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A New Penalty Dual-primal Augmented Lagrangian Method and its

Extensions

Xiaoqing Ou, Guolin Yu, Jie Liu, Jiawei Chen* and Zhaohan Liu

Abstract. In this paper, we propose a penalty dual-primal balanced-based augmented

Lagrangian method for solving linearly constrained convex minimization problems.

Convergence and convergence rate of the penalty dual-primal balanced-based aug-

mented Lagrangian method are established by the tool of variational inequality. Fur-

ther, we generalize the penalty dual-primal balanced-based augmented Lagrangian

method to solve linearly constrained multi-block separable convex minimization prob-

lems with full splitting technique and partial splitting technique. Numerical results on

the basic pursuit problem and the Lasso model are presented to illustrate the efficiency

of the proposed methods.

1. Introduction

In this paper, we consider the following linearly constrained convex minimization problem

(1.1) min
x

{θ(x) | Ax = b, x ∈ X },

where θ : Rn → R is a convex but not necessarily smooth function, X is a nonempty

closed and convex set of Rn, A ∈ Rm×n is a given matrix and b ∈ Rm is a known vector.

The problem (1.1) is assumed to have solution throughout this paper.

There are many algorithms that can be used to solve problem (1.1), where a benchmark

method is the Augmented Lagrangian Method (ALM) proposed in [17, 19]. It plays a

significant role in both algorithmic design and practical applications for various convex

optimization problems; see [2, 3, 7, 10,11,18,20] and the references therein.

For a given iterate (xk, λk), the iterative scheme of the classical ALM reads as

(1.2)

xk+1 = argminx{Lβ(x, λ
k) | x ∈ X },

λk+1 = λk − β(Axk+1 − b),
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where Lβ(x, λ) := θ(x)−λ⊤(Ax− b)+ β
2 ∥Ax− b∥2 is the augmented Lagrangian function

of the problem (1.1), β > 0 is the penalty parameter, λ ∈ Rm is the associated Lagrange

multiplier. Hereafter, x and λ are referred to the primal and dual variables respectively,

and I and 0 are regarded as a identity matrix and a zero matrix with proper dimensions,

respectively.

Ignoring some constant terms, the x-subproblem of (1.2) can be rewritten as

xk+1 = argmin
x

{
θ(x) +

β

2

∥∥∥∥Ax− b− 1

β
λk

∥∥∥∥2 ∣∣∣ x ∈ X

}
.

It is obvious that the objective function θ, the coefficient matrix A, and the set X are

all appear at the same time, so it is still difficult to be solved if without utilizing some

linearization techniques or inner solvers. Some existing algorithms can be applied to decou-

ple the objective function θ and coefficient matrix A, so as to alleviate the x-subproblem

substantially, such as the linearized ALM [13] and primal-dual method [6]. In the above-

mentioned algorithm, the x-subproblem only depends on θ and X , and the proximity

operator of the objective function θ, which is defined as

Proxβθ (x) := argmin
y

{
θ(y) +

β

2
∥y − x∥2

∣∣∣ y ∈ Rn

}
, ∀x ∈ Rn

has a closed-form representation, where β > 0. In order to ensure convergence, there is an

extra restriction on step-size , i.e., σ > β∥A⊤A∥, where σ > 0 and ∥A⊤A∥ represent the

spectral norm of A⊤A. Hence the step-size for solving (1.2) becomes small when ∥A⊤A∥
is large, and so the convergence rate will be low. Recently, a balanced version of ALM

was firstly proposed by He and Yuan [16], which has no limitation on step-size and takes

the following iterative scheme

(1.3) (Balanced ALM)

xk+1 = argminx
{
θ(x) + 1

β

∥∥x−
(
xk + 1

β

)
A⊤λk

∥∥2 ∣∣ x ∈ X
}
,

λk+1 = λk −
(
1
βAA⊤ + δIm

)−1{A(2xk+1 − xk)− b},

where β > 0 and δ > 0. It is clear that the x-subproblem of the balanced ALM decouples

the objective function and the coefficient matrix without any extra condition. Namely, the

parameter β does not depend on ∥A⊤A∥, and the x-subproblem has a closed-form solution

since its solution can be expressed as a proximal mapping. However, the balanced ALM

will take much time to update λk+1 since it needs to calculate the inverse of matrix
1
βAA

⊤+δIm, i.e., the matrix
(
1
βAA

⊤+δIm
)−1

, and in practice it will take an inner solver

to tackle the dual subproblem or use the well-known Cholesky factorization to deal with

an equivalent linear equation of dual problem. In this sense, a new penalty ALM was

proposed in [1] to solve it, which reads as

(1.4)

xk+1 = argminx
{
θ(x)− ⟨λk, Ax− b⟩+ β

2 ∥A(x− xk)∥2 + 1
2∥x− xk∥2Q

∣∣ x ∈ X
}
,

λk+1 = λk − β
[
A(2xk+1 − xk)− b

]
,
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where β > 0, Q ≻ 0 is an arbitrarily given positive-defined matrix, the term β
2 ∥A(x−xk)∥2

can be treated as a penalty term, while the quadratic term 1
2∥x − xk∥2Q can be regarded

as a penalty term.

Both the balanced ALM and the new Penalty ALM update the new iterate by a

primal-dual order. Exploiting the variational inequality structure of the balanced ALM, a

dual-primal version of the balanced ALM was proposed in [22]. The proposed method [22]

generates the new iterates by a dual-primal order and enjoys the same computational

difficulty with the original primal-dual balanced ALM, which reads as

(1.5)

λk+1 = λk −
(
1
βAA

⊤ + δIm
)−1

(Axk − b),

xk+1 = argminx
{
θ(x) + β

2

∥∥x−
{
xk + 1

βA
⊤(2λk+1 − λk)

}∥∥2 ∣∣ x ∈ X
}
,

where β > 0 and δ > 0.

