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Nonnegative Holomorphic Sectional Curvature on Compact Almost

Hermitian Manifolds

Masaya Kawamura

Abstract. We study nonnegative holomorphic sectional curvature on a compact almost
Hermitian manifold. In the positive case, we show some geometric conditions for
negative Kodaira dimension. In the zero case, we give some conditions of the Chern—

Yamabe problem for zero Chern scalar curvature.

1. Introduction

The holomorphic sectional curvature plays an important role not only in differential ge-
ometry but also in algebraic geometry. In the early 1990s, Yau [26] asked whether a
compact Kéahler manifold with positive holomorphic sectional curvature has negative Ko-
daira dimension. Yang answered Yau’s question in a more general setting, stating that
if the holomorphic sectional curvature on a compact Hermitian manifold is positive, then
the manifold has negative Kodaira dimension (see [25]). In this paper, we generalize this
problem to almost Hermitian geometry.

Let (M?",J) be an almost complex manifold of real dimension 2n with n > 3 and let
g be an almost Hermitian metric on M. Let {e,} be an arbitrary local (1, 0)-frame around
a fixed point p € M and let {#"} be the associated coframe. Then the associated real
(1,1)-form w with respect to g takes the local expression w = legrEQT AOF. We will also
refer to w as to an almost Hermitian metric in the present paper. We define a Gauduchon

metric and a k-th Gauduchon metric on an almost Hermitian manifold in the following.

Definition 1.1. [19, Definition 1.1] Let (M?", J,w) be a real 2n-dimensional almost

Hermitian manifold. An almost Hermitian metric w is called Gauduchon if w satisfies that
How™ 1 = 0.

For an integer k£ such that 1 < £ < n — 1, an almost Hermitian metric w is called k-th

Gauduchon if the metric w satisfies that

AOWF AWk = 0.
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From the definition, we see that (n—1)-th Gauduchon metrics are the usual Gauduchon
metrics. Fino and Ugarte have shown that for each k = 1,...,[n/2]—1, a Hermitian metric
is k-th Gauduchon if and only if it is (n — k — 1)-th Gauduchon on a complex nilmanifold
(see |7, Lemma 4.7]). Latorre and Ugarte have investigated the k-th Gauduchon condition
on homogeneous compact complex manifolds (see [20]).

One has the following well-known result.

Proposition 1.2. [9] Let (M?", J,w) be a compact almost Hermitian manifold with n > 2.
Then there exists a smooth function u, unique up to addition of a constant, such that the

conformal almost Hermitian metric e“w is Gauduchon.

We have characterized the k-th Gauduchon condition on a compact almost Hermitian

manifold as follows:

Proposition 1.3. [19) Theorem 1.1] Let (M?",.J,w) be compact almost Hermitian man-
ifold with n > 3 and let k be an integer such that 1 < k < n — 1. Then the following are

equivalent.
(i) w is k-th Gauduchon;

(i) s — 80 = 573100 + 22 Ow]® + T T

where s, is the Chern scalar curvature and s, is the Riemannian type scalar curvature of
the metric w with respect to the Chern connection (see [2.7)), 0% = — * 0% is the adjoint

operator (see Lemma , |ow|? = %gﬁgmgki(aw)ipz(aw)qu, |0*w|? = gﬁ(a*w)j(a*w)g,
and T%. 's are components of the torsion (see Section for more detail). Note that TZT%
means that we sum over repeated indices i, j and r with respect to the metric w, that is,

F i i gis b i _
T5Ts = 979" 9" Tjp Ts, where Tijp = T59,7, Tgs = Trzgrs.

Remark 1.4. From Proposition we have that for a Gauduchon metric (i.e., (n —1)-th
Gauduchon) w,

(1.1) Sw = 8w = |0 w|? + T[T

on a real 2n-dimensional compact almost Hermitian manifold (M?",.J,w) with n > 3.
Especially, if the manifold (M?",.J,w) is quasi-Kihler and satisfies that TZT% = 0, then
we have that s, = 5, from the formula . Here, recall that a quasi-Kéahler structure is
an almost Hermitian structure whose real (1,1)-form w satisfies (dw)? = dw = 0, which
is equivalent to the original definition of quasi-Ké&hlerianity: DxJ(Y)+ DyxJ(JY) =0
for all vector fields X, Y, where D is the Levi-Civita connection (see [11]). The quasi

Kaéhlerity is equivalent to that TZ; =0 for all 4, j, k on an almost Hermitian manifold.
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The difference appears in the formula (ii) in Proposition compared to the one in
the complex case [4, Proposition 1.7] is obviously the term TZT% We investigate this
term in some special cases below.

We denote by €2 the curvature of the Chern connection V on an almost Hermitian
manifold. We can regard (2 as a section of A2M @End(T'M), Q € T(A2M QEnd(THM))
and € splits in

Q=029 4000 102 — gy RyT,

where R € T(AYM @ End(T''M)), H € T(A>°M ® End(T*°M)) and H € T(A%?M ®
End(T%°M)). Note that since the Chern connection has torsion, R and H do not
satisfy the first Bianchi identity and do not satisfy R(X,Y,Z, W) = R(Z,W,X,Y),
H(X,)Y,Z,W)=H(Z,W,X,Y) in general. By choosing a local unitary (1,0)-frame {e;}
with respect to g, we have that (see Lemma

Rz‘jki = g(ViV;ek — V;Vier — V[ehe;]ek, €)

H, 5= 9(ViVjer, — V;Vier = Vi, e 1€k €7),

Hzy = 9(V;Vier, — V5 Vie, — V[e?ej,,]ek, e;).
We define the curvature operator by
RM(X,Y)Z = DxDyZ — DyDxZ — DixyZ,
where D is the Levi-Civita connection, and define the curvatuer tensor
RUX,Y,Z W) = g(RE(X,Y)Z, W),
which satisfies the following symmetries:

REX,Y,z,W)=-RL(Y,X,Z,W), RNX,Y,Z,W)=-RNX,Y,W,2),
RUX,Y,Z, W)+ RL(Y, Z, X, W) + RL(Z, X, Y,W) =0,
RYX,Y,z,W)=RlZ W, X,Y).

We define the Kéhler-likeness and the G-Kahler-likeness on almost Hermitian manifolds

as follows.

