume g ∈ C0[0,∞)∩C1(0,∞) and g′(t) also satisfies (1.2). If g(t) is

positive and increasing on (0,∞), then, on the region {(x, t) ∈ (0,∞)× (0,∞) : x > 2t},
we have (

∂ug
∂x

+
∂ug
∂t

)
(x, t) > 0.

Proof. Since we can differentiate g(t) on (0,∞), we have

∂ug
∂t

(x, t) =
∂

∂t

(
2√
π

∫ ∞

x/
√
4t
e−z2g

(
t−

( x

2z

)2)
dz

)

=
1√
πt

e−
x2

4t g(0)
x

2t
+

2√
π

∫ ∞

x/
√
4t
e−z2g′

(
t−

( x

2z

)2)
dz > 0,

(2.63)

where the inequality in (2.63) is due to our assumption on g(t). Combining (2.62) and

(2.63), we get(
∂ug
∂x

+
∂ug
∂t

)
(x, t) =

1√
πt

( x

2t
− 1
)
e−

x2

4t g(0)

+
2√
π

∫ ∞

x/
√
4t
e−z2g′

(
t−

( x

2z

)2)(
1− x

2z2

)
dz.

(2.64)

On the region x > 2t, we have 2t/x ∈ (0, 1) and

1− x

2z2
∈
(
1− 2t

x
, 1

)
⊂ (0, 1) for z ∈ (x/

√
4t,∞).

Therefore, by the assumption on g(t), the quantity in (2.64) is positive on the indicated

region. The proof is done.
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Example 2.53. Take g(t) ≡ 1 in Corollary 2.52. We have

ug(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2 dz, (x, t) ∈ (0,∞)× (0,∞)

and obtain (
∂ug
∂x

+
∂ug
∂t

)
(x, t) =

1√
πt

e−
x2

4t

( x

2t
− 1
)
> 0 if x > 2t.

This example says that the condition x > 2t in Corollary 2.52 is necessary.

3. Solution properties of the ibvp (1.1): special initial-boundary data

3.1. Polynomial initial-boundary data

In this section we study the asymptotic behavior of u(x, t) with polynomial initial and

boundary data. We divide the discussions into 3 cases.

Case 1: h(x) ≡ 0, x ∈ (0,∞), g(t) = tn, t ∈ (0,∞), n ∈ N. By Lemma 2.14, we first

have u(x, t) = ug(x, t) and

lim
x→∞

u(x, t) = 0 for fixed t ∈ (0,∞).

Clearly u(x, t) will not tend to zero as t → ∞. Now, by (2.1), we can express u(x, t) as

u(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2

(
t−

( x

2z

)2)n

dz, where t−
( x

2z

)2
∈ (0, t)

and along each parabola P (λ) : x/
√
4t = λ, λ ∈ (0,∞), we have

(3.1) u(x, t) = tn · 2√
π

∫ ∞

λ
e−z2

(
1−

(
λ

z

)2)n

dz = Bn(λ)t
n,

where

(3.2) Bn(λ) =
2√
π

∫ ∞

λ
e−z2

(
1−

(
λ

z

)2)n

dz ∈ (0, 1), λ =
x√
4t

∈ (0,∞).

Note that Bn(λ) is a decreasing function of λ ∈ (0,∞) with limλ→0+ Bn(λ) = 1,

limλ→∞Bn(λ) = 0.

By (3.1), along the parabola P (λ) : x/
√
4t = λ, we can express u(x, t)− tn as

(3.3) u(x, t)− tn = (Bn(λ)− 1)tn =
Bn(λ)− 1

2λ
· xtn−1/2, (x, t) ∈ P (λ).
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Note that for fixed x ∈ (0,∞), t → ∞ is equivalent to λ → 0+. We can evaluate the

following limit using the L’Hospital rule and LDCT:

lim
λ→0+

Bn(λ)− 1

2λ

= lim
λ→0+

B′
n(λ)

2
= lim

λ→0+

(
1√
π

∫ ∞

λ
e−z2n

(
1−

(
λ

z

)2)n−1(
−2λ

z2

)
dz

)

= lim
λ→0+

(
− 2n√

π

∫ ∞

1
e−λ2s2

(
1− 1

s2

)n−1 1

s2
ds

)
= − 2n√

π

∫ ∞

1

(
1− 1

s2

)n−1 1

s2
ds,

(3.4)

where the improper integral in (3.4) does converge. By (3.3) and (3.4), we can conclude

the following result.

Lemma 3.1. The solution u(x, t) of the ibvp (1.1) with h(x) ≡ 0, x ∈ (0,∞), g(t) = tn,

t ∈ (0,∞), n ∈ N, is given by

(3.5) u(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2

(
t−

( x

2z

)2)n

dz, (x, t) ∈ (0,∞)× (0,∞).

For fixed t ∈ (0,∞) it satisfies

(3.6) lim
x→∞

u(x, t) = 0

and for fixed x ∈ (0,∞) and t → ∞, it satisfies the following asymptotic behavior

(3.7) u(x, t) = tn + (−C + o(1)) · xtn−1/2, lim
t→∞

o(1) = 0,

where C > 0 is the value of the integral

(3.8) C =
2n√
π

∫ ∞

1

(
1− 1

s2

)n−1 1

s2
ds > 0.

Moreover, along each parabola P (λ) : x/
√
4t = λ, u(x, t) can be expressed as

u(x, t) = Bn(λ)t
n, (x, t) ∈ P (λ), λ ∈ (0,∞),

where Bn(λ) ∈ (0, 1), given by (3.2), is a decreasing function of λ ∈ (0,∞) with

limλ→0+ Bn(λ) = 1 and limλ→∞Bn(λ) = 0.

Remark 3.2. In case n = 0, we have h(x) ≡ 0, g(t) ≡ 1, and (3.5) is still correct with

n = 0, i.e.,

u(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2 dz ∈ (0, 1), (x, t) ∈ (0,∞)× (0,∞).
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Remark 3.3. If we pick n to be the rational number n = 1/2, i.e., g(t) =
√
t, then the

computation in (3.4) is still correct and (3.7) becomes

u(x, t) =
√
t+ (−C + o(1))x, lim

t→∞
o(1) = 0,

where now

C =
1√
π

∫ ∞

1

1

s
√
s2 − 1

ds =

√
π

2
.

Hence we conclude

(3.9) lim
t→∞

∣∣∣∣u(x, t)− (√t−
√
π

2
x

)∣∣∣∣ = 0 for fixed x ∈ (0,∞).

We will need (3.9) in the proof of Lemma 4.15 below.

Proof of Lemma 3.1. It suffices to explain (3.7) a little bit. By (3.3), we have

u(x, t)− tn = −Cxtn−1/2 +

(
Bn(λ)− 1

2λ
+ C

)
xtn−1/2,

where by (3.4) we have for fixed x ∈ (0,∞) the limit

lim
t→∞

(
Bn(λ)− 1

2λ
+ C

)
= lim

λ→0+

(
Bn(λ)− 1

2λ
+ C

)
= 0.

The proof is done.

Case 2: h(x) = xm, x ∈ (0,∞), g(t) ≡ 0, t ∈ (0,∞), m ∈ N. In this case, the solution

behavior depends on whether m is odd or even. We discuss it separately.

Case 2A: m ∈ N is odd. In this case, h(x) is an odd function on (−∞,∞) and by

(2.13) we have u(x, t) = uh(x, t) and

u(x, t) =
1√
4πt

∫ ∞

−∞
e−

(x−ξ)2

4t ξm dξ.

For h(x) = x, g(t) = 0, we have

u(x, t) = x, (x, t) ∈ (0,∞)× (0,∞)

and for h(x) = x3, g(t) = 0, we have

u(x, t) = x3 + 6xt, (x, t) ∈ (0,∞)× (0,∞)

and for h(x) = x5, g(t) = 0, we have

u(x, t) = x5 + 20x3t+ 60xt2, (x, t) ∈ (0,∞)× (0,∞).
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For general odd m, we can try u(x, t) to have the space-time polynomial form

(3.10) u(x, t) = p0(x) + p1(x)t+ p2(x)t
2 + p3(x)t

3 + p4(x)t
4 + · · · (finite terms only),

where we want u(x, 0) = p0(x) = h(x) = xm and each pi(x), i ≥ 1, is a polynomial in x to

be determined. We can plug (3.10) into the heat equation to obtain each pi(x). Compute

ut(x, t) = p1(x) + 2p2(x)t+ 3p3(x)t
2 + 4p4(x)t

3 + · · ·

and

uxx(x, t) = p′′0(x) + p′′1(x)t+ p′′2(x)t
2 + p′′3(x)t

3 + · · · ,

and by comparing the coefficient functions, we need to require

p1(x) = p′′0(x), p2(x) =
1

2
p′′1(x) =

1

2!
p
(4)
0 (x),

p3(x) =
1

3
p′′2(x) =

1

3!
p
(6)
0 (x), . . . , pk(x) =

1

k!
p
(2k)
0 (x), k ∈ N, k ≥ 4.

(3.11)

The above process will cease somewhere since p0(x) = xm has a finite degree. As a result,

we get a space-time polynomial solution u(x, t) of the heat equation on the entire space

(−∞,∞)× (−∞,∞) and it satisfies the initial condition

u(x, 0) = p0(x) = h(x) = xm, ∀x ∈ (0,∞).

However, it may not satisfy the boundary condition u(0, t) = g(t) ≡ 0 unless m is an odd

natural number.

If m = 2k + 1 for some k ∈ N, then the last term pk(x) in (3.11) is given by

pk(x) =
1

k!
p
(2k)
0 (x) =

1

k!

d2k

dx2k
x2k+1 =

(2k + 1)!

k!
x

and so

u(x, t) = x2k+1 + (2k + 1)(2k)x2k−1t+ · · ·+ (2k + 1)!

k!
xtk, (x, t) ∈ (0,∞)× (0,∞),

which is a solution of the ibvp (1.1) with

u(x, 0) = h(x) = x2k+1, u(0, t) = 0, ∀ (x, t) ∈ (0,∞)× (0,∞).

We can conclude the following result.

Lemma 3.4. Let m = 2k + 1, k ∈ N ∪ {0}, be an odd natural number. The solution

u(x, t) of the ibvp (1.1) with h(x) = xm, x ∈ (0,∞), g(t) ≡ 0, t ∈ (0,∞), is given by

(3.12) u(x, t) = xm +m(m− 1)xm−2t+ · · ·+ m!

3!(k − 1)!
x3tk−1 +

m!

k!
xtk,

where (x, t) ∈ (0,∞)× (0,∞).
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Remark 3.5. For fixed t ∈ (0,∞) (fixed x ∈ (0,∞)), one can determine the asymptotic

behavior of u(x, t) as x → ∞ (as t → ∞) easily from (3.12).

Remark 3.6. Note that the space-time polynomial in (3.12) is also a solution of the heat

equation on the entire space x ∈ (−∞,∞) with initial data u(x, 0) = xm, x ∈ (−∞,∞).

Case 2B: m ∈ N is even. The method in the odd case is no longer valid for the even

case. For example, for h(x) = x2, g(t) ≡ 0, the method will give rise to the function

u(x, t) = x2+2t, which satisfies the heat equation with u(x, 0) = x2, but with u(0, t) = 2t,

which is not the desired u(0, t) ≡ 0. We note that for m = 2k, k ∈ N, the last term pk(x)

in (3.11) is now a constant, given by

pk(x) =
1

k!
p
(2k)
0 (x) =

1

k!

d2k

dx2k
x2k =

(2k)!

k!

and the space-time polynomial solution u(x, t), constructed by (3.11), satisfies

(3.13) u(0, t) =
(2k)!

k!
tk, t ∈ (0,∞).

Motivated by (3.13), let v(x, t) be the solution of the ibvp (1.1) with

v(x, 0) = 0, v(0, t) =
(2k)!

k!
tk, ∀x ∈ (0,∞), t ∈ (0,∞).

By (3.5) in the previous example, we know that v(x, t) is given by

v(x, t) =
(2k)!

k!

2√
π

∫ ∞

x/
√
4t
e−z2

(
t−

( x

2z

)2)k

dz, where t−
( x

2z

)2
∈ (0, t).

Hence the function

w(x, t) = u(x, t)− v(x, t)

= x2k + (2k)(2k − 1)x2k−2t+ · · ·+ (2k)!

k!
tk − (2k)!

k!

2√
π

∫ ∞

x/
√
4t
e−z2

(
t−

( x

2z

)2)k

dz

will satisfy the ibvp (1.1) with

w(x, 0) = x2k, w(0, t) ≡ 0, ∀x ∈ (0,∞), t ∈ (0,∞).

Note that by (3.7) (with n replaced by k), as t → ∞, we have the asymptotic behavior

for v(x, t) as t → ∞:

v(x, t) =
(2k)!

k!

(
tk + (−C̃ + o(1))xtk−1/2

)
, lim

t→∞
o(1) = 0,

where C̃ > 0 is the value of the integral

(3.14) C̃ =
2k√
π

∫ ∞

1

(
1− 1

s2

)k−1 1

s2
ds.

Similar to Lemma 3.4, we can conclude the following result.
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Lemma 3.7. Let m = 2k, k ∈ N, be an even natural number. The solution u(x, t) of the

ibvp (1.1) with h(x) = xm, x ∈ (0,∞), g(t) ≡ 0, t ∈ (0,∞), is given by

(3.15) u(x, t) = xm +m(m− 1)xm−2t+ · · ·+ m!

2!(k − 1)!
x2tk−1 +

m!

k!
tk − v(x, t),

where (x, t) ∈ (0,∞)× (0,∞) and

v(x, t) =
m!

k!

2√
π

∫ ∞

x/
√
4t
e−z2

(
t−

( x

2z

)2)k

dz.

For fixed t ∈ (0,∞), v(x, t) satisfies

lim
x→∞

v(x, t) = 0

and for fixed x ∈ (0,∞), as t → ∞, it satisfies

(3.16) v(x, t) =
m!

k!

(
tk + (−C̃ + o(1))xtk−1/2

)
, lim

t→∞
o(1) = 0,

where C̃ > 0 is the constant from (3.14).

Remark 3.8. In case m = 0, we have h(x) ≡ 1, g(t) ≡ 0, and (3.15) is still correct with

u(x, t) = 1− 2√
π

∫ ∞

x/
√
4t
e−z2 dz =

1√
π

∫ x/
√
4t

−x/
√
4t
e−z2 dz ∈ (0, 1),

where (x, t) ∈ (0,∞)× (0,∞).

Remark 3.9. For fixed x ∈ (0,∞), as t → ∞, (3.16) says that the leading term in t for the

solution in (3.15) is given by

m!

k!
tk − v(x, t) =

m!

k!
(C̃ − o(1))xtk−1/2

=
m!

k!
(C̃ − o(1))xt(m−1)/2, m = 2k, k ∈ N,

(3.17)

where limt→∞ o(1) = 0. On the other hand, for m = 2k + 1, as t → ∞, the leading term

in t for the solution in (3.12) is given by

(3.18)
m!

k!
xtk =

m!

k!
xt(m−1)/2, m = 2k + 1, k ∈ N ∪ {0}.

In terms of m and for fixed x ∈ (0,∞), both (3.17) and (3.18) have the same order of

exponent as t → ∞, i.e., t(m−1)/2.