Observe that the original primal-dual balanced ALM also will take much time to

update λk+1, and in practice it will take an inner solver or use the well-known Cholesky

factorization to deal with an equivalent linear equation of dual problem being the same as

the balanced ALM. Motivated by the works [1,16,22], our main purpose is to alleviate the

difficulty for solving dual-subproblem of the original primal-dual balanced ALM (1.5) by

utilizing the novel penalty technique proposed in [1]. We propose a penalty dual-primal

ALM combines a novel penalty technique with updating the new iterates in a dual-primal

order, as follows:

Algorithm 1.1 (The novel penalty dual-primal ALM). Let β > 0 and Q ≻ 0 be an

arbitrarily given positive-defined matrix. Then the new iterate ωk+1 = (xk+1, λk+1) is

generated with ωk = (xk, λk) via the following steps:

(1.6)


λk+1 = λk − β(Axk − b),

xk+1 = argminx
{
θ(x)− ⟨2λk+1 − λk, Ax− b⟩+ β

2 ∥A(x− xk)∥2

+1
2∥x− xk∥2Q

∣∣ x ∈ X
}
.

In (1.6), the quadratic term β
2 ∥A(x − xk)∥2 can be treated as a penalty term, while

the quadratic term 1
2∥x− xk∥2Q can be regarded as a regularization term.

Clearly, the x-subproblem of (1.6) can be rewritten equivalently as

xk+1 = argmin
x

{
θ(x)− ⟨2λk+1 − λk, Ax− b⟩+ 1

2
∥x− xk∥2βA⊤A+Q

∣∣∣ x ∈ X

}
.

If Q := τI − βA⊤A with τ > β∥A⊤A∥, the x-update is reduced to

xk+1 = argmin
x

{
θ(x) +

τ

2

∥∥∥∥x− xk − 1

τ
A⊤(2λk+1 − λk)

∥∥∥∥2 ∣∣∣ x ∈ X

}
.
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If Q := β(τI −A⊤A) with τ > ∥A⊤A∥, the x-update is reduced to

xk+1 = argmin
x

{
θ(x) +

τβ

2

∥∥∥∥x− xk − 1

τ
A⊤(2λk+1 − λk)

∥∥∥∥2 ∣∣∣ x ∈ X

}
,

which has a closed-form solution by proximity operator of the objective function θ(x).

The dual update of (1.6) is similar to one of [6] and is comparatively much easier

than that of the dual-primal balanced ALM [22]. Compared with some existing splitting

algorithms, the convergence of this penalty dual-primal ALM (1.6) does not depend on the

value of ∥A⊤A∥. We also raise the extension versions of the proposed penalty dual-primal

ALM (1.6) to tackle the multi-block separable convex minimization problem with both

linear equality and inequality constraints.

The paper is organized as follows. In Section 2, we recall some preliminaries. In

Section 3, we establish the convergence analysis of the penalty dual-primal ALM. We

extend the proposed method to solve the multiple-block separable convex problems and

show its convergence analysis in Section 4. In Section 5, we further give the partial

splitting version and its convergence analysis. In Section 6, we present some computational

experiments. Finally, we give the conclusions.

2. Preliminaries

In this section, we recall some fundamental variational inequality characterization and

lemmas. Let Rn be the n-dimensional Euclidean space with inner product ⟨x, y⟩ = x⊤y =∑n
i=1 xiyi and norm ∥x∥ =

√
⟨x, x⟩, where x, y ∈ Rn and ⊤ stands for the transpose

operation.

We first recall the optimality condition of the model (1.1) in the lens of variational

inequality; see, e.g., [12, 14,15]. The Lagrangian function of model (1.1) is defined as

(2.1) L (x, λ) := θ(x)− λ⊤(Ax− b),

where λ ∈ Rm is the Lagrange multiplier. For the simplicity, we set Ω := X × Λ and

Λ := Rm.

The pair (x∗, λ∗) ∈ Ω is called a saddle point of Lagrangian function (2.1) which means

that x∗ is a solution point of (1.1), if it satisfies

(2.2) L (x∗, λ) ≤ L (x∗, λ∗) ≤ L (x, λ∗), ∀ (x, λ) ∈ Ω.

(2.2) can be separately rewritten as the following mixed variational inequalities

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)⊤(−A⊤λ∗) ≥ 0, ∀x ∈ X ,

λ∗ ∈ Λ, (λ− λ∗)⊤(Ax∗ − b) ≥ 0, ∀λ ∈ Λ,
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which can be further reformulated as the following compact form

(2.3) ω∗ ∈ Ω, θ(x)− θ(x∗) + (ω − ω∗)⊤F (ω∗) ≥ 0, ∀ω ∈ Ω,

where

(2.4) ω =

(
x

λ

)
and F (ω) =

(−A⊤λ

Ax− b

)
.

Clearly, the operator F (ω) defined by (2.4) is affine with a skew-symmetric matrix satis-

fying

(2.5) (ω − ω̃)⊤(F (ω)− F (ω̃)) = 0, ∀ω, ω̃ ∈ Ω.

We denote by Ω∗ the solution set of the variational inequality (2.3).

The following basic lemma will be used frequently for our further discussions.

Lemma 2.1. [16] Let X be a closed convex set and let θ, f : Rn → R be convex functions.

If f is differentiable, and the solution set of the minimization problem

min
x

{θ(x) + f(x) | x ∈ X }

is nonempty, then it holds that

x∗ ∈ argmin
x

{θ(x) + f(x) | x ∈ X }

if and only if

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)⊤∇f(x∗) ≥ 0, ∀x ∈ X .