Definition 1.5. [2], [15, Definition 1.2] Given an almost Hermitian manifold (M?", J, g),
almost Hermitian metric g will be called Kahler-like, if R v+, = R,5 yy for any (1,0)-
tangent vectors X, Y, Z and W. When the almost Hermitian metric ¢ is Kéahler-like,
the triple (M?",J, g) will be called a Kéhler-like almost Hermitian manifold. Similarly, if
R =RE

XYZW XY ZW
that g is G-Kéhler-like. When the almost Hermitian metric g is G-Kéhler-like, the triple

(M?", J, g) will be called a G-Kihler-like almost Hermitian manifold.

= 0 for any type (1,0) tangent vectors X, Y, Z and W, we will say
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The Kihler-likeness can be restated by using following notations: The curvature R

of the Levi-Civita connection D satisfies the first Bianchi identity:

(1Bnc) Z R (oX,0Y)oZ =0,
oc®

sum over circular permutation. The curvature Q1) = R of the Chern connection V

satisfies
(Cplx) R(X,Y,Z,W)=R(X,Y,JZ,JW)=R(JX,JY,Z, W).

This condition (Cplx]) for the curvature R” is referred to as the AHj-condition and an
almost Hermitian manifold satisfies (Cplxl) for R is called an AH;-manifold.
We define the Kéhler-likeness in the way of |2, Definition 4] as follows.

Definition 1.6. Let (M,J,w) be an almost Hermitian manifold. Let V be a metric

connection on this manifold. We say that the curvature of the connection V is Kiahler-like

if it satisfies both (1Bnd) and (Cplxl).

We see the following equivalences which are similar to the ones in |2, Remark 5.
Lemma 1.7. [2, Remark 5]

(i) An almost Hermitian manifold (M, J,w) is Kdhler-like in the sense of Definition
if and only if the curvature Q) = R of the Chern connection is Kihler-like in the
sense of Definition [1.6]

(ii) An almost Hermitian manifold (M, J,w) is G-Kdihler-like in the sense of Defini-
tion if and only if the curvature RY of the Levi-Civita connection is Kdhler-like

in the sense of Definition (1.6

Remark 1.8. Notice that since the curvature Q1) = R with respect to the Chern con-
nection automatically satisfies (Cplx]|), the condition the curvature has to satisfy is only
(1Bncf) to be Kahler-like in the sense of Definition From Lemma [1.7]ii), a G-Kéhler-

like almost Hermitian manifold coincides with an AH7-manifold.

Remark 1.9. On a compact Kihler-like k-th Gauduchon manifold (M?",.J,w) with n > 3
for some integer 1 < k < n — 1, we have that TZTF’E < 0 since we have s, = 5, from the

Kahler-likeness.

Definition 1.10. [28] An almost Hermitian manifold (M?", J,w) is called almost Kéhler
if dw = 0. When an almost Hermitian metric w is almost Kéhler, the triple (M?", J,w) is

called an almost Kahler manifold.
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Lemma 1.11. [28] The almost Kdhlerity is equivalent to

ThH=0, TE+T, +Th=0 foralijk=1,...,n.
From Lemma [I.11], if assuming that a manifold is almost Kéahler, we can compute that

T T g T _ T T _ T i 12
L9 Tl =TT, - TiTy = — 1T + TTh = —Th TG + 1T,

_ 1
Tt 12
where g is the associated almost Hermitian metric with respect to the real (1,1)-form w
and |T"[2 := gI* giggﬂﬂjTg%. The computation ([1.2)) implies that assuming TZT% =0on
an almost Kahler manifold, we must have 7” = 0 and the manifold must be K&hler.

Lemma 1.12. Let (M?", J,w) be an almost Kdhler manifold. Then we have that
T} T > 0.
7j
The equality TET% = 0 holds if and only if the almost Kdahler manifold is Kdhler.

From the formula , we have that TZTFZ} < 0 on a compact Kéahler-like manifold
(M?", J,w) with n > 3 since we have s, = 3, under the Kihler-likeness. On a real
2n-dimensional compact Kéahler-like almost Kahler manifold with n > 3, we obtain that
TZ-T% = 0, which implies that the manifold must be Kéahler from Lemma

Proposition 1.13. A real 2n-dimensional compact Kdhler-like almost Kdahler manifold
with n > 3 s Kdhler.

For the case of n = 2, on a real 4-dimensional compact Kahler-like almost Hermitian
manifold, since it is almost Kéhler (see [14, Theorem 1.1]) and we have s, = 5, under
the Kéhler-likeness, by applying the formula , we have that TZT% = 0, which implies
that the manifold must be Kihler from Lemma [I[.12l Tt is known that a real 4-dimensional
compact Kéhler-like A Hs-manifold is Kahler in |14, Corollary 1.1]. We obtain the following

improved result.

Proposition 1.14. A real 4-dimensional compact Kdhler-like almost Hermitian manifold
is Kdhler.

The condition TZT;3 > 0 appears for instance, on a Kéahler-like and G-Ké&hler-like
almost Hermitian manifold (M?", J,w) with n > 2, if Tij% > 0, then the metric w is
semi-Kéahler (see Definition and the almost complex structure J is integrable (i.e.,
the metric w is balanced) (see [15, Corollary 1.2]). Note that it is known that if an
AH;-manifold is almost Kéahler, it must be Kéahler (see [13, Theorem 5.1]).
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Lemma 1.15. |28, Corollary 3.4] Let (M?", J,w) be an almost Kdhler manifold. Then
we have that
L _ _ kil
R = B + TriToe

On an almost Kéhler manifold, we have that by applying Lemmas and (2.6]),

Tl _p_ __p___pL _ pL _ gkl il _ pL gl
TkiTﬁ = R — Riga = Rijkl Rkjil TMTFJ' + TTkTFj - Rikjl TkZT?j’

which implies that
L T ol
Proposition 1.16. A G-Kdhler-like almost Kahler manifold is Kdhler.

Proof. The G-Kahler-likeness implies that Rﬁcﬁ = 0 for all 4, j, k, . Hence, from (1.3]),
we obtain that T,ZT% = 0 for all 4, j, k, I, which gives us that TIZ‘T:; = 0 and then the
manifold must be Kahler from Lemma [[.12 O

The compactness in Proposition [1.13| can be actually omitted.
Proposition 1.17. A Kdhler-like almost Kdhler manifold is Kdhler.

