Spanning Trees with at most 5 Leaves and Branch Vertices in Total of $K_{1.5}$ -free Graphs

Pham Hoang Ha and Nguyen Hoang Trang*

Abstract. In this paper, we prove that every n-vertex connected $K_{1,5}$ -free graph G with $\sigma_4(G) \geq n-1$ contains a spanning tree with at most 5 leaves and branch vertices in total. Moreover, the degree sum condition " $\sigma_4(G) \geq n-1$ " is best possible.

1. Introduction

In this paper, we only consider finite simple graphs. Let G be a graph with vertex set V(G) and edge set E(G). For any vertex $v \in V(G)$, we use $N_G(v)$ and $d_G(v)$ (or N(v) and d(v) if there is no ambiguity) to denote the set of neighbors of v and the degree of v in G, respectively. For any $X \subseteq V(G)$, we denote by |X| the cardinality of X. We define $N(X) = \bigcup_{x \in X} N(x)$ and $d(X) = \sum_{x \in X} d(x)$. For an integer $k \geq 1$, we let $N_k(X) = \{x \in V(G) \mid |N(x) \cap X| = k\}$. We use G - X to denote the graph obtained from G by deleting the vertices in X together with their incident edges. The subgraph of G induced by G is denoted by G[X]. We define G - uv to be the graph obtained from G by deleting the edge $uv \in E(G)$, and G + uv to be the graph obtained from G by adding an edge uv between two non-adjacent vertices u and v of G. We write A := B to rename B as A.

A subset $X \subseteq V(G)$ is called an *independent set* of G if no two vertices of X are adjacent in G. The maximum cardinality of an independent set in G is denoted by $\alpha(G)$. For $k \geq 1$, we define $\sigma_k(G) = \min \left\{ \sum_{i=1}^k d(v_i) \mid \{v_1, \ldots, v_k\} \text{ is an independent set in } G \right\}$. For $r \geq 1$, a graph is said to be $K_{1,r}$ -free if it does not contain $K_{1,r}$ as an induced subgraph. A $K_{1,3}$ -free graph is also called a *claw-free* graph.

Let T be a tree. A vertex of degree one is a *leaf* of T and a vertex of degree at least three is a *branch vertex* of T. The set of leaves of T is denoted by L(T) and the set of branch vertices of T is denoted by B(T). For two distinct vertices u, v of T, we denote by $P_T[u,v]$ the unique path in T connecting u and v and denote by $d_T[u,v]$ the distance between u and v in T. We define the *orientation* of $P_T[u,v]$ is from u to v.

Received June 16, 2023; Accepted June 12, 2024.

Communicated by Daphne Der-Fen Liu.

2020 Mathematics Subject Classification. 05C05, 05C07, 05C69.

Key words and phrases. spanning tree, $K_{1,5}$ -free, degree sum.

^{*}Corresponding author.

There are many known results on the independence number conditions and the degree sum conditions to ensure that a connected graph G contains a spanning tree with a bounded number of leaves or branch vertices. Win [20] obtained a sufficient condition related to the independence number for k-connected graphs having a few leaves, which confirms a conjecture of Las Vergnas [14]. On the other hand, Broersma and Tuinstra [1] gave a degree sum condition for a connected graph to contain a spanning tree with a bounded number of leaves. Beside that, recently, the first named author [7] stated an improvement of Win's result by giving an independence number condition for a graph having a spanning tree which covers a certain subset of V(G) and has at most l leaves.

In 2012, Kano et al. [11] presented a degree sum condition for a connected claw-free graph to have a spanning tree with at most l leaves, which generalizes a result of Matthews and Sumner [17] and a result of Gargano et al. [5]. Later, Chen et al. [2], Matsuda et al. [16] and Gould and Shull [6] also considered the sufficient conditions for a connected claw-free graph to have a spanning tree with few leaves or few branch vertices, respectively.

On the other hand, Kyaw [12,13] obtained the sharp sufficient conditions for connected $K_{1,4}$ -free graphs to have a spanning tree with few leaves. After that, many researchers also studied sufficient conditions for existence of spanning trees with few leaves or few branch vertices in connected $K_{1,4}$ -free graphs (see Chen et al. [3] and Ha [8] for examples).

For the $K_{1,5}$ -free graphs, some results were obtained as follows.

Theorem 1.1. [4] Let G be a connected $K_{1,5}$ -free graph with n vertices. If $\sigma_5(G) \ge n-1$, then G contains a spanning tree with at most 4 leaves.