As a consequence of Lemmas 3.1, 3.4 and 3.7, we can summarize the following theorem.
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Theorem 3.10 (Solution with polynomial initial-boundary data). Let m,n ∈ N. The

solution u(x, t) of the ibvp (1.1) with h(x) = xm, x ∈ (0,∞), g(t) = tn, t ∈ (0,∞), is

given by

u(x, t) = xm +m(m− 1)xm−2t+ · · ·+ m!

3!(k − 1)!
x3tk−1 +

m!

k!
xtk

+
2√
π

∫ ∞

x/
√
4t
e−z2

(
t−

( x

2z

)2)n

dz, if m = 2k + 1 is odd

(3.19)

and

u(x, t) = xm +m(m− 1)xm−2t+ · · ·+ m!

2!(k − 1)!
x2tk−1 +

m!

k!
tk

− m!

k!

2√
π

∫ ∞

x/
√
4t
e−z2

(
t−

( x

2z

)2)k

dz

+
2√
π

∫ ∞

x/
√
4t
e−z2

(
t−

( x

2z

)2)n

dz, if m = 2k is even,

(3.20)

where (x, t) ∈ (0,∞)× (0,∞).

Case 3: The general polynomial case. We now assume h(x) =
∑m

i=0 aix
i and g(t) =∑n

j=0 bjt
j , m,n ∈ N, where ai, bj are constant with am ̸= 0, bn ̸= 0, then by Theorem 3.10

and the superposition principle for linear equations, one can determine the solution u(x, t)

of the ibvp (1.1) (given by the formula (1.3)) and its space-time asymptotic behavior.

In particular, to determine the asymptotic behavior of u(x, t) when t → ∞ (for fixed

x ∈ (0,∞)), we need to compare the following quantities

m!

k!
xt(m−1)/2 (m = 2k+1),

m!

k!
(C̃ − o(1))xt(m−1)/2 (m = 2k), tn + (−C + o(1))xtn−1/2,

where limt→∞ o(1) = 0 and the constants C, C̃ are from (3.8) and (3.14).

3.1.1. Restriction of u(x, t) to the parabola x/
√
4t = λ > 0 for polynomial

initial-boundary data

When we have polynomial initial-boundary data h(x) = xm, g(t) = tn, m,n ∈ N, in

Theorem 3.10, the solution u(x, t) = uh(x, t) + ug(x, t) is no longer a polynomial due

to the integral terms in (3.19) and (3.20). However, if we restrict the solution to the

1-parameter family of parabolas P (λ) : x/
√
4t = λ, where λ ∈ (0,∞) is a parameter, then,

after suitable rewriting (write t as x2/4λ2 in uh(x, t) and write x as
√
4tλ in ug(x, t)), it

can be expressed as the form

(3.21) u(x, t) = Am(λ)xm +Bn(λ)t
n, ∀ (x, t) ∈ P (λ),
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where Am(λ), Bn(λ) are coefficient functions depending only on m, n, λ.

More precisely, for odd m = 2k + 1, k ∈ N ∪ {0}, in (3.19) we have

uh(x, t) = xm +m(m− 1)xm−2t+ · · ·+ m!

k!
xtk

=

(
1 +

m(m− 1)

4λ2
+ · · ·+ m!

k!(4λ2)k

)
xm := Am(λ)xm, t =

x2

4λ2

and for even m = 2k, k ∈ N, in (3.20) we have

uh(x, t) = xm +m(m− 1)xm−2t+ · · ·+ m!

2(k − 1)!
x2tk−1 +

m!

k!
tk

− m!

k!

2√
π

∫ ∞

x/
√
4t
e−z2

(
t−

(
x

2z

)2)k

dz

=

[
1 +

m(m− 1)

4λ2
+ · · ·+ m!

k!(4λ2)k

(
1− 2√

π

∫ ∞

λ
e−z2

(
1−

(
λ

z

)2)k

dz

)]
xm

:= Am(λ)xm.

As for ug(x, t), by (3.1), we have

ug(x, t) =

(
2√
π

∫ ∞

λ
e−z2

(
1−

(
λ

z

)2)n

dz

)
tn := Bn(λ)t

n, x =
√
4tλ.

We note that

(3.22) A1(λ) = 1, Am(λ) ∈ (1,∞), Bn(λ) ∈ (0, 1), ∀m,n ∈ N, m > 1

with

(3.23) lim
λ→∞

Am(λ) = 1, lim
λ→∞

Bn(λ) = 0, ∀m,n ∈ N, m > 1,

which matches with the initial data h(x) = xm since the parabola curve t = x2/4λ2

approaches the half-line {(x, 0) : x > 0} as λ → ∞. On the other hand, as λ → 0+, we

have

(3.24) lim
λ→0+

Am(λ) = ∞, lim
λ→0+

Am(λ)λm = 0, lim
λ→0+

Bn(λ) = 1, ∀m,n ∈ N, m > 1,

regardless of whether m is odd or even.

Remark 3.11. For m = 0 and n = 0, we have

(3.25) A0(λ) =
1√
π

∫ λ

−λ
e−z2 dz, B0(λ) =

2√
π

∫ ∞

λ
e−z2 dz, A0(λ) +B0(λ) = 1

for all λ ∈ (0,∞).
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Now we look at the general polynomial case. Assume h(x) =
∑m

i=0 aix
i and g(t) =∑n

j=0 bjt
j , m,n ∈ N, where ai, bj are constant with am ̸= 0, bn ̸= 0. By the superposition

principle and (3.21), we have

u(x, t) =

m∑
i=0

Ai(λ)aix
i +

n∑
j=0

Bj(λ)bjt
j , ∀ (x, t) ∈ P (λ).

One can use (3.22), (3.23), (3.24) and (3.25) to know the asymptotic behavior of each

Ai(λ) and Bj(λ).

3.2. Trigonometric initial-boundary data

The trigonometric functions which can be defined on (0,∞) are sine and cosine functions.

For simplicity, we only look at the case h(x) = sinx and g(t) = sin t in the ibvp (1.1).

The discussions of other combinations are similar. Both functions are bounded on (0,∞)

satisfying the basic assumption (1.2). By (2.1), the solution u(x, t) is given by

(3.26) u(x, t) = uh(x, t) + ug(x, t) = e−t sinx+
2√
π

∫ ∞

x/
√
4t
e−z2 sin

(
t−

( x

2z

)2)
dz,

which is smooth on (0,∞)× (0,∞) and satisfies (1.4), (1.5) and

lim
x→∞

|u(x, t)− e−t sinx| = 0 for fixed t ∈ (0,∞).

As for fixed x ∈ (0,∞) and t → ∞, we first expand sin(t− x2/(4z2)) to get

ug(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2 sin

(
t− x2

4z2

)
dz

=

(
2√
π

∫ ∞

x/
√
4t
e−z2 cos

(
x2

4z2

)
dz

)
sin t−

(
2√
π

∫ ∞

x/
√
4t
e−z2 sin

(
x2

4z2

)
dz

)
cos t,

and conclude

lim
t→∞

2√
π

∫ ∞

x/
√
4t
e−z2 cos

(
x2

4z2

)
dz =

2√
π

∫ ∞

0
e−z2 cos

(
x2

4z2

)
dz := A(x),

lim
t→∞

2√
π

∫ ∞

x/
√
4t
e−z2 sin

(
x2

4z2

)
dz =

2√
π

∫ ∞

0
e−z2 sin

(
x2

4z2

)
dz := B(x).

(3.27)

By Hölder inequality, the functions A(x), B(x) satisfy (decompose e−z2 cos(x2/(4z2)) as√
e−z2 ·

√
e−z2 cos(x2/(4z2)), etc.)

0 ≤ A2(x) <
2√
π

∫ ∞

0
e−z2 cos2

(
x2

4z2

)
dz, x ∈ (0,∞)
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and

0 ≤ B2(x) <
2√
π

∫ ∞

0
e−z2 sin2

(
x2

4z2

)
dz, x ∈ (0,∞),

which implies 0 ≤ A2(x) +B2(x) < 1 for all x ∈ (0,∞). Since uh(x, t) = e−t sinx → 0 as

t → ∞, we can conclude

lim
t→∞

|u(x, t)− (A(x) sin t−B(x) cos t)| = 0 for fixed x ∈ (0,∞)

and so

−1 = inf
t∈(0,∞)

g(t) < lim inf
t→∞

u(x, t) = −
√
A2(x) +B2(x)

≤
√

A2(x) +B2(x) = lim sup
t→∞

u(x, t) < sup
t∈(0,∞)

g(t) = 1.
(3.28)

We also note that

lim
x→0+

A(x) = 1, lim
x→0+

B(x) = 0,

which matches with the fact that u(0, t) = g(t) = sin t. Also by the Riemann–Lebesgue

Lemma, we have

lim
x→∞

A(x) = lim
x→∞

2√
π

∫ ∞

0
e−z2 cos

(
x2

4z2

)
dz (let z = 1/

√
s)

= lim
x→∞

1√
π

∫ ∞

0

1

s3/2
e−

1
s cos

(
x2

4
s

)
ds = 0

and similarly limx→∞B(x) = 0.

Due to h(0) = g(0) = 0, u(x, t) satisfies the 2-dimensional limit lim(x,t)→(0+,0+) u(x, t) =

0 and lies in the space (1.9) if we define u(0, 0) = 0.

We can summarize the main result in this section, i.e.,

Lemma 3.12 (Solution with trigonometric initial-boundary data). The solution u(x, t)

of the ibvp (1.1) with h(x) = sinx, x ∈ (0,∞), g(t) = sin t, t ∈ (0,∞), is given by (3.26)

and it satisfies

(3.29) lim
x→∞

|u(x, t)− e−t sinx| = 0 for fixed t ∈ (0,∞)

and

(3.30) lim
t→∞

|u(x, t)− (A(x) sin t−B(x) cos t)| = 0 for fixed x ∈ (0,∞),

where A(x) and B(x) are given by (3.27).

Remark 3.13. We can write A(x) on (0,∞) as

A(x) =
2√
π

∫ ∞

0
H(y) cos(x2y) dy, where H(y) =

1

4
y−3/2e−1/4y ∈ L1(0,∞).
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By the uniqueness theorem for Fourier-cosine transform of functions in the space L1(0,∞),

the function A(x) is not identically equal to zero on x ∈ (0,∞). Similarly, the function

B(x) is not identically equal to zero on x ∈ (0,∞). We think the identity A2(x)+B2(x) = 0

will not happen for all x ∈ (0,∞), but do not know how to prove it.

3.3. Logarithmic initial-boundary data

In this section, we take h(x) = log(x+ 1), x ∈ (0,∞), g(t) = log(t+ 1), t ∈ (0,∞), in the

ibvp (1.1). By (2.1), we have u(x, t) = uh(x, t) + ug(x, t), where

uh(x, t)

=
1√
π

(∫ ∞

−x/
√
4t
e−z2 log(x+

√
4tz + 1) dz −

∫ ∞

x/
√
4t
e−z2 log(−x+

√
4tz + 1) dz

)
:= I(x, t)− II(x, t), (x, t) ∈ (0,∞)× (0,∞)

(3.31)

and

(3.32) ug(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2 log

(
t−

( x

2z

)2
+ 1

)
dz, (x, t) ∈ (0,∞)× (0,∞).

We first look at limx→∞ uh(x, t) and limx→∞ ug(x, t) for fixed t ∈ (0,∞). For ug(x, t), we

clearly have

(3.33)

lim
x→∞

ug(x, t) = lim
x→∞

2√
π

∫ ∞

x/
√
4t
e−z2 log

(
t−

( x

2z

)2
+ 1

)
dz = 0 for fixed t ∈ (0,∞)

due to t−(x/2z)2+1 ∈ (1, t+1) for z ∈ (x/
√
4t,∞). As for uh(x, t), letting ξ = −x+

√
4tz

in II(x, t), we obtain

(3.34)

lim
x→∞

II(x, t) = lim
x→∞

1√
4πt

e−
x2

4t

∫ ∞

0
e−

2xξ
4t e−

ξ2

4t log(ξ + 1) dξ = 0 for fixed t ∈ (0,∞),

where we have applied the LDCT in (3.34) with∣∣e− 2xξ
4t e−

ξ2

4t log(ξ + 1)
∣∣ ≤ e−

ξ2

4t log(ξ + 1) ∈ L1(0,∞) for fixed t ∈ (0,∞)

for all x ∈ (0,∞). It remains to estimate I(x, t). We look at the difference

I(x, t)− log x

=
1√
π

∫ ∞

−x/
√
4t
e−z2 log(x+

√
4tz + 1) dz −

(
1√
π

∫ ∞

−∞
e−z2 dz

)
log x

=
1√
π

∫ ∞

−x/
√
4t
e−z2 [log(x+

√
4tz + 1)− log x] dz −

(
1√
π

∫ −x/
√
4t

−∞
e−z2 dz

)
log x

=
1√
π

∫ ∞

−x/
√
4t
e−z2 log

(
1 +

1

x
+

√
4tz

x

)
dz −

(
1√
π

∫ −x/
√
4t

−∞
e−z2 dz

)
log x,

(3.35)
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where, for fixed t ∈ (0,∞), the second integral in (3.35) will tend to zero as x → ∞ due

to the estimate (2.4) in Lemma 2.5.

For the first integral in (3.35), we note that for any fixed large number M > 0 (say

M > 1/
√
4t), as long as x > 0 is sufficiently large (with x >

√
4tM), it can be decomposed

as

(3.36)
1√
π

∫ ∞

−x/
√
4t
(∗) dz =

1√
π

∫ −M

−x/
√
4t
(∗) dz + 1√

π

∫ M

−M
(∗) dz + 1√

π

∫ ∞

M
(∗) dz,

and by the LDCT, the second integrals in (3.36) will tend to 0 as x → ∞. As for the third

integral in (3.36), for fixed t ∈ (0,∞), if x > 0 is large enough, we will have

0 < e−z2 log

(
1 +

1

x
+

√
4tz

x

)
< e−z2 log(2 + z) ∈ L1(M,∞), ∀ z ∈ [M,∞).

Hence the LDCT is applicable and we get

lim
x→∞

(
1√
π

∫ ∞

M
e−z2 log

(
1 +

1

x
+

√
4tz

x

)
dz

)
= 0.

However, we need extra care on the first integral in (3.36) since the function log(1+1/x+√
4tz/x) will tend to −∞ as x → ∞ and z is close to −x/

√
4t. We do the change of

variables z = (x/
√
4t)s in the first integral to get

1√
π

∫ −M

−x/
√
4t
e−z2 log

(
1 +

1

x
+

√
4tz

x

)
dz

=
1√
π

∫ −(
√
4t/x)M

−1

(
e−((x/

√
4t)s)2 x√

4t
s

)
log
(
1 + s+ 1

x

)
s+ 1

x

s+ 1
x

s
ds

(3.37)

and note the following: (1) e−θ2θ is a bounded function on θ ∈ (−∞,∞). (2) For large

M > 0 and even larger x ≫ M , we have

−1 +
1

x
≤ s+

1

x
≤ 1−

√
4tM

x
< 0, s+

1

x
∈ (−1, 0), where s ∈ [−1,−(

√
4t/x)M ]

and ∣∣∣∣∣s+ 1
x

s

∣∣∣∣∣ ≤ 1 +

∣∣∣∣ 1sx
∣∣∣∣ ≤ 1 +

1√
4tM

≤ 2, where −x ≤ sx ≤ −
√
4tM < −1.