Proof. If a real 2n-dimensional almost Kéhler manifold (M?", J,w) is Kéhler-like, we ob-
tain that s, = §,, and then we have that TZT% = 0 from (4.9)) for n > 2 since we have
that (99 w,w) = 0 from the almost Kéhlerity. O

Definition 1.18. [28] An almost Hermitian manifold (M?", J,w) is called nearly Kihler if
(DxJ)X = 0 for any tangent vector field X, where D denotes the Levi-Civita connection.
When an almost Hermitian metric w is nearly Kihler, the triple (M?",.J,w) is called a

nearly Kahler manifold.

Lemma 1.19. [28, Lemma 2.4] The nearly Kdhlerity is equivalent to

T =0, TE=Tj forallijk=1,..n.
From Lemma [I.19] if assuming that a manifold is nearly Kahler, we compute that
(1.4) TITE = TITT =TT = — [T,
which implies we have that assuming TZT% = 0 on a nearly Kéhler manifold, we must
have T = 0 and the manifold must be Kéhler.

Lemma 1.20. Let (M?",J,w) be a nearly Kdihler manifold. Then we have that
(1.5) TT= < 0.

The equality TZT;3 = 0 holds if and only if the nearly Kdhler manifold is Kdhler.
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Combining (1.5 with -, we have that TZT;3 = 0 on a real 4-dimensional nearly
Kahler mamfold, Wh1ch implies that 7" = 0 from the computation (1.4) on a real 4-
dimensional nearly Kéhler manifold and the manifold must be Kéahler as it has been

already proven in [12].

Lemma 1.21. [28, Corollary 3.5] Let (M?",J,w) be a nearly Kdihler manifold. Then we
have that

Rzykl = RUM + 4T TT

On a nearly Kéhler manifold, we have that by applying Lemmas and ([2.8)),
computing as in ([L.3)),

1 -
l L L l
THTL = Rig — Ryga = REy — Rl — 4T KT+ 4T,% = Rig + 5Tl
which implies that

1
(1.6) R4 = 2T,§ZT1

Proposition 1.22. A G-Kdhler-like nearly Kdhler manifold is Kdhler.

Proof. The G-Kahler-likeness implies that RiLkﬁ = 0 for all 4, j, k, . Hence, from (1.6)),
we obtain that T,ZT% = ( for all 4, j, k, [, which gives us that TIZT;]% = (0 and then the
manifold must be Kahler from Lemma [1.20) O

We also have the following result which has been alresdy given in 18, Theorem 1.1].
Proposition 1.23. A Kdhler-like nearly Kahler manifold is Kdhler.

Proof. The Kéhler-likeness implies that s,, = §,,, and then we have TZT;; =0 from (4.9)
for n > 2 since the nearly Kahlerity is included in the quasi-Kahlerity and then we have
(09" w,w) = 0. O

Since we know that if a manifold is almost Kéhler and nearly Kéahler simultaneously,
then it is Ké&hler, i.e., the almost complex structure J is integrable, which is equivalent
to that TE =0 for all 4,7,k = 1,...,n. This implies that especially TTJT% = 0 as we see
from and .

We recall and introduce the definition of Kodaira dimension on an almost complex
manifold by following [5]. Let (M,J) be a compact 2n-dimensional smooth manifold
equipped with an almost complex structure J. Let 7% be the projection to the set of
smooth section of APYM: T'(M, APYM), where AP2M is the bundle of (p, g)-forms on M.
The 0 and 0 operator can be defined by

0 =P o d: (M, APIM) — T'(M, APITIM),
0 =Pt o d: T(M, APIM) — T'(M, APTHIM),
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where d is the exterior differential. Both 0 and 0 satisfy the Leibniz rule, but in general
9” and 92 may not be zero. Applying 0 to a smooth section of the canonical line bundle
Ka o= A" (AYOM) = AmOM (see (2.1))), we have

0: T(M,Kp) — D(M, A M) = T(M, (T*M)™ @ Ku).

We can extend the 0 to an operator 0p,: T'(M,K5") — D(M, (T*M)*! @ K$*), 01 := 0,

inductively by the product rule for m € Z>q, s1 € I'(M,Kys) and sy € I'(M, K?}(mfl)%

O (51 ® 52) = 051 @ 59 + 51 ® Opp—152.
Then, the operator 9,, satisfies the Leibniz rule

Om(fs) =0f @ s+ fOms

for any smooth function f € C°°(M,R) and any smooth section s € I'(M, Kps) of K5
Hence, 0,, is a pseudoholomorphic structure on IC%W. For m € Z>1, the space of pseudo-
holomorphic sections of K$" is defined to be (see [5, Definition 2.1])

HO(M,K§[™) = {s e T(M,K§[") : Ops = 0}.
The Kodaira dimension on an almost complex manifold (M, J) is defined as follows.
Definition 1.24. [5, Definition 1.2] We define the m*-plurigenus of (M, .J) by
P (M, J) == dimc H*(M,K$™).
The Kodaira dimension of (M, J) is defined by

—00 it P,,(M,J) =0 for any m > 1,

lim sup,,, e logi’g# otherwise.

k(M) =

By taking direct products of the Kodaira-Thurston surface X = S' x (I \ Nil®) with
copies of 2-torus T2, we have compact 2n-manifolds with non-integrable almost complex
structure and kK = —oo or 0.

By taking direct products of the 4-manifold X = 72 x S with copies of 2-torus 72
or a compact Riemann surface S with genus g > 2, we get compact 2n-manifolds with

non-integrable almost complex structures and x =1,2,...,n — 1.

Proposition 1.25. [5, Theorem 6.10] There are examples of compact 2n-dimensional
non-integral almost complex manifolds (M*", J) with Kodaira dimension x(M) lying among
{—00,0,1,...,n— 1} forn > 2.
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We now introduce the following result.

Proposition 1.26. [6, Theorem 4.3] Let (M?",J) be a real 2n-dimensional compact

almost complex manifold with n > 2. If one of the following is satisfied:

(i) M admits an almost Hermitian metric with positive Chern scalar curvature every-

where,
(ii) M admits a Gauduchon metric with positive total scalar curvature,
then k7 (M) = —oo0.

In 1990s, Yau proposed the following question (see |26, Problem 67]). Let HCF(w)
denote the holomorphic sectional curvature of the metric w (see (2.9) for its definition).

Question 1.27. If (M,w) is a compact Kéhler manifold with HSC(w) > 0, does M have

negative Kodaira dimension, i.e., k(M) = —o0?
Yang has given an answer for Yau’s question in a general setting.

