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A Well-balanced and Positivity-preserving Godunov-type Numerical Scheme

for a Spray Model

Dao Huy Cuong and Mai Duc Thanh*

Abstract. Computational exact Riemann solvers are constructed for a spray model.

The model is characterized by a system of balance laws with nonconservative terms

in the equations for conservations of momentum and energy. The proposed scheme is

combined from an upwind scheme for the equation of the volume fraction evolution

and a Godunov-type scheme for the governing equations. The numerical results show

that the scheme provides us with the convergence and it possesses a good accuracy,

even when resonant phenomena occur. It is interesting to see that the proposed scheme

is well-balanced, and preserves the positivity of density, of volume fraction, and the

C-property.

1. Introduction

In this paper, we build a well-balanced and positivity-preserving scheme for the numerical

approximation of weak solutions to the Cauchy problem associated with the following spray

model, which consists of the conservation law of mass, balance equation of momentum,

balance equation of energy, and a convection equation:

∂t(αρ) + ∂x(αρu) = 0,

∂t(αρu) + ∂x(α(ρu
2 + p)) = p∂xα,

∂t(αρE) + ∂x(αu(ρE + p)) = pw∂xα,

∂tα+ w∂xα = 0, x ∈ R, t > 0,

(1.1)

where α(x, t), ρ(x, t), u(x, t), p(x, t), E(x, t) denote the volume fraction, density, velocity,

pressure and total energy in the first phase of flow, respectively; and w(x, t) denotes the

given velocity in the second phase of flow. This model is based on the Baer–Nunziato

model of two-phase flow, see [4,6], in which the dynamics of the fluid in the first phase is

the subject to be studied, and the fluid in the second phase is pumped into the first phase
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with a speed w. The fluid in the first phase is assumed to be a stiffed gas, which has an

equation of state of the form

p = (γ − 1)ρε− γπ,

where γ, π > 0 are constants. The total energy E defined by

E = ε+
u2

2
,

where ε is the internal energy.

The system (1.1) has two nonconservative terms on the right-hand side, so weak so-

lutions of this model can be viewed in term of nonconservative products, see [15, 25].

Numerical approximation of systems of balance laws in nonconservative form has been a

very challenging topic for many authors during the past decades.

Recently, the Riemann problem for a spray model with constant w has been considered

in [36]. Motivated by that work, in order to solve the system (1.1) numerically, we first

compute the volume fraction by an upwind scheme, then we employ the local Riemann

solutions of (1.1) at interfaces xj+1/2 corresponding to constant speeds wn
j+1/2 to build up

a Godunov-type scheme for computing the first phase. We will show that the proposed

scheme can keep some families of steady solutions, which means it is well-balanced and

preserve C-property. Moreover, we will prove the positivity of density and volume fraction

preserving property of the proposed scheme in this paper.

Note that numerical schemes for a nonconservative single conservation law were pre-

sented in [3, 7, 8]. The Riemann problem for fluid flows in a nozzle with discontinuous

cross-section was presented in [26]. The Riemann problem for two-phase flow models were

constructed in [34, 35]. The Riemann problem for other nonconservative hyperbolic sys-

tems were considered in [19, 22–24, 29, 32, 33]. A Godunov-type scheme for the isentropic

model of a fluid flow in a nozzle with variable cross-section was built in [11]. Godunov-type

schemes for hyperbolic systems of balance laws in nonconservative forms were presented

in [2, 28, 31]. A Godunov-type scheme for two-phase flow models were presented in [14].

Godunov-type schemes for multi-phase flow models and other hyperbolic systems of bal-

ance laws in nonconservative forms were studied in [2, 12, 28, 30]. Numerical schemes for

two-phase flow models were built in [1, 5, 10, 38]. The Riemann problem and numerical

schemes for shallow water equations were constructed in [9,13,16–18,20,21,27,28,37]. See

also the references therein.

The organization of this paper is as follows. Section 2 presents the basic properties

of the system (1.1). Algorithms for computing the Riemann solution are revisited in

Section 3. Then, Section 4 is devoted to the construction of a well-balanced and positivity

of density preserving numerical scheme based on the exact solutions of local Riemann



Godunov Scheme for a Spray Model 915

problems stated in the previous section. Numerical tests are given in Section 5. Finally,

we draw several conclusions in Section 6.

2. Backgrounds

2.1. Characteristic fields

For smooth solutions, the system (1.1) can be re-written as a system of balance laws in

non-conservative form as

∂tU+A(U)∂xU = 0,

where

U =




ρ

u

p

α



, A(U) =




u ρ 0 ρ(u− w)/α

0 u 1/ρ 0

0 ρc2 u ρc2(u− w)/α

0 0 0 w



,

and c denotes sound speed of the fluid in the first phase

c =

√
γ(p+ π)

ρ
.

The matrix A(U) has four real eigenvalues

(2.1) λ1(U) = u− c, λ2(U) = u, λ3(U) = u+ c, λ4(U) = w.

Moreover, 2- and 4-characteristic fields are linearly degenerate, while 1- and 3-characteristic

fields are genuinely nonlinear, see [36].

2.2. Elementary waves of (1.1) with w constant

Recall that though k-waves Wk(UL,UR), k = 1, 2, 3, the volume fraction α remains

constant, see [36]. A k-shock wave Sk(UL,UR) (k = 1, 3) is defined by

U(x, t) =




UL if x/t < σk(UL,UR),

UR if x/t > σk(UL,UR),

where

σk(UL,UR) =
ρRuR − ρLuL

ρR − ρL
.

A k-rarefaction wave Rk(UL,UR) (k = 1, 3) is defined by

U(x, t) =





UL if x/t ≤ λk(UL),

Fank(x/t;UL,UR) if λk(UL) < x/t < λk(UR),

UR if x/t ≥ λk(UR),



916 Dao Huy Cuong and Mai Duc Thanh

where

Fank(ξ;UL,UR) := [ρ(ξ), u(ξ), p(ξ), αL]
T,

p(ξ) =

[
(pL + π)

γ−1
2γ + (−1)

k+1
2

(γ − 1)
√
ρL

(γ + 1)

√
γ(pL + π)

1
γ

(ξ − λk(UL))

] 2γ
γ−1

− π,

u(ξ) = uL +
2

γ + 1
(ξ − λk(UL)), ρ(ξ) = ρL

(
p(ξ) + π

pL + π

) 1
γ

.

A 2-contact wave W2(UL,UR) is defined by

U(x, t) =




UL if x/t < λ2(UL),

UR if x/t > λ2(UL).

Fix U0 = [ρ0, u0, p0, α0]
T, the forward 1-wave curve issuing from U0 is defined by

(2.2) W1(U0) = S1(U0) ∪R1(U0),

where

S1(U0) =

{
[ρ, u, p, α0]

T : p > p0, u = u0 −
√

(p− p0)

(
1

ρ0
− 1

ρ

)
,

ρ

ρ0
=

(γ + 1)(p+ π) + (γ − 1)(p0 + π)

(γ + 1)(p0 + π) + (γ − 1)(p+ π)

}
,

R1(U0) =

{
[ρ, u, p, α0]

T : p ≤ p0,
ρ

ρ0
=

(
p

p0

) 1
γ

,

u = u0 −
2

√
γ(p0 + π)

1
γ

(γ − 1)
√
ρ0

(
(p+ π)

γ−1
2γ − (p0 + π)

γ−1
2γ
)}

.