(3) The positive function P (θ), θ ∈ (−1, 0), given by

P (θ) =
log(1 + θ)

θ
> 0, P ′(θ) =

θ − (1 + θ) log(1 + θ)

(1 + θ)θ2
, θ ∈ (−1, 0)
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is strictly decreasing on θ ∈ (−1, 0) with

lim
θ→(−1)+

P (θ) = +∞, lim
θ→0−

P (θ) = 1, lim
θ→(−1)+

P ′(θ) = −∞, lim
θ→0−

P ′(θ) = −1/2.

(4) The improper integral ∫ 0

−1

log(1 + s)

s
ds

converges. By the above four properties, we can apply a slight modification of the LDCT

to the integral in (3.37) and obtain, for fixed t ∈ (0,∞), the following

lim
x→∞

1√
π

∫ −(
√
4t/x)M

−1

(
e−((x/

√
4t)s)2 x√

4t
s

)
log
(
1 + 1

x + s
)

s+ 1
x

s+ 1
x

s
ds

=
1√
π

∫ 0

−1
lim
x→∞

[(
e−((x/

√
4t)s)2 x√

4t
s

)
log
(
1 + 1

x + s
)

s+ 1
x

s+ 1
x

s

]
ds = 0.

(3.38)

More precisely, for any sequence xn → ∞, where, without loss of generality, we may take

xn = n ∈ N, let

Fn(s) =


(
e−((n/

√
4t)s)2 n√

4t
s
) log (1+ 1

n
+s
)

s+ 1
n

s+ 1
n

s , s ∈
(
− 1,−

√
4t
n M

]
,

0, s ∈
[
−

√
4t
n M, 0

)
.

For each fixed s ∈ (−1, 0) it will lie on the integral (−1,−(
√
4t/n)M ] as long as n ∈ N is

large enough, and we have

s+
1

n
∈

(
−1 +

1

n
,−

√
4t

n
M +

1

n

]
⊂ (−1, 0) for all large n and lim

n→∞
Fn(s) = 0.

Also, by the decreasing property of P (θ) = (log(1 + θ))/θ on θ ∈ (−1, 0), we have

|Fn(s)| ≤

C1 · log(1+s)
s · C2, ∀ s ∈

(
− 1,−

√
4t
n M

]
⊂ (−1, 0), ∀n ∈ N, n ≫ 0,

0, s ∈ [−(
√
4t/n)M, 0),

where C1, C2 are some positive constants independent of s and n. Hence, as long as n ∈ N
is large enough, we have

|Fn(s)| ≤ C1 ·
log(1 + s)

s
· C2, ∀ s ∈ (−1, 0),

where we know that
∫ 0
−1

1
s log(1+ s) ds converges. The LDCT can now be applied and we

have

lim
n→∞

∫ −(
√
4t/n)M

−1

(
e−((n/

√
4t)s)2 n√

4t
s

)
log
(
1 + 1

n + s
)

s+ 1
n

s+ 1
n

s
ds

= lim
n→∞

∫ 0

−1
Fn(s) ds =

∫ 0

−1

(
lim
n→∞

Fn(s)
)
ds =

∫ 0

−1
0 ds = 0.
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The same argument can be applied to any sequence xn → ∞. Therefore, the conclusion

in (3.38) is verified and the three integrals in (3.36) all tend to 0 as x → ∞.

As a result of (3.33), (3.34) and (3.35), we can conclude the following space asymptotic

behavior (note that u(x, t) = I(x, t)− II(x, t) + ug(x, t))

lim
x→∞

|u(x, t)− log x| = lim
x→∞

|u(x, t)− log(x+ 1)| = 0 for fixed t ∈ (0,∞).

Next, we look at limt→∞ uh(x, t) and limt→∞ ug(x, t) for fixed x ∈ (0,∞). For uh(x, t),

we can write I(x, t) in (3.31) as

I(x, t) =
1√
π

∫ ∞

−x/
√
4t
e−z2

(
log

√
4t+ log

(
x√
4t

+ z +
1√
4t

))
dz

=

(
1√
π

∫ ∞

−x/
√
4t
e−z2 dz

)
log

√
4t+

1√
π

∫ ∞

−x/
√
4t
e−z2 log

(
x√
4t

+ z +
1√
4t

)
dz

:= IA(x, t) + IB(x, t)

and similarly, we can write II(x, t) in (3.31) as

II(x, t) =

(
1√
π

∫ ∞

x/
√
4t
e−z2 dz

)
log

√
4t+

1√
π

∫ ∞

x/
√
4t
e−z2 log

(
− x√

4t
+ z +

1√
4t

)
dz

:= IIA(x, t) + IIB(x, t).

Since the integral
∫∞
0 e−z2(log z) dz converges, one can modified the LDCT slightly to get

(3.39) lim
t→∞

IB(x, t) = lim
t→∞

IIB(x, t) =
1√
π

∫ ∞

0
e−z2(log z) dz.

Hence, to find the limit limt→∞ uh(x, t), it suffices to look at

(3.40) lim
t→∞

(IA(x, t)− IIA(x, t)) = lim
t→∞

[(
1√
π

∫ x/
√
4t

−x/
√
4t
e−z2 dz

)
log

√
4t

]
= 0,

where the limit in (3.40) is easily seen by the L’Hospital rule. By (3.39) and (3.40), we

conclude

(3.41) lim
t→∞

uh(x, t) = lim
t→∞

(I(x, t)− II(x, t)) = 0 for fixed x ∈ (0,∞).

Next, we look at ug(x, t) given by (3.32), which can be written as

(3.42) ug(x, t) =

(
2√
π

∫ ∞

x/
√
4t
e−z2 dz

)
log t+

2√
π

∫ ∞

x/
√
4t
e−z2 log

(
1− 1

t

( x

2z

)2
+

1

t

)
dz.
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Again we need extra care on the second integral in (3.42) since the function log
(
1 −

(x/2z)2/t+ 1/t
)
will tend to −∞ as t → ∞ and z is close to x/

√
4t. We choose δ ∈ (0, 1)

to be a small fixed number and decompose the second integral in (3.42) as

2√
π

∫ ∞

x/
√
4t
e−z2 log

(
1− 1

t

( x

2z

)2
+

1

t

)
dz

=
2√
π

(∫ x/
√
4δt

x/
√
4t

+

∫ ∞

x/
√
4δt

)
e−z2 log

(
1− 1

t

( x

2z

)2
+

1

t

)
dz, (x, t) ∈ (0,∞)× (0,∞)

(3.43)

and do the change of variables z = x/
√
4st for the first integral to get

(3.44)

2√
π

∫ x/
√
4δt

x/
√
4t

e−z2 log

(
1− 1

t

( x

2z

)2
+

1

t

)
dz =

1√
π

∫ 1

δ
e−

x2

4st
x√
4st

log
(
1− s+ 1

t

)
s

ds.

For large t > 0 satisfying 1/t < δ, we have 1− s+ 1
t < 1 for all s ∈ [δ, 1] and then∣∣∣∣log(1− s+

1

t

)∣∣∣∣ ≤ ∣∣∣∣log(1

t

)∣∣∣∣ = log t, ∀ s ∈ [δ, 1].

Therefore, the integrand function in (3.44) on the interval s ∈ [δ, 1] satisfies∣∣∣∣∣e− x2

4st
x√
4st

log
(
1− s+ 1

t

)
s

∣∣∣∣∣ ≤ x√
4δt

log t

δ
, ∀ s ∈ [δ, 1],

1

t
< δ,

which implies, for fixed x ∈ (0,∞) and fixed small δ ∈ (0, 1), the limit

(3.45)

lim
t→∞

∣∣∣∣∣ 2√
π

∫ x/
√
4δt

x/
√
4t

e−z2 log

(
1− 1

t

( x

2z

)2
+

1

t

)
dz

∣∣∣∣∣ ≤ lim
t→∞

∣∣∣∣ 1√
π

∫ 1

δ

x√
4δt

log t

δ
ds

∣∣∣∣ = 0.

For the second integral in (3.43), we do not do change of variables. Instead, we restrict

the integral on the parabola x/
√
4t = λ and let λ → 0 (equivalent to t → ∞ for fixed

x ∈ (0,∞)). More precisely, we have

(3.46)

2√
π

∫ ∞

x/
√
4δt

e−z2 log

(
1− 1

t

( x

2z

)2
+

1

t

)
dz =

2√
π

∫ ∞

λ/
√
δ
e−z2 log

(
1−

(
λ

z

)2

+
4λ2

x2

)
dz,

where by

1−
(
λ

z

)2

+
4λ2

x2
∈
(
1− δ +

4λ2

x2
, 1 +

4λ2

x2

)
, ∀ z ∈ [λ/

√
δ,∞)

we have for sufficiently small λ > 0 the estimate∣∣∣∣ log(1− (λ

z

)2

+
4λ2

x2

)∣∣∣∣ ≤ ∣∣∣∣log(1− δ +
4λ2

x2

)∣∣∣∣
≤ | log(1− δ)| = − log(1− δ), ∀ z ∈ [λ/

√
δ,∞)
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and so

e−z2
∣∣∣∣ log(1− (λ

z

)2

+
4λ2

x2

)∣∣∣∣ ≤ e−z2(− log(1− δ)), ∀ z ∈ [λ/
√
δ,∞)

for all sufficiently small λ > 0.

Let λ = 1/n, n = 1, 2, 3, . . . and let

Fn(z) =

e−z2 log
(
1−

(
1
nz

)2
+ 4

n2x2

)
, z ∈ [1/(n

√
δ),∞),

0, z ∈ [0, 1/(n
√
δ)).

It satisfies for large n ∈ N the estimate

|Fn(z)| ≤ e−z2(− log(1− δ)), ∀n ≫ 0, ∀ z ∈ [0,∞),

where e−z2(− log(1− δ)) ∈ L1[0,∞), and

lim
n→∞

Fn(z) = 0 for all fixed z ∈ [0,∞).

Hence the LDCT can be applied to the integral in (3.46), i.e., for fixed x ∈ (0,∞), we

have

lim
n→∞

∫ ∞

1/(n
√
δ)
e−z2 log

(
1−

(
1

nz

)2

+
4

n2x2

)
dz = lim

n→∞

∫ ∞

0
Fn(z) dz

=

∫ ∞

0
lim
n→∞

Fn(z) dz = 0.

Therefore, we have

lim
λ→0, λ=1/n

2√
π

∫ ∞

λ/
√
δ
e−z2 log

(
1−

(
λ

z

)2

+
4λ2

x2

)
dz = 0.

One can repeat the above argument along any sequence λ = λn → 0. Therefore, by (3.46),

we conclude

(3.47) lim
t→∞

2√
π

∫ ∞

x/
√
4δt

e−z2 log

(
1− 1

t

( x

2z

)2
+

1

t

)
dz = 0.

Now (3.47) and (3.45) imply that the second integral in (3.42) converges to 0 as t → ∞
and we obtain

lim
t→∞

|ug(x, t)− log t| = lim
t→∞

∣∣∣∣∣
(

2√
π

∫ ∞

x/
√
4t
e−z2 dz − 1

)
log t

∣∣∣∣∣
= lim

t→∞

∣∣∣∣∣
(
− 2√

π

∫ x/
√
4t

0
e−z2 dz

)
log t

∣∣∣∣∣ = 0,

(3.48)
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where the limit in (3.48) is due to the L’Hospital rule. As a result, we conclude

lim
t→∞

|ug(x, t)− log t| = lim
t→∞

|ug(x, t)− log(t+ 1)| = 0 for fixed x ∈ (0,∞)

and together with (3.41), we obtain

lim
t→∞

|u(x, t)− log t| = lim
t→∞

|u(x, t)− log(t+ 1)| = 0 for fixed x ∈ (0,∞).

Due to h(0) = g(0) = 0, u(x, t) satisfies the 2-dimensional limit lim(x,t)→(0+,0+) u(x, t) =

0 and lies in the space

u(x, t) ∈ C∞((0,∞)× (0,∞)) ∩ C0([0,∞)× [0,∞))

if we define u(0, 0) = 0.

We can summarize the main result in this section, i.e.,

Lemma 3.14 (Solution with logarithmic initial-boundary data). The solution u(x, t) of

the ibvp (1.1) with h(x) = log(x+ 1), x ∈ (0,∞), g(t) = log(t+ 1), t ∈ (0,∞), satisfies

lim
x→∞

|u(x, t)− log(x+ 1)| = 0 for fixed t ∈ (0,∞)

and

lim
t→∞

|u(x, t)− log(t+ 1)| = 0 for fixed x ∈ (0,∞).

Remark 3.15 (Exponential initial-boundary data). As a comparison, if we take exponen-

tial initial-boundary data with h(x) = ex, x ∈ (0,∞), g(t) = et, t ∈ (0,∞), then the

solution u(x, t) of the ibvp (1.1) is given by u(x, t) = ex+t, (x, t) ∈ (0,∞) × (0,∞). The

asymptotic behavior of u(x, t) is clear.

4. Prescribing the oscillation limits of solutions of the ibvp (1.1)

4.1. Prescribing the oscillation limits of u(x, t) using slow-oscillation initial-boundary

data

In this section, we want to explore the space-time oscillation behavior of u(x, t). In

particular, we would like to prescribe the liminf and limsup values of u(x, t) as x → ∞
or as t → ∞ respectively. The idea is to use certain slow-oscillation functions for h(x)

and for g(t). For oscillation behavior of solutions to the heat equation on the entire space

x ∈ (−∞,∞) or x ∈ Rn, one can see the two papers [3, 11].

We first take the following initial-boundary data in the ibvp (1.1):

h(x) = sin(log(x+ 1)), g(t) = sin(log(t+ 1)), x ∈ (0,∞), t ∈ (0,∞).
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Both functions oscillate between −1 and +1, with asymptotically slow oscillation due to

h′(x) = O(1/(x+ 1)), x → ∞, and g′(t) = O(1/(t+ 1)), t → ∞. In this case, we have

uh(x, t) =
1√
π

∫ ∞

−x/
√
4t
e−z2 sin(log(x+

√
4tz + 1)) dz

− 1√
π

∫ ∞

x/
√
4t
e−z2 sin(log(−x+

√
4tz + 1)) dz

:= I(x, t)− II(x, t)

and

(4.1) ug(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2 sin

(
log

(
t−

( x

2z

)2
+ 1

))
dz.

For fixed t ∈ (0,∞) and x → ∞, we clearly have

(4.2) lim
x→∞

II(x, t) = 0 and lim
x→∞

ug(x, t) = 0.

As for I(x, t) in uh(x, t), we have

I(x, t) =
1√
π

∫ ∞

−x/
√
4t
e−z2 sin

(
log(x+ 1) + log

(
1 +

√
4tz

x+ 1

))
dz,

which, by the LDCT (note that sin(·) is always bounded by 1), implies

(4.3) lim
x→∞

|I(x, t)− sin(log(x+ 1))| = 0 for fixed t ∈ (0,∞).

Hence we conclude

lim
x→∞

|u(x, t)− sin(log(x+ 1))| = 0 for fixed t ∈ (0,∞).

On the other hand, for fixed x ∈ (0,∞) and t → ∞, we first note that uh(0, t) = 0 for

all t ∈ (0,∞). Since h(x) is a bounded function, the gradient estimate (2.19) holds and,

for fixed x ∈ (0,∞), we have

(4.4) |uh(x, t)| = |uh(x, t)− uh(0, t)| ≤
Mx√
πt

→ 0 as t → ∞.

