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On Symmetric Plane Quartic Curves

Marek Janasz

Abstract. In the present paper, we study the geometry of plane quartics with large

automorphism groups. We show results devoted to smooth plane quartics that are

invariant under the action of the elementary Abelian group of type [2, 2, 2]. Then we

study geometric properties of the smooth plane quartic having automorphism group

of order 48.

1. Introduction

In the present paper, we study some geometric and combinatorial properties of irreducible

quartic curves C ⊂ P2
C. Following the lines of [1,7], we say that an irreducible and reduced

curve C ⊂ P2
C of genus g ≥ 2 has large automorphism group if

#Aut(C) > 4(g − 1).

In the case of irreducible plane quartics, the above condition means that #Aut(C) > 8.

It is worth recalling that smooth plane quartic curves in P2
C with #Aut(C) > 8 were

classified in [1] with respect to the order of automorphism groups, namely

� The Klein quartic C168 : x
3y + y3z + z3x = 0 with #Aut(C168) = 168,

� the Dyck quartic C96 : x
4 + y4 + z4 = 0 with #Aut(C96) = 96,

� quartic C48 : x
4 + y4 + xz3 = 0 with #Aut(C48) = 48,

� quartics in one-parameter family C24,a : x4 + y4 + z4 + 3a(x2y2 + y2z2 + y2z2) = 0

with #Aut(C24,a) = 24, where a /∈ {0, (−1±
√
−7)/2},

� quartics in one parameter family C16,δ : x
4+y4+z4+δz2y2 = 0 with #Aut(C16,δ) =

16, where δ /∈ {0,±2,±6,±2
√
−3},

� quartic C9 : z
4 + zy3 + yx3 = 0 with #Aut(C9) = 9.

Received June 26, 2024; Accepted July 24, 2024.

Communicated by Ivan Cheltsov.

2020 Mathematics Subject Classification. 14N25, 14H50, 32S25, 14C20.

Key words and phrases. plane quartic curves, line arrangements, singularities.

1



2 Marek Janasz

In the joint work with Pokora and Zieliński [6] we studied combinatorial properties of line

arrangements determined by bitangents to smooth plane quartics having large automor-

phism groups and, in particular, we described the weak combinatorics of such arrange-

ments. It turns out that the arrangements consisting of smooth plane quartics and their

bitangents allow to construct non-trivial free and plus-one generated arrangements. In the

light of these results, we focus on the geometry of the smooth plane quartic C48 and we

find effectively all the 28 bitangent lines, the weak combinatorics of the arrangement of

bitangents, and then we construct new examples of free plane curve arrangements. In this

way, we fill the gap in our knowledge about of arrangements consisting of bitangents to

symmetric plane quartics. The second result of the paper is devoted to plane quartics such

that they are invariant under the action of G8 = Z3
2 and such that their Hessian is very

symmetric. In that setting, our result tells us that if C is an irreducible plane quartic which

is G8-invariant having Hessian of the form x2y2z2, then C is given by Ax4 + By4 + Cz4

with ABC = 1/1728.

The structure of the paper goes as follows. In Section 2, we present our classification

result for G8-invariant irreducible plane quartics with a prescribed Hessian. In Section 3,

we study the geometry of the plane quartic C48 and its 28 bitangents. In particular, we

provide a classification result on free arrangements consisting of C48 and its bitangents.

We work only over the complex numbers, and our computations are supported by

SINGULAR [2].

2. G8-invariant plane quartic curves

Here we want to study plane quartics that are invariant under the action of the elementary

Abelian group of type [2, 2, 2] of order 8, and we denote this group by G8. In our studies

we will use the following faithful matrix representation generated in GL(3,Z) by the three

matrices: 
−1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 −1 0

0 0 1

 ,


1 0 0

0 1 0

0 0 −1

 .

Recall that if ρ : G → GL(n,C) is a faithful representation of a finite group G, then we have

the following standard action on the graded ring of polynomials S := C[x, y, z], namely

G× S ∋ (g, f) 7→ f(ρ(g)−1 · (x, y, z)t) ∈ S.

Since our representation of G8 is generated by the diagonal matrices and for every g ∈ G8

one has ρ(g)−1 = ρ(g), the action on S can be described as

G8 × S ∋ (g, f) = f(ax, by, cz) ∈ S,
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where ρ(g) = Diag(a, b, c) with a, b, c ∈ {−1, 1}. Our first observation is

Proposition 2.1. One has C[x, y, z]G8 = C[x2, y2, z2].