Proposition 1.28. [25, Theorem 1.2] Let (M,w) be a compact Hermitian manifold with
semipositive holomorphic sectional curvature. If the holomorphic sectional curvature is

not identically zero, then M has Kodaira dimension —oc. In particular, if (M,w) has
HSC(w) > 0, then k(M) = —occ.

Question 1.29. What about the almost Hermitian case?
Applying the formula (4.9)), we have the following proposition.

Proposition 1.30. Let (M?", J,w) be a compact almost Hermitian manifold with n > 2,
TZT% >0 and HCF(w) > 0. Then, we have that k(M) = —oo.

Combining Proposition [1.30] with Lemma [I.12] for the almost Kéhler case, we have the

following result.

Theorem 1.31. Let (M?",J,w) be a compact almost Kihler manifold with n > 2 and
HCF(w) > 0. Then, k(M) = —o0.

Combining Proposition [I.30] with Lemma [£.6] for the case of n = 2, we have the

following result.

Theorem 1.32. Let (M*,J,w) be a real 4-dimensional compact almost Hermitian mani-
fold with HCF(w) > 0. Then, k(M) = —ooc.
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Note that in |21, Theorem 1.1], it has shown that if a compact Hermitian manifold
has HSC(w) > 0, then the Kodaira dimension is negative. Since one has Tf] = 0 for all
i,7,7 = 1,...,n in the complex case, the result of Theorem [L.31] can be considered as a
generalization of |21, Theorem 1.1].

From Lemmas [{.4] and [4.6] we have the following corollary.

Corollary 1.33. If 5, > 0 on a real 4-dimensional compact quasi-Kdahler manifold
(M*, J,w), then k/(M*) = —cc.

Note that the quasi-Kéahlerity implies o, = Jéw = 0, where § := — *x dx*, since we have

d*xw = (n%l)!dwnfl = ﬁ(@—l—g)w"*l = 0, where we used Aw™ ! = Aw”! = 0. Hence,

we have the following lemma.
Lemma 1.34. |8, Corollary 4.5] Let (M*, J,w) be a real 4-dimensional quasi-Kdihler
(equivalently almost Kdhler or semi-Kdahler) manifold. Then,

11 1
(1.7) Sw=55+ ﬁ\NP > s,

where s is the Riemannian scalar curvature with respect to the Levi-Civita connection, and

N is the Nijenhuis tensor of the almost complex structure J.

Combining Corollary with (1.7)), we obtain

Corollary 1.35. If s > 0 on a real 4-dimensional compact quasi-Kdihler manifold (M*, J,w),
then k7 (M*) = —oo.

Since we have T ECT % > 0 on an almost Kahler manifold, we have the following result.

Corollary 1.36. If5, > 0 on a compact almost Kihler manifold (M?", J,w) with n > 2,
then k7 (M) = —oo.

Since we have (dw)™ = 0 and o, = 0 on an almost Kéhler manifold, where (dw)™ is

the sum of (3,0) and (0, 3) components of dw, we have the following lemma.

Lemma 1.37. [8, Theorem 4.3] Let (M?",J,w) be an almost Kihler manifold of real

dimension 2n. Then, fort =0,

~ 1 1 1
(18) Sw — 55 + §|N0‘2 Z 58,

where N0 := N — bN, bN is the skew-symmetric part of the Nijenhuis tensor N.

Combining Corollary with (|1.8), we have the following result.

Corollary 1.38. If s > 0 on a compact almost Kihler manifold (M?", J,w) with n > 2,
then k7 (M) = —oo.
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We define a semi-Kéhler metric on almost complex manifolds. Note that when a

manifold is complex, a semi-Kéahler metric is called a balanced metric.

Definition 1.39. [11] Let (M?", J) be an almost complex manifold. An almost Hermitian
metric w is called semi-K#hler if the metric w satisfies dw” ! = 0. When an almost

Hermitian metric w is semi-Kéhler, the triple (M?", J,w) is called a semi-K&hler manifold.

We have shown the following characterization of the semi-Ké&hlerity on compact Kéhler-

like almost Hermitian manifolds.

Proposition 1.40. [16, Theorem 1.1] Let (M?",J,w) be a compact Kdhler-like almost
Hermitian manifold with n > 2. Then (M?", J,w) is semi-Kdhler if and only if ngTgi =0
forallk,l=1,...,n

Note that from Proposition [1.30] we have that if a compact Kéhler-like almost Her-
mitian manifold is semi-Ké&hler, then TZT;} = 0. Since a real 4-dimensional compact
Kaéhler-like manifold is almost Kéhler (i.e., semi-Ké&hler) (see |14, Theorem 1.1]), we have
TZ-T% = 0 on a real 4-dimensional compact Kéahler-like manifold. In fact, we see that a
real 4-dimensional compact Kéhler-like manifold is Ké&hler (see Proposition . Here
we note that TZT% = 0 is equivalent to that TgcTaii = 0 for all k,I = 1,2 in the case of
n = 2.

Let (M, J, g) be a quasi-Kéhler manifold. Choose and fix a local unitary (1, 0)-frame
{e;} around a point pg € M with respect to g such that gij(po) = d;; and Ve;(pg) = 0.
Then we have that [eg, ¢;](po) = 0. On a quasi-Kéhler manifold (M, .J, g), we have that
from , [28, Theorem 3.2], since we have TZ’; = 0 for all 4, j, k, computing at pg,

Riiji = Rifij
= g(DekDeTeZ- — D¢, De,ei, e;)

1 . -1
= 5 (Vi = ViTi; = ViTh) + 5 VT

Tj (Th + Tj, — TF)

7

1 -
+ 4(Tlr ik Tzr ]k) - ZT’;F(TVJTk + ler T’fj) +

o |

I I
(szk Hjy — Hy;j)

and we also have that from Lemma 2.1}

Hijy + Hiyy + Hiyy =TT + TRTY + T Ty + VT, + VT + Vil

Y-

=0.

Combining these, we have the following lemma.
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Lemma 1.41. [28, Corollary 3.7] Let (M*", J,w) be a quasi-Kdhler manifold and fir a
local unitary (1,0)-frame. Then we have that
Rl = Hi.