For ug(x, t), we have

ug(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2 sin

[
log(t+ 1) + log

(
1− 1

t+ 1

( x

2z

)2)]
dz

=

[
2√
π

∫ ∞

x/
√
4t
e−z2 cos

(
log

(
1− 1

t+ 1

( x

2z

)2))
dz

]
sin(log(t+ 1))

+

[
2√
π

∫ ∞

x/
√
4t
e−z2 sin

(
log

(
1− 1

t+ 1

( x

2z

)2))
dz

]
cos(log(t+ 1)),
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where by

lim
t→∞

2√
π

∫ ∞

x/
√
4t
e−z2 cos

(
log

(
1− 1

t+ 1

( x

2z

)2))
dz = 1,

lim
t→∞

2√
π

∫ ∞

x/
√
4t
e−z2 sin

(
log

(
1− 1

t+ 1

( x

2z

)2))
dz = 0,

we obtain

(4.5) lim
t→∞

|ug(x, t)− sin(log(t+ 1))| = 0 for fixed x ∈ (0,∞).

Hence we conclude

lim
t→∞

|u(x, t)− sin(log(t+ 1))| = 0 for fixed x ∈ (0,∞).

In this example, we have (compare with (3.28))

−1 = inf
t∈(0,∞)

g(t) = lim inf
t→∞

u(x, t) < lim sup
t→∞

u(x, t) = sup
t∈(0,∞)

g(t) = 1.

Due to h(0) = g(0) = 0, u(x, t) satisfies the 2-dimensional limit lim(x,t)→(0+,0+) u(x, t) =

0 and lies in the space

u(x, t) ∈ C∞((0,∞)× (0,∞)) ∩ C0([0,∞)× [0,∞))

if we define u(0, 0) = 0.

We can summarize the above as

Lemma 4.1. The solution u(x, t) of the ibvp (1.1) with

(4.6) h(x) = sin(log(x+ 1)), g(t) = sin(log(t+ 1)), x ∈ (0,∞), t ∈ (0,∞)

satisfies

lim
x→∞

|u(x, t)− sin(log(x+ 1))| = 0 for fixed t ∈ (0,∞)

and

lim
t→∞

|u(x, t)− sin(log(t+ 1))| = 0 for fixed x ∈ (0,∞).

4.1.1. Prescribing the space-time oscillation limits of u(x, t)

With the help of the above h(x) and g(t) in (4.6), we can establish the following prescribing

result.
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Lemma 4.2 (Prescribing the space-time oscillation limits; finite case). Consider the

ibvp (1.1). For any four finite numbers c1 ≤ c2, c3 ≤ c4, one can find a solution u(x, t) of

(1.1) lying in the space

(4.7) u(x, t) ∈ C∞((0,∞)× (0,∞)) ∩ C0(([0,∞)× [0,∞)) \ {(0, 0)})

and satisfies

c1 = lim inf
x→∞

u(x, t) ≤ lim sup
x→∞

u(x, t) = c2 for fixed t ∈ (0,∞),(4.8a)

c3 = lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) = c4 for fixed x ∈ (0,∞).(4.8b)

Proof. We take the initial-boundary data in (1.1) ash(x) = p sin(log(x+ 1)) + q, x ∈ (0,∞),

g(t) = α sin(log(t+ 1)) + β, t ∈ (0,∞),

where α, β, p, q are constants with p ≥ 0 and α ≥ 0. By (2.1), (4.2) and (4.3), we have

lim
x→∞

|u(x, t)− (p sin(log(x+ 1)) + q)| = 0 for fixed t ∈ (0,∞).

Similarly, by (2.1), (4.4) and (4.5), we have

lim
t→∞

|u(x, t)− (α sin(log(t+ 1)) + β)| = 0 for fixed x ∈ (0,∞).

Hence we conclude

−p+ q = lim inf
x→∞

u(x, t) ≤ lim sup
x→∞

u(x, t) = p+ q for fixed t ∈ (0,∞)

and

−α+ β = lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) = α+ β for fixed x ∈ (0,∞).

Now (4.8a) will follow if we choose q = (c2 + c1)/2, p = (c2 − c1)/2. The proof for (4.8b)

will also follow if we choose β = (c4 + c3)/2, α = (c4 − c3)/2. Since we do not have

h(0) = g(0) in general, the solution lies in the space (4.7). It may not be continuous up

to (x, t) = (0, 0). The proof is done.

Remark 4.3. In case we have c1 + c2 = c3 + c4, it will imply h(0) = g(0) and u(x, t) can

be continuous up to (0, 0) if we define u(0, 0) = h(0).

Another interesting prescribing result is the following
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Lemma 4.4 (Prescribing the space-time oscillation limits; finite-infinite case). Consider

the ibvp (1.1). For any two finite numbers c1 ≤ c2, one can find a solution u(x, t) of (1.1)

lying in the space (4.7) and satisfies

c1 = lim inf
x→∞

u(x, t) ≤ lim sup
x→∞

u(x, t) = c2 for fixed t ∈ (0,∞),(4.9a)

−∞ = lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) = +∞ for fixed x ∈ (0,∞).(4.9b)

Similarly, for any two finite numbers c3 ≤ c4, one can find a solution u(x, t) of (1.1) lying

in the space (4.7) and satisfies

−∞ = lim inf
x→∞

u(x, t) ≤ lim sup
x→∞

u(x, t) = +∞ for fixed t ∈ (0,∞),(4.10a)

c3 = lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) = c4 for fixed x ∈ (0,∞).(4.10b)

Proof. Take the initial-boundary data for (1.1) as

(4.11)

h(x) = c2−c1
2 sin(log(x+ 1)) + c2+c1

2 , x ∈ (0,∞),

g(t) = t sin(log t), t ∈ (0,∞),

and obtain u(x, t) = uh(x, t) + ug(x, t), where by the results in (2.1), (4.3) and (4.4), we

have

lim
x→∞

∣∣∣∣uh(x, t)− (c2 − c1
2

sin(log(x+ 1)) +
c2 + c1

2

)∣∣∣∣ = 0 for fixed t ∈ (0,∞),

lim
t→∞

uh(x, t) = 0 for fixed x ∈ (0,∞).

(4.12)

As for ug(x, t), we have

ug(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2

(
t− x2

4z2

)
sin

(
log

(
t− x2

4z2

))
dz

= t
2√
π

∫ ∞

x/
√
4t
e−z2

(
1− 1

t

x2

4z2

)
sin

(
log t+ log

(
1− 1

t

x2

4z2

))
dz

= t
[
A(x, t) sin(log t) +B(x, t) cos(log t)

]
, (x, t) ∈ (0,∞)× (0,∞),

(4.13)

where

A(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2

(
1− 1

t

x2

4z2

)
cos

(
log

(
1− 1

t

x2

4z2

))
dz,

B(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2

(
1− 1

t

x2

4z2

)
sin

(
log

(
1− 1

t

x2

4z2

))
dz.

(4.14)

By

1− 1

t

x2

4z2
∈ (0, 1) for all z ∈ (x/

√
4t,∞),
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we can apply a slight modification of the LDCT to the integral in (4.14) and obtain

lim
x→∞

A(x, t) = lim
x→∞

B(x, t) = 0 for fixed t ∈ (0,∞),

lim
t→∞

A(x, t) = 1, lim
t→∞

B(x, t) = 0 for fixed x ∈ (0,∞),
(4.15)

which implies

lim
x→∞

ug(x, t) = 0 for fixed t ∈ (0,∞),

lim inf
t→∞

ug(x, t) = −∞, lim sup
t→∞

ug(x, t) = +∞ for fixed x ∈ (0,∞).
(4.16)

Combining (4.12) and (4.16) will prove (4.9a) and (4.9b).

For (4.10), we take the initial-boundary data for (1.1) ash(x) = x cosx, x ∈ (0,∞),

g(t) = c4−c3
2 sin(log(t+ 1)) + c4+c3

2 , t ∈ (0,∞).

The corresponding solution u(x, t) is given by

u(x, t) =
(
e−tx cosx− 2te−t sinx

)
+

c4 − c3
2

(
2√
π

∫ ∞

x/
√
4t
e−z2 sin

(
log

(
t−

( x

2z

)2
+ 1

))
dz

)

+
c4 + c3

2

(
2√
π

∫ ∞

x/
√
4t
e−z2 dz

)
:= uh(x, t) +

c4 − c3
2

ug1(x, t) +
c4 + c3

2
ug2(x, t), (x, t) ∈ (0,∞)× (0,∞).

(4.17)

By (4.1) and (4.2), we know that

lim
x→∞

ug1(x, t) = lim
x→∞

ug2(x, t) = 0 for fixed t ∈ (0,∞).

Hence, for fixed t ∈ (0,∞), we conclude

lim inf
x→∞

u(x, t) = lim inf
x→∞

(
e−tx cosx− 2te−t sinx

)
= −∞,

lim sup
x→∞

u(x, t) = lim sup
x→∞

(
e−tx cosx− 2te−t sinx

)
= +∞

which gives (4.10a). On the other hand, for fixed x ∈ (0,∞), we first have limt→∞ uh(x, t) =

0. Also by (4.5), we have

lim
t→∞

|ug1(x, t)− sin(log(t+ 1))| = 0, lim
t→∞

ug2(x, t) = 1 for fixed x ∈ (0,∞).

Therefore, by (4.17), we conclude

c3 = lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) = c4 for fixed x ∈ (0,∞),

which gives (4.10b).
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Our next prescribing result is the following

Lemma 4.5 (Prescribing the space-time oscillation limits; infinite case). Consider the

ibvp (1.1). One can find a solution u(x, t) of (1.1) lying in the space (4.7) and satisfies

−∞ = lim inf
x→∞

u(x, t) ≤ lim sup
x→∞

u(x, t) = +∞ for fixed t ∈ (0,∞),

−∞ = lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) = +∞ for fixed x ∈ (0,∞).
(4.18)

Proof. This is comparatively easy. Let α ̸= 0, β ̸= 0 be two arbitrary constants and let

p = α2 − β2, q = 2αβ. Then the function

u(x, t) = eαx+pt sin(βx+ qt), (x, t) ∈ (0,∞)× (0,∞)

is a solution of the heat equation on (0,∞) × (0,∞) with u(x, 0) = eαx sinβx, u(0, t) =

ept sin qt. We choose the initial-boundary data for (1.1) as h(x) = e2x sinx, g(t) =

e3t sin(4t) and obtain the solution

u(x, t) = e2x+3t sin(x+ 4t), (x, t) ∈ (0,∞)× (0,∞),

which clearly satisfies (4.18).

To end this section, we note that, without oscillation, it is much easier to prescribe

the convergent limit of u(x, t) as x → ∞ or as t → ∞. We have

Lemma 4.6 (Prescribing the space-time convergent limit). For any two numbers −∞ ≤
p, q ≤ +∞, one can find a solution u(x, t) of (1.1) lying in the space (4.7) and satisfies

lim
x→∞

u(x, t) = p for fixed t ∈ (0,∞),

lim
t→∞

u(x, t) = q for fixed x ∈ (0,∞).

Proof. If both p, q are finite numbers, we just take h(x) = p, g(t) = q. If p is finite and

q = ±∞, by Lemma 3.14 we can take h(x) = p, g(t) = ± log(t+ 1). Similarly, if p = ±∞
and q is finite, we can take h(x) = ± log(x+1), g(t) = q. Finally, if p = ±∞ and q = ±∞,

we can take h(x) = ± log(x+ 1), g(t) = ± log(t+ 1).

4.1.2. Prescribing the space oscillation limits of u(x, t)

In Lemmas 4.2, 4.4 and 4.5, the liminf and limsup values of u(x, t) are either both finite

or both infinite. In this section, we focus on space oscillation limits and time oscillation

limits respectively and construct examples in which one is finite and the other is infinite.

See Lemmas 4.10 and 4.15 below.

To prove Lemma 4.10, we need to make use of the following interesting result.
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Lemma 4.7. The solution u(x, t) of the ibvp (1.1) with

h(x) = x sin(log x), g(t) ≡ 0, x ∈ (0,∞), t ∈ (0,∞)

satisfies

(4.19) lim
x→∞

|u(x, t)− x sin(log x)| = 0 for fixed t ∈ (0,∞)

and

(4.20) lim
t→∞

∣∣u(x, t)− (A sin(log
√
4t) +B cos(log

√
4t))x

∣∣ = 0 for fixed x ∈ (0,∞),

where A, B are constants given by the values of the integrals:

A =
4√
π

∫ ∞

0
e−z2z2 cos(log z) dz, B =

4√
π

∫ ∞

0
e−z2z2 sin(log z) dz.

Remark 4.8. If we replace h(x) = x sin(log x) by h(x) = x sin(log(x + 1)), then the time

limit remains the same, i.e., (4.20) is still correct. But now the space limit becomes

lim
x→∞

|u(x, t)− x sin(log(x+ 1))| = 0 for fixed t ∈ (0,∞).

Note that we have

lim
x→∞

[x sin(log(x+ 1))− x sin(log x)− cos(log x)] = 0.

Remark 4.9. By Hölder inequality, we have

0 < A2 +B2 <

(
4√
π

∫ ∞

0
e−z2z2 cos2(log z) dz +

4√
π

∫ ∞

0
e−z2z2 sin2(log z) dz

)
=

4√
π

∫ ∞

0
e−z2z2 dz = 1.

Therefore, for fixed x ∈ (0,∞), the asymptotic time oscillation limit of u(x, t) in (4.20)

lies between −x and +x. This matches with the maximum principle since the initial data

of the ibvp (1.1) satisfies −x ≤ x sin(log x) ≤ x for all x ∈ (0,∞) and by (1.3) we have

the estimate

|u(x, t)| =
∣∣∣∣ 1√

4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
ξ sin(log ξ) dξ

∣∣∣∣
≤ 1√

4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
ξ dξ = x, ∀ (x, t) ∈ (0,∞)× (0,∞).

Proof of Lemma 4.7. By (2.1) we have u(x, t) = uh(x, t) with

u(x, t) =
1√
π

∫ ∞

−x/
√
4t
e−z2(x+

√
4tz) sin(log(x+

√
4tz)) dz

− 1√
π

∫ ∞

x/
√
4t
e−z2(−x+

√
4tz) sin(log(−x+

√
4tz)) dz

:= I(x, t)− II(x, t), (x, t) ∈ (0,∞)× (0,∞).

(4.21)
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By the LDCT and inequality (2.4), for fixed t ∈ (0,∞), we have

(4.22) lim
x→∞

II(x, t) = lim
x→∞

(
1√
π

∫ ∞

x/
√
4t
e−z2(−x+

√
4tz) sin(log(−x+

√
4tz)) dz

)
= 0.

As for I(x, t), we can write it as

I(x, t) =
sin(log x)√

π

∫ ∞

−x/
√
4t
e−z2(x+

√
4tz) cos

(
log

(
1 +

√
4tz

x

))
dz

+
cos(log x)√

π

∫ ∞

−x/
√
4t
e−z2(x+

√
4tz) sin

(
log

(
1 +

√
4tz

x

))
dz

:= IA(x, t) + IB(x, t) + ĨA(x, t) + ĨB(x, t),

where, by the LDCT, we have

(4.23)

lim
x→∞

IB(x, t) = lim
x→∞

{√
4t sin(log x)√

π

∫ ∞

−x/
√
4t
e−z2z · cos

(
log

(
1 +

√
4tz

x

))
dz

}
= 0

due to
∫∞
−∞ e−z2z dz = 0. Similarly, we have

(4.24)

lim
x→∞

ĨB(x, t) = lim
x→∞

{√
4t cos(log x)√

π

∫ ∞

−x/
√
4t
e−z2z · sin

(
log

(
1 +

√
4tz

x

))
dz

}
= 0.