If λ1(U0) > w, then there exists a unique state U#
0 ∈ S1(U0) such that

(2.3) σ1(U0,U
#
0 ) = w, σ1(U0,U)




< w for ρ > ρ#0 ,

> w for ρ0 < ρ < ρ#0 .

If λ1(U0) < w, then σ1(U0,U) < w for all U ∈ S1(U0).

The backward 3-wave curve issuing from U0 is defined by

(2.4) W3B(U0) = S3B(U0) ∪R3B(U0),
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where

S3B(U0) =

{
[ρ, u, p, α0]

T : p > p0, u = u0 +

√
(p− p0)

(
1

ρ0
− 1

ρ

)
,

ρ

ρ0
=

(γ + 1)(p+ π) + (γ − 1)(p0 + π)

(γ + 1)(p0 + π) + (γ − 1)(p+ π)

}
,

R3B(U0) =

{
[ρ, u, p, a0]

T : p ≤ p0,
ρ

ρ0
=

(
p+ π

p0 + π

) 1
γ

,

u = u0 +
2

√
γ(p0 + π)

1
γ

(γ − 1)
√
ρ0

(
(p+ π)

γ−1
2γ − (p0 + π)

γ−1
2γ
)}

.

Only 4-constant-speed wave involves the jump of the volume fraction α. Let us fix

U0 = [ρ0, u0, p0, α0]
T and given α ̸= α0. Any state U = [ρ, u, p, α]T that can be connected

with U0 by a 4-constant-speed wave must satisfy the equations

(2.5)

αρ(u− w) = α0ρ0(u0 − w), (u− w)2 +
2γ(p+ π)

(γ − 1)ρ
= (u0 − w)2 +

2γ(p0 + π)

(γ − 1)ρ0
,

p+ π

p0 + π
=

(
ρ

ρ0

)γ

.

If u0 = w, then (2.5) admits a unique root

(2.6) (ρ, u, p) = (ρ0, u0, p0).

Consider the case u0 ̸= w. By substituting 1st and 3rd equations into 2nd equation of

(2.5), we obtain the following equation of ρ:

(2.7)
2γ(p0 + π)

(γ − 1)ργ0
ργ+1 −

[
(u0 − w)2 +

2γ(p0 + π)

(γ − 1)ρ0

]
ρ2 +

(
α0ρ0(u0 − w)

α

)2

= 0.

So we can resolve (ρ, u, p) in terms of U0, α. As showed in [36], the equation (2.7) admits

a root ρ if and only if α ≥ αmin, where

αmin :=
α0ρ0|u0 − w|√
γ(p0+π)

ργ0
(ρmin)

γ+1
2

and ρmin :=

(
(γ − 1)ργ0(u0 − w)2

γ(γ + 1)(p0 + π)
+

2ργ−1
0

γ + 1

) 1
γ−1

.

If α = αmin, then (2.7) admits a unique root ρ = ρmin. If α > αmin, then (2.7) admits two

distinct roots denoted by ρs0 and ρb0 such that

ρs0 < ρmin < ρb0.

Accordingly, the system (2.5) has two distinct roots (ρs0, u
s
0, p

s
0) and (ρb0, u

b
0, p

b
0). Moreover,

for λ2(U0) > w, we can prove that

(2.8) λ1(ρ
s
0, u

s
0, p

s
0) > w and λ1(ρ

b
0, u

b
0, p

b
0) < w < λ2(ρ

b
0, u

b
0, p

b
0).
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Let us denote

(2.9) Υ(U0;α) = [ρ, u, p, α]T,

where (ρ, u, p) is the root of (2.5) satisfying the admissible criterion. Thus, (2.6) and (2.8)

imply that

(i) If λ1(U0) ≥ w, and α > αmin, then Υ(U0;α) = [ρs0, u
s
0, p

s
0, α]

T.

(ii) If λ1(U0) < w < λ2(U0), and α > αmin, then Υ(U0;α) = [ρb0, u
b
0, p

b
0, α]

T.

(iii) If λ2(U0) = w, then Υ(U0;α) = [ρ0, u0, p0, α]
T.

3. Algorithms for computing all configurations of Riemann solution

Recently, a complete set of configurations of Riemann solution has been presented in [36].

In this section, given a left-hand state UL = [ρL, uL, pL, αL]
T and a right-hand state

UR = [ρR, uR, pR, αR]
T such that |αR − αL| is sufficiently small, our objective is to detail

the algorithms for computing intermediate states in all configurations of Riemann solution

of (1.1) with w constant (denoted by URie(x/t;UL,UR, w)).

3.1. Construction A1

Assume that

λ1(UL) ≥ w, W3B(UR) ∩ L1(UL) ̸= ∅ in projecting onto (p, u) plane,

where λ1(UL), W3B(UR) are defined as (2.1), (2.4), and L1(UL) is defined by

L1(UL) =
{
U ∈ W1(U

s
L) : p < ps#L

}
,(3.1)

Us
L = Υ(UL;αR),

where Υ(U0;α), W1(U0), U#
0 are defined as (2.9), (2.2), (2.3). Then, the Riemann

solution has the form

(3.2) W4(UL,U
s
L)⊕W1(U

s
L,U∗)⊕W2(U∗,U∗∗)⊕W3(U∗∗,UR),

where the states Us
L, U∗, U∗∗ are computed as follows:

� Compute Us
L = Υ(UL;αR).

� Compute the intersection point (p∗, u∗) = W1(U
s
L) ∩ W3B(UR) in projecting onto

(p, u)-plane.

� Compute U∗ = [ρ∗, u∗, p∗, aR]T ∈ W1(U
s
L).
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� Compute U∗∗ = [ρ∗∗, u∗, p∗, aR]T ∈ W3B(UR).

Lemma 3.1. For the Riemann solution of Construction A1 as shown in (3.2), we have

(3.3) (αρu)Rie(0−;UL,UR, w) ≤ max{αLρLuL, αLρL(uL − w)}

and

(3.4) (αρu)Rie(0+;UL,UR, w) ≥ min{αRρRuR, αRρR(uR − λ3(UR))}.

Proof. If w ≥ 0, then

URie(0−;UL,UR, w) = UL, λ2(U
Rie(0+;UL,UR, w)) ≥ w,

so

(αρu)Rie(0−;UL,UR, w) = αLρLuL

and

(αρu)Rie(0+;UL,UR, w) ≥ 0 ≥ αRρR(uR − λ3(UR)).

Consider the case w < 0. For u∗ = 0, we have

URie(0−;UL,UR, w) = U∗, URie(0+;UL,UR, w) = U∗∗.

Therefore

(αρu)Rie(0−;UL,UR, w) = 0 ≤ αLρL(uL − w)

and

(αρu)Rie(0+;UL,UR, w) = 0 ≥ αRρR(uR − λ3(UR)).

For u∗ < 0 and W3(U∗∗,UR) is the 3-shock wave with a shock speed σ3, we have three

cases as follows.

� If σ3 = 0, then

URie(0−;UL,UR, w) = U∗∗, URie(0+;UL,UR, w) = UR.

So, we obtain

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) = αRρRuR.

� If σ3 < 0, then

URie(0±;UL,UR, w) = UR.

Since uR < u∗, we have

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) = αRρRuR.
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� If σ3 > 0, then

URie(0±;UL,UR, w) = U∗∗.

Since ρ∗∗u∗ = ρRuR + σ3(ρ∗∗ − ρR) and ρ∗∗ > ρR, we have

ρ∗∗u∗ > ρRuR,

so

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) > αRρRuR.