Theorem 1.2. [10] Let G be a connected $K_{1,5}$ -free graph with n vertices. If $\sigma_6(G) \ge n-1$, then G contains a spanning tree with at most 5 leaves.

Moreover, many researchers have also studied the degree sum conditions for graphs to have spanning trees with a bounded number of branch vertices and leaves.

Theorem 1.3. [18,19] Let $k \geq 2$ be an integer. If a connected graph G satisfies $\deg_G(x) + \deg_G(y) \geq |G| - k + 1$ for every two non-adjacent vertices $x, y \in V(G)$, then G has a spanning tree T with $|L(T)| + |B(T)| \leq k + 1$.

In 2019, Maezawa et al. improved the previous result by proving the following theorem.

Theorem 1.4. [15] Let $k \geq 2$ be an integer. Suppose that a connected graph G satisfies $\max\{\deg_G(x),\deg_G(y)\} \geq (|G|-k+1)/2$ for every two non-adjacent vertices $x,y \in V(G)$, then G has a spanning tree T with $|L(T)| + |B(T)| \leq k+1$.

Recently, Hanh and the first named author also gave sharp results for the case of claw-free graphs and $K_{1,4}$ -free graphs, respectively.

Theorem 1.5. [9] Suppose that a connected claw-free graph G of order n satisfies $\sigma_5(G) \ge n-2$. Then G has a spanning tree T with $|B(T)| + |L(T)| \le 5$.

Theorem 1.6. [8] Let k and m be two nonnegative integers with $m \le k+1$ and let G be a connected $K_{1,4}$ -free graph of order n. If $\sigma_{m+2}(G) \ge n-k$, then G has a spanning tree with at most m+k+2 leaves and branch vertices.

In this paper, we further consider connected $K_{1,5}$ -free graphs. We give a sufficient condition for a connected $K_{1,5}$ -free graph to have a spanning tree with few leaves and branch vertices in total. More precisely, we prove the following theorem.

Theorem 1.7. Let G be a connected $K_{1,5}$ -free graph with n vertices. If $\sigma_4(G) \ge n-1$, then G contains a spanning tree with at most 5 leaves and branch vertices in total.

It is easy to see that if a tree has at least 2 branch vertices then it has at least 4 leaves. Therefore, we immediately obtain the following corollary from Theorem 1.7.

Corollary 1.8. Let G be a connected $K_{1,5}$ -free graph with n vertices. If $\sigma_4(G) \ge n-1$, then G contains a spanning tree with at most 1 branch vertices.

We end this section by constructing an example to show that the degree sum condition " $\sigma_4(G) \geq n-1$ " in Theorem 1.7 is sharp. For an integer $m \geq 1$, let D_1 , D_2 , D_3 , D_4 be vertex-disjoint copies of the complete graph K_m with m vertices. Let xy be an edge such that neither x nor y is contained in $\bigcup_{i=1}^4 V(D_i)$. Join x to all the vertices in $V(D_1) \cup V(D_2)$ and join y to all the vertices in $V(D_3) \cup V(D_4)$. The resulting graph is denoted by G. Then it is easy to check that G is a connected $K_{1,5}$ -free graph with n = 4m + 2 vertices and $\sigma_4(G) = 4m = n - 2$. However, every spanning tree of G contains at least 6 leaves and branch vertices in total.

2. Proof of the main result

In this section, we extend the idea of Chen–Ha–Hanh in [4] to prove Theorem 1.7. For this purpose, we need the following lemma.

Lemma 2.1. Let G be a connected graph such that G does not have a spanning tree with at most 5 leaves and branch vertices in total, and let T be a maximal tree of G with $|L(T)| + |B(T)| \in \{6,7\}$. Then there does not exist a tree T' in G such that $|L(T')| + |B(T')| \leq 5$ and V(T') = V(T).

Proof. Suppose for a contradiction that there exists a tree T' in G with at most 5 leaves and branch vertices in total and V(T') = V(T). Since G has no spanning tree with at most 5 leaves and branch vertices in total, we see that $V(G) - V(T') \neq \emptyset$. Hence there

must exist two vertices v and w in G such that $v \in V(T')$ and $w \in N(v) \cap (V(G) - V(T'))$. Let T_1 be the tree obtained from T' by adding the vertex w and the edge vw. Then $|L(T_1)| + |B(T_1)| - |L(T')| - |B(T')| \in \{0, 1, 2\}$.