Proof. See for example [9, p. 57].

From now on, we study only these reduced plane quartics C that are G8-invariant.

Such a quartic has the following defining polynomial

(2.1) Q(x, y, z) = Ax4 +By4 + Cz4 +Dx2y2 + Ex2z2 + Fy2z2

with A,B,C,D,E, F ∈ C. In our further investigations, we are going to work with the

Hessians associated with plane quartics. In that context, we have the following crucial

folkloric result, see [8, p. 115].

Proposition 2.2. Let ρ : G → GL(n,C) be a faithful representation of a finite group G.

Let f ∈ C[x1, . . . , xn]G and assume that for every g ∈ G one has (det(ρ(g)))2 = 1, then

the Hessian of f defined as

Hess(f) = det

[
∂2f

∂xi∂xj

]
i,j

is G-invariant.

In the light of the above result, if we have a G8-invariant quartic C : f = 0, then its

associated Hessian curve CH : Hess(f) = 0 is also G8-invariant.

Next, for a general G8-invariant quartic given by (2.1) we compute its Hessian, namely

Hess(Q) = 48ADEx6 + 48BDFy6 + 48CEFz6

+ (288ABE + 48ADF − 24D2E)x4y2 + (288ABF + 48BDE − 24D2F )x2y4

+ (288BCE + 48CDF − 24EF 2)y2z4 + (288BCD + 48BEF − 24DF 2)y4z2

+ (288ACD + 48AEF − 24DE2)x4z2 + (288ACF + 48CDE − 24E2F )x2z4

+ (1728ABC − 144AF 2 − 144BE2 − 144CD2 + 144DEF )x2y2z2.

Now we are ready to present our result devoted to G8-invariant quartics having a very

special Hessian.

Theorem 2.3. Let C : f = 0 be an irreducible G8-invariant quartic in P2
C such that

Hess(f) = x2y2z2. Then C is given by the equation of the form

Q(x, y, z) = Ax4 +By4 + Cz4,

where A, B, C such that ABC = 1/1728.
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Proof. Let C be a G8-invariant quartic given by (2.1). Our problem boils down to solving

the following system of equations

(2.2) Hess(Q) = x2y2z2.

The equation (2.2) leads us to the following system of equations:

48ADE = 0, 48BDF = 0, 48CEF = 0,

288ABE + 48ADF − 24D2E = 0,

288ABF + 48BDE − 24D2F = 0,

288BCE + 48CDF − 24EF 2 = 0,

288BCD + 48BEF − 24DF 2 = 0,

288ACD + 48AEF − 24DE2 = 0,

288ACF + 48CDE − 24E2F = 0,

1728ABC − 144AF 2 − 144BE2 − 144CD2 + 144DEF = 1.

Using the SINGULAR script from Appendix, we can verify that the above system of equa-

tions has the following solutions:



D = 0,

E = 0,

F = 0,

1728ABC = 1,



A = 0,

B = 0,

E = 0,

F = 0,

144CD2 = −1,



A = 0,

C = 0,

D = 0,

F = 0,

144BE2 = −1,



B = 0,

C = 0,

D = 0,

E = 0,

144AF 2 = −1.

In order to finish our proof, we need to observe that the last three solutions lead to

reducible plane quartics. Indeed, if A = B = E = F = 0 and 144CD2 = −1, then we get

Q(x, y, z) =
−z4

144D2
+Dx2y2 =

−1

144D2

(
z2 + 12

√
D3xy

)(
z2 − 12

√
D3xy

)
.

In the same way, we can show that in the last two remaining cases our quartics are also

reducible, and this completes the proof.

Remark 2.4. Observe that the quartic C : Ax4 +By4 +Cz4 = 0 is projectively equivalent

to the Dyck quartic C96, we need to use the following obvious map:

(x, y, z) 7→ (ax, by, cz),

where a4 = 1/A, b4 = 1/B, c4 = 1/C.
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3. On the geometry of the smooth plane quartic with automorphism group of

order 48

In this section we want to focus on a very particular symmetric smooth plane quartic

C48 ⊂ P2
C with the automorphism group of order 48 that is given by

F (x, y, z) = x4 + y4 + xz3.