For u∗ < 0 and W3(U∗∗,UR) is the 3-rarefaction wave, we also have three cases as follows.

� If 0 ≤ λ3(U∗∗), then

URie(0±;UL,UR, w) = U∗∗.

Since 0 < ρ∗∗ < ρR, u∗ < 0, u∗ = uR + 2
γ+1(λ3(U∗∗)− λ3(UR)), and γ > 1, we have

ρ∗∗u∗ > ρR

(
uR +

2

γ + 1
(λ3(U∗∗)− λ3(UR))

)
≥ ρR(uR − λ3(UR)),

this implies that

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) > αRρR(uR − λ3(UR)).

� If λ3(U∗∗) < 0 < λ3(UR), then

URie(0±;UL,UR, w) = U := Fan3(0;U∗∗,UR).

Since u = u∗ + 2
γ+1(0− λ3(U∗∗)) =

γ−1
γ+1u∗ − 2

γ+1c(U∗∗), and u∗ < 0, we have u < 0.

Moreover, since 0 < ρ < ρR, u = uR + 2
γ+1(0− λ3(UR)), and γ > 1, we infer that

ρu > ρR

(
uR +

2

γ + 1
(0− λ3(UR))

)
≥ ρR(uR − λ3(UR)),

so

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) > αRρR(uR − λ3(UR)).

� If λ3(UR) ≤ 0, then

URie(0±;UL,UR, w) = UR.

Since λ3(UR) ≤ 0, we have uR < 0, so

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) = αRρRuR.

For u∗ > 0 and W1(U
s
L,U∗) is the 1-shock wave with a shock speed σ1, we have three

cases as follows.
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� If σ1 = 0, then

URie(0−;UL,UR, w) = Us
L, URie(0+;UL,UR, w) = U∗.

Since αRρ
s
L(u

s
L − w) = αLρL(uL − w), we have

αRρ
s
Lu

s
L = αLρLuL − αLρLw + αRρ

s
Lw < αLρL(uL − w),

so

(αρu)Rie(0−;UL,UR, w) < αLρL(uL − w), (αρu)Rie(0+;UL,UR, w) > 0.

� If σ1 < 0, then

URie(0±;UL,UR, w) = U∗.

Since αRρ∗(u∗−σ1) = αRρ
s
L(u

s
L−σ1), αRρ

s
L(u

s
L−w) = αLρL(uL−w), and σ1 ≥ w,

we have

αRρ∗u∗ = αLρL(uL − w) + αRρ∗σ1 + αRρ
s
L(w − σ1) < αLρL(uL − w),

so

(αρu)Rie(0−;UL,UR, w) < αLρL(uL − w), (αρu)Rie(0+;UL,UR, w) > 0.

� If σ1 > 0, then

URie(0±;UL,UR, w) = Us
L.

Since ρsL(u
s
L − σ1) = ρ∗(u∗ − σ1), and σ1 ≤ u∗, we infer that usL ≥ σ1 > 0, so

(αρu)Rie(0−;UL,UR, w) < αLρL(uL − w), (αρu)Rie(0+;UL,UR, w) > 0.

For u∗ > 0 and W1(U
s
L,U∗) is the 1-rarefaction wave, we have three cases as follows.

� If 0 ≤ λ1(U
s
L), then

URie(0±;UL,UR, w) = Us
L.

Since 0 ≤ λ1(U
s
L), we have usL > 0, so

(αρu)Rie(0−;UL,UR, w) < αLρL(uL − w), (αρu)Rie(0+;UL,UR, w) > 0.

� If λ1(U
s
L) < 0 < λ1(U∗), then

URie(0±;UL,UR, w) = U := Fan1(0;U
s
L,U∗).
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Since u = u∗+ 2
γ+1(0−λ1(U∗)) =

γ−1
γ+1u∗+

2
γ+1c(U∗), and u∗ > 0, we have u > 0, so

(αρu)Rie(0+;UL,UR, w) > 0.

Moreover, since 0 < ρ < ρsL, u = usL + 2
γ+1(0 − λ1(U

s
L)), λ1(U

s
L) > w, and γ > 1,

we infer that

ρu < ρsL

(
usL +

2

γ + 1
(0− λ1(U

s
L))

)
< ρsL(u

s
L − w),

so

(αρu)Rie(0−;UL,UR, w) < αLρL(uL − w).

� If λ1(U∗) ≤ 0, then

URie(0±;UL,UR, w) = U∗.

Since 0 < ρ∗ < ρsL, u∗ = usL + 2
γ+1(λ(U∗) − λ1(U

s
L)), λ1(U

s
L) > w, and γ > 1, we

infer that

ρ∗u∗ < ρsL

(
usL +

2

γ + 1
(λ(U∗)− λ1(U

s
L))

)
< ρsL(u

s
L − w),

so

(αρu)Rie(0−;UL,UR, w) < αLρL(uL − w), (αρu)Rie(0+;UL,UR, w) > 0.

This terminates the proof.

3.2. Construction A2

Assume that

λ1(UL) ≥ w, W3B(UR) ∩ L2(UL) ̸= ∅ in projecting onto (p, u) plane,

where λ1(UL), W3B(UR) are defined as (2.1), (2.4), and L2(UL) is defined by

L2(UL) =
{
Us#b

L (αM ) : αM varies between αL and αR

}
,(3.5)

Us
L(αM ) = Υ(UL;αM ), Us#

L (αM ) = (Us
L(αM ))#, Us#b

L (αM ) = Υ(Us#
L (αM );αR),

where Υ(U0;α), U
#
0 are defined as (2.9), (2.3). Then, the Riemann solution has the form

(3.6) W4(UL,U
s
L)⊕ S1(U

s
L,U

s#
L )⊕W4(U

s#
L ,Us#b

L )⊕W2(U
s#b
L ,U∗)⊕W3(U∗,UR),

where the states Us
L, U

s#
L , Us#b

L , U∗ are computed as follows:

� Compute the intersection point (p∗, u∗) = L2(UL) ∩ W3B(UR) in projecting onto

(p, u)-plane, and get the parameter αM corresponding to this point.
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� Compute Us
L = Υ(UL;αM ).

� Compute Us#
L ∈ S1(U

s
L) such that σ1(U

s
L,U

s#
L ) = w.

� Compute Us#b
L = Υ(Us#

L ;αR).

� Compute U∗ = [ρ∗, u∗, p∗, αR]
T ∈ W3B(UR).

Lemma 3.2. For the Riemann solution of Construction A2 as shown in (3.6), we have

(3.3) and (3.4).

Proof. If w ≥ 0, then

URie(0−;UL,UR, w) = UL, λ2(U
Rie(0+;UL,UR, w)) ≥ w,

so

(αρu)Rie(0−;UL,UR, w) = αLρLuL, (αρu)Rie(0+;UL,UR, w) ≥ 0.

Consider the case w < 0. For us#b
L = 0, we have

URie(0−;UL,UR, w) = Us#b
L , URie(0+;UL,UR, w) = U∗.

Therefore

(αρu)Rie(0−;UL,UR, w) = 0, (αρu)Rie(0+;UL,UR, w) = 0.

For us#b
L < 0 and W3(U∗,UR) is the 3-shock wave with a shock speed σ3, we have three

cases as follows.

� If σ3 = 0, then

URie(0−;UL,UR, w) = U∗, URie(0+;UL,UR, w) = UR.

So, we obtain

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) = αRρRuR.

� If σ3 < 0, then

URie(0±;UL,UR, w) = UR.