Note that if a quasi-Kahler manifold satisfies both Kéahler-like and G-Kéahler-like con-
ditions, then it must be Kéhler (see [17, Theorem 1.1]). On an almost Kéhler manifold
or on a nearly Kahler manifold, the Kéahler-likeness is equivalent to that T ,ZT% = 0 for
all 4, j, k, [, which is also equivalent to that Rsﬂﬁ = 0 for all 4, j, k, [ from in the
almost Kahler case and from in the nearly Kahler case. On a quasi-Ké&hler mani-
fold, since we have TZ’; = 0 for all ¢, j, k, applying Lemma and , we see that
Rz‘Lkﬂ — 0 for all i, j, k, [ is equivalent to that H = Q20 =0, which is also equivalent to
that valZl = 0 for all 4, j, k, . Since the almost Kahlerity and the nearly Kahlerity are
included in the quasi-Kahlerity, these equivalences hold on an almost Kéhler manifold, or
on a nearly Kihler manifold. Since we have VT” = 0 on a nearly Kéahler manifold, which
implies that we have H = 0 and Rfkﬂ = 0 for all 4, j, k, I on a nearly Ké&hler manifold.
We also note that the Kéhler-likeness is included in the G-Kéhler-likeness on an almost
Kahler manifold or a nearly Ké&hler manifold. Note that the K&hler-likeness is equivalent
to the G-Ké&hler-likeness on a nearly Ké&hler manifold (see [18, Proposition 1.1]). Since
it is shown that a Ké&hler-like nearly Kdhler manifold is Ké&hler (see [18, Theorem 1.1]),
we find that a nearly Kéhler manifold with T; ,ZT% =0 for all 4, j, k, [ is K&ahler. Notice
that T,ZT% =0 for all 4, j,k,l = 1,2 implies 7" = 0 on a real 4-dimensional nearly Kahler
manifold.

Gauduchon introduced one parameter family of canonical connection V! on a com-
pact almost Hermitian manifold (M?", J,w) with n > 2 and with the associated almost

Hermitian metric g with respect to the real (1, 1)-form w as follows (see |10]):
1
g(VY,Z) =g (DXY - 5J(DXJ)Y, Z)
t t
+19(Day)Z + J(Dy 1) 2, X) = 1 9((Dyz )Y + J(DzJ)Y, X),

where D is the Levi-Civita connection, X, Y, Z are smooth vector fields on M and t € R.
Note that V! is the Chern connection.

Let K be the curvature tensor and define the Gauduchon scalar curvature by
S(t) = Z Kt(eiv €7, €5, 63)7
4,3

where {e;} is a local unitary (1,0)-frame.
We introduce the prescribed Gauduchon scalar curvature problem, which is known as

the Gauduchon—Yamabe problem:



Nonnegative Holomorphic Sectional Curvature 811

Question 1.42. For a given smooth function s(¢) on an almost Hermitian manifold
(M, J,h), does M admit a conformal almost Hermitian metric e*g with Chern scalar

curvature §(t)?

Define
2
)= — | st
(t) nt—t+1/MS()w

In |22], Li, Zhou and Zhou have solved the Gauduchon—Yamabe problem for zero Gaudu-

chon scalar curvature.

Proposition 1.43. |22, Theorem 1.3] If ¢(t) = 0, then there are almost Hermitian metrics

conformal to g with zero Gauduchon scalar curvature.

Question for t = 1 is especially called the Chern—Yamabe problem. We restate

the case of t = 1 as follows for the later use.

Proposition 1.44. |22, Theorem 1.3] Let (M?",J,w) be a real 2n-dimensional compact
almost Hermitian manifold with n > 2. If fM Sew™ = 0, then there are almost Hermitian

metrics conformal to w with zero Chern scalar curvature.

In the case of HSC(w) = 0, since we obtain s, — 5, = 0 from the Ké&hler-likeness, we

have the following proposition (see Lemma [3.1).

Proposition 1.45. If (M?", J,w) is a compact Kdihler-like almost Hermitian manifold
with n > 2 and HSC(w) = 0, then we have that fM Sow™ = 0.

By combining Proposition [1.45] with Proposition [1.44] we have a condition of the
Chern—Yamabe problem for zero Chern scalar curvature (see [1, Theorem 3.1], [22, Theo-
rem 1.3]).

Theorem 1.46. Let (M?",J,w) be a compact Kdihler-like almost Hermitian manifold with
n > 2 and HSC(w) = 0. Then, there are almost Hermitian metrics conformal to w with

zero Chern scalar curvature.

For n = 2, the statement of Theorem becomes the Kéhler case from Proposi-

tion |1.14, Since we have s, = 5, under the quasi-Kéahlerity with TZTFZ} = 0 from the

formula (4.9)), we also obtian the following condition for having zero Chern scalar curva-

ture.

Theorem 1.47. Let (M?",J,w) be a compact quasi-Kihler manifold with n > 2, and
T;T% = 0, HSC(w) = 0. Then, there are almost Hermitian metrics conformal to w with

zero Chern scalar curvature.
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Note that for n = 2, the statement of Theorem [I.47] becomes the Kéhler case since
the quasi-Kahlerity implies the almost Kahlerity for n = 2 and the almost Kéahlerity with
TiZ‘T;Z; = 0 implies the Kéahlerity from Lemma

We show Proposition and the following proposition as a proof of Theorems [1.46
and [1.47]

Proposition 1.48. Let (M?", J,w) be a compact quasi Kdhler manifold with n > 2 and
TZT% =0, HSC(w) = 0. Then, we have that [y, s,w™ = 0.

Proofs of Propositions and [I.48, Under the assumptions: the Kéhler-likeness in Propo-
sition or the quasi-Kahlerity with TZT% = 0 in Proposition with (4.9)), we have
that s, = 5.

We compute that

1 . 1 ~
/ Spw" = / (Sw + Sw)w™ + / (8w — Sw)w™ =0,
M 2 Jm 2J/m
where we have used that HSC(w) = 0 implies s, + S, = 0 from Lemma O

Combining Theorem with Lemma we have the following corollary.

Corollary 1.49. Let (M*, J,w) be a real 4-dimensional compact quasi-Kdhler manifold
with TIT2 = T?Q, HSC(w) = 0. Then, there are almost Hermitian metrics conformal to w

with zero Chern scalar curvature.