As it is explained in [1], our quartic curve C48 is unique, and it has the automorphism

group Aut(C48) = C4 ⊙ A4, i.e., this is the central extension by C4 of A4, and this group

has the following presentation:

Aut(C48) = ⟨a, b, c, d | a4 = d3 = 1, b2 = c2 = a2, ab = ba, ac = ca, ad = da,

cbc−1 = a2b, dbd−1 = a2bc, dcd−1 = b⟩.

Our aim here is to understand the geometry of the 28 bitangents to the quartic C48, and

in order to do so we will use a geometric description provided by Wall in [10]. First of

all, we have the following important description of singular points of the curve dual to the

smooth plane quartic.

Proposition 3.1. [10, Proposition in Section 1] Let C ⊂ P2
C be an irreducible quartic

curve and let C∨ be the dual curve to C. Then C∨ has the same list of singularities as C,

except as follows. The nodes, ordinary cusps and triple points of C do not contribute to

singularities of C∨. Conversely, C∨ may have nodes, ordinary cusps and singularities of

type E6 not arising from singularities of C.

From this perspective, one can ask what we can learn about the geometry of smooth

plane quartics by looking at the singularities of the dual curve of degree 12. We focus here

on the situation when the singularities of the dual curves are E6 singularities. For such a

description, let Γ be a curve germ at P with a unique tangent line P∨, Γ∨ the dual germ

at P∨ with tangent P , and denote by i(Γ) the local intersection number of Γ and P∨.

Proposition 3.2. [10] For a smooth plane quartic curve C ⊂ P2
C, a E6 singularity of

C∨ dualizes to a smooth germ with a hyperflex tangent, i.e., the local intersection number

i(Γ) = 4, and vice versa.

In other words, if the dual curve C∨ of a smooth plane quartic C has exactly k

singularities of type E6, then C admits exactly k hyperosculating lines, i.e., lines tangent

to C with i(Γ) = 4. Furthermore, such a tangent point, considered as a singularity created

by C and the associated hyperosculating line, is a A7 singularity.
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Let us come back to C48. The dual curve to C48, which will be denoted by C∨
48, is

given by the following polynomial

G(x, y, z) = x8y4 + 2x4y8 + y12 +
256

27
x9z3 + 16x5y4z3

+ 16xy8z3 − 256

9
x6z6 + 64x2y4z6 +

256

9
x3z9 − 256

27
z12.

As we can check directly, using SINGULAR, the curve C∨
48 has exactly 16 ordinary cusps,

24 nodes, and 4 singularities of type E6. In the light of the above propositions, our curve

C48 admits exactly 4 hyperosculating lines. It is worth recalling here that hyperosculating

lines are considered as (degenerate) bitangent lines, so altogether we have 24 (classical)

bitangent lines and 4 hyperosculating lines to C48.

Here we present equations of the 28 bitangents to C48, namely

ℓ1 : 468x+ (16r13 + 78r9 + 546r5 − 990r)y + (3r12 − 639)z = 0,

ℓ2 : 468x− (16r13 + 78r9 + 546r5 − 990r)y + (3r12 − 639)z = 0,

ℓ3 : 468x+ (50r13 + 312r9 + 2028r5 − 198r)y + (3r12 − 639)z = 0,

ℓ4 : 468x− (50r13 + 312r9 + 2028r5 − 198r)y + (3r12 − 639)z = 0,

ℓ5 : 468x+ (16r13 + 78r9 + 546r5 − 990r)y + (30r12 + 195r8 + 1287r4 + 45)z = 0,

ℓ6 : 468x+ (16r13 + 78r9 + 546r5 − 990r)y + (−33r12 − 195r8 − 1287r4 + 594)z = 0,

ℓ7 : 468x+ (50r13 + 312r9 + 2028r5 − 198r)y + (30r12 + 195r8 + 1287r4 + 45)z = 0,

ℓ8 : 468x+ (−16r13 − 78r9 − 546r5 + 990r)y + (−33r12 − 195r8 − 1287r4 + 594)z = 0,

ℓ9 : 468x+ (−16r13 − 78r9 − 546r5 + 990r)y + (30r12 + 195r8 + 1287r4 + 45)z = 0,

ℓ10 : 468x+ (50r13 + 312r9 + 2028r5 − 198r)y + (−33r12 − 195r8 − 1287r4 + 594)z = 0,

ℓ11 : 468x+ (−50r13 − 312r9 − 2028r5 + 198r)y + (−33r12 − 195r8 − 1287r4 + 594)z = 0,

ℓ12 : 468x+ (−50r13 − 312r9 − 2028r5 + 198r)y + (30r12 + 195r8 + 1287r4 + 45)z = 0,