Since uR < u∗ = us#b
L , we have

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) = αRρRuR.
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� If σ3 > 0, then

URie(0±;UL,UR, w) = U∗.

Since ρ∗u∗ = ρRuR + σ3(ρ∗ − ρR) and ρ∗ > ρR, we have ρ∗u∗ > ρRuR, so

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) > αRρRuR.

For us#b
L < 0 and W3(U∗,UR) is the 3-rarefaction wave, we also have three cases as

follows.

� If 0 ≤ λ3(U∗), then

URie(0±;UL,UR, w) = U∗.

Since 0 < ρ∗ < ρR, u∗ < 0, u∗ = uR + 2
γ+1(λ3(U∗)− λ3(UR)), and γ > 1, we have

ρ∗u∗ > ρR

(
uR +

2

γ + 1
(λ3(U∗)− λ3(UR))

)
≥ ρR(uR − λ3(UR)),

this implies that

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) > αRρR(uR − λ3(UR)).

� If λ3(U∗) < 0 < λ3(UR), then

URie(0±;UL,UR, w) = U := Fan3(0;U∗,UR).

Since u = u∗ + 2
γ+1(0 − λ3(U∗)) =

γ−1
γ+1u∗ − 2

γ+1c(U∗), and u∗ < 0, we have u < 0.

Moreover, since 0 < ρ < ρR, u = uR + 2
γ+1(0− λ3(UR)), and γ > 1, we have

ρu > ρR

(
uR +

2

γ + 1
(0− λ3(UR))

)
≥ ρR(uR − λ3(UR)),

so

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) > αRρR(uR − λ3(UR)).

� If λ3(UR) ≤ 0, then

URie(0±;UL,UR, w) = UR.

Since λ3(UR) ≤ 0, we have uR < 0, so

(αρu)Rie(0−;UL,UR, w) < 0, (αρu)Rie(0+;UL,UR, w) = αRρRuR.
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For us#b
L > 0, we have

URie(0±;UL,UR, w) = Us#b
L .

Since

αRρ
s#b
L (us#b

L − w) = αMρs#L (us#L − w) = αMρsL(u
s
L − w) = αLρL(uL − w),

we have

αRρ
s#b
L us#b

L = αLρL(uL − w) + αRρ
s#b
L w < αLρL(uL − w),

so

(αρu)Rie(0−;UL,UR, w) < αLρL(uL − w), (αρu)Rie(0+;UL,UR, w) = 0.

This terminates the proof.

3.3. Construction A3

Assume that

λ1(UL) ≥ w, W3B(UR) ∩ L3(UL) ̸= ∅ in projecting onto (p, u) plane,

where λ1(UL), W3B(UR) are defined as (2.1), (2.4), and L3(UL) is defined by

L3(UL) =
{
Υ(U∗;αR) : U∗ ∈ W1(UL), p

#
L ≤ p∗ ≤ p♭L

}
,

where W1(UL), U
#
L are defined as (2.2), (2.3), and U♭

L is defined by

(3.7) U♭
L ∈ W1(UL) such that u♭L = w.

Then, the Riemann solution has the form

(3.8) S1(UL,U∗)⊕W4(U∗,Ub
∗)⊕W2(U

b
∗,U∗∗)⊕W3(U∗∗,UR),

where the states U∗, Ub
∗, U∗∗ are computed as follows:

� Compute the intersection point (p∗∗, u∗∗) = L3(UL) ∩W3B(UR) in projecting onto

(p, u)-plane, and get the parameter p∗ corresponding to this point.

� Compute U∗ = (ρ∗, u∗, p∗, αL) ∈ W1(UL).

� Compute Ub
∗ = Υ(U∗;αR).

� Compute U∗∗ = (ρ∗∗, u∗∗, p∗∗, αR) ∈ W3B(UR).

Lemma 3.3. For the Riemann solution of Construction A3 as shown in (3.8), we have

(3.3) and (3.4).
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Proof. If w ≥ 0, then

URie(0−;UL,UR, w) = UL or URie(0−;UL,UR, w) = U∗.

Since ρ∗u∗ = ρLuL + σ1(ρ∗ − ρL), σ1 ≤ w, and ρ∗ > ρL, we obtain

(αρu)Rie(0−;UL,UR, w) < αLρLuL.

Moreover, since λ2(U
Rie(0+;UL,UR, w)) ≥ w ≥ 0, we have

(αρu)Rie(0+;UL,UR, w) ≥ 0.

For w < 0, we have three cases as follows.

� For ub∗ = 0, we have

URie(0−;UL,UR, w) = Ub
∗, URie(0+;UL,UR, w) = U∗∗.

Since u∗∗ = ub∗, we have

(αρu)Rie(0−;UL,UR, w) = 0, (αρu)Rie(0+;UL,UR, w) = 0.

� For ub∗ < 0, as in the proof in Lemma 3.1, we obtain (3.4) and

(αρu)Rie(0−;UL,UR, w) ≤ 0.

� For ub∗ > 0, we have

URie(0±;UL,UR, w) = Ub
∗.

Since

αRρ
b
∗(u

b
∗ − w) = αLρ∗(u∗ − w), ρ∗u∗ = ρLuL + σ1(ρ∗ − ρL),

we get

αRρ
b
∗u

b
∗ = αLρLuL + w(αRρ

b
∗ − αLρ∗) + αLσ1(ρ∗ − ρL).

Moreover, since αRρ
b
∗ > αLρ∗ and ρ∗ > ρL, we have

(αρu)Rie(0−;UL,UR, w) < αLρLuL, (αρu)Rie(0+;UL,UR, w) > 0.

This terminates the proof.
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3.4. Construction B1

Given a left-hand stateUL = (ρL, uL, pL, αL) and a right-hand stateUR = (ρR, uR, pR, αR)

such that |αR − αL| is sufficiently small. Assume that

λ1(UL) < w ≤ λ2(UL), W3B(UR) ∩ L1(U
†
L) ̸= ∅ in projecting onto (p, u) plane,

where U†
L is defined by

(3.9) U†
L ∈ W1(UL) such that λ1(U

†
L) = w,

and λ1(UL), λ2(UL), W1(UL), W3B(UR), L1(U
†
L) are defined as (2.1), (2.2), (2.4), (3.1).

Then, the Riemann solution has the form

(3.10) R1(UL,U
†
L)⊕W4(U

†
L,U

†s
L )⊕W1(U

†s
L ,U∗)⊕W2(U∗,U∗∗)⊕W3(U∗∗,UR),

where the states U†
L, U

†s
L , U∗, U∗∗ are computed as follows:

� Compute U†
L ∈ W1(UL) such that λ1(U

†
L) = w.

� Compute U†s
L = Υ(U†

L;αR).

� Compute the intersection point (p∗, u∗) = W1(U
†s
L ) ∩W3B(UR) in projecting onto

(p, u)-plane.

� Compute U∗ = (ρ∗, u∗, p∗, aR) ∈ W1(U
†s
L ).

� Compute U∗∗ = (ρ∗∗, u∗, p∗, aR) ∈ W3B(UR).

Lemma 3.4. If λ1(UL) < w ≤ λ2(UL), then we have

ρ†L(u
†
L − w) ≤ ρL(uL − λ1(UL)),

where U†
L is defined as (3.9).