Remark 1.50. We compute on a real 4-dimensional quasi-Kéahler manifold,
217 T = 2Ty T + Ty Typ + T T + T3 Ty)

=Rl +RL -+ RL_+ R

2121 2111 1222 1212
_ opL
= 2Ry
where we have used that R~ = Rl __ =0, RE__ = RE__. Hence, T/,T-. = RY _, and
e 2171 1222 » “h9191 1212° v Lij iy 1212’
TZZ-T% = 0 is equivalent to that Rf2ﬁ = 0 on a real 4 dimensional quasi-Kéhler manifold.

On the other hand, on an almost Kéhler manifold, the Ké&hler-likeness is equivalent to
that RiLjH = 0 for all 4, j, k, [. Since Rz‘LjH =0 for all 7,7, k,l = 1,2 is equivalent to that

L
Rl
n = 2, and also since a real 4-dimensional compact Kéahler-like manifold must be quasi-
Kahler and have TZT% = 0 from Proposition we conclude that the quasi Kahlerity

with TZT % = 0 is equivalent to the Kéahler-likeness on a real 4-dimensional compact almost

= 0 and the quasi-Kéahlerity is equivalent to the almost Kéahlerity in the case of

Hermitian manifold. On the other hand, we see that a real 4-dimensional quasi-K&ahler
(i.e., almost Kéhler) manifold with TZT% = 0 is Kéhler from Lemma Combining
these results, we again conclude that a real 4-dimensional compact Kahler-like almost

Hermitian manifold is Kéhler as we have seen in Proposition
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Note that since we have TZT% > 0 from Lemma a real 4-dimensional Kéahler-
like and G-Kahler-like almost Hermitian manifold is Kéhler (see [17, Corollary 1.2]). We
restate the equivalence obtained in Remark as follows.

Proposition 1.51. On a real 4-dimensional compact almost Hermitian manifold, the
quasi Kdahlerity with TZT?’; =0 (i.e., T}y = T%) is equivalent to the Kdhler-likeness.

This paper is organized as follows: in Section [2, we recall some basic definitions and
computations in almost Hermitian geometry. In Section (3| we introduce some lemmas
whose proofs can be given as in the corresponding lemmas of [19]. In Section {4} we give
proofs of Proposition Theorems and Notice that we assume the Einstein

convention omitting the symbol of sum over repeated indices in all this paper.

2. Preliminaries

2.1. The Chern connection

An almost complex structure on M is an endomorphism J of TM, J € I'(End(T'M)),
satisfying J2 = —Idpas, where TM is the real tangent vector bundle of M. The pair
(M, J) is called an almost complex manifold. Let (M, J) be an almost complex manifold.
A Riemannian metric g on M is called J-invariant if J is compatible with g. In this
case, the pair (J,g) is called an almost Hermitian structure. The complexified tangent
vector bundle is given by TCM = TM ®@g C for the real tangent vector bundle T'M.
By extending J C-linearly and g C-bilinearly to TCM, they are also defined on TCM
and we observe that the complexified tangent vector bundle TCM can be decomposed as
TCM = TOM @ TO' M, where THOM, TO1M are the eigenspaces of J corresponding to
eigenvalues v/—1 and —/—1, respectively:

THM ={X —/-1JX | X e TM}, T"'M ={X++/-1JX | X € TM}.
Let A'M denote the dual of the real tangent vector bundle T'M. We have that
AM @r C=A"YM o A" M,
where
(2.1) AOM = {14+ V=1Ju|Vee A'M}, A'M ={1—V—-1J.|Vie A'M}.
It can be seen that (T1OM)* = ALOM, (TP M)* = A% M. Now let us define
APAM = AP(AMO M) @ AI(A™ M.

Then we have A"M @r C =P, ,_, APIM.
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Notice that on an almost complex manifold M, we can split the exterior differential
operator d: APM ®@r C — AP M @p C, into four components

d=A+0+0+A4

with
Q: APAM — APTLAD, 0: APIM — APATLAL,

A APAN — APT2OTINT A AP 5 APTROTZ NS
In terms of these components, the condition d? = 0 can be written as
02) A*=0, 9A+A0=0, JA+AD=0, A" =0,
‘ AD+3* +9A=0, AA+00+00+AA=0, 9A+D +A)=0.
For any p-form 1), there holds that
p+1 ' .
d¢(X17 s 7Xp+1) = Z(_l)l+1XA(1/](X17 e 7Xi7 v 7Xp+1))
+§: V([ X, X], X1y oy Xy ooy Xy ooy Xpi1)
1<J

for any vector fields X1,..., Xp41 on M (see [29]). We directly compute that
1 D B
ws:—iBmﬂAw—JﬁﬁkAw—iB%MAeﬁ

Let (M, g, J) be an almost Hermitian manifold. There exists a unique affine connection
V preserving g and J on M whose torsion has vanishing (1,1)-part (see [10]), which is
called the Chern connection. Now let V be the Chern connection on M.

Let {e,} be a local (1,0)-frame with respect to an almost Hermitian metric g and let
{67} be a local associated coframe with respect to {e,}, i.e., #%(e;) = 5;- fori,j=1,...,n.
We write g7 := g(ei, ej). The fundamental (1,1)-form w associated to g is locally given
by w = \/jlgﬁﬁi A 0. We denote the structure coefficients of Lie bracket by

lei, e5] =: Bijer + Bl er [ei,e]f] =: B%er + Bgef, [el,eﬂ =: B%.er + B%e;.

Notice that J is integrable if and only if the B];’s vanish.
For any u € C*°(M,R), we have since we have Adu = 0,

(2.3) dou = 90u + 9°u + Adu.
By taking the conjugate of (2.3)), and by adding together, we get that

(0 + D)u = (90 + D0)u + (0% + Adyu+ (9° + Ad)u.
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Since we have Au = Au = 0, from the relations in (I.1)), (0? + Ad0)u = —dAu = 0,
(52 + Ad)u = —9Au = 0. And since (0 + 9)u = du, we get that d(d + d)u = d*u = 0.
Therefore, we obtain that

00u = —00u,

which implies that v/—199u is a smooth real (1,1)-form. A direct computation yields for
any u € C*°(M,R),

(dJdu)(ei, e5) = e;(Jdu(ez)) — e5(Jdu(e;)) — Jdu([e;, e5])
= —ei(du(Je;)) + ej(du(Je;)) + du(Je;, €5])
(2.4) = \/jeie;(u) + \/jlejei(u) + Jei, e5](u)

= 2\/—7161‘65(’11,) —V—1([es, e5] + V1T e, es])u

J

=2V —1(eie; — e, -] Oy,

J

which tells us that

_ 1 -
V—100u = §(deu)(1’1) = vV—1(eie; — [ei, 63](0’1))11,92 N6,

so we write locally

—_— L Oo— . — 071
9;05u = (eie5 — [ez,ej]( Nu.