We recall the so called Fejér convergence theorem, which will be used in our convergence

analysis.

Definition 2.2. A sequence {uk} ⊂ Rn is called Fejér convergent with respect to a

nonempty subset U of Rn if, for every u ∈ U ,

∥uk+1 − u∥ ≤ ∥uk − u∥, ∀ k ∈ N.

The following result can be derived from Theorem 1 of [5].

Lemma 2.3. If {uk} ⊂ Rn is a Fejér convergent sequence with respect to a nonempty set

U , then {uk} is bounded. Furthermore, if a cluster point u of {uk} belongs to U , then

limk→∞ uk = u.
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3. Convergence analysis

In this section, we establish the convergence analysis of the proposed penalty dual-primal

ALM, following the analogous analysis method in [16]. We prove the following lemma

which plays a key role in convergence analysis of Algorithm 1.1.

Lemma 3.1. Let {ωk} be the sequence generated by Algorithm 1.1. Then ωk+1 ∈ Ω and

(3.1) θ(x)− θ(xk+1) + (ω − ωk+1)⊤F (ωk+1) ≥ (ω − ωk+1)⊤H(ωk − ωk+1), ∀ω ∈ Ω,

where

(3.2) H =

βA⊤A+Q −A⊤

−A 1
β I

 .

Proof. For the x-subproblem in (1.6), it follows from Lemma 2.1 that xk+1 ∈ X ,

θ(x)− θ(xk+1) + (x− xk+1)⊤
{
−A⊤(2λk+1 − λk) + (βA⊤A+Q)(xk+1 − xk)

}
≥ 0

for all x ∈ X , which can be equivalently reformulated as

xk+1 ∈ X , θ(x)− θ(xk+1) + (x− xk+1)⊤(−A⊤λk+1)

≥ (x− xk+1)⊤
{
−A⊤(λk − λk+1) + (βA⊤A+Q)(xk − xk+1)

}
, ∀x ∈ X .

(3.3)

For the λ-subproblem in (1.6), we have

Axk − b+
1

β
(λk+1 − λk) = 0,

which implies that

(λ− λk+1)⊤
{
Axk+1 − b−A(xk+1 − xk) +

1

β
(λk+1 − λk)

}
≥ 0, ∀λ ∈ Λ,

and so,

(λ− λk+1)⊤(Axk+1 − b)

≥ (λ− λk+1)⊤
{
−A(xk − xk+1) +

1

β
(λk − λk+1)

}
, ∀λ ∈ Λ.

(3.4)

Combining (3.3) and (3.4), we have

θ(x)− θ(xk+1) + (ω − ωk+1)⊤
(−A⊤λk+1

Axk+1 − b

)

≥ (ω − ωk+1)⊤

βA⊤A+Q −A⊤

−A 1
β I

 (ωk − ωk+1).

Consequently, one has

θ(x)− θ(xk+1) + (ω − ωk+1)⊤F (ωk+1) ≥ (ω − ωk+1)⊤H(ωk − ωk+1).
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Convergence of the penalty dual-primal ALM depends on the positive definiteness of

the matrix H which is proved by the following proposition.

Proposition 3.2. The matrix H defined in (3.2) is positive definite.

Proof. Note that

H =

βA⊤A+Q −A⊤

−A 1
β I

 =

βA⊤A −A⊤

−A 1
β I

+

Q 0

0 0


=

(−√
βA⊤

1√
β
I

)(
−
√

βA
1√
β
I

)
+

Q 0

0 0

 .

Then, we have

ω⊤Hω = (x, λ)

(−√
βA⊤

1√
β
I

)(
−
√

βA
1√
β
I

)
+

Q 0

0 0

(
x

λ

)

= (x, λ)

(−√
βA⊤

1√
β
I

)(
−
√
βA

1√
β
I

)(
x

λ

)
+ (x, λ)

Q 0

0 0

(
x

λ

)

=

((
−
√

βA
1√
β
I

)(
x

λ

))⊤(
−
√

βA
1√
β
I

)(
x

λ

)
+ ∥x∥2Q

=

(
1√
β
λ−

√
βAx

)⊤(
1√
β
λ−

√
βAx

)
+ ∥x∥2Q

=

∥∥∥∥ 1√
β
λ−

√
βAx

∥∥∥∥2 + ∥x∥2Q > 0, ∀ω = (x, λ)⊤ ̸= 0,

and hence the matrix H is positive definite.

The following lemma is also the basis of convergence analysis of the proposed novel

penalty dual-primal ALM (1.6).

Lemma 3.3. Let {ωk} be the sequence generated by Algorithm 1.1. Then, we obtain

θ(x)− θ(xk+1) + (ω − ωk+1)⊤F (ω)

≥ 1

2

(
∥ω − ωk+1∥2H − ∥ω − ωk∥2H

)
+

1

2
∥ωk − ωk+1∥2H , ∀ω ∈ Ω.

(3.5)

Proof. It follows from (2.5) that

(ω − ωk+1)⊤F (ωk+1) = (ω − ωk+1)⊤F (ω), ∀ω ∈ Ω.

Together with (3.1) yields that

(3.6) ωk+1 ∈ Ω, θ(x)− θ(xk+1) + (ω − ωk+1)⊤F (ω) ≥ (ω − ωk+1)⊤H(ωk − ωk+1)
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for all ω ∈ Ω. Note that for any a, b, c, d ∈ Rn+m,

(a− b)⊤H(c− d) =
1

2

{
∥a− d∥2H − ∥a− c∥2H

}
+

1

2

{
∥c− b∥2H − ∥d− b∥2H

}
.