Proof. Since ρ†L < ρL and λ1(U
†
L) = u†L −

√
γ(p†L+π)

ρ†L
= w, we have

ρ†L(u
†
L − w) = ρ†L

√√√√γ(p†L + π)

ρ†L
< ρL

√√√√γ(p†L + π)

ρ†L
= ρL

√√√√γ(p†L + π)

(ρ†L)
γ

· (ρ†L)γ−1

= ρL

√
γ(pL + π)

(ρL)γ
· (ρ†L)γ−1 = ρL

√
γ(pL + π)

ρL
· (ρ

†
L)

γ−1

(ρL)γ−1

< ρL

√
γ(pL + π)

ρL
= ρL(uL − λ1(UL)).

This terminates the proof.
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Lemma 3.5. For the Riemann solution of Construction B1 as shown in (3.10), we have

(3.4) and

(3.11) (αρu)Rie(0−;UL,UR, w) ≤ max{αLρLuL, αLρL(uL − λ1(UL))}.

Proof. Since λ2(U
Rie(0+;UL,UR, w)) ≥ w, we always have

(αρu)Rie(0+;UL,UR, w) ≥ 0 for w ≥ 0.

For w = 0, we have URie(0−;UL,UR, w) = U†
L. It is implied from Lemma 3.4 that

ρ†Lu
†
L ≤ ρL(uL − λ1(UL)),

so

(αρu)Rie(0−;UL,UR, w) ≤ αLρL(uL − λ1(UL)).

For w > 0, we have two cases as follows.

� If 0 ≤ λ1(UL), then

URie(0±;UL,UR, w) = UL,

so

(αρu)Rie(0−;UL,UR, w) = αLρLuL.

� If λ1(UL) < 0, then

URie(0±;UL,UR, w) = U := Fan1(0;UL,U
†
L).

Since u = uL + 2
γ+1(0− λ1(UL)), γ > 1, and ρ < ρL, we have

ρu < ρL

(
uL +

2

γ + 1
(0− λ1(UL))

)
< ρL(uL − λ1(UL)),

so

(αρu)Rie(0−;UL,UR, w) < αLρL(uL − λ1(UL)).

For w < 0, we have two cases as follows.

� For u∗ ≤ 0, as in the proof in Lemma 3.1, we obtain (3.4) and

(αρu)Rie(0−;UL,UR, w) ≤ 0.

� For u∗ > 0, also as in the proof in Lemma 3.1, we have (3.4) and

(αρu)Rie(0−;UL,UR, w) ≤ αLρ
†
L(u

†
L − w).

Moreover, by Lemma 3.4, we have ρ†L(u
†
L − w) ≤ ρL(uL − λ1(UL)), so

(αρu)Rie(0−;UL,UR, w) ≤ αLρL(uL − λ1(UL)).

This terminates the proof.
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3.5. Construction B2

Given a left-hand stateUL = (ρL, uL, pL, αL) and a right-hand stateUR = (ρR, uR, pR, αR)

such that |αR − αL| is sufficiently small. Assume that

λ1(UL) < v∗ < λ2(UL), W3B(UR) ∩ L2(U
†
L) ̸= ∅ in projecting onto (p, u) plane,

where λ1(UL), λ2(UL), W3B(UR), U
†
L, L2(U

†
L) are defined as (2.1), (2.4), (3.9), (3.5).

Then, the Riemann solution has the form

R1(UL,U
†
L)⊕W4(U

†
L,U

†s
L )⊕ S1(U

†s
L ,U†s#

L )

⊕W4(U
†s#
L ,U†s#b

L )⊕W2(U
†s#b
L ,U∗)⊕W3(U∗,UR),

(3.12)

where the states U†
L, U

†s
L , U†s#

L , U†s#b
L , U∗ are computed as follows:

� Compute U†
L ∈ W1(UL) such that λ1(U

†
L) = w.

� Compute the intersection point (p∗, u∗) = L2(U
†
L) ∩ W3B(UR) in projecting onto

(p, u)-plane, and get the parameter αM corresponding to this point.

� Compute U†s
L = Υ(U†

L;αM ).

� Compute U†s#
L ∈ W1(U

†s
L ) such that σ1(U

†s
L ,U†s#

L ) = w.

� Compute U†s#b
L = Υ(U†s#

L ;αR).

� Compute U∗ = (ρ∗, u∗, p∗, αR) ∈ W3B(UR).

Lemma 3.6. For the Riemann solution of Construction B2 as shown in (3.12), we have

(3.4) and (3.11).

Proof. For w ≥ 0, as in the proof of Lemma 3.5, we obtain (3.11) and

(αρu)Rie(0+;UL,UR, w) ≥ 0.

For w < 0 and u∗ ≤ 0, as in the proof in Lemma 3.1, we obtain (3.4) and

(αρu)Rie(0−;UL,UR, w) ≤ 0.

For w < 0 and u∗ > 0, also as in the proof in Lemma 3.1, we have the following results:

(αρu)Rie(0−;UL,UR, w) ≤ αLρ
†
L(u

†
L − w),

and

(αρu)Rie(0+;UL,UR, w) ≥ 0.

We infer from Lemma 3.4 that

(αρu)Rie(0−;UL,UR, w) ≤ αLρL(uL − λ1(UL)).

This terminates the proof.
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3.6. Construction B3

Given a left-hand stateUL = (ρL, uL, pL, αL) and a right-hand stateUR = (ρR, uR, pR, αR)

such that |αR − αL| is sufficiently small. Assume that

λ1(UL) < w ≤ λ2(UL), W3B(UR) ∩ L4(UL) ̸= ∅ in projecting onto (p, u) plane,

where λ1(UL), λ2(UL), W3B(UR) are defined as (2.1), (2.4), and L4(UL) is defined by

L4(UL) =
{
Υ(U∗;αR) : U∗ ∈ W1(UL), p

†
L ≤ p∗ ≤ p♭L

}
,

where W1(UL), U
♭
L, U

†
L are defined as (2.2), (3.7), (3.9). Then, the Riemann solution

has the form

(3.13) W1(UL,U∗)⊕W4(U∗,Ub
∗)⊕W2(U

b
∗,U∗∗)⊕W3(U∗∗,UR),

where the states U∗, Ub
∗, U∗∗ are computed as follows:

� Compute the intersection point (p∗∗, u∗∗) = L4(UL) ∩W3B(UR) in projecting onto

(p, u)-plane, and get the parameter p∗ corresponding to this point.

� Compute U∗ = (ρ∗, u∗, p∗, αL) ∈ W1(UL).

� Compute Ub
∗ = Υ(U∗;αR).

� Compute U∗∗ = (ρ∗∗, u∗∗, p∗∗, αR) ∈ W3B(UR).

Lemma 3.7. For the Riemann solution of Construction B3 as shown in (3.13), we have

(3.4) and (3.11).

Proof. Consider the case w ≥ 0. Since λ2(U
Rie(0+;UL,UR, w)) ≥ w, we always have

(αρu)Rie(0+;UL,UR, w) ≥ 0.

If W1(UL,U∗) is a 1-shock wave, as in the proof in Lemma 3.3, we obtain

(αρu)Rie(0−;UL,UR, w) ≤ αLρLuL.

If W1(UL,U∗) is a 1-rarefaction wave, we have three cases as follows.

� If 0 ≤ λ1(UL), then URie(0±;UL,UR, w) = UL, so

(αρu)Rie(0−;UL,UR, w) = αLρLuL.
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� If λ1(UL) < 0 < λ1(U∗), then URie(0±;UL,UR, w) = U := Fan1(0;UL,U
†
L). Since

u = uL +
2

γ + 1
(0− λ1(UL)), γ > 1, ρ < ρL,

we have

ρu < ρL

(
uL +

2

γ + 1
(0− λ1(UL))

)
< ρL(uL − λ1(UL)),

so

(αρu)Rie(0−;UL,UR, w) ≤ αLρL(uL − λ1(UL)).