ℓ13 : 468x+ (10r13 + 78r9 + 546r5 + 288r)y + (−3r12 + 171)z = 0,

ℓ14 : 468x+ (−10r13 − 78r9 − 546r5 − 288r)y + (−3r12 + 171)z = 0,

ℓ15 : 468x+ (−10r13 − 78r9 − 546r5 − 288r)y + (9r12 + 39r8 + 351r4 − 162)z = 0,

ℓ16 : 468x+ (−10r13 − 78r9 − 546r5 − 288r)y + (−6r12 − 39r8 − 351r4 − 9)z = 0,

ℓ17 : 468x+ (10r13 + 78r9 + 546r5 + 288r)y + (9r12 + 39r8 + 351r4 − 162)z = 0,

ℓ18 : 468x+ (10r13 + 78r9 + 546r5 + 288r)y + (−6r12 − 39r8 − 351r4 − 9)z = 0,

ℓ19 : 156x+ (−8r13 − 52r9 − 312r5 + 144r)y + (−r12 + 57)z = 0,

ℓ20 : 156x+ (8r13 + 52r9 + 312r5 − 144r)y + (−r12 + 57)z = 0,

ℓ21 : 156x+ (−8r13 − 52r9 − 312r5 + 144r)y + (−2r12 − 13r8 − 117r4 − 3)z = 0,

ℓ22 : 156x+ (−8r13 − 52r9 − 312r5 + 144r)y + (3r12 + 13r8 + 117r4 − 54)z = 0,
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ℓ23 : 156x+ (8r13 + 52r9 + 312r5 − 144r)y + (−2r12 − 13r8 − 117r4 − 3)z = 0,

ℓ24 : 156x+ (8r13 + 52r9 + 312r5 − 144r)y + (3r12 + 13r8 + 117r4 − 54)z = 0,

ℓ25 : 39x+ (2r12 + 13r8 + 78r4 − 36)z = 0,

ℓ26 : 39x− (2r12 + 13r8 + 78r4 + 3)z = 0,

ℓ27 : x = 0,

ℓ28 : x+ z = 0,

where r16 + 6r12 + 39r8 − 18r4 + 9 = 0. Let us notice that the lines ℓ25, . . . , ℓ28 are

hyperosculating.

In order to formulate our result devoted to the weak-combinatorics of the 28 bitangents

to C48 lines, we need the following notation. For a given line arrangement L, let us denote
by ni = ni(L) the number of i-fold intersection points among the lines in L.

Proposition 3.3. The arrangement L ⊂ P2
C consisting of the 28 bitangents to C48 has

the following intersections

n2 = 240, n3 = 32, n4 = 7.

Proof. This is a standard check that can be done using SINGULAR. Let us denote by f be

the defining equation of the arrangement L, and denote by Jf =
〈∂f
∂x
, ∂f∂y ,

∂f
∂z

〉
the Jacobian

ideal. Recall that

deg(Jf ) = τ(L) = n2 + 4n3 + 9n4,

where τ(L) denotes the total Tjurina number of L (see the precise definition below). Using

SINGULAR, we can check that deg(Jf ) = 431. Since

(3.1)

(
28

2

)
= n2 + 3n3 + 6n4

we obtain

53 = n3 + 3n4.

Define by Tf the ideal generated by all the partial derivatives of order three. Using

SINGULAR we can check that deg(Tf ) = 7, which gives us that

n3 = 53− 3n4 = 32.

Finally, using (3.1) we get n2 = 240, and this completes the proof.

Now we would like to detect some free arrangements that are determined by the quartic

C48 and its bitangents. We need to recall some fundamental definitions.

Let S := C[x, y, z] be the graded ring of polynomials with complex coefficients, and

for a homogeneous polynomial f ∈ S let Jf be the Jacobian ideal given by f .
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Definition 3.4. Consider the graded S-module of Jacobian syzygies of f , namely

AR(f) = {(a, b, c) ∈ S3 : afx + bfy + cfz = 0}.

The minimal degree of non-trivial Jacobian relations for f is defined as

mdr(f) := min{r : AR(f)r ̸= (0)}.

Recall that for a reduced plane curve C : f = 0 we denote by τ(C) its total Tjurina

number, i.e.,

τ(C) =
∑

p∈Sing(C)

τp,

the sum goes over all singular points of C and τp denotes the local Tjurina number. Now

we can define free plane curves using a result due to du Plessis and Wall [5].