Letting a = ω, b = d = ωk+1 and c = ωk in the above equality, we obtain

(3.7) (ω − ωk+1)⊤H(ωk − ωk+1) =
1

2

{
∥ω − ωk+1∥2H − ∥ω − ωk∥2H

}
+

1

2
∥ωk − ωk+1∥2H .

Consequently, the desired result follows from (3.6) and (3.7).

The following result shows that {ωk} is a Fejér convergence with respect to the set Ω∗.

Theorem 3.4. Let {ωk} be the sequence generated by Algorithm 1.1. Then,

(3.8) ∥ωk+1 − ω∗∥2H ≤ ∥ωk − ω∗∥2H − ∥ωk − ωk+1∥2H , ∀ω∗ ∈ Ω∗,

and {ωk} is Fejér convergent with respect to Ω∗.

Proof. Set ω = ω∗ ∈ Ω∗ in (3.5). Then we get

∥ωk − ω∗∥2H − ∥ωk+1 − ω∗∥2H − ∥ωk − ωk+1∥2H
≥ 2

{
θ(xk+1)− θ(x∗) + (ωk+1 − ω∗)⊤F (ω∗)

}
, ∀ω∗ ∈ Ω∗.

(3.9)

Since ω∗ ∈ Ω∗ and ωk+1 ∈ Ω, according to (2.3) and (2.4), we have

θ(xk+1)− θ(x∗) + (ωk+1 − ω∗)⊤F (ω∗) ≥ 0.

Therefore, (3.8) follows from (3.9) immediately, and so,

(3.10) ∥ωk+1 − ω∗∥H ≤ ∥ωk − ω∗∥H .

This together with Definition 2.2 yields that {ωk} is Fejér convergent with respect to

Ω∗.

Now, we prove the convergence and the worst-case O(1/T ) convergence rate of {ωk}
generated by Algorithm 1.1, where T denotes the total iteration counter.

Theorem 3.5. Let {ωk} be the sequence generated by Algorithm 1.1 and H be defined in

(3.2). Then, the following assertions hold:

(i) the sequence {ωk} converges to some ω ∈ Ω∗;

(ii) for any integer number T > 0, we have

ω̃T ∈ Ω, θ(x̃T )− θ(x) + (ω̃T − ω)⊤F (ω) ≤ 1

2(T + 1)
∥ω − ω0∥2H , ∀ω ∈ Ω,

where ω̃T := 1
T+1

∑T
k=0 ω

k+1.
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Proof. (i) From (3.10), it follows that ∥ωk+1 − ω∗∥H ≤ ∥ω1 − ω∗∥H and {∥ωk+1 − ω∗∥H}
is convergent for ω∗ ∈ Ω∗ and so, the sequence {ωk} is bounded. Let ω be a cluster point

of {ωk} and {ωkj} be a subsequence converging to ω. It follows from (3.1) that

ωkj ∈ Ω, θ(x)− θ(xkj ) + (ω − ωkj )⊤F (ωkj ) ≥ (ω − ωkj )⊤H(ωkj−1 − ωkj ), ∀ω ∈ Ω.

Again, from (3.8), we have

(3.11) lim
k→∞

∥ωk − ωk+1∥H = 0.

Since the matrix H is positive definite, it follows from (3.11) and the lower semicontinuity

of θ(·) and the continuity of F (·) that

ω ∈ Ω, θ(x)− θ(x) + (ω − ω)⊤F (ω) ≥ 0, ∀ω ∈ Ω.

So, ω ∈ Ω∗. Then we deduce from Lemma 2.3 and Theorem 3.4 that limk→∞ ωk = ω ∈ Ω∗.

(ii) The proof is similar to that of [16, Theorem 3.5] and so is omitted.

4. Splitting version of the penalty dual-primal ALM

In this section, we consider the splitting version of the dual-primal balanced ALM (1.6)

for solving the following linearly constrained multi-block separable convex optimization

problem

(4.1) min
x

{
p∑

i=1

θi(xi)
∣∣∣ p∑
i=1

Aixi = b, xi ∈ Xi

}
,

where x = (xi)
p
i=1, p ≥ 1,

∑p
i=1 ni = n, θi : Rni → R, i = 1, . . . , p, are convex but

not necessarily smooth functions, Xi ⊂ Rni , i = 1, . . . , p, are nonempty closed convex

sets, Ai ∈ Rm×ni , i = 1, . . . , p, are given matrices and b ∈ Rm is a known vector. The

model (4.1) has been applied to distributed optimization, statistical learning and Potts

models; see, e.g., [4, 21,23].

4.1. Splitting version of the penalty dual-primal ALM

In this subsection, we extend the penalty dual-primal ALM to solve the multi-block sep-

arable convex optimization problem (4.1) and propose a splitting version of (1.6) below.

Algorithm 4.1 (The splitting penalty dual-primal balanced ALM). Let i = 1, . . . , p, and

xi ∈ Xi, βi > 0, Qi ≻ 0 be arbitrarily given positive-defined matrices. Then the new

iterate ωk+1 = (xk+1, λk+1) is generated with ωk = (xk, λk) via the following steps:

(4.2)


λk+1 = λk −∑p

i=1 βi
(∑p

i=1Aix
k
i − b

)
,

xk+1
i = argminxi

{
θi(xi)− ⟨2λk+1 − λk, Aixi − b⟩+ βi

2 ∥Ai(xi − xki )∥2

+1
2∥xi − xki ∥2Qi

}
, i = 1, 2, . . . , p.
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4.2. Variational inequality characterization of the splitting version

In order to analyze convergence, we also present the optimality conditions of the model (4.2)

in the framework of variational inequality. Firstly, we reuse the letters and set Ω :=

X1 × X2 × · · · × Xp × Λ.