� If λ1(U∗) ≤ 0, then URie(0±;UL,UR, w) = U∗. Since

u∗ = uL +
2

γ + 1
(λ1(U∗)− λ1(UL)), γ > 1, ρ∗ < ρL,

we have

ρ∗u∗ < ρL

(
uL +

2

γ + 1
(λ1(U∗)− λ1(UL))

)
< ρL(uL − λ1(UL)),

so

(αρu)Rie(0−;UL,UR, w) ≤ αLρL(uL − λ1(UL)).

For w < 0, as in the proof of Lemma 3.3, we have (3.4) and

(αρu)Rie(0−;UL,UR, w) ≤ 0 or (αρu)Rie(0−;UL,UR, w) ≤ αLρLuL.

This terminates the proof.

4. Numerical scheme based on Riemann solvers

4.1. Building a numerical scheme based on Riemann solvers

In this section, we revisit the numerical scheme based on Riemann solvers for approximat-

ing the weak solutions of the system (1.1) with the initial condition

U(x, 0) = U0(x), x ∈ R.

Consider a 1D uniform grid ∆x. Suppose that the approximation {Un
j }j∈Z of U(x, t)

at the time t = tn is known. We compute the approximation {Un+1
j }j∈Z at the time

t = tn +∆t by the algorithm as follows.

� Firstly, we compute sequences {αn+1
j }j∈Z by the upwind scheme

(4.1) αn+1
j = αn

j − ∆t

∆x

(
(wn

j )
+(αn

j − αn
j−1) + (wn

j )
−(αn

j+1 − αn
j )
)
, j ∈ Z,

where

wn
j := w(xj , tn), (wn

j )
+ := max{wn

j , 0}, (wn
j )

− := min{wn
j , 0}, j ∈ Z.
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� Secondly, we compute the sequence {(ρ, u, p)n+1
j }j∈Z by the scheme

Wn+1
j = Wn

j − ∆t

∆x
(Fn

j+1/2,− − Fn
j−1/2,+)

+
1

2

∆t

∆x
(αn

j+1/2,− − αn
j−1/2,+)(H

n
j+1/2,− +Hn

j−1/2,+), j ∈ Z,
(4.2)

where

W := [αρ, αρu, αρE]T,

F(U) := [αρu, α(ρu2 + p), αu(ρE + p)]T,

H(U, w) := [0, p, pw]T,

and

Fn
j+1/2,− := F(URie(0−;Un

j ,U
n
j+1, w

n
j+1/2)),

Fn
j−1/2,+ := F(URie(0+;Un

j−1,U
n
j , w

n
j−1/2)),

αn
j+1/2,− := αRie(0−;Un

j ,U
n
j+1, w

n
j+1/2),

αn
j−1/2,+ := αRie(0+;Un

j−1,U
n
j , w

n
j−1/2),

Hn
j+1/2,− := H(URie(0−;Un

j ,U
n
j+1, w

n
j+1/2), w

n
j+1/2),

Hn
j−1/2,+ := H(URie(0+;Un

j−1,U
n
j , w

n
j−1/2), w

n
j−1/2),

wn
j+1/2 := w(xj+1/2, tn), j ∈ Z,

and ∆t must satisfy the CFL condition

(4.3)
∆t

∆x
max

{
|λk(U

n
j )|, |wn

j |, |wn
j+1/2| : j ∈ Z, k = 1, 2, 3

}
≤ 1

2
.

4.2. Positivity preserving

Theorem 4.1. The scheme (4.1), (4.2) preserve the positivity of the volume fraction and

density in the first phase of flow.

Proof. Assume that αn
j > 0 and ρnj > 0 for all j ∈ Z. We first prove that αn+1

j > 0 for all

j ∈ Z. Indeed, the upwind scheme (4.1) says that

αn+1
j =





αn
j if wn

j = 0,
(
1− ∆t

∆xw
n
j

)
αn
j + ∆t

∆xw
n
j α

n
j−1 if wn

j > 0,
(
1 + ∆t

∆xw
n
j

)
αn
j − ∆t

∆xw
n
j α

n
j+1 if wn

j < 0,

j ∈ Z.

By (4.3), it follows that αn+1
j > 0 for all j ∈ Z. Now, we will prove that (αρ)n+1

j > 0 for

all j ∈ Z. Indeed, the first equation of the scheme (4.2) leads to

(αρ)n+1
j = (αρ)nj − ∆t

∆x

(
(αρu)nj+1/2,− − (αρu)nj−1/2,+

)
, j ∈ Z.
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Consider the case λ2(U
n
j ) ≥ wn

j+1/2 for all j ∈ Z. By Lemmas 3.1, 3.2, 3.3, 3.5, 3.6 and

3.7, it follows that

(αρu)nj+1/2,− ≤ max
{
(αρu)nj , (αρ)

n
j (u

n
j − wn

j+1/2), (αρ)
n
j (u

n
j − λ1(U

n
j ))
}
,

(αρu)nj−1/2,+ ≥ min
{
(αρu)nj , (αρ)

n
j (u

n
j − λ3(U

n
j ))
}
.

(4.4)

Consider the case λ2(U
n
j ) < wn

j+1/2 for all j ∈ Z. By the transformation x 7→ −x, u 7→ −u,

w 7→ −w, the left-hand state (right-hand state, respectively) Un
j = (ρnj , u

n
j , p

n
j , α

n
j ) will

become the right-hand state (left-hand state, respectively) Vn
j = (ρnj ,−unj , p

n
j , α

n
j ) and

λ2(V
n
j ) > −wn

j+1/2, so

(αρu)nj+1/2,− ≤ max
{
(αρu)nj , (αρ)

n
j (u

n
j − λ1(U

n
j ))
}
,

(αρu)nj−1/2,+ ≥ min
{
(αρu)nj , (αρ)

n
j (u

n
j − wn

j−1/2), (αρ)
n
j (u

n
j − λ3(U

n
j ))
}
.

(4.5)

From (4.4) and (4.5), we conclude that

(αρu)nj+1/2,− − (αρu)nj−1/2,+ ≤ 2(αρ)nj umax,

where

umax := max
{
|λk(U

n
j )|, |wn

j+1/2| : j ∈ Z, k = 1, 2, 3
}
.

We thus get

(αρ)n+1
j ≥ (αρ)nj − ∆t

∆x
2(αρ)nj umax = (αρ)nj

(
1− ∆t

∆x
2umax

)
> 0,

since ∆t
∆xumax ≤ 1/2 by (4.3). This completes the proof.

4.3. C-property

Theorem 4.2. The scheme (4.1), (4.2) preserve all the steady states such that

(4.6) u = 0, p = constant, α = constant.

Proof. Assume that the sequence {Un
j }j∈Z satisfies (4.6). Since u = 0, α = constant and

p = constant, according to 2-contact wave, we obtain

Un
j+1/2,− = Un

j = [ρnj , u
n
j = 0, pnj , α

n
j ]

T, Un
j−1/2,+ = [(ρnj )

∗, unj−1 = 0, pnj−1, α
n
j−1]

T, j ∈ Z.