It remains to find the limits of IA(x, t) and ĨA(x, t) as x → ∞. We will estimate the limits

of IA(x, t)− x sin(log x) and ĨA(x, t) as x → ∞ respectively.

Estimate on IA(x, t)− x sin(log x): We first have

IA(x, t)− x sin(log x)

=
x sin(log x)√

π

[∫ ∞

−x/
√
4t
e−z2 cos

(
log

(
1 +

√
4tz

x

))
dz −

∫ ∞

−∞
e−z2 dz

]

=
x sin(log x)√

π

{∫ ∞

−x/
√
4t
e−z2

[
cos

(
log

(
1 +

√
4tz

x

))
− 1

]
dz −

∫ −x/
√
4t

−∞
e−z2 dz

}
:= P (x, t)−Q(x, t)

and by (2.4), we know that limx→∞Q(x, t) = 0 for fixed t ∈ (0,∞). To estimate P (x, t),

we use the inequality

(4.25) | cos(log(1 + θ))− 1| ≤ 4|θ|, ∀ θ ∈ (−1,∞).

Note that (4.25) is obvious for θ ∈ (−1,−1/2] since 4|θ| ≥ 2. For θ ∈ (−1/2,∞), by∣∣∣∣ ddθ (cos(log(1 + θ))− 1)

∣∣∣∣ = ∣∣∣∣−sin(log(1 + θ))

1 + θ

∣∣∣∣ ≤ 1

1 + θ
≤ 2, ∀ θ ∈ (−1/2,∞),



58 Dong-Ho Tsai

(4.25) holds on θ ∈ (−1/2,∞).

As long as z ∈ (−x/
√
4t,∞), we have

√
4tz/x ⊂ (−1,∞) and, by (4.25), the integrand

of P (x, t) satisfies ∣∣∣∣∣x sin(log x)√
π

e−z2

[
cos

(
log

(
1 +

√
4tz

x

))
− 1

]∣∣∣∣∣
≤ xe−z2

√
π

∣∣∣∣∣cos
(
log

(
1 +

√
4tz

x

))
− 1

∣∣∣∣∣ ≤ xe−z2

√
π

· 4

∣∣∣∣∣
√
4tz

x

∣∣∣∣∣
=

4e−z2

√
π

|
√
4tz| ∈ L1(−∞,∞).

(4.26)

By (4.26), the LDCT can be applied and we obtain, for fixed t ∈ (0,∞), the following

(denote 1/x as ρ)

lim
x→∞

(
x

∫ ∞

−x/
√
4t
e−z2

[
cos

(
log

(
1 +

√
4tz

x

))
− 1

]
dz

)

=

∫ ∞

−∞
e−z2

[
lim

ρ→0+

cos(log(1 +
√
4tzρ))− 1

ρ

]
dz =

∫ ∞

−∞
e−z2 · 0 dz = 0,

which implies limx→∞ P (x, t) = 0 and we conclude

(4.27) lim
x→∞

|IA(x, t)− x sin(log x)| = 0 for fixed t ∈ (0,∞).

Estimate on ĨA(x, t): We have

ĨA(x, t) =
cos(log x)√

π

∫ ∞

−x/
√
4t
e−z2x sin

(
log

(
1 +

√
4tz

x

))
dz.

To estimate ĨA(x, t), we now use the inequality

(4.28) | sin(log(1 + θ))| ≤ 2|θ|, ∀ θ ∈ (−1,∞).

Note that (4.28) is obvious for θ ∈ (−1,−1/2] since 2|θ| ≥ 1. For θ ∈ (−1/2,∞), by∣∣∣∣ ddθ sin(log(1 + θ))

∣∣∣∣ = ∣∣∣∣cos(log(1 + θ))

1 + θ

∣∣∣∣ ≤ 1

1 + θ
≤ 2, ∀ θ ∈ (−1/2,∞),

(4.28) holds on θ ∈ (−1/2,∞). As long as z ∈ (−x/
√
4t,∞), we have

√
4tz/x ⊂ (−1,∞)

and by (4.28), we have∣∣∣∣∣cos(log x)√
π

e−z2x sin

(
log

(
1 +

√
4tz

x

))∣∣∣∣∣ ≤ xe−z2

√
π

· 2

∣∣∣∣∣
√
4tz

x

∣∣∣∣∣
=

2e−z2

√
π

∣∣√4tz
∣∣ ∈ L1(−∞,∞).

(4.29)
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By (4.29), the LDCT can be applied and we obtain, for fixed t ∈ (0,∞), the following

(denote 1/x as ρ)

lim
x→∞

∫ ∞

−x/
√
4t
e−z2

[
x sin

(
log

(
1 +

√
4tz

x

))]
dz

=

∫ ∞

−∞
e−z2

[
lim

ρ→0+

sin(log(1 +
√
4tzρ))

ρ

]
dz =

∫ ∞

−∞
e−z2(

√
4tz) dz = 0,

which implies

(4.30) lim
x→∞

ĨA(x, t) = 0 for fixed t ∈ (0,∞).

By (4.22), (4.23), (4.24), (4.27) and (4.30), we conclude the interesting asymptotic behav-

ior:

lim
x→∞

|u(x, t)− x sin(log x)| = 0 for fixed t ∈ (0,∞).

The proof of (4.19) is done.

Next, we prove (4.20), which is more subtle. We decompose u(x, t) in (4.21) as

u(x, t) := u(1)(x, t) + u(2)(x, t), (x, t) ∈ (0,∞)× (0,∞),

where

u(1)(x, t) =
1√
π

∫ ∞

−x/
√
4t
e−z2x sin

(
log

√
4t+ log

(
x√
4t

+ z

))
dz

− 1√
π

∫ ∞

x/
√
4t
e−z2(−x) sin

(
log

√
4t+ log

(
−x√
4t

+ z

))
dz

and

u(2)(x, t) =
1√
π

∫ ∞

−x/
√
4t
e−z2

√
4tz sin(log(x+

√
4tz)) dz

− 1√
π

∫ ∞

x/
√
4t
e−z2

√
4tz sin(log(−x+

√
4tz)) dz.

Expanding the sine functions in u(1)(x, t) and applying the LDCT, we can obtain

(4.31) lim
t→∞

∣∣u(1)(x, t)− (A1 sin(log
√
4t) +B1 cos(log

√
4t))x

∣∣ = 0 for fixed x ∈ (0,∞),

where

(4.32) A1 =
2√
π

∫ ∞

0
e−z2 cos(log z) dz, B1 =

2√
π

∫ ∞

0
e−z2 sin(log z) dz.



60 Dong-Ho Tsai

As for u2(x, t), we let λ = x/
√
4t and note that, for fixed x ∈ (0,∞), t → ∞ is equivalent

to λ → 0+. We have

u(2)(x, t)

=
1√
π

x

λ

{∫ ∞

−λ
e−z2z sin

(
log
(
x
(
1 +

z

λ

)))
dz −

∫ ∞

λ
e−z2z sin

(
log
(
x
(
−1 +

z

λ

)))
dz

}
=

x√
π

∫ ∞

0

e−(z̃−λ)2(z̃ − λ)− e−(z̃+λ)2(z̃ + λ)

λ
sin

(
log

(
x
z̃

λ

))
dz̃, λ =

x√
4t

∈ (0,∞).

Let F (θ) = e−θ2θ, θ ∈ (−∞,∞). By the mean value theorem, we have

F (z̃ − λ)− F (z̃ + λ) = F ′(θz̃,λ)(−2λ) = e−θ2z̃,λ(1− 2θ2z̃,λ)(−2λ)

for some number θz̃,λ lying in the interval (z̃ − λ, z̃ + λ). Hence we have

u(2)(x, t) =
x√
π

∫ ∞

0
e−θ2z̃,λ(4θ2z̃,λ − 2) sin

(
log

(
x
z̃

λ

))
dz̃, θz̃,λ ∈ (z̃ − λ, z̃ + λ)

and, without loss of generality, we may assume λ ∈ (0, 1) since we will let λ → 0+

eventually. By the estimate∣∣∣∣e−θ2z̃,λ(4θ2z̃,λ − 2) sin

(
log

(
x
z̃

λ

))∣∣∣∣ ≤ e−(z̃−λ)2(4(z̃ + λ)2 + 2) ≤ e−z̃2+2z̃(4(z̃ + 1)2 + 2),

θz̃,λ ∈ (z̃ − λ, z̃ + λ), z̃ ∈ [0,∞), λ ∈ (0, 1),

where e−z̃2+2z̃(4(z̃ + 1)2 + 2) ∈ L1[0,∞), we can apply the LDCT to u(2)(x, t).

Before applying the LDCT, we write sin
(
log
(
x z̃
λ

))
as

(4.33)

sin

(
log

(
x
z̃

λ

))
= sin(log(

√
4tz̃)) = sin(log

√
4t) cos(log z̃) + cos(log

√
4t) sin(log z̃)

and note that

(4.34) lim
λ→0

e−(z̃−λ)2(z̃ − λ)− e−(z̃+λ)2(z̃ + λ)

λ
= (4z̃2 − 2)e−z̃2 .

By (4.33) and (4.34), we have for any fixed z̃ ∈ (0,∞) the following limits (note that

λ → 0+ is equivalent to t → ∞)

(4.35)

lim
λ→0+

[
e−(z̃−λ)2(z̃ − λ)− e−(z̃+λ)2(z̃ + λ)

λ
cos(log z̃)− (4z̃2 − 2)e−z̃2 cos(log z̃)

]
= 0

and

(4.36)

lim
λ→0+

[
e−(z̃−λ)2(z̃ − λ)− e−(z̃+λ)2(z̃ + λ)

λ
sin(log z̃)− (4z̃2 − 2)e−z̃2 sin(log z̃)

]
= 0.
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Finally, by (4.33), (4.35), (4.36) and the LDCT, we can conclude

(4.37) lim
t→∞

∣∣u(2)(x, t)− (A2 sin(log
√
4t) +B2 cos(log

√
4t))x

∣∣ = 0 for fixed x ∈ (0,∞),

where

(4.38)

A2 =
1√
π

∫ ∞

0
(4z̃2 − 2)e−z̃2 cos(log z̃) dz̃, B2 =

1√
π

∫ ∞

0
(4z̃2 − 2)e−z̃2 sin(log z̃) dz̃.

The proof of (4.20) is done due to (4.31), (4.32), (4.37) and (4.38).

As a consequence of Lemma 4.7, we have the following new result about prescribing

the space oscillation limits.

Lemma 4.10 (Prescribing the space oscillation limits; finite-infinite case). Consider the

ibvp (1.1). For any finite number c1, one can find a solution u(x, t) of (1.1) lying in the

space (4.7) and satisfies

(4.39) c1 = lim inf
x→∞

u(x, t) ≤ lim sup
x→∞

u(x, t) = +∞ for fixed t ∈ (0,∞).

Similarly, for any finite number c2, one can find a solution u(x, t) of (1.1) lying in the

space (4.7) and satisfies

(4.40) −∞ = lim inf
x→∞

u(x, t) ≤ lim sup
x→∞

u(x, t) = c2 for fixed t ∈ (0,∞).

Proof. We choose

(4.41) h(x) = x sin(log x) + x+ c1, g(t) ≡ 0, x ∈ (0,∞), t ∈ (0,∞).

The solution U(x, t) of (1.1) with the initial-boundary data (4.41) is given by

(4.42) U(x, t) = u(x, t) + x+
c1√
π

∫ x/
√
4t

−x/
√
4t
e−z2 dz, (x, t) ∈ (0,∞)× (0,∞),

where u(x, t) in (4.42) is given by (4.21). Hence we have

lim
x→∞

|U(x, t)− (x sin(log x) + x+ c1)| = 0 for fixed t ∈ (0,∞),

where

lim inf
x→∞

U(x, t) = lim inf
x→∞

[
x(sin(log x) + 1) + c1

]
= c1

and

lim sup
x→∞

U(x, t) = lim sup
x→∞

[
x(sin(log x) + 1) + c1

]
= +∞.

The proof of (4.39) is done.

For (4.40), we just replace (4.41) by

h(x) = −x sin(log x)− x+ c2, g(t) ≡ 0, x ∈ (0,∞), t ∈ (0,∞).

The proof is done.
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Remark 4.11. For fixed x ∈ (0,∞), the solution U(x, t) given by (4.42) also satisfies

lim inf
t→∞

U(x, t) =
(
1−

√
A2 +B2

)
x, lim sup

t→∞
U(x, t) =

(
1 +

√
A2 +B2

)
x.

4.1.3. Prescribing the time oscillation limits of u(x, t)

In this section, we focus on time oscillation limits and construct examples in which one is

finite and the other is infinite. See Lemma 4.15 below. We first look at two examples with

g(t) = t sin(log t) and g(t) =
√
t sin(log

√
t) respectively. The first example can be viewed

as a counterpart of Lemma 4.7.

Lemma 4.12. The solution u(x, t) of the ibvp (1.1) with

h(x) ≡ 0, g(t) = t sin(log t), x ∈ (0,∞), t ∈ (0,∞)

satisfies

(4.43) lim
x→∞

u(x, t) = 0 for fixed t ∈ (0,∞)

and

lim
t→∞

∣∣∣∣u(x, t)− t sin(log t)

x
√
t

− (P sin(log t) +Q cos(log t))

∣∣∣∣ = 0 for fixed x ∈ (0,∞),

where P , Q are constants given by the values of the integrals:

P = − 1√
π

∫ 1

0

1√
1− θ

[cos(log θ)− sin(log θ)] dθ,

Q = − 1√
π

∫ 1

0

1√
1− θ

[sin(log θ) + cos(log θ)] dθ.

(4.44)

Remark 4.13. If we take h(x) ≡ 0 and g(t) = t, then by (3.6) and (3.7) in Lemma 3.1 with

n = 1, we have

lim
x→∞

u(x, t) = 0 for fixed t ∈ (0,∞)

and

lim
t→∞

∣∣∣∣u(x, t)− t

x
√
t

+
2√
π

∣∣∣∣ = 0 for fixed x ∈ (0,∞).

Proof of Lemma 4.12. The function g(t) = t sin(log t) has already appeared in (4.11),

where by (4.13) we know that

u(x, t) = ug(x, t) = t
[
A(x, t) sin(log t) +B(x, t) cos(log t)

]
, (x, t) ∈ (0,∞)× (0,∞),

where A(x, t) and B(x, t) are given by (4.14) and satisfy (4.15). Therefore, we clearly have

(4.43).
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To find the precise asymptotic time limit for fixed x ∈ (0,∞), we let λ = x/
√
4t (note

that λ → 0+ is equivalent to t → ∞) and write t as x
√
t/(2λ) and look at the difference

u(x, t)− t sin(log t) = x
√
t ·
(
A(x, t)− 1

2λ
sin(log t) +

B(x, t)

2λ
cos(log t)

)
,

x√
4t

= λ,

where, by (4.14) and in terms of λ = x/
√
4t, we have

A(x, t)− 1

2λ
=

2√
π

∫∞
λ e−z2

(
1− λ2

z2

)
cos
(
log
(
1− λ2

z2

))
dz − 1

2λ

and

B(x, t)

2λ
=

2√
π

∫∞
λ e−z2

(
1− λ2

z2

)
sin
(
log
(
1− λ2

z2

))
dz

2λ
.