If $|L(T_1)| + |B(T_1)| \in \{6,7\}$, then T_1 contradicts the maximality of T (since $|V(T_1)| = |V(T)| + 1 > |V(T)|$). So we may assume that $|L(T_1)| + |B(T_1)| \le 5$. By repeating this process, we can recursively construct a tree T_{i+1} from T_i for $i \ge 1$ in G such that $|L(T_i)| + |B(T_i)| \le 5$ and $|V(T_{i+1})| = |V(T_i)| + 1$ for each $i \ge 1$. Since G has no spanning tree with at most 5 leaves and branch vertices in total and |V(G)| is finite, the process must terminate after a finite number of steps, i.e., there exists some $k \ge 1$ such that T_{k+1} is a tree in G such that $|L(T_{k+1})| + |B(T_{k+1})| \in \{6,7\}$. But this contradicts the maximality of T. So the lemma holds.

Proof of Theorem 1.7. We prove the theorem by contradiction. Suppose to the contrary that G contains no spanning tree with at most 5 leaves and branch vertices in total. Then every spanning tree of G contains at least 6 leaves and branch vertices in total. We choose a maximal tree T of G with $|L(T)| + |B(T)| \in \{6, 7\}$.

In all such spanning trees, we choose T such that

(C) |L(T)| is as small as possible.

We consider two cases according to the number of leaves in T.

Case 1: $|L(T)| \leq 4$. Since $|L(T)| \geq |B(T)| + 2$ and $|L(T)| + |B(T)| \in \{6,7\}$ we obtain |B(T)| = 2 and |L(T)| = 4. Let s and t be two branch vertices in T and let $U = \{u_1, u_2, u_3, u_4\}$ be the set of leaves of T. Then $d_T(s) = d_T(t) = 3$. Moreover, by the maximality of T, we have $N(U) \subseteq V(T)$. For simplifying notation, let [k] be the set of $\{1, 2, \ldots, k\}$ for some positive integer k.

For each $i \in [4]$, let B_i be the vertex set of the connected component of $T - \{s, t\}$ containing u_i and let v_i be the unique vertex in $B_i \cap N_T(\{s, t\})$. Without loss of generality, we may assume that $\{v_1, v_2\} \subseteq N_T(s)$ and $\{v_3, v_4\} \subseteq N_T(t)$. For each $1 \le i \le 4$ and $x \in B_i$, we use x^- and x^+ to denote the predecessor and the successor of x on $P_T[s, u_i]$ or $P_T[t, u_i]$, respectively (if such a vertex exists). Let s^+ be the successor of s on $P_T[s, t]$. Define $P := V(P_T[s, t]) - \{s, t\}$.

For this case, we further choose T such that

(C1) $d_T[s,t]$ is as small as possible.

Claim 2.2. For all $1 \leq i, j \leq 4$ and $i \neq j$, if $x \in N(u_j) \cap B_i$, then $x \neq u_i$, $x \neq v_i$ and $x^- \notin N(U - \{u_j\})$.

Proof. Suppose $x = u_i$ or $x = v_i$. Then $T' := T - v_i v_i^- + x u_j$ is a tree in G with 3 leaves and 1 branch vertex such that V(T') = V(T), which contradicts Lemma 2.1. So we have $x \neq u_i, x \neq v_i$.

Next, assume $x^- \in N(U - \{u_j\})$. Then there exists some $k \in [4] - \{j\}$ such that $x^-u_k \in E(G)$. Now, $T' := T - \{v_iv_i^-, xx^-\} + \{xu_j, x^-u_k\}$ is a tree in G with 3 leaves and 1 branch vertex such that V(T') = V(T), also contradicting Lemma 2.1. This proves Claim 2.2.

By Claim 2.2, we know that U is an independent set in G.

Claim 2.3. $N(u_i) \cap P = \emptyset$ for each $i \in [4]$.

Proof. Suppose the assertion of the claim is false. Then there exists some vertex $x \in P$ such that $xu_i \in E(G)$ for some $i \in [4]$. Let $T' := T - v_i v_i^- + xu_i$, then T' is a tree in G such that V(T') = V(T), T' has 4 leaves and 2 branch vertices s' and t' and $d_{T'}[s', t'] < d_T[s, t]$. But this contradicts the condition (C1). So the claim holds.

Claim 2.4. $N(u_i) \cap \{t\} = \emptyset$ for each $i \in [2]$.

Proof. Suppose $su_i \in E(G)$ for some $i \in [2]$. Consider the tree $T' := T - v_i v_i^- + tu_i$ is a tree in G with 4 leaves and 1 branch vertex such that V(T') = V(T), contradicting Lemma 2.1. This proves Claim 2.4.