Since αn
j = αn

j−1 and pnj = pnj−1 for all j ∈ Z, we have

Fn
j+1/2,− − Fn

j−1/2,+ =




0

αn
j p

n
j

0


−




0

αn
j−1p

n
j−1

0


 = 0,

α0
j+1/2,− − α0

j−1/2,+ = α0
j − α0

j−1 = 0, j ∈ Z,
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so the scheme (4.1), (4.2) yield

αn+1
j = αn

j , Wn+1
j = Wn

j , j ∈ Z,

or Un+1
j = Un

j for all j ∈ Z. This terminates the proof.

Theorem 4.3. The scheme (4.1), (4.2) preserve all the steady states such that

(4.7) w = 0, u = 0, p = constant.

Proof. Assume that the sequence {Un
j }j∈Z satisfies (4.7). Since w = 0, according to

Riemann solution in Construction B3 as shown in (3.13), we obtain

Un
j+1/2,− = Un

j = [ρnj , u
n
j = 0, pnj , α

n
j ]

T,

Un
j−1/2,+ = Υ(Un

j−1;α
n
j ) = [ρnj−1, u

n
j−1 = 0, pnj−1, α

n
j ]

T, j ∈ Z.

Since p0j = p0j−1 for all j ∈ Z, we have

Fn
j+1/2,− − Fn

j−1/2,+ =




0

αn
j p

n
j

0


−




0

αn
j p

n
j−1

0


 = 0,

αn
j+1/2,− − αn

j−1/2,+ = αn
j − αn

j = 0, j ∈ Z,

so the scheme (4.1), (4.2) yield

αn+1
j = αn

j , Wn+1
j = Wn

j , j ∈ Z,

or Un+1
j = Un

j for all j ∈ Z. This terminates the proof.

4.4. Partially well-balanced scheme

Theorem 4.4. Consider (1.1) with w = 0. The scheme (4.1), (4.2) preserve all the steady

states U(x) such that

(4.8) αρu = constant, u2 +
2γ(p+ π)

(γ − 1)ρ
= constant,

p+ π

ργ
= constant,

and λ1(U(x)) ≥ 0 for all x ∈ R (or λ1(U(x)) ≤ 0 ≤ λ2(U(x)) for all x ∈ R).

Proof. Assume that the sequence {Un
j }j∈Z satisfies (4.8). According to 4-constant-speed

wave, we have

Un
j+1/2,− = Un

j , Un
j−1/2,+ = Un

j , j ∈ Z.

So, the scheme (4.1), (4.2) yield

αn+1
j = αn

j , Wn+1
j = Un

j , j ∈ Z.

This terminates the proof.



Godunov Scheme for a Spray Model 935

5. Numerical experiments

5.1. Test for C-property

Test 1. Consider the system (1.1) where w is given by

w(x, t) = sin(x+ t), x ∈ R, ≥ 0,

and the parameters is given by

(5.1) γ = 1.4, π = 0.

Consider the initial data given by

U0(x) = [0.5 exp(x2), 0, 0.5, 0.3]T, x ∈ R,

The exact solution of this problem is just the smooth stationary wave

U(x, t) = U0(x), x ∈ R, t ≥ 0.

We compute the numerical solution by the scheme (4.1), (4.2) with TOL = 10−14 and

Neumann boundary condition. Figure 5.1 displays this steady state and the numerical

solution for the mesh size ∆x = 1/80 at the time t = 0.1 in the computational domain

x ∈ [−1, 1] of Test 1. The L1 errors and CPU times are reported by Table 5.1, which show

that the scheme (4.1), (4.2) can preserve the C-property perfectly.

Figure 1: Exact solution and numerical solution by the scheme (4.2), (4.4) for the mesh size ∆x = 1/80 at the time
t = 0.1 of Test 1

Table 1: Errors and CPU times of Test 1

∆x L1 error CPU time

1/10 1.67E− 14 0.7
1/20 2.30E− 14 1.1
1/40 3.31E− 14 3.6
1/80 5.68E− 14 13.1
1/160 9.27E− 14 52.1
1/320 1.39E− 13 205.3
1/640 1.88E− 13 748.5
1/1280 2.63E− 13 3146.3
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Figure 5.1: Exact solution and numerical solution by the scheme (4.1), (4.2) for the mesh

size ∆x = 1/80 at the time t = 0.1 of Test 1.
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Table 5.1: Errors and CPU times of Test 1.

∆x L1 error CPU time

1/10 1.67E− 14 0.7

1/20 2.30E− 14 1.1

1/40 3.31E− 14 3.6

1/80 5.68E− 14 13.1

1/160 9.27E− 14 52.1

1/320 1.39E− 13 205.3

1/640 1.88E− 13 748.5

1/1280 2.63E− 13 3146.3

Test 2. Consider the steady state

U(x) = [0.5 exp(x2), 0, 1, 0.7 exp(−x2)]T, x ∈ R

for the system (1.1) with w = 0. The numerical solution is computed by the scheme (4.1),

(4.2) with TOL = 10−14, and Neumann boundary condition, where the parameters are

given as (5.1). Figure 5.2 displays this steady state and the numerical solution for the

mesh size ∆x = 1/80 at the time t = 0.1 in the computational domain x ∈ [−1, 1] of

Test 2. The L1 errors and CPU times are reported by Table 5.2. Again, the C-property

of our scheme is confirmed.

Table 5.2: Errors and CPU times of Test 2.

∆x L1 error CPU time

1/10 8.94E− 16 2.3

1/20 4.55E− 15 2.9

1/40 6.74E− 14 10.4

1/80 9.80E− 14 35.7

1/160 1.07E− 13 144.6

1/320 1.31E− 13 565.3

1/640 1.38E− 13 2326.3

1/1280 1.53E− 13 10533.0
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Figure 2: Exact solution and numerical solution by the scheme (4.2), (4.4) for the mesh size ∆x = 1/80 at the time
t = 0.1 of Test 2

We compute the numerical solution by the scheme (4.2), (4.4) with TOL = 10−14 and Neumann
boundary condition. Figure 1 displays this steady state and the numerical solution for the mesh size
∆x = 1/80 at the time t = 0.1 in the computational domain x ∈ [−1, 1] of Test 1. The L1 errors
and CPU times are reported by Table 1, which show that the scheme (4.2), (4.4) can preserve the
C-property perfectly.

Test 2. Consider the steady state

U(x) = [0.5 exp(x2), 0, 1, 0.7 exp(−x2)]T, x ∈ R, (5.4)

for the system (1.1) with w = 0. The numerical solution is computed by the scheme (4.2), (4.4) with
TOL = 10−14, and Neumann boundary condition, where the parameters are given as (5.2). Figure 2
displays this steady state and the numerical solution for the mesh size ∆x = 1/80 at the time t = 0.1
in the computational domain x ∈ [−1, 1] of Test 2. The L1 errors and CPU times are reported by
Table 2. Again, the C-property of our scheme is confirmed.

5.2. Test for partially well-balanced property

Test 3. Consider the steady state

U(x) = [ρ(x), u(x), p(x), α(x)]T, x ∈ [−1, 1], (5.5)

21
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Figure 5.2: Exact solution and numerical solution by the scheme (4.1), (4.2) for the mesh

size ∆x = 1/80 at the time t = 0.1 of Test 2.