For fixed x ∈ (0,∞), as t → ∞, by L’Hospital rule we have

lim
λ→0+

A(x, t)− 1

2λ
= lim

λ→0+

{
1√
π

∫ ∞

λ
e−z2

(
−2λ

z2

)
cos

(
log

(
1− λ2

z2

))
dz

− 1√
π

∫ ∞

λ
e−z2

(
−2λ

z2

)
sin

(
log

(
1− λ2

z2

))
dz

}
and if we let z = λs, s ∈ (1,∞), the above becomes

lim
λ→0+

A(x, t)− 1

2λ
= lim

λ→0+

{
1√
π

∫ ∞

1
e−λ2s2

(
− 2

s2

)
cos

(
log

(
1− 1

s2

))
ds

− 1√
π

∫ ∞

1
e−λ2s2

(
− 2

s2

)
sin

(
log

(
1− 1

s2

))
ds

}
= − 2√

π

∫ ∞

1

1

s2

[
cos

(
log

(
1− 1

s2

))
− sin

(
log

(
1− 1

s2

))]
ds.

(4.45)

Similarly, we have

(4.46) lim
λ→0+

B(x, t)

2λ
= − 2√

π

∫ ∞

1

1

s2

[
sin

(
log

(
1− 1

s2

))
+ cos

(
log

(
1− 1

s2

))]
ds.

Therefore, the ratio (x
√
t)−1(u(x, t)− t sin(log t)) approaches P sin(log t) +Q cos(log t) as

t → ∞, where P and Q are the values of the two convergent integrals in (4.45) and (4.46).

Finally, if we do the change of variables θ = 1 − 1/s2, we will get the two integrals in

(4.44). The proof is done.

Another interesting example similar to Lemma 4.12 is the following

Lemma 4.14. The solution u(x, t) of the ibvp (1.1) with

h(x) ≡ 0, g(t) =
√
t sin(log

√
t), x ∈ (0,∞), t ∈ (0,∞)
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satisfies

lim
x→∞

u(x, t) = 0 for fixed t ∈ (0,∞)

and, for fixed x ∈ (0,∞), the following

(4.47) lim
t→∞

∣∣(u(x, t)−√
t sin(log

√
t))− (M sin(log

√
t) +N cos(log

√
t))x

∣∣ = 0,

where M , N are constants given by the values of the integrals:

M = − 1√
π

∫ 1

0

1√
1− θ2

[
cos(log θ)− sin(log θ)

]
dθ,

N = − 1√
π

∫ 1

0

1√
1− θ2

[
sin(log θ) + cos(log θ)

]
dθ.

(4.48)

Proof. We have

u(x, t) = ug(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2

√
t−

( x

2z

)2
sin

(
log

√
t−

( x

2z

)2)
dz

=
√
t

[
2√
π

∫ ∞

x/
√
4t
e−z2

√
1− 1

t

x2

4z2
sin

(
log

√
t+ log

√
1− 1

t

x2

4z2

)
dz

]
=

√
t
[
A(x, t) sin(log

√
t) +B(x, t) cos(log

√
t)
]
,

where

A(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2

√
1− 1

t

x2

4z2
cos

(
log

√
1− 1

t

x2

4z2

)
dz,

B(x, t) =
2√
π

∫ ∞

x/
√
4t
e−z2

√
1− 1

t

x2

4z2
sin

(
log

√
1− 1

t

x2

4z2

)
dz

with

lim
x→∞

A(x, t) = lim
x→∞

B(x, t) = 0 for fixed t ∈ (0,∞),

lim
t→∞

A(x, t) = 1, lim
t→∞

B(x, t) = 0 for fixed x ∈ (0,∞),

which implies

lim
x→∞

u(x, t) = 0 for fixed t ∈ (0,∞).

To find the precise asymptotic time limit for fixed x ∈ (0,∞), we let λ = x/
√
4t (note that

λ → 0+ is equivalent to t → ∞) and look at the difference

u(x, t)−
√
t sin(log

√
t) = x ·

(
A(x, t)− 1

2λ
sin(log

√
t) +

B(x, t)

2λ
cos(log

√
t)

)
,

√
t =

x

2λ
.



On Various Space-time Properties of Solutions to the Heat Equation on Semi-infinite Rod 65

As λ → 0+, by L’Hospital rule, we have

lim
λ→0+

A(x, t)− 1

2λ

= lim
λ→0+

1

2λ

[
2√
π

∫ ∞

λ
e−z2

√
1− λ2

z2
cos

(
log

√
1− λ2

z2

)
dz − 1

]

=
1

2
lim

λ→0+

d

dλ

[
2√
π

∫ ∞

λ
e−z2

√
1− λ2

z2
cos

(
log

√
1− λ2

z2

)
dz − 1

]

=
1√
π

lim
λ→0+


∫ ∞

λ
e−z2 − λ

z2√
1− λ2

z2

[
cos

(
log

√
1− λ2

z2

)
− sin

(
log

√
1− λ2

z2

)]
dz


and if we let z = λs, s ∈ (1,∞), the above becomes

− 1√
π

lim
λ→0+

{∫ ∞

1
e−λ2s2 1

s
√
s2 − 1

[
cos

(
log

√
1− 1

s2

)
− sin

(
log

√
1− 1

s2

)]
ds

}
.

Since the integral ∫ ∞

1

1

s
√
s2 − 1

ds =
1

2
π

converges, the LDCT can be applied and we have

lim
λ→0+

A(x, t)− 1

2λ
= − 1√

π

∫ ∞

1

1

s
√
s2 − 1

[
cos

(
log

√
1− 1

s2

)
− sin

(
log

√
1− 1

s2

)]
ds.

Similarly, we have

lim
λ→0+

B(x, t)

2λ
= − 1√

π

∫ ∞

1

1

s
√
s2 − 1

[
sin

(
log

√
1− 1

s2

)
+ cos

(
log

√
1− 1

s2

)]
ds.

Finally, if we do the change of variables θ =
√
1− 1/s2, we will get the two integrals in

(4.48). The proof of (4.47) is done.

As a consequence of Lemma 4.14, we have the following new result about prescribing

the time oscillation limits.

Lemma 4.15 (Prescribing the time oscillation limits; finite-infinite case). Consider the

ibvp (1.1). For any finite number c1, one can find a solution u(x, t) of (1.1) lying in the

space (4.7) and satisfies

(4.49) c1 = lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) = +∞ for fixed x ∈ (0,∞).

Similarly, for any finite number c2, one can find a solution u(x, t) of (1.1) lying in the

space (4.7) and satisfies

(4.50) −∞ = lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) = c2 for fixed x ∈ (0,∞).
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Proof. Unlike the proof of Lemma 4.10 where we have g(t) ≡ 0, here we need a nonzero

h(x) to help us achieve the goal. For (4.49), we take

(4.51) h(x) =

(
M +

√
π

2

)
x, g(t) =

√
t sin(log

√
t)+

√
t+ c1, x ∈ (0,∞), t ∈ (0,∞),

where the constant M in (4.51) is given by (4.48). The solution u(x, t) of (1.1) with the

above data is given by u(x, t) = uh(x, t) + ug(x, t), where

uh(x, t) =

(
M +

√
π

2

)
x, (x, t) ∈ (0,∞)× (0,∞)

and

ug(x, t)

=
√
t

[
2√
π

∫ ∞

x/
√
4t
e−z2

√
1− 1

t

x2

4z2
sin

(
log

√
t+ log

√
1− 1

t

x2

4z2

)
dz

]

+
√
t
2√
π

∫ ∞

x/
√
4t
e−z2

√
1− 1

t

x2

4z2
dz +

2c1√
π

∫ ∞

x/
√
4t
e−z2 dz, (x, t) ∈ (0,∞)× (0,∞).

By Lemma 4.14 and (3.9) in Remark 3.3, we have for fixed x ∈ (0,∞) that

lim
t→∞

|ug(x, t)− Γ(x, t)| = 0,

where

Γ(x, t) =
(√

t sin(log
√
t) +

√
t+ c1

)
+

(
M sin(log

√
t) +N cos(log

√
t)−

√
π

2

)
x.

Therefore, we have

lim
t→∞

|u(x, t)− Λ(x, t)| = lim
t→∞

|(uh(x, t) + ug(x, t))− Λ(x, t)| = 0,

where now

Λ(x, t) = Γ(x, t) +

(
M +

√
π

2

)
x

=

(
M +

√
π

2

)
x+

(√
t
[
sin(log

√
t) + 1

]
+ c1

)
+

(
M sin(log

√
t) +N cos(log

√
t)−

√
π

2

)
x, (x, t) ∈ (0,∞)× (0,∞).

(4.52)

We clearly have

lim sup
t→∞

Λ(x, t) = +∞ for fixed x ∈ (0,∞)

due to the term
√
t[sin(log

√
t) + 1] ∈ [0, 2

√
t]. For fixed x ∈ (0,∞), along the sequence

tk → ∞ with sin(log
√
tk) = −1 for all k, we have Λ(x, tk) = c1. Therefore, the limit
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lim inft→∞ Λ(x, t) = Λ0 ∈ (−∞, c1] exists and there exists a sequence sk → ∞ such that

Λ(x, sk) → Λ0 as k → ∞. Clearly we must have sin(log
√
sk) + 1 → 0, otherwise we will

get a contradiction. Therefore, along the sequence {sk}∞k=1 attaining Λ0, we have

lim
k→∞

sin(log
√
sk) = −1, lim

k→∞
cos(log

√
sk) = 0,

which, by (4.52), implies the convergence of the nonnegative sequence
√
sk(sin(log

√
sk)+

1). Since Λ0 ≤ c1, the sequence must converge to 0 and we have Λ0 = c1. The proof of

(4.49) is done.

For (4.50), we just replace (4.51) by

h(x) = −
(
M +

√
π

2

)
x, g(t) = −

√
t sin(log

√
t)−

√
t+ c2, x ∈ (0,∞), t ∈ (0,∞).

The proof is done.

5. Space and time periodic solutions

In this section, we explore the existence of space and time-periodic solutions of the

ibvp (1.1). For space and time-periodic solutions of the heat equation on the entire space

(x, t) ∈ (−∞,∞)× (−∞,∞), one can see the paper [12]. A smooth solution u(x, t) of the

heat equation on (0,∞)× (0,∞) is called a space-periodic solution with period a > 0

if it satisfies

u(x+ a, t) = u(x, t), ∀ (x, t) ∈ (0,∞)× (0,∞).

Similarly, it is called a time-periodic solution with period b > 0 if it satisfies

u(x, t+ b) = u(x, t), ∀ (x, t) ∈ (0,∞)× (0,∞).

By parabolic scaling (x, t) → (λx, λ2t), where λ > 0 is a constant, one can rescale a

space-periodic solution u(x, t) with period a > 0 into another solution with any period

p > 0. Therefore, without loss of generality, one may assume a = 2π. Similarly, one can

also assume b = 2π. Also note that a space-periodic solution is smooth on [0,∞)× (0,∞)

and a time-periodic solution is smooth on (0,∞)× [0,∞).

In the following we would like to show that for a given space-periodic initial data

h(x), one can find a boundary data g(t) so that the corresponding solution u(x, t) of

the ibvp (1.1) is space-periodic on (0,∞) × (0,∞). Similarly, for a given time-periodic

boundary data g(t), one can find an initial data h(x) so that the solution u(x, t) is time-

periodic on (0,∞)× (0,∞).

Note that if both h(x) and g(t) are 2π-periodic on [0,∞), the solution u(x, t) of the

ibvp (1.1), given by the representation formula (1.3), may not have any periodic property
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at all. A simple example is when h(x) = sinx and g(t) = sin t, then the solution u(x, t) is

given by (3.26), which is neither space-periodic nor time-periodic. However, for fixed

t ∈ (0,∞) it is asymptotically space-periodic and for fixed x ∈ (0,∞) it is asymptotically

time-periodic. See (3.29) and (3.30) in Lemma 3.12.

For our purpose of discussion, we need to use the following Fourier series result: Assume

h(x) is a 2π-periodic C1 function defined on x ∈ [0,∞). Then the following series

a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx), x ∈ [0,∞)

converges absolutely and uniformly to h(x) on [0,∞), where a0, an, bn are the Fourier

series coefficients of h(x), given by

an =
1

π

∫ 2π

0
h(x) cos(nx) dx, n = 0, 1, 2, 3, . . . ,

bn =
1

π

∫ 2π

0
h(x) sin(nx) dx, n = 1, 2, 3, . . . .

(5.1)

For space-periodic solution, we have the following

Lemma 5.1 (Existence of space-periodic solution). Assume h(x) is a given 2π-periodic

C1 function defined on x ∈ [0,∞). Then one can find a unique continuous bounded

function g(t) on t ∈ [0,∞) with g(0) = h(0) such that the function u(x, t) given by (1.3)

is a bounded function lying in the space S in (1.10), and is a space-periodic solution

(with period 2π) of the ibvp (1.1).

Proof. Let

(5.2) g(t) =
a0
2

+
∞∑
n=1

ane
−n2t, t ∈ [0,∞),

where a0, a1, a2, . . . in (5.2) are the Fourier series coefficients of h(x) in (5.1). Since the

Fourier series for h(x) converges absolutely for all x ∈ [0,∞), the series for g(t) does

converge and represents a bounded continuous function on [0,∞) with g(0) = h(0) =
1
2a0 +

∑∞
n=1 an. We claim that the bounded function u(x, t) given by (1.3) is equal to the

following, namely

(5.3) u(x, t) =
a0
2

+

∞∑
n=1

e−n2t(an cosnx+ bn sinnx), (x, t) ∈ (0,∞)× (0,∞).

To see this, note that one can commute any order of differentiation (with respect to x

or t) with the summation sign
∑

in (5.3) on the domain (0,∞) × (0,∞). Therefore,

the function u(x, t) given by (5.3) is a bounded smooth solution of the heat equation on
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(0,∞)× (0,∞) and it satisfies (1.4), (1.5) and lies in the space S in (1.10). Moreover, it

is space-periodic with period 2π. Since the function u(x, t) given by (5.3) is a bounded

function, by Lemma 1.5 it is the same as the solution given by the formula (1.3).

As for the uniqueness of the function g(t), if u(x, t) ∈ S is a space-periodic solution

(with period 2π) of the heat equation on (0,∞)× (0,∞) with u(x, 0) = h(x), x ∈ (0,∞),

then by Fourier series expansion for the smooth solution u(x, t) and the identity ut = uxx,

it must be given by (5.3) (where a0, a1, a2, . . . in (5.3) are the Fourier series coefficients of

h(x)). Therefore, u(0, t) must be equal to the function g(t) in (5.2). The proof is done.

Remark 5.2. If u(x, t) ∈ S is a space-periodic solution (with period 2π > 0) of the heat

equation on (0,∞) × (0,∞), then its average space integral (2π)−1
∫ 2π
0 u(x, t) dx is a

constant C independent of t ∈ (0,∞). Moreover, we also have we have limt→∞ u(x, t) = C

for all x ∈ (0,∞).

As for time-periodic solution, we have the following

Lemma 5.3 (Existence of time-periodic solution). Assume g(t) is a given 2π-periodic C1

function defined on t ∈ [0,∞). Then one can find a continuous function h(x) on x ∈ [0,∞)

with h(0) = g(0) such that the function u(x, t) given by (1.3) is a time-periodic solution

(with period 2π) of the ibvp (1.1) lying in the space S in (1.10).

Remark 5.4. The choice of h(x) in Lemma 5.3 is not unique.