Analogous to the analysis in Section 2, we deduce that the optimality conditions of

(4.2) can be equivalently characterized by the following mixed variational inequalities

(4.3) ω∗ ∈ Ω, θ(x)− θ(x∗) + (ω − ω∗)⊤F (ω∗) ≥ 0, ∀ω ∈ Ω,

where

θ(x) =

p∑
i=1

θi(xi), ω =

(
x

λ

)
, x =


x1

x2
...

xp

 and F (ω) =


−A⊤

1 λ
...

−A⊤
p λ∑p

i=1Aixi − b

 .

Similarly, it is easy to verify that the operator F (·) is affine with a skew-symmetric

matrix satisfying

(ω − ω̃)⊤(F (ω)− F (ω̃)) = 0, ∀ω, ω̃ ∈ Ω.

We also denote by Ω∗ the set of solutions of the mixed variational inequalities (4.3).

4.3. Convergence analysis of the splitting version

According to the similar analysis route in Section 3, we next give the essential lemmas

and the key proposition below.

Lemma 4.2. Let {ωk} be the sequence generated by Algorithm 4.1. Then ωk+1 ∈ Ω and

θ(x)− θ(xk+1) + (ω − ωk+1)⊤F (ωk+1) ≥ (ω − ωk+1)⊤H(ωk − ωk+1), ∀ω ∈ Ω,

where

(4.4) H =


β1A

⊤
1 A1 +Q1 · · · 0 −A⊤

1

...
. . .

...
...

0 · · · βpA
⊤
p Ap +Qp −A⊤

p

−A1 · · · −Ap
∑p

i=1
1
βi
I

 .

Proof. It follows from Lemma 3.1 by setting θ(x) :=
∑n

i=1 θi(x) and A := [A1 · · ·An]

directly.

Proposition 4.3. The matrix H defined by (4.4) is positive definite.
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Proof. The proof is the same as that of Proposition 3.2.

Similar to Section 3, the following lemmas and theorems on the convergence and con-

vergence rate of the sequence {ωk} generated by Algorithm 4.1 can be derived based on

Lemma 4.2 and Proposition 4.3.

Lemma 4.4. Let {ωk} be the sequence generated by Algorithm 1.1. Then, we obtain

θ(x)− θ(xk+1) + (ω − ωk+1)⊤F (ω)

≥ 1

2

(
∥ω − ωk+1∥2H − ∥ω − ωk∥2H

)
+

1

2
∥ωk − ωk+1∥2H , ∀ω ∈ Ω,

∥ωk+1 − ω∗∥2H ≤ ∥ωk − ω∗∥2H − ∥ωk − ωk+1∥2H , ∀ω∗ ∈ Ω∗,

and {ωk} is Fejér convergent with respect to Ω∗.

Proof. It follows from Theorem 3.4 by setting θ(x) :=
∑n

i=1 θi(x) and A := [A1 · · ·An].

Theorem 4.5. Let {ωk} be the sequence generated by Algorithm 4.1 and H be defined in

(4.4). Then, the following assertions hold:

(i) the sequence {ωk} converges to some ω ∈ Ω∗;

(ii) for any iterate number T > 0, we have

ω̃T ∈ Ω, θ(x̃T )− θ(x) + (ω̃T − ω)⊤F (ω) ≤ 1

2(T + 1)
∥ω − ω0∥2H , ∀ω ∈ Ω,

where ω̃T := 1
T+1

∑T
k=0 ω

k+1.

Proof. The proof is same as that of Theorem 3.5 and so is omitted.

5. Partial proximal strategy of the penalty dual-primal ALM

The penalty dual-primal ALM (1.6) can be generalized to its splitting version (4.2) when

the background issue changes from the one-block to the multiple-block case. If the

functions θi have nice properties such as strong convexity and differentiability for some

i ∈ {1, 2, . . . , p}, then the xi-subproblems do not need to add the proximal regularity

terms. So, it is necessary to design the penalty dual-primal ALM (1.6) for solving linearly

constrained multiple-block separable minimization problems (4.1) by the partial proximal

strategy.

5.1. Partial proximal penalty dual-primal ALM

Without loss of generality, we only add the proximal matrix terms to the former p1 sub-

problems, where 1 ≤ p1 ≤ p, and p2 = p− p1. For succinctness of notations, we adopt the

notations in Section 4.
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A penalty dual-primal ALM with partial proximal regularization terms is proposed to

solve the multiple-block model (4.1).

Algorithm 5.1 (The partial proximal penalty dual-primal ALM). Let βi > 0 and Qi ≻ 0

be arbitrarily given positive-defined matrixes, i = 1, 2, . . . , p and xi ∈ Xi. Then the new

iterate ωk+1 = (xk+1, λk+1) is generated with ωk = (xk, λk) via the following steps:
λk+1 = λk −∑p

i=1 βi

(∑p
i=1 Aix

k
i − b

)
,

xk+1
i = argminxi

{
θ(xi)− ⟨2λk+1 − λk, Aixi − b⟩+ 1

2∥xi − xk
i ∥2βiA⊤

i Ai+Qi

}
, i = 1, . . . , p1,

xk+1
i = argminxi

{
θ(xi)− ⟨2λk+1 − λk, Aixi − b⟩+ βi

2 ∥Ai(xi − xk
i )∥2

}
, i = p1 + 1, . . . , p.

5.2. Convergence analysis of the partial proximal penalty dual-primal ALM

According to the same variational inequality characterization and the same analysis route

in Section 4, we next give the essential lemmas and the key proposition below.