2.2. The curvature on almost complex manifolds

Since the Chern connection V preserves J, we have

Viej i=Veej =Tjer, Ve = F%e;,
where I'}; = g"%ei(gjs) — g@gﬂBé. Note that the mixed derivatives Vje; do not depend
on the metric g, which means that I‘% = B%’s do not depend on g (see [23]). Let {WJ’} be
the connection form, which is defined by 7;- = nges + nge? The torsion T of the Chern
connection V is given by T% = df® — 6P A 7},, T = d#" — 6P A 'y%, which has no (1, 1)-part

and the only non-vanishing components are as follows:

T{; = Ts(ei, €j) = —9’5([61', ej]) - (ngﬁp A B9+ ngep VAN 96)(62', ej) = —B;-Sj — Fj’i + F?j,
T7 = T°(e5, e5) = dO°(e5, ¢5) = —0°([ez. e5]) = — B = N7-.

17 7] 1] )

These tell us that T = (T%) splits into T = T’ + T", where T’ € T(A*°M ® T+OM),
T" € T(A%?M @ TOM). Since the torsion T of the Chern connection V has no (1, 1)-
part;

0= T]ii =T (ex, e7) = —0"([ex, e7]) — (1“(’;1—)077 INCAEES ngeﬁ A 0°%)(ex, €7) = —B]iz + F;J’
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we obtain that

I = B~

iJ iJ°

By taking complex conjugate, we have that

Since we have

Vivjf-u = veive;u = eiejf-(u) — F%e;(u) = eie;(u) — B%eg(u)

and since [e;, e;](o’l)u = B%eg(u), we obtain that

The curvature € of the Chern connection V splits in 2 = H + R + H (see Section
and the curvature form can be expressed by Q; = d’y} + i A ;-

In terms of e,’s, we have

(25) R, = Qene;) = eillh) — ex(T) + TRTS, — T2 T3 — BETT, + BIIY,
ik = Qleiseg) = ei(T) — e () + Ti L5, — T30 — B g — isj sk
(26)  HL, = (e e5) = e5(T%,) — e5(I%,) +TLTS, —T7 T8, — BETT, — BETY,

We define that

H H;

_.— R" _e— _ . T -
Ry =1 ik = Hied,1, Hygg = Hy 9,0

z‘}kgﬂ’

We define the Chern scalar curvature s, and the Riemannian type scalar curvature 5,

of the metric w with respect to the Chern connection:
j Kl ij = k
(2.7) Sw = gz 9 Rz]kl = gZ]P (w) = g”Sz‘j(w)u Sw = ]ngiy
where P, S denote the first and second Chern—Ricci curvature respectively locally given

_ kI El
by Ps;:=g RUM,Sa—g ka.

Lemma 2.1 (The first Bianchi identity for the Chern curvature). For any X,Y,Z € TM,
Y X YV)Z=) (T(T(X,Y),Z)+ VxT(Y, 2)),
where the sum is taken over all cyclic permutations.
This identity induces the following formulae:

ol 7 ol
(2.8) RL, = Ry, = V5T}, + THTL,
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where used that Rin = Rfjkl =0.

For a point p € M and a non-zero (1,0)-vector £ € TZ} M, the holomorphic sectional
curvature H of the metric w (HSC(w) for short) at the point p and the direction ¢ is define
by

1 1
(2.9) Hyl6) =
g €15, €13,
where \§|§p = gp(€,€). We write HSC(w) > 0 (resp. = 0) when we have that H,(&) > 0
(resp. = 0) for any point p € M and any non-zero (1,0)-vector £ € TI}’OM.

R(gagagagﬂ ij[|p£ gj ké.l

Let {e,} be a local unitary (1,0)-frame with respect to g around a fixed point p € M.
Note that unitary frames always exist locally since we can take any frame and apply the
Gram-Schmidt process. Then with respect to a local g-unitary frame around a point po,

we have gﬁ(pg) = 0;j for any 4,j,k = 1,...,n, and the Christoffel symbols satisfy at po,

kE _ _1J k _ _1J
Fz’j— Fz‘E’ I‘U— sz,

since we have at po,

U} = g(Viej, ep) = eilg,p) — 9(ej, Vieg) = —FJ}
T = glex, Viey) = e5(g,5) — 9(Viens e) = —T7,.

(2

Then we have that
HJy = ei(T) — e(Dy,) + TiI5, — T5.05, — BTy, — B;Ty,

(210) = _ei(rlt) — € (Fk ) + F;F;: - Fjrrfs + Bf]F§7" + ijrﬁr
Hk‘

r:

From the first Bianch identity in Lemma we obtain that

k k k k
H’le H'le + Hjlz + Hl’Lj

(2.11) —VTk+v Tk + VT +TZ§T,’3+TQT£+T’“T’f
k k
= VT + T];T%,

where used that H ik = H;, ik = = 0. Therefore, combining (2.10)) with ( -, we have

k k
(2.12) ”k = VT + T]TZTN.
Note that we have the following formula.
Lemma 2.2. Fiz a local unitary (1,0)-frame with respect to g. One has

Rijki = g(vivjek — V;Viep, — V[ei,e;]eka €7)

Hz‘jki = g(vivjek - VjViek — V[ei7ej]€k, ez),
Hig = Q(V{Vj‘ek — V;Viep — V[e?e;] ek, €7)-
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Proof. Using a local unitary (1,0)-frame {e;} around a point py with respect to g, we have
that at pg,
9(ViVier = ViVier = Ve, ek €7)
= €i(9(Vier €7)) — 9(Vjer, Vier) — e5(9(Vie, €7) + g(Viex, Vzep)
- B’;g(VTek, er) — ng(V;ek, e7)
= ei(l5,95) — U5, hgsr — e5(Tikgg) + TiT g — BT akg,1 — Bilrigg
= ei(1%,) — e; (D) + T I%, — Th 5 — BELy, — BETY,
= %kgﬂ
- Rﬁki'
Similarly, we compute that at py,
9(ViVjer, — V;Viep — Vi, c.1€k: €7)
= ei(Th;,) — j(Ty) — T7I%, + FT[ i — BTl — BT,
= Hz‘jki’
g(V;V;ek — V;erk — V[e,v es]€k> e;)
= e;(I%,) — e;(I5,) — TR%, + Ty — BEL, — BLTh,
= HTij’
where we have used that I‘Tf =-T! F;":l = —F%T. O