Proof of Lemma 5.3. Since g(t) is a 2π-periodic C1 function n t ∈ [0,∞), by the above

Fourier series expansion, it is equal to

g(t) =
ã0
2

+

∞∑
n=1

(ãn cosnt+ b̃n sinnt), t ∈ [0,∞)

where

ãn =
1

π

∫ 2π

0
g(t) cos(nt) dt, n = 0, 1, 2, 3, . . . ,

b̃n =
1

π

∫ 2π

0
g(t) sin(nt) dt, n = 1, 2, 3, . . . .

(5.4)

Now we choose h(x) as

(5.5)

h(x) =
ã0 + cx

2
+

∞∑
n=1

(
ãne

−
√

n
2
x cos

(√
n

2
x

)
− b̃ne

−
√

n
2
x sin

(√
n

2
x

))
, x ∈ [0,∞),

where ã0, ãn, b̃n, . . . in (5.5) are the Fourier series coefficients of g(t) in (5.4) and c ∈
(−∞,∞) is an arbitrary constant (which means that the choice of h(x) is not unique).
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Since the Fourier series for g(t) converges absolutely for all t ∈ [0,∞), the series for h(x)

does converge and gives a continuous function on [0,∞) with h(0) = g(0). We claim that

the function u(x, t) given by (1.3) is equal to the following, namely

(5.6)

u(x, t) =
ã0 + cx

2
+

∞∑
n=1

(
ãne

−
√

n
2
x cos

(√
n

2
x− nt

)
− b̃ne

−
√

n
2
x sin

(√
n

2
x− nt

))
,

where (x, t) ∈ (0,∞) × (0,∞). To see the above identity, similar to the series (5.3), one

can commute any order of differentiation (with respect to x or t) with the summation

sign
∑

in (5.6) on the domain (0,∞) × (0,∞). Therefore, the function u(x, t) given by

(5.6) is a smooth solution of the heat equation on (0,∞) × (0,∞) and it satisfies (1.4)

and (1.5) and lies in the space S in (1.10). Moreover, it is time-periodic with period

2π. Since the function u(x, t) given by (5.6) is a continuous function satisfying the growth

estimate (1.11), by Lemma 1.5 it is the same as the solution given by the formula (1.3).

The proof is done.

Remark 5.5. If we choose c = 0 in (5.5) and (5.6), the result of Lemma 5.3 is still correct. In

such a case, the solution u(x, t) in (5.6) is a bounded continuous function on (0,∞)×(0,∞).

Remark 5.6. This is to compare with Remark 5.2. If u(x, t) ∈ S is a time-periodic

solution (with period 2π > 0) of the heat equation on (0,∞)× (0,∞), then its average

time integral (2π)−1
∫ 2π
0 u(x, t) dt is, in general, not a constant independent of x ∈

(0,∞). However, by the identity

d2

dx2

(
1

2π

∫ 2π

0
u(x, t) dt

)
=

1

2π

∫ 2π

0
uxx(x, t) dt =

1

2π

∫ 2π

0
ut(x, t) dt = 0, x ∈ (0,∞),

we must have
1

2π

∫ 2π

0
u(x, t) dt = A+Bx, x ∈ (0,∞)

for some constants A, B. For example, for u(x, t) given by (5.6), it satisfies

1

2π

∫ 2π

0
u(x, t) dt =

ã0 + cx

2
, ∀x ∈ (0,∞).

The following says that a solution u(x, t) which is both space-periodic and time-periodic

must be a constant.

Lemma 5.7. Assume that u(x, t) given by (1.3) is a solution of the ibvp (1.1) lying in

the space S in (1.10) and moreover, it is both space-periodic with period a > 0 and time-

periodic with period b > 0. Then it must be a constant function.
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Proof. Let v(x, t) = u(λx, λ2t), where λ = a/(2π). Then v(x, t) is a solution of the

heat equation which is space-periodic with period 2π > 0 and time-periodic with period

b/λ2 > 0. By Remark 5.2, we know that

lim
t→∞

v(x, t) =
1

2π

∫ 2π

0
v(x, 0) dx, ∀x ∈ (0,∞).

Since v(x, t) is also time-periodic with period b/λ2, we have v(x, t) = v(x, t+mb/λ2) for

all m ∈ N and all (x, t) ∈ (0,∞)× (0,∞). Letting m → ∞, we obtain v(x, t) ≡ const. and

so is u(x, t).

6. Singular initial data

Until now, we always assume that the initial data function h(x), x ∈ (0,∞), satisfies the

basic assumption (1.2), which automatically implies that h(x) is bounded near x = 0. In

this section, we look at one interesting example of h(x) which is singular at x = 0 and

may not be integrable near x = 0. In case h(x) is not integrable near x = 0, the space

convolution formula in (1.3), given by

(6.1) S(x, t) :=
1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
h(ξ) dξ, (x, t) ∈ (0,∞)× (0,∞)

needs to be analyzed more. In particular, one cannot split (6.1) into the difference of two

integrals since each one is divergent.

We have

Lemma 6.1 (Singular initial data). Assume h(x) is continuous on (0,∞) and there

exist positive constants M , ε, C1, C2 and α ∈ [0, 1), β ∈ [0, 1), such that

(6.2) |h(x)| ≤

 M
x1+β on x ∈ (0, ε),

C1e
C2|x|1+α

on x ∈ [ε,∞),

then the above function S(x, t) is a smooth solution of the heat equation on (0,∞)×(0,∞)

satisfying

(6.3) lim
(x,t)→(x0,0+)

S(x, t) = h(x0), ∀x0 ∈ (0,∞).

Proof. To see the convergence of the integral in (6.1), it suffices to prove the convergence

of

(6.4)
1√
4πt

∫ ε

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
|h(ξ)| dξ
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for each fixed (x, t) ∈ (0,∞)× (0,∞). However, by the assumption (6.2) and the limit

(6.5) lim
ξ→0+

1

ξ

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
=

x

t
e−

x2

4t , (x, t) ∈ (0,∞)× (0,∞),

we clearly have the convergence of (6.4). Together with the second condition in (6.2), the

integral for S(x, t) in (6.1) does converge for all (x, t) ∈ (0,∞)× (0,∞).

Next, we show that one can differentiate S(x, t) with respect to x and t under the

integral sign. Note that the fundamental solution Φ(x, t) of the heat equation, for any

m, k ∈ N ∪ {0} and fixed constant 0 < η < 1/4, satisfies the estimate (see the book [8,

p. 274])

(6.6)

∣∣∣∣ ∂m+k

∂tm∂xk
Φ(x, t)

∣∣∣∣ ≤ C(m, k, η) · t−
(
m+ k

2

)
− 1

2 e−η x2

t , ∀ (x, t) ∈ R× (0,∞),

where C(m, k, η) is a constant depending only on m, k, η. We now pick η = 1/8 in (6.6)

and get

(6.7)

∣∣∣∣ ∂m+k

∂tm∂xk
Φ(x, t)

∣∣∣∣ ≤ C(m, k) · t−
(
m+ k

2

)
− 1

2 e−
x2

8t , ∀ (x, t) ∈ R× (0,∞).

For fixed t ∈ (0,∞), let Q(θ) = e−θ2/8t, θ ∈ (−∞,∞). It satisfies

(6.8) |Q′(θ)| =
∣∣∣∣e− θ2

8t
θ

4t

∣∣∣∣ = √
2

2
√
t

∣∣∣∣e− θ2

8t
θ√
8t

∣∣∣∣ ≤ √
2

2
√
t

1√
2e

=
1√
4e

1√
t
, ∀ θ ∈ (−∞,∞),

For a fixed but arbitrary point (x0, t0) ∈ (0,∞) × (0,∞), one can choose the open set

U = (x0/2, 2x0) × (t0/2, 2t0) ⊂ (0,∞) × (0,∞) containing (x0, t0) such that for any

m, k ∈ N ∪ {0} the improper integral∫ ε

0

(
∂m+k

∂tm∂xk
Φ(x− ξ, t)− ∂m+k

∂tm∂xk
Φ(x+ ξ, t)

)
h(ξ) dξ, (x, t) ∈ U

converges uniformly on U . To see this, we can use (6.7) and mean value theorem and

(6.8) to get∫ ε

0

∣∣∣∣ ∂m+k

∂tm∂xk
Φ(x− ξ, t)− ∂m+k

∂tm∂xk
Φ(x+ ξ, t)

∣∣∣∣ |h(ξ)| dξ
≤ C(m, k) · t−

(
m+ k

2

)
− 1

2

∫ ε

0

∣∣∣∣e− (x−ξ)2

8t − e−
(x+ξ)2

8t

∣∣∣∣ |h(ξ)| dξ
≤ C(m, k) · t−

(
m+ k

2

)
− 1

2
1√
4e

1√
t

∫ ε

0
2ξ

M

ξ1+β
dξ ≤ C(m, k,M, t0, β)ε

1−β, ∀ (x, t) ∈ U

for some constant C(m, k,M, t0, β) depending only on m, k, M , t0, β. Moreover, using the

decay term e−x2/8t in (6.7) and the assumption (6.2), for any m, k ∈ N∪{0} the improper

integral ∫ ∞

ε

(
∂m+k

∂tm∂xk
Φ(x− ξ, t)− ∂m+k

∂tm∂xk
Φ(x+ ξ, t)

)
h(ξ) dξ, (x, t) ∈ U
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also converges uniformly on U . By standard theorem in analysis, one can differentiate

S(x, t) with respect to x and t under the integral sign at any point (x0, t0) ∈ (0,∞)×(0,∞)

and we conclude that S(x, t) is a smooth solution of the heat equation on (0,∞)× (0,∞)

satisfying (6.3). The proof is done.

Remark 6.2. The assumption |h(x)| ≤ M/x1+β on x ∈ (0, ε) for β ∈ [0, 1) is optimal. If

we have β = 1 and take h(x) = 1/x2 on (0, ε), then the integral

1√
4πt

∫ ε

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
h(ξ) dξ =

1√
4πt

∫ ε

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
1

ξ2
dξ

will diverge for all (x, t) ∈ (0,∞)× (0,∞) due to the limit (6.5).

6.1. Singular initial-boundary value problem; an example with h(x) = 1/x and

g(t) = 1/
√
4πt

Consider the ibvp (1.1) with singular initial-boundary data h(x) = 1/x, x ∈ (0,∞) and

g(t) = 1/
√
4πt, t ∈ (0,∞). We first note that the function g(t) = 1/

√
4πt still satisfies the

growth condition in (1.2). For h(x) = 1/x, as proved in Lemma 6.1, the representation

formula (6.1) still makes sense and the solution formula in (1.3) is now given by

u(x, t) = uh(x, t) + ug(x, t)

=
1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
1

ξ
dξ +

x√
4π

∫ t

0

1

(t− s)3/2
e
− x2

4(t−s)
1√
4πs

ds,

where (x, t) ∈ (0,∞)× (0,∞).

We first claim the following

Lemma 6.3. We have the identity

(6.9)
x√
4π

∫ t

0

1

(t− s)3/2
e
− x2

4(t−s)
1√
4πs

ds =
1√
4πt

e−
x2

4t

for all (x, t) ∈ (0,∞)× (0,∞).

Proof. Both sides of (6.9) are solutions to the heat equation ut = uxx on (0,∞)× (0,∞)

with the same initial-boundary limits:

lim
(x,t)→(x0,0+)

u(x, t) = 0, x0 ∈ (0,∞); lim
(x,t)→(0+,t0)

ku(x, t) =
1√
4πt0

, t0 ∈ (0,∞).

However, since both solutions blow up near the origin (0, 0), we cannot apply the familiar

uniqueness property as in Lemma 1.5. Here we can give a direct quick proof if we make

use of the 1-parameter family of parabolas P (λ) : x/
√
4t = λ, λ ∈ (0,∞). Note that, if we
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multiply both sides of (6.9) by x ∈ (0,∞) and restrict them to the parabola P (λ), and

use the formula (2.2) for ug(x, t), then (6.9) is equivalent to the identity

(6.10)
2√
π

∫ ∞

λ
e−z2 λ√

π
(
1−

(
λ
z

)2) dz =
λ√
π
e−λ2

, ∀λ ∈ (0,∞).

We can prove (6.10) easily if we cancel λ/
√
π first and then do the change of variables

θ =
√
z2 − λ2, θ ∈ [0,∞). The proof is done.

Next, we claim the following

Lemma 6.4. We have the identity

(6.11)
1√
4πt

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
1

ξ
dξ =

(
1√
t
e−

x2

4t

)∫ x/
√
4t

0
ez

2
dz

for all (x, t) ∈ (0,∞)× (0,∞).

Proof. It is easy to check that the right-hand side of (6.11) is a solution of the heat

equation on (0,∞)× (0,∞). Moreover, for fixed x ∈ (0,∞), by L’Hospital rule we have

(6.12) lim
t→0+

∫ x/
√
4t

0 ez
2
dz

√
tex2/(4t)

= lim
t→0+

ex
2/(4t)

(
− x

4t3/2

)
1

2t1/2
ex2/(4t) +

√
tex2/(4t)

(
− x2

4t2

) =
1

x
, ∀x ∈ (0,∞).

Therefore, both sides of (6.11) are solutions to the heat equation ut = uxx on (0,∞) ×
(0,∞) with the same initial-boundary limits:

lim
(x,t)→(x0,0+)

u(x, t) =
1

x0
, x0 ∈ (0,∞); lim

(x,t)→(0+,t0)
u(x, t) = 0, t0 ∈ (0,∞).

Unfortunately, unlike the proof in Lemma 6.3, here we cannot restrict both sides of (6.11)

to the parabola P (λ) and use the formula (2.2) for uh(x, t). This is because each integral

in (2.2) for h diverges when h(x) = 1/x. Therefore, we need to use a different trick here.

Note that (6.11) is the same as the identity∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
1

ξ
dξ =

(√
4πe−

x2

4t

)∫ x/
√
4t

0
ez

2
dz, (x, t) ∈ (0,∞)× (0,∞)

and we let

Γ(x, t) =

∫ ∞

0

(
e−

(x−ξ)2

4t − e−
(x+ξ)2

4t

)
1

ξ
dξ, Λ(x, t) =

(√
4πe−

x2

4t

)∫ x/
√
4t

0
ez

2
dz.

We first have

(6.13) Γ(0, t) = Λ(0, t) = 0, ∀ t ∈ (0,∞).
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Next, for fixed t ∈ (0,∞) we can compute

d

dx
Γ(x, t) =

∫ ∞

0

[
e−

(x−ξ)2

4t

(
−x− ξ

2t

)
− e−

(x+ξ)2

4t

(
−x+ ξ

2t

)]
1

ξ
dξ

= − x

2t
Γ(x, t) +

1

2t

∫ ∞

0

(
e−

(x−ξ)2

4t + e−
(x+ξ)2

4t

)
dξ

= − x

2t
Γ(x, t) +

1

2t

√
4t

(∫ ∞

−x/
√
4t
e−z2 dz +

∫ ∞

x/
√
4t
e−z2 dz

)

= − x

2t
Γ(x, t) +

√
π

t
, ∀x ∈ (0,∞)

and similarly we also have

d

dx
Λ(x, t) = − x

2t
Λ(x, t) +

√
π

t
, ∀x ∈ (0,∞).

Therefore, for each fixed t ∈ (0,∞), Γ(x, t) and Λ(x, t) satisfy the same linear ODE in

x ∈ (0,∞) with the same initial condition (6.13). Uniqueness theorem implies Γ(x, t) =

Λ(x, t) for all (x, t) ∈ (0,∞)× (0,∞) and (6.11) follows.