Lemma 5.2. Let {ωk} be the sequence generated by Algorithm 5.1. Then ωk+1 ∈ Ω and

θ(x)− θ(xk+1) + (ω − ωk+1)⊤F (ωk+1) ≥ (ω − ωk+1)⊤H(ωk − ωk+1), ∀ω ∈ Ω,

where H is defined by

(5.1)

H =



β1A
⊤
1 A1 +Q1 · · · 0 0 · · · 0 −A⊤

1

...
. . .

...
...

. . .
...

...

0 · · · βp1
A⊤

p1
Ap1

+Qp1
0 · · · 0 −A⊤

p1

0 · · · 0 βp1+1A
⊤
p1+1Ap1+1 · · · 0 −A⊤

p1+1

...
. . .

...
...

. . .
...

...

0 · · · 0 0 · · · βpA
⊤
p Ap −A⊤

p

−A1 · · · −Ap1
−Ap1+1 · · · −Ap

∑p
i=1

1
βi
I


.

Proof. The proof is same as that of Lemma 4.2 and so is omitted.

Proposition 5.3. The matrix H defined by (5.1) is positive definite.

Proof. The proof is same as that of Proposition 4.3 and so is omitted.

Similar to Section 4, we can obtain the convergence and convergence rate of the se-

quence {ωk} generated by Algorithm 5.1 based on Lemma 5.2 and Proposition 5.3.

Lemma 5.4. Let {ωk} be the sequence generated by Algorithm 5.1. Then, we obtain

θ(x)− θ(xk+1) + (ω − ωk+1)⊤F (ω)

≥ 1

2

(
∥ω − ωk+1∥2H − ∥ω − ωk∥2H

)
+

1

2
∥ωk − ωk+1∥2H , ∀ω ∈ Ω,

∥ωk+1 − ω∗∥2H ≤ ∥ωk − ω∗∥2H − ∥ωk − ωk+1∥2H , ∀ω∗ ∈ Ω∗,
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and {ωk} is Fejér convergent with respect to Ω∗.

Proof. The proof is same as that of Lemma 3.3 and Theorem 3.4 and so is omitted.

Theorem 5.5. Let {ωk} be the sequence generated by Algorithm 5.1 and H be defined by

(5.1). Then, the following assertions hold:

(i) the sequence {ωk} converges to some ω ∈ Ω∗;

(ii) for any iterate number T > 0, we have

ω̃T ∈ Ω, θ(x̃T )− θ(x) + (ω̃T − ω)⊤F (ω) ≤ 1

2(T + 1)
∥ω − ω0∥2H , ∀ω ∈ Ω,

where ω̃T := 1
T+1

∑T
k=0 ω

k+1.

Proof. The proof is same as that of Theorem 3.5 and so is omitted.

Remark 5.6. Compared with the balanced ALM (1.3) and the dual-primal balanced

ALM (1.5) for linearly constrained one-block convex optimization problem, Algorithms 1.1,

4.1 and 5.1 do not need to calculate the inverse of the matrix 1
βAA

⊤ + δIm and so, the

updating time of λk+1 in Algorithms 1.1, 4.1 and 5.1 is less than that of the balanced

ALM (1.3) and the dual-primal balanced ALM (1.5). Secondly, Algorithms 1.1, 4.1 and

5.1 are the primal-dual ALM with penalty term which is distinct with the dual-primal

balanced ALM (1.5). Besides, Algorithms 4.1 and 5.1 are applicable to the linearly con-

strained multi-block convex optimization problems. The difference between Algorithm 1.1

and the penalty ALM (1.4) is the calculation order of xk and λk. The numerical results re-

ported in Section 6 show that Algorithm 1.1 is slightly better than the balanced ALM (1.3),

the penalty ALM (1.4) and the dual-primal balanced ALM (1.5) given in [1, 16, 22], re-

spectively.

6. Numerical experiments

In this section, LASSO and the basic pursuit problem, which are extensively applied to im-

age processing, statistical learning, compress sensing and machine learning, are solved by

the proposed algorithms. All code are written in Matlab and all experiments are performed

in Matlab R2015b on a workstation with an Intel(R) Core(TM) i7-8550U CPU(1.80GHz)

and 8GB RAM.

We firstly apply the penalty dual-primal balanced ALM (1.6) to solve the basic pursuit

problem, which is an equality constrained ℓ1-norm minimization problem, and compare

it with the primal-dual balanced ALM proposed in [22] and the balanced ALM proposed

in [16].



1236 Xiaoqing Ou, Guolin Yu, Jie Liu, Jiawei Chen and Zhaohan Liu

Example 6.1. The basic pursuit problem (BPP) is given as follows:

(6.1) min
x

{
∥x∥1 | Ax = b, x ∈ Rn

}
,

where ∥x∥1 =
∑n

i=1 |xi| is the ℓ1-norm of a vector, A ∈ Rm×n (m < n) is a given matrix

and b ∈ Rm is a given vector.

For the (BPP), the iterative scheme of the proposed method (1.6) reads as follows:λk+1 = λk − β(Axk − b),

xk+1 = argminx
{
∥x∥1 − ⟨2λk+1 − λk, Ax− b⟩+ 1

2∥x− xk∥2
βA⊤A+Q

}
.

In particular, let Q = τI − βA⊤A where τ > β∥A⊤A∥, the iterate scheme above could

be converted to

(6.2)

λk+1 = λk − β(Axk − b),

xk+1 = argminx
{
∥x∥1 + τ

2

∥∥x− xk − 1
τA

⊤(2λk+1 − λk)
∥∥2}.

Then the solution of the x-subproblem in (6.2) is given by the following explicit form

xk+1 = S1/τ

[
xk +

1

τ
A⊤(2λk+1 − λk)

]
,

where Sδ(t) is the soft thresholding operator [9] defined by

(6.3) (Sδ(t))i := (1− δ/|ti|)+ · ti, i = 1, 2, . . . ,m.