5.2. Test for partially well-balanced property

Test 3. Consider the steady state

U(x) = [ρ(x), u(x), p(x), α(x)]T, x ∈ [−1, 1],

where

ρ(x) =

(
γ − 1

2γ
(5− exp(−x2))

) 1
γ−1

, u(x) = exp(−0.5x2),

p(x) =

(
γ − 1

2γ
(5− exp(−x2))

) γ
γ−1

− π, α(x) =
0.1

(γ−1
2γ (5− exp(−x2))

) 1
γ−1 exp(−0.5x2)

for the system (1.1) with w = 0. The numerical solution is computed by the scheme (4.1),

(4.2) with TOL = 10−14, and Neumann boundary condition, where the parameters are

given as (5.1). Figure 5.3 displays this steady state and the numerical solution for the

mesh size ∆x = 1/80 at the time t = 0.1 in the computational domain x ∈ [−1, 1] of

Test 3. The L1 errors, orders of convergence and CPU times are reported by Table 5.3.

The main tendency of L1 errors is downward to zero with the order of 1.93, so the partially

well-balanced property of our scheme is verified.
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Figure 3: Exact solution and numerical solution by the scheme (4.2), (4.4) for the mesh size ∆x = 1/80 at the time
t = 0.1 of Test 3
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Figure 5.3: Exact solution and numerical solution by the scheme (4.1), (4.2) for the mesh

size ∆x = 1/80 at the time t = 0.1 of Test 3.

Table 5.3: Errors, orders of convergence, and CPU times of Test 3.

∆x L1 error Order CPU time

1/10 1.58E− 4 − 0.5

1/20 1.59E− 5 3.32 1.5

1/40 1.55E− 5 0.04 6.0

1/80 3.10E− 6 2.32 20.1

1/160 5.06E− 7 2.62 80.3

1/320 3.65E− 8 3.79 330.4

1/640 3.61E− 8 0.02 1378.2

1/1280 3.51E− 9 3.36 5560.8

1/2560 3.50E− 9 0.01 21636.0

5.3. Test for a smooth constant speed contact wave

Test 4. Consider the smooth constant speed contact wave

(5.2) U(x, t) = [1, 2, 5, 0.5 exp(−(x− 2t)2)]T, x ∈ R, t ≥ 0

for the system (1.1) with w = 2. Initial and boundary condition are set according to

(5.2). The numerical solution is computed by the scheme (4.1), (4.2) with TOL = 10−6.
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Figure 5.3 displays the exact solution and the numerical solution for the mesh size ∆x =

1/80 at the time t = 0.1 in the computational domain x ∈ [−1, 1] of Test 4. The L1

errors, orders of convergence, and CPU times are reported by Table 5.4. This confirms

the accuracy and convergence of our scheme toward a smooth constant speed contact

wave.

Figure 4: Exact solution and numerical solution by the scheme (4.2), (4.4) for the mesh size ∆x = 1/80 at the time
t = 0.1 of Test 4

exact solution and the numerical solution for the mesh size ∆x = 1/80 at the time t = 0.1 in the
computational domain x ∈ [−1, 1] of Test 4. The L1 errors, orders of convergence, and CPU times
are reported by Table 4. This confirms the accuracy and convergence of our scheme toward a smooth
constant speed contact wave.

5.4. Test for a Riemann problem with w constant

Test 5. Consider the system (1.1) with w = 1.5 and the parameters is given as (5.2). Consider
the initial data given by

U0(x) =

{
UL = [1, 3, 4, 0.2]T, if x < 0,

UR = [2.439569, 3.654866, 7, 0.3]T, if x > 0.
(5.8)

The exact solution of this problem is construction B2 (3.49), where

U†L = [0.729921, 3.722027, 2.574225, 0.2]T,

U†sL = [0.384725, 4.742883, 1.050198, 0.26]T,

U†s#L = [0.819435, 3.022536, 3.196536, 0.26]T,

U†s#bL = [0.881960, 2.725986, 3.543134, 0.3]T,

U∗ = [1.5, 2.725986, 3.543134, 0.3]T.

(5.9)
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Figure 5.4: Exact solution and numerical solution by the scheme (4.1), (4.2) for the mesh

size ∆x = 1/80 at the time t = 0.1 of Test 4.

Table 5.4: Errors of Test 4.

∆x L1 error Order CPU time

1/10 7.35E− 3 − 0.7

1/20 3.73E− 3 0.98 2.1

1/40 1.88E− 3 0.99 7.4

1/80 9.44E− 4 0.99 28.3

1/160 4.73E− 4 0.99 100.1

1/320 2.40E− 4 0.98 418.3

1/640 1.26E− 4 0.93 1658.1

1/1280 6.83E− 5 0.88 6898.5

1/2560 3.93E− 5 0.80 27693.0
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5.4. Test for a Riemann problem with w constant

Test 5. Consider the system (1.1) with w = 1.5 and the parameters is given as (5.1).

Consider the initial data given by

U0(x) =




UL = [1, 3, 4, 0.2]T if x < 0,

UR = [2.439569, 3.654866, 7, 0.3]T if x > 0.

The exact solution of this problem is Construction B2 as shown in (3.12), where

U†
L = [0.729921, 3.722027, 2.574225, 0.2]T,

U†s
L = [0.384725, 4.742883, 1.050198, 0.26]T,

U†s#
L = [0.819435, 3.022536, 3.196536, 0.26]T,

U†s#b
L = [0.881960, 2.725986, 3.543134, 0.3]T,

U∗ = [1.5, 2.725986, 3.543134, 0.3]T.

Figure 5: Exact solution and numerical solutions by the scheme (4.2), (4.4) for the mesh sizes ∆x = 1/160, ∆x = 1/2560
at the time t = 0.1 of Test 5
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Figure 5.5: Exact solution and numerical solutions by the scheme (4.1), (4.2) for the mesh

sizes ∆x = 1/160, ∆x = 1/2560 at the time t = 0.1 of Test 5.

An interesting aspect of this problem is the resonance of three waves with the same

speed w: W4(U
†
L,U

†s
L ), S1(U

†s
L ,U†s#

L ), and W4(U
†s#
L ,U†s#b

L ). We compute the numerical

solution by the scheme (4.1), (4.2) with TOL = 10−6 and Neumann boundary condition.

Figure 5.5 displays the exact solution and the numerical solutions for the mesh sizes

∆x = 1/160, ∆x = 1/2560 at the time t = 0.1 in the computational domain x ∈ [−1, 1]
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of Test 5. The L1 errors, L1 relative errors, orders of convergence, and CPU times are

reported by Table 5.5. These results show that our scheme performs well toward the

proposed Riemann solution with w constant. However, it appears that the scheme given

by equations (4.1) and (4.2) does not accurately capture stateU†
L, instead it captures state

U†s
L . This discrepancy can be explained by the inaccuracy of the quantity α calculated

from the upwind scheme in equation (4.1).

Table 5.5: Errors, orders of convergence, and CPU times of Test 5.

∆x L1 error L1 relative error Order CPU time

1/10 6.84E− 1 3.45% − 0.6

1/20 6.27E− 1 3.25% 0.13 2.3

1/40 4.73E− 1 2.49% 0.41 7.1

1/80 3.67E− 1 1.94% 0.37 27.3

1/160 2.85E− 1 1.52% 0.36 117.7

1/320 2.21E− 1 1.17% 0.37 447.6

1/640 1.67E− 1 0.89% 0.40 1981.4

1/1280 1.21E− 1 0.65% 0.46 7775.6

1/2560 8.60E− 2 0.46% 0.50 31521.0

6. Conclusions

In this paper, a numerical scheme for the spray model (1.1) is constructed. This scheme is

based on the exact solution of local Riemann problems at each grid cell with w constant.

The well-balanced and C-property of this scheme is proved in the sense that it can capture

exactly some families of steady solutions. Moreover, the proposed scheme can preserve the

positivity of density and volume fraction. The method is shown by numerical experiments

to possess a good accuracy.
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