Similarly, we also have

Claim 2.5. $N(u_i) \cap \{s\} = \emptyset$ for each $3 \le i \le 4$.

Claim 2.6. $N_2(U-u_i) \cap B_i = \emptyset$ for each $i \in [4]$. In particular, $N_3(U) = (N_2(U) - N(u_i)) \cap B_i = \emptyset$ for each $i \in [4]$.

Proof. For the sake of convenience, we may assume by symmetry that $i \in [2]$.

Suppose this is false. Then there exists some vertex $x \in (N_2(U - u_i)) \cap B_i$ for some $i \in [2]$. By applying Claim 2.2, we have $x \neq u_i$ and $x \neq v_i$.

Since $x \in N_2(U - u_i) \cap B_i$ there must exist two distinct indices $j, k \in [4] - \{i\}, j < k$, such that $xu_j, xu_k \in E(G)$. Set

$$T' := \begin{cases} T - \{v_j v_j^-, v_k v_k^-\} + \{x u_j, x u_k\} & \text{if } j = 3 - i, \\ T - \{s s^+, v_k v_k^-\} + \{x u_j, x u_k\} & \text{if } 3 \le j < k \le 4. \end{cases}$$

Then T' is a tree in G with 1 branch vertex and 4 leaves such that V(T') = V(T), contradicting Lemma 2.1.

By Claims 2.2 and 2.6, $\{u_i\}$, $N(u_i) \cap B_i$, and $(N(U - \{u_i\}) \cap B_i)^-$ are pairwise disjoint subsets in B_i for each $i \in [4]$ (where $(N(U - \{u_i\}) \cap B_i)^- = \{x^- \mid x \in N(U - \{u_i\}) \cap B_i\}$)

and $N_3(U) = (N_2(U) - N(u_i)) \cap B_i = \emptyset$ for each $i \in [4]$. Then for each $i \in [4]$, we conclude that

$$|B_i| \ge 1 + |N(u_i) \cap B_i| + |(N(U - \{u_i\}) \cap B_i)^-|$$

$$= 1 + |N(u_i) \cap B_i| + |N(U - \{u_i\}) \cap B_i|$$

$$= 1 + \sum_{j=1}^4 |N(u_j) \cap B_i|.$$

By applying Claim 2.3, we obtain

$$\sum_{i=1}^{4} |N(u_i) \cap P| = 0.$$

On the other hand, by Claims 2.4 and 2.5 we obtain that

$$\sum_{i=1}^{4} |N(u_i) \cap \{s\}| \le 2, \quad \sum_{i=1}^{4} |N(u_i) \cap \{t\}| \le 2.$$

Note that $N(U) \subseteq V(T)$. Now, we conclude that

$$|V(T)| = \sum_{i=1}^{4} |B_i| + |V(P_T[s, t])|$$

$$\geq \sum_{i=1}^{4} \left(\sum_{j=1}^{4} |N(u_j) \cap B_i| + 1 \right)$$

$$+ \left(\sum_{i=1}^{4} |N(u_i) \cap \{s\}| + \sum_{i=1}^{4} |N(u_i) \cap \{t\}| - 2 + \sum_{i=1}^{4} |N(u_i) \cap P| \right)$$

$$= 2 + \sum_{i=1}^{4} \sum_{j=1}^{4} |N(u_j) \cap B_i| + \sum_{i=1}^{4} |N(u_i) \cap \{s, t\}| + \sum_{i=1}^{4} |N(u_i) \cap P|$$

$$= \sum_{j=1}^{4} |N(u_j) \cap V(T)| + 2$$

$$= \sum_{j=1}^{4} d(u_j) + 2$$

$$= d(U) + 2.$$

Since U is an independent set in G, we have

$$n-1 < \sigma_4(G) < d(U) < |V(T)| - 2 < n-2$$

a contradiction.

Case 2:
$$|L(T)| \ge 5$$
. Set $L(T) = \{u_i\}_{i=1}^l, l \ge 5$.

Claim 2.7. L(T) is an independent set in G.

Proof. Suppose to the contrary that there exist 2 distinct indices i, j such that $u_i u_j \in E(G)$. Let c be the nearest branch vertex of u_i in T and c^- is the predecessor of c on $P_T[u_i, c]$. Let $T' := T - cc^- + u_i u_j$. Then T' is a tree in G with $V(T') = V(T), |B(T')| \le |B(T)|$ and |L(T')| < |L(T)|, a contradiction to either Lemma 2.1 or the condition (C). Then the claim holds.