Following the same rules, the iterative scheme of the dual-primal balanced ALM [22]

for solving (6.1) reads as follows:

(DP-ALM)

λk+1 = λk −
(
1
τAA

⊤ + δIm
)−1

(Axk − b),

xk+1 = argminx
{
∥x∥1 + τ

2

∥∥x− xk − 1
τA

⊤(2λk+1 − λk)
∥∥2},

and the iterative scheme of the balanced ALM [16] for solving (6.1) reads as follows:

(Balanced ALM)

xk+1 = argminx
{
∥x∥1 + τ

2

∥∥x− xk − 1
τA

⊤λk
∥∥2},

λk+1 = λk −
(
1
τAA

⊤ + δIm
)−1(

A(2xk+1 − xk)− b
)
.

We generate the data by the same way as in [22]: the matrix A is generated from inde-

pendently normal distribution N (0, 1); for all tested algorithm the initial point (x0, λ0)

is randomly generated, and we take the following toned values of parameters for the men-

tioned experiments:

(1) the penalty dual-primal balanced ALM (PDP-ALM): β := 0.001 and τ = 2.5;



A New Penalty Dual-primal Augmented Lagrangian Method 1237

(2) the dual-primal balanced ALM (DP-ALM) and the balanced ALM (B-ALM): δ =

1000 and τ = 2.5.

The termination criteria is defined by

R(k) = max
{
∥xk+1 − xk∥, ∥λk+1 − λk∥

}
< 10−7.

Table 6.1 lists the number of iterations and runtime in seconds respectively of the

PDP-ALM, the DP-ALM and the B-ALM for solving the basic pursuit problem with

different dimension m × n of A, and CR = ∥Ax − b∥2 stands for constrained residual.

From the numerical experimental result, it is clear that the PDP-ALM has much better

numerical performs than the DP-ALM and B-ALM both in the number of iterations and

runtime. To further visualize the numerical results, we also plot the convergence curves

versus iteration numbers of some representative examples in Figure 6.1, which also shows

that the proposed method has a better performance than DP-ALM and B-ALM in the

number of iterations.

Table 6.1: The number of iterations and runtime of (PDP-ALM), (DP-ALM) and (B-

ALM) for solving (BPP).

PDP-ALM DP-ALM B-ALM

m× n Iter. Time CR Iter. Time CR Iter. Time CR

300× 500 465 0.11 2.86e-4 562 0.16 3.64e-4 564 0.18 3.64e-4

400× 600 503 0.15 1.49e-4 669 0.28 1.82e-4 671 0.28 1.82e-4

450× 750 453 0.18 6.60e-5 610 0.39 1.01e-4 612 0.35 1.01e-4

500× 900 373 0.20 4.63e-5 511 0.39 5.98e-5 513 0.39 5.98e-5

500× 1000 1294 0.73 7.25e-5 1969 1.50 2.29e-4 1971 1.47 2.29e-4

600× 1150 843 0.70 1.77e-4 1263 1.40 1.65e-4 1266 1.34 1.70e-4

700× 1300 672 0.75 8.90e-5 1073 1.51 1.15e-4 1074 1.50 1.15e-4

800× 1450 455 0.65 4.63e-5 704 1.26 1.53e-4 706 1.31 1.48e-4

900× 1600 547 1.03 5.99e-5 943 2.21 8.24e-5 945 2.27 8.27e-5

1000× 1750 876 1.95 4.32e-5 1523 4.14 6.37e-5 1525 4.22 6.40e-5

1100× 1900 725 1.83 4.78e-5 1179 3.81 8.53e-5 1181 3.89 8.58e-5

1100× 2000 694 1.85 4.47e-5 1263 4.24 9.12e-5 1265 4.30 9.13e-5

1200× 2150 406 1.31 3.85e-5 602 3.65 5.38e-5 896 3.88 1.10e-4

1300× 2300 420 1.52 6.66e-5 762 3.53 6.27e-5 760 3.58 7.01e-5
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(a) m×n = 300×500 (b) m×n = 450×750

(c) m×n = 500×900 (d) m×n = 700×1300

(e) m×n = 800×1450 (f) m×n = 1000×1750

(g) m×n = 1100×2000 (h) m×n = 1300×2300

FIGURE 1. Convergence curves of the PDP-ALM, DP-ALM and the balanced
ALM compared with iteration number under various dimension of A
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(h) m× n = 1300× 2300

Figure 6.1: Convergence curves of the PDP-ALM, DP-ALM and the balanced ALM com-

pared with iteration number under various dimension of A.
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We now apply the splitting penalty dual-primal balanced ALM (4.2) to solve the

well-known LASSO model and compare it with the linearized ADMM with proximal

method (shortly, PL-ADMM) [1] and the positive-indefinite proximal ADMM (shortly,

PIPL-ADMM) [9]. The PL-ADMM [1] is also an extension of penalty ALM.

Example 6.2. The LASSO model is formulated as follows:

(6.4) min
y

1

2
∥Ay − b∥2 + σ∥y∥1,

where ∥y∥1 :=
∑n

i=1 |yi|, A ∈ Rm×n is a design matrix usually with m ≪ n, m is the

number of date point, n is the number of features, b ∈ Rm is the response vector and

σ > 0 is a regularization parameter. By a new auxiliary variable x, (6.4) can be rewritten

as the form

(6.5) min
x,y

{
1

2
∥x− b∥2 + σ∥y∥1

∣∣∣ x−Ay = 0, x ∈ Rm, y ∈ Rn

}
.