Definition 3.5. Let C : f = 0 be a reduced curve in P2
C of degree d. Then the curve C

with r := mdr(f) ≤ (d− 1)/2 is free if and only if

(3.2) (d− 1)2 − r(d− r − 1) = τ(C).

Definition 3.6. If C : f = 0 is a reduced free plane curve of degree d in P2
C, then the

exponents of C is the pair defined as

exp(C) = (mdr(f), d− 1−mdr(f)).

Observe that our arrangements EL consisting of the quartic curve C48 and its bitan-

gents admit only n2 nodes, n3 ordinary triple points, n4 ordinary quadruple points, t3

tacnodes, and t7 singularities of type A7, and the total Tjurina number of EL is equal to

τ(EL) = n2 + 3t3 + 4n3 + 7t7 + 9n4.

Theorem 3.7. The quartic curve C48 and its bitangents admits exactly one free arrange-

ment of degree 8, namely the arrangement admits one ordinary quadruple point and four

singularities of type A7.

Proof. Assume that EL given by f = 0 is a free arrangement consisting of the quartic

C48 and 4 bitangents. We want to find some numerical constraints on such free arrange-

ments. First of all, recall that the arrangement EL has to satisfy the following system of

Diophantine equations:

(3.3)

n2 + 2t3 + 3n3 + 4t7 + 6n4 = 4 · 4 +
(
4
2

)
= 22,

n2 + 3t3 + 4n3 + 7t7 + 9n4 = τ(EL),
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wherein τ(EL) ∈ {37, 39}. Indeed, the first equation follows from Bézout’s theorem, and

for the second equation we need to observe that by [4, Theorem 2.1] and the fact that

mdr(f) ≤ (d− 1)/2 one has

7

2
≥ mdr(f) ≥ 1

2
· 8− 2 = 2,

which implies that mdr(f) ∈ {2, 3}. Then, using (3.2), we get τ(EL) ∈ {37, 39}. It turns

out that for τ(EL) = 39 our system (3.3) does not have any non-negative integer solution,

and for τ(EL) = 37 we have exactly three solutions, namely

(n2, n3, n4, t3, t7) ∈ {(0, 0, 0, 3, 4), (2, 0, 0, 0, 5), (0, 0, 1, 0, 4)}.

Observe that the first two weak-combinatorics cannot be realized geometrically using

bitangents and quartic C48, i.e., the first one cannot be realized due to Bézout’s theorem

(too many intersections), and the second combinatorics cannot be realized since having 4

bitangents we can produce at most 4 singularities of type A7. The last combinatorics can

be realized geometrically. Consider the following arrangement EL given by

Q(x, y, z) = (x4 + y4 + xz3) · ℓ25 · ℓ26 · ℓ27 · ℓ28.

We can check directly that the lines ℓ25, ℓ26, ℓ27, ℓ28 are concurrent, which means that

they intersect at a quadruple points. Moreover, each line ℓi is tangent to quartic C48 at

exactly one point, so the local intersection index is equal to 4, and we have a singular

point of type A7. Summing up, we have n4 = 1 and t7 = 4. We can check using SINGULAR

that mdr(Q) = 3, and

37 = r2 − r(d− 1) + (d− 1)2 = τ(EL) = 7t7 + 9n4 = 37,

hence EL is free with exponents (3, 4). Since in our arrangement of bitangents we have

exactly 4 hyperosculating lines, our arrangement is unique (up to the labeling of lines).

Remark 3.8. In light of [3, Theorem 1.1], if we delete one (and any) line from EL, we get

either a free or plus-one generated arrangement, and it turns out that we end up with the

second scenario, namely we get a plus-one generated curve.

A. Appendix

Here we present our SINGULAR script that allows to verify the claim in Theorem 2.3.

option(redSB);

LIB "primdec.lib";
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ring R = 0, (A,B,C,D,E,F), dp;

ideal si =

A*D*E,

B*D*F,

C*E*F,

12*A*B*E + 2*A*D*F - D2*E,

12*A*B*F + 2*B*D*E - D2*F,

12*B*C*E + 2*C*D*F - E*F2,

12*B*C*D + 2*B*E*F - D*F2,

12*A*C*D + 2*A*E*F - D*E2,

12*A*C*F + 2*C*D*E - E2*F,

1728*A*B*C - 144*A*F2 - 144*B*E2 - 144*C*D2 + 144*D*E*F - 1;

primdecGTZ(si);
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