By Claim 2.7, we know that $\sigma_5(G)$ is non-trivially defined. Since $\sigma_4(G) \geq n-1$, we have $\sigma_5(G) \geq \sigma_4(G) + 1 \geq n-1+1=n$. Thanks to Theorem 1.1, there exists a spanning tree T' in G such that $|L(T')| \leq 4$. Hence $|L(T')| + |B(T')| \leq 6$. By assumption, we obtain |L(T')| + |B(T')| = 6. Now, using the similar arguments as in the proof of Case 1, we can derive the contradiction. Therefore, the proof of Theorem 1.7 is completed.

Acknowledgments

We would like to thank the referees for their valuable comments which help us improve this research.

References

- [1] H. Broersma and H. Tuinstra, *Independence trees and Hamilton cycles*, J. Graph Theory **29** (1998), no. 4, 227–237.
- [2] X. Chen, M. Li and M. Xu, Spanning 3-ended trees in k-connected claw-free graphs, Ars Combin. 131 (2017), 161–168.
- [3] Y. Chen, G. Chen and Z. Hu, Spanning 3-ended trees in k-connected $K_{1,4}$ -free graphs, Sci. China Math. **57** (2014), no. 8, 1579–1586.
- [4] Y. Chen, P. H. Ha and D. D. Hanh, Spanning trees with at most 4 leaves in $K_{1,5}$ -free graphs, Discrete Math. **342** (2019), no. 8, 2342–2349.
- [5] L. Gargano, M. Hammar, P. Hell, L. Stacho and U. Vaccaro, Spanning spiders and light-splitting switches, Discrete Math. 285 (2004), no. 1-3, 83–95.
- [6] R. J. Gould and W. Shull, On spanning trees with few branch vertices, Discrete Math. **343** (2020), no. 1, 111581, 7 pp.
- [7] P. H. Ha, A note on the independence number, connectivity and k-ended tree, Discrete Appl. Math. **305** (2021), 142–144.

- [8] _____, Spanning trees of $K_{1,4}$ -free graphs with a bounded number of leaves and branch vertices, arXiv:2201.01043.
- [9] D. D. Hanh, Degree conditions for claw-free graphs to have spanning trees with at most five branch vertices and leaves in total, Studia Sci. Math. Hungar. 59 (2022), no. 1, 58–66.
- [10] Z. Hu and P. Sun, Spanning 5-ended trees in $K_{1,5}$ -free graphs, Bull. Malays. Math. Sci. Soc. **43** (2020), no. 3, 2565–2586.
- [11] M. Kano, A. Kyaw, H. Matsuda, K. Ozeki, A. Saito and T. Yamashita, Spanning trees with a bounded number of leaves in a claw-free graph, Ars Combin. 103 (2012), 137–154.
- [12] A. Kyaw, Spanning trees with at most 3 leaves in $K_{1,4}$ -free graphs, Discrete Math. **309** (2009), no. 20, 6146–6148.
- [13] _____, Spanning trees with at most k leaves in $K_{1,4}$ -free graphs, Discrete Math. **311** (2011), no. 20, 2135–2142.
- [14] M. Las Vergnas, Sur une propriété des arbres maximaux dans un graphe, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1297-A1300.
- [15] S.-i. Maezawa, R. Matsubara and H. Matsuda, Degree conditions for graphs to have spanning trees with few branch vertices and leaves, Graphs Combin. 35 (2019), no. 1, 231–238.
- [16] H. Matsuda, K. Ozeki and T. Yamashita, Spanning trees with a bounded number of branch vertices in a claw-free graph, Graphs Combin. **30** (2014), no. 2, 429–437.
- [17] M. M. Matthews and D. P. Sumner, Hamiltonian results in $K_{1,3}$ -free graphs, J. Graph Theory 8 (1984), no. 1, 139–146.
- [18] Z. G. Nikoghosyan, Spanning trees with few branch and end vertices, Math. Probl. Comput. Sci. 46 (2016), 18–25.
- [19] A. Saito and K. Sano, Spanning trees homeomorphic to a small tree, Discrete Math. 339 (2016), no. 2, 677–681.
- [20] S. Win, On a conjecture of Las Vergnas concerning certain spanning trees in graphs, Results Math. 2 (1979), 215–224.

Pham Hoang Ha

Department of Mathematics, Hanoi National University of Education, 136 XuanThuy Street, Hanoi, Vietnam

E-mail address: ha.ph@hnue.edu.vn

Nguyen Hoang Trang

Foreign Language Speacialized School, University of Languages and International Studies, Vietnam National University, Hanoi, Vietnam

E-mail address: trangnh@flss.edu.vn