The problem (6.5) is a special case of (4.1). Then iterative scheme of the splitting penalty

dual-primal balanced ALM (4.2) for solving (6.5) reads as follows:

(6.6)


λk+1 = λk − β1(x−Ay)− β2(x−Ay),

xk+1 = argminx
{
1
2∥x− b∥2 − ⟨2λk+1 − λk, x− b⟩+ 1

2∥x− xk∥2β1I+Q1

}
,

yk+1 = argminy
{
σ∥y∥1 − ⟨2λk+1 − λk,−Ay − b⟩+ 1

2∥y − yk∥2
β2A⊤A+Q2

}
.

In particular, let Q1 = τ1I−β1I with τ1 > β1∥I∥, Q2 = τ2I−β2A
⊤A with τ2 > β2∥A⊤A∥,

the iterate (6.6) could be converted to
λk+1 = λk − β1(x−Ay)− β2(x−Ay),

xk+1 = argminx
{
1
2∥x− b∥2 + τ1

2

∥∥x− xk − 1
τ1
(2λk+1 − λk)

∥∥2},
yk+1 = argminy

{
σ∥y∥1 + τ2

2

∥∥y − yk − 1
τ2
A⊤(2λk+1 − λk)

∥∥2}.
Moreover, (λk+1, xk+1, yk+1) has the following explicit form

λk+1 = λk − β1(x−Ay)− β2(x−Ay),

xk+1 = 1
τ1

[
τ1x

k + (2λk+1 − λk)
]

yk+1 = Sσ/τ2

[
yk + 1

τ2
A⊤(2λk+1 − λk)

]
,

where Sδ(t) is the soft threshold operator defined by (6.3).

We generate the data by the same way as in [9]: we first choose Aij ∼ N (0, 1) and

then scaled the columns to have unit norm. We use the script ‘sprandn’ to generate a

sparse vector y∗ which have approximately density = 100/n non-zeros entries taken from
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the normal distribution with zero mean and unit variance. We generate b via b := Ay∗+e,

where e is a small white noise taken from e ∼ N (0, 10−3I). We choose the dimension of A

is 1050× 3500. We set the regularization parameter σ to 0.1, and for all tested algorithm

the initial point (x0, y0, λ0) is randomly generated, and we take the following toned values

of parameters for the mentioned experiments:

(1) The splitting penalty dual-primal balanced ALM (PDP-ALM): β1 = β2 := 2−τ2
τ2|τ2−1|

and τ1 :=
|τ2−1|
5β1τ2

+ 4
5 ;

(2) PL-ADMM [1] and PIPL-ADMM [9]: β = 2−τ2
τ2|τ2−1| and τ := |τ2−1|

5β1τ2
+ 4

5 ,

and we all set τ2 = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7.

The termination criteria is defined by

max
{
∥xk+1 − xk∥, ∥yk+1 − yk∥, ∥λk+1 − λk∥

}
< 10−10.

Table 6.2: The number of iterations and runtime of PL-ADMM, PL-ADMM and PDP-

ALM for solving LASSO model.

PL-ADMM PIPL-ADMM PDP-ALM

τ2 Iter.1 Time.1 Iter.2 Time.2 Iter.3 Time.3 Iter.3
Iter.1

Time.3
Time.1

Iter.3
Iter.2

Time.3
Time.2

0.05 376 29.35 204 16.16 101 3.53 0.27 0.12 0.50 0.22

0.10 380 29.63 417 33.98 111 3.92 0.29 0.13 0.27 0.12

0.15 384 30.13 397 31.66 118 4.15 0.31 0.14 0.30 0.13

0.20 399 32.97 410 34.58 123 4.34 0.31 0.13 0.30 0.13

0.25 413 32.18 409 33.57 127 4.54 0.31 0.14 0.31 0.14

0.30 409 31.92 406 34.08 130 4.56 0.32 0.14 0.32 0.13

0.35 420 33.02 404 32.64 132 4.65 0.31 0.14 0.33 0.14

0.40 420 32.87 397 32.32 134 4.76 0.32 0.14 0.34 0.15

0.45 431 33.82 392 31.34 136 4.78 0.32 0.14 0.35 0.15

0.50 438 34.67 392 35.86 137 4.83 0.31 0.14 0.35 0.13

0.55 443 34.69 395 31.34 138 4.85 0.31 0.14 0.35 0.15

0.60 452 35.34 395 31.78 138 4.87 0.31 0.14 0.35 0.15

0.65 407 23.41 394 31.38 138 3.53 0.34 0.15 0.35 0.11

0.70 413 23.74 400 32.67 137 3.53 0.33 0.15 0.34 0.11

Table 6.2 lists the number of iterations and runtime in seconds respectively of PL-

ADMM, PL-ADMM and PDP-ALM for solving the LASSO model with different param-
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eter τ2. To further visualize the numerical results, we also plot the iterations results in

terms of the various parameters τ2 in Figure 6.2. From Table 6.2 and Figure 6.2, one can

see that PDP-ALM has much better performs than PL-ADMM, PL-ADMM both in the

number of iterations and runtime.
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7. Conclusions

A new penalty dual-primal augmented Lagrangian method for solving linearly constrained

convex minimization problems is introduced based on the balanced technique [16]. Further,

two extensions of the penalty dual-primal augmented Lagrangian method are proposed

to solve the linearly constrained multiple-block separable convex minimization problems.

The global convergence and sub-linear convergence rate of the proposed methods are

established by using the tool of variational inequality. Numerical tests on the basic pursuit

problem and the Lasso model are reported to show the efficiency of the proposed methods.

In the future research, it is interesting to study the convergence of the penalty dual-primal

augmented Lagrangian method when the involved problems are infeasible from the least

violation; see [8]. Besides, it is also interesting to design dynamical systems (the so-called

continuous time algorithms) for linearly constrained optimization problems and variational

inequalities by the balanced technique.
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