As a consequence of Lemmas 6.3 and 6.4, we can conclude a solution formula for the

following singular initial-boundary value problem:

(6.14)


ut(x, t) = uxx(x, t), (x, t) ∈ (0,∞)× (0,∞),

u(x, 0) = h(x) = 1
x , x ∈ (0,∞),

u(0, t) = g(t) = 1√
4πt

, t ∈ (0,∞).

The following result is now clear.

Theorem 6.5 (Solution of (6.14)). The function

u(x, t) = uh(x, t) + ug(x, t)

=

(
1√
t
e−

x2

4t

)∫ x/
√
4t

0
ez

2
dz +

1√
4πt

e−
x2

4t , (x, t) ∈ (0,∞)× (0,∞)
(6.15)

is a solution of the singular initial-boundary value problem (6.14) and it lies in the space

(1.6). In particular, along each fixed parabola P (λ) : x/
√
4t = λ, λ ∈ (0,∞), it can be

expressed as a linear combination of h(x) = 1/x and g(t) = 1/
√
4πt, given by

(6.16) u(x, t) =

(
2λe−λ2

∫ λ

0
ez

2
dz

)
· 1
x
+ e−λ2 · 1√

4πt
, (x, t) ∈ P (λ),

where

lim
λ→∞

(
2λe−λ2

∫ λ

0
ez

2
dz

)
= 1, lim

λ→∞
e−λ2

= 0,

lim
λ→0+

(
2λe−λ2

∫ λ

0
ez

2
dz

)
= 0, lim

λ→0+
e−λ2

= 1.
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Remark 6.6. Note that both (6.16) and (3.21) have similar form when we restrict solution

u(x, t) to the parabola P (λ). In (3.21) we have m,n ∈ N, but now we have m = −1,

n = −1/2 in (6.16).

Corollary 6.7. The function uh(x, t) in (6.15) satisfies

uh(x, t) = O

(
1

x

)
as x → ∞ for fixed t ∈ (0,∞),(6.17a)

uh(x, t) = O

(
1

t

)
as t → ∞ for fixed x ∈ (0,∞),(6.17b)

which implies

(6.18) u(x, t) =

O
(
1
x

)
as x → ∞ for fixed t ∈ (0,∞),

O
(

1√
t

)
as t → ∞ for fixed x ∈ (0,∞).

Proof. For fixed t ∈ (0,∞), by the L’Hospital rule, we have

lim
x→∞

uh(x, t) = lim
x→∞

x
∫ x/

√
4t

0 ez
2
dz

√
tex2/(4t)

= lim
x→∞

∫ x/
√
4t

0 ez
2
dz + xex

2/(4t) 1√
4t√

tex2/(4t) x
2t

= lim
x→∞

xex
2/(4t) 1√

4t√
tex2/(4t) x

2t

= 1,

which implies (6.17a). The proof of (6.17b) is similar. By (6.17), we have (6.18).

An interesting observation of the singular solution (6.15) is the following

Corollary 6.8. One can write the singular solution (6.15) as

u(x, t) =

(
1√
4πt

e−
x2

4t

)(√
4π

∫ x/
√
4t

0
ez

2
dz + 1

)
:= Φ(x, t) ·Ψ(x, t),

where Φ(x, t) is the fundamental solution of the heat equation and Ψ(x, t) is a solution

of the backward heat equation, i.e.,

Ψt(x, t) + Ψxx(x, t) = 0, (x, t) ∈ (0,∞)× (0,∞).

Remark 6.9. A solution H(x, t) of the heat equation times a solution B(x, t) of the back-

ward heat equation will be a solution of the heat equation if and only if the function

H(x, t)Bx(x, t) is independent of x.
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6.2. Self-similar solutions

Another interesting property we have discovered is that (6.15) is a self-similar solution

of the heat equation on (0,∞)× (0,∞). We recall the following definition for a self-similar

solution of the heat equation on Rn.

Definition 6.10. Let u(x, t) be a solution of the heat equation on Rn × (0,∞). Then for

any constant k > 0 the function knu(kx, k2t) is also a solution of the heat equation on

Rn × (0,∞). We say u(x, t) is a self-similar solution of the heat equation ut = △u on

Rn × (0,∞) if it satisfies

(6.19) u(x, t) = knu(kx, k2t)

for all (x, t) ∈ Rn × (0,∞) and all constant k > 0.

Remark 6.11. In the one-dimensional case, by differentiating (6.19) with respect to k and

let k = 1, a self-similar solution of the heat equation ut = uxx on R × (0,∞) will satisfy

the identity

u(x, t) + xux(x, t) + 2tut(x, t) = 0, ∀ (x, t) ∈ R× (0,∞).

For n = 1, the above definition still makes sense if we confine the domain of u(x, t) to

(0,∞)× (0,∞). Therefore, the solution (6.15) is indeed a self-similar solution of the heat

equation on (0,∞)× (0,∞).

The following result says that (6.15) is essentially the only self-similar solution on

(0,∞)× (0,∞).

Lemma 6.12 (Self-similar solution). Assume u(x, t) is a self-similar solution of the

heat equation on (0,∞)× (0,∞). Then it has the form

(6.20)

u(x, t) = C1

(
1√
t
e−

x2

4t

)∫ x/
√
4t

0
ez

2
dz + C2

(
1√
4πt

e−
x2

4t

)
, (x, t) ∈ (0,∞)× (0,∞)

for some constants C1, C2. In particular, when C1 = 1 and C2 = 1, it is the solution of

the singular initial-boundary value problem (6.14).

Proof. Clearly, if u(x, t) satisfies (6.19) on (0,∞) × (0,∞), then, by taking k = 1/
√
t, it

must have the form

(6.21) u(x, t) =
1√
t
v

(
x√
t

)
, (x, t) ∈ (0,∞)× (0,∞)

for some single-variable function v(z) defined on (0,∞). Hence we can just focus on (6.21).

Since u(x, t) is a solution of the heat equation on (0,∞) × (0,∞), v(z) must satisfy the

equation

v′′(z) +
1

2
zv′(z) +

1

2
v(z) =

d

dz

(
v′(z) +

1

2
zv(z)

)
= 0, ∀ z ∈ (0,∞),
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and so there exists a constant c1 such that v′(z) + zv(z)/2 = c1 for all z ∈ (0,∞), which

gives the general solution

v(z) =

(
c1

∫ z

0
eθ

2/4 dθ + c2

)
e−

z2

4 , z =
x√
t
∈ (0,∞)

for some constants c1, c2. Plugging the above v(z) into (6.21) will give us the for-

mula (6.20). The proof is done.

To end this section, we note the following interesting improper integral represen-

tations for the two self-similar solutions in (6.20).

Lemma 6.13. We have the identities

(6.22)
1√
4πt

e−
x2

4t =
1

π

∫ ∞

0
e−ty2 cos(xy) dy, ∀x ∈ (−∞,∞), t ∈ (0,∞)

and

(6.23)

(
1√
t
e−

x2

4t

)∫ x/
√
4t

0
ez

2
dz =

∫ ∞

0
e−ty2 sin(xy) dy, ∀x ∈ (−∞,∞), t ∈ (0,∞).

Remark 6.14. By (6.22), (6.23) and (6.12), we have the following two interesting limits

which are not so obvious:

lim
t→0+

1

π

∫ ∞

0
e−ty2 cos(xy) dy = 0, lim

t→0+

∫ ∞

0
e−ty2 sin(xy) dy =

1

x
for fixed x ∈ (0,∞).

The remaining limits (as t → ∞, x → 0+, and x → ∞) are obvious due to the LDCT and

Riemann–Lebesgue Lemma.

Proof of Lemma 6.13. For (6.22), we first consider the function

F (x) =

∫ ∞

0
e−y2 cos(xy) dy, x ∈ (−∞,∞), F (0) =

√
π

2

with

F ′(x) = −
∫ ∞

0
ye−y2 sin(xy) dy, x ∈ (−∞,∞), F ′(0) = 0.

For x ̸= 0, integration by parts gives

F (x) =
2

x

∫ ∞

0
ye−y2 sin(xy) dy, x ∈ (−∞,∞), x ̸= 0,

which yields the ODE for F (x) on x ∈ (−∞,∞):

F ′(x) +
x

2
F (x) = 0, x ∈ (−∞,∞), F (0) =

√
π

2
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and its unique solution is given by

F (x) =

∫ ∞

0
e−y2 cos(xy) dy =

√
π

2
e−

x2

4 , x ∈ (−∞,∞).

After a change of variables, we can obtain

1

π

∫ ∞

0
e−ty2 cos(xy) dy =

1

π

∫ ∞

0
e−z2 cos

(
x√
t
z

)
1√
t
dz =

1√
4πt

e−
x2

4t

for all x ∈ (−∞,∞) and t ∈ (0,∞).

For the proof of (6.23), we let

G(x) =

∫ ∞

0
e−y2 sin(xy) dy, x ∈ (−∞,∞), G(0) = 0

with

G′(x) =

∫ ∞

0
ye−y2 cos(xy) dy, x ∈ (−∞,∞), G′(0) =

1

2

and by similar computations to the above, we obtain the ODE

G′(x) +
x

2
G(x) =

1

2
, ∀x ∈ (−∞,∞), G(0) = 0,

with unique solution

G(x) =

∫ ∞

0
e−y2 sin(xy) dy =

1

2
e−

x2

4

∫ x

0
ez

2/4 dz, x ∈ (−∞,∞).

After a change of variables, we can obtain∫ ∞

0
e−ty2 sin(xy) dy =

1√
t

∫ ∞

0
e−z2 sin

(
x√
t
z

)
dz

=
1√
t
G

(
x√
t

)
=

(
1√
t
e−

x2

4t

)∫ x/
√
4t

0
ez

2
dz

for all x ∈ (−∞,∞) and t ∈ (0,∞). The proof is done.

7. Generalization of the ibvp (1.1) to a linear equation with constant coefficients

It is not difficult to generalize the problem (1.1) to a linear equation with constant coeffi-

cients, namely

(7.1)


ut(x, t) = uxx(x, t) +Aux(x, t) +Bu(x, t), (x, t) ∈ (0,∞)× (0,∞),

u(x, 0) = h(x), x ∈ (0,∞),

u(0, t) = g(t), t ∈ (0,∞),

where A, B are given constants and h(x), g(t) are given continuous functions on (0,∞)

satisfying the growth condition (1.2).

For the linear equation in (7.1) on the entire space (x, t) ∈ R2, it is closely related to

the standard heat equation on R2. More precisely, we have
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Lemma 7.1. Let A, B be any two constants. If u(x, t) is a solution of the linear equation

ut = uxx +Aux +Bu on R2, then the two functions

(7.2) v(x, t) = e−Btu(x−At, t), w(x, t) = e
A
2
x+ 1

4
(A2−4B)tu(x, t), (x, t) ∈ R2

are both solutions to the heat equation on R2.

Proof. This is a straightforward verification.

Using the second identity in (7.2), we see that u(x, t) is a solution of the problem (7.1)

on (0,∞)× (0,∞) if and only if w(x, t) in (7.2) is a solution of the problem

(7.3)


wt(x, t) = wxx(x, t), (x, t) ∈ (0,∞)× (0,∞),

w(x, 0) = e
A
2
xh(x), x ∈ (0,∞),

w(0, t) = e
1
4
(A2−4B)tg(t), t ∈ (0,∞).

Therefore, to solve (7.1) one can solve the problem (7.3) first and then obtain u(x, t) by

the second identity in (7.2). By (1.3) (or (2.1)), we can obtain a solution formula for

u(x, t) of the initial-boundary value problem (7.1). The details are left to the readers.

8. Oblique initial-boundary value problem for the heat equation

Next, we will use the first identity in (7.2) and consider the function v(x, t) = e−Btu(x−
At, t), where we assume u(x, t) is a solution of the problem (7.1) on (0,∞)× (0,∞). Now

v(x, t) is defined on the domain D = {x > At}∩{t > 0} ⊂ R2 and it satisfies the following

oblique initial-boundary value problem:

(8.1)


vt(x, t) = vxx(x, t), (x, t) ∈ {x > At} ∩ {t > 0}

v(x, 0) = u(x, 0) = h(x), x ∈ (0,∞)

v(At, t) = e−Btu(0, t) = e−Btg(t), t ∈ (0,∞),

where A and B in (8.1) are two arbitrary given constants. For given continuous functions

h(x), g(t) on (0,∞), the problem (8.1) has a solution formula due to the relation between

v(x, t) and w(x, t) in (7.2), given by

v(x, t) = e−Bt
[
e−

A
2
(x−At)− 1

4
(A2−4B)tw(x−At, t)

]
.

Since there is a solution formula for w(x, t) in the problem (7.3), there is a solution formula

for v(x, t) in (8.1). If we use the formula (2.1) for w(x, t), we can obtain
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Lemma 8.1. Let A, B be any two constants and h(x), g(t) are given continuous functions

on (0,∞) satisfying the growth condition (1.2). Then the function

v(x, t) = e−Btu(x−At, t) = e−Bt
[
e−

A
2
(x−At)− 1

4
(A2−4B)tw(x−At, t)

]
= e−

A
2
(x−At)−A2

4
t ·
(

1√
π

∫ ∞

−(x−At)/
√
4t
e−z2e

A
2
((x−At)+

√
4tz)h((x−At) +

√
4tz) dz

− 1√
π

∫ ∞

(x−At)/
√
4t
e−z2e

A
2
(−(x−At)+

√
4tz)h(−(x−At) +

√
4tz) dz

+
2√
π

∫ ∞

(x−At)/
√
4t
e−z2e

1
4
(A2−4B)

(
t−
(

x−At
2z

)2)
g

(
t−

(
x−At

2z

)2)
dz,

)
where (x, t) ∈ D = {x > At} ∩ {t > 0}, gives a solution of the oblique initial-boundary

value problem (8.1) on D and it lies in the space

u(x, t) ∈ C∞(D) ∩ C0(D \ {(0, 0)}).

Moreover, if we have h(0) = g(0), then u(x, t) ∈ C∞(D) ∩ C0(D).

Proof. This is a direct consequence of the known properties stated in the Introduction

section, together with Lemmas 2.1 and 7.1.

Remark 8.2. Note that the constant A in Lemma 8.1 can be either positive or negative

(A = 0 is trivial and we ignore it). For A > 0, the domain D ⊂ (0,∞) × (0,∞) and for

A < 0, the domain D ⊃ (0,∞)× (0,∞).

Acknowledgments

Research in this paper is supported by a fund from NSTC (National Science and Technol-

ogy Council) of Taiwan with grant number 110-2115-M-007-005-MY2. The author would

like to thank the reviewers for their reading and suggestions on the paper. He would also

like to thank Professor Cheng-Hsiung Hsu for taking care of the submission of this paper.

References

[1] D. E. Amos, On half-space solutions of a modified heat equation, Quart. Appl. Math.

27 (1969), 359–369.

[2] J. R. Cannon, The One-dimensional Heat Equation, Encyclopedia of Mathematics

and its Application 23, Addison-Wesley Publishing Company, Advanced Book Pro-

gram, Reading, MA, 1984.



82 Dong-Ho Tsai

[3] M.-S. Chang and D.-H. Tsai, On the oscillation behavior of solutions to the heat

equation on Rn, J. Differential Equations 268 (2020), no. 5, 2040–2062.
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