)

As in |27], we can choose a local g-unitary frame {e;} around an arbitrary chosen point
po € M such that

(2.13) 9:5(po) = di5,  Vei(po) = 0.
Then we have
(2.14) Il(po) =0 foralli,jk=1,....n
since V;e;(po) = I'F, "(po)er = 0, also we obtain that
[ei, €51(po) = Viez(po) — Viei(po) — T'(ei, e5)(po) =0 for all i, j=1,...,n.
Then we have that 0 = [e;, e5](po) = B%(po)ek + Bg(po)eg, which gives that

(2.15) BE(po) =0, Bg(po) =0 foralli,jk=1,...,n
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Using such a local unitary frame {e,} with respect to g around py, we compute that at
the point pg, by applying (2.14]) and (2.15) to (2.5)),

R = R%kgrz
(2.16) — {eu(I%,) — e(Ty) + TLI%, — T2 05 — BETh + BETh g,

= {ei(I%) — e5(T5) }g,r

2.3. The bundle of real k-forms and the interior product

Let M be a real 2n-dimensional smooth differentiable manifold and let & be a Riemannian
metric on M. In a local coordinate (x',22,...,2%") on M, we write h = h;; dz'da’.
Denote (h) the inverse matrix of (h;j), 1 < 4,5 < 2n. Then the metric h induces an
inner product (-,-) on the cotangent bundle T*M by (dx?,dz’) = h¥. Let A*T*M be
the bundle of real k-forms for 1 < k < 2n. The inner product induced by h on ART* M is
given by

(217) <O‘1/\/\ak761/\/\6k> :det(<a’wﬁj>)a
for o, B; € T*M. For ¢ = %Soil"'ik Az A Ndx' o = %wjl'”jk dxdt A -+ A da?k | where
©Piy--i), 18 skew symmetric in 41, ..., and ;.. is skew symmetric in ji,..., jg,
1 .. .
(2.18) (o) = o hT Wy oy

We define the interior product txp € A¥=IT*M for vector fields X, X1,..., X1 on M
and ¢ € AFT*M by

LXQO(Xl, e 7Xk—1) = QO(X, Xl, e ,Xk_l).

Note that we have

k
(219)  ex(ar A Aag) =D (D) (X)on A At NG A Qipr A Ao
=1

Define X := h(X,-) € T*M, then we obtain that for ¢ € A¥'T*M and ¢ € AFT*M
(see [4, (2.3)]),

(2.20) (txe,¥) = (0, X NY).

2.4. The Hodge *-operator and the adjoint operators

We extend the inner product (-,-) given in (2.17)), (2.18) on the bundle of real k-forms
AFT*M for 1 < k < 2n to the space of (p, q)-forms AP9M defined in [2.1)), 1 < p,q < n,
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for b,c € C and @;,1; € A*T*M, i = 1,2, by

(b1 + cpa, 1) = b{p1,9) + c(w2,v),
(0, b1 + cib2) = b, ) + (o, 2).

Locally, (p, q)-forms ¢, € AP9M are given by

1 v . — —
0= W‘Pimnﬁ%e“ Ao NOP NG A A
1 i i gF ke
= gquwﬁ-"ij-Ee Ao NG AGFE A A QR
where N is skew symmetric in i1, .. ., 7, and skew symmetricin Iy, ..., [, v iy
is skew symmetric in jq,..., j, and skew symmetric in k1,...,k;. Then we have that
_ 1] ipip qF1l1 kqlg S
(p, ) = qu!gZUl ceegPrgttg qsoil-uipll-~-lqwj1~~-jpk1~-~kq‘

We define the total inner product by

(p, 1) = /M<sa, ) dvy,

where dV, is the volume form defined by dV, := %,L The Hodge * operator is the unique
operator determined by the metric ¢ satisfying that for o, € A¥T* M,

st ANT*M — AFT* M, o Axap = () dV,
which can be extended C-linearly satisfying that for ¢, € APYM
w: APIM — A"IPNL o A xip = (p,1p) dV.

We have that ¥ = %@, %% @ = (—1)PT9p, (xp, x1h) = (©,1)). The adjoint operators 8*, &

are given by

(2.21) (D, ¥) = (9, 0"), (D, ) = (9,0 ).
We define that
ol? == (o, ).

Lemma 2.3. |19, Lemma 2.3] Let (M, J,w) be a compact almost Hermitian manifold.
One has that

8*:—*5*’ 5*:—*6*
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We write 1 := 12,0, 150 := tz;p. It follows from (12.20)),

(2.22) (0, ¢ AYY = (gFi0,0),  (0,CTAY) = (97150, 9).

We define the Lefschetz operator L: AP94M — APTL4+H1 N and its adjoint operator A:
APTLa+HL A r s AP by

Lo=wne, (Lo,i) = (e, AY).
Locally, we obtain that from ,
(2.23) A= mgﬁbiq.
For a (p, q)-form ¢ € AP2M with p+q = k < n, we have that [L, Alp = (k—n)¢. Applying
this repeatedly, we obtain that

[L",Alp = [L" 5, A]Lp + s(k —n+s— 1)L 1.
Especially, we have that for s = r,
(2.24) L7 Alp=r(k—n+r—1)L" "o
Definition 2.4. We call a (p, ¢)-form ¢ primitive if Ay = 0.
For a primitive (p, q)-form ¢ with p + g = k < n, we have that

AwAp)=(n—k)p and AL'¢=r(n—k—r+ 1)L lp.

3. Key lemmas

Let (M?",J,w) be a 2n-dimensional compact almost Hermitian manifold with n > 2. Let
g be the almost Hermitian metric associated to the real (1,1)-form w. Let {e,} be a local
(1,0)-frame with respect to the metric g around a point pyg € M and let {6"} be a local
associated coframe with respect to {e,}.

We introduce the following lemma.

Lemma 3.1. [21, Lemma 4.1] Let (M?", J,w) be a compact almost Hermitian manifold
of real dimension 2n with n > 2. Then, HSC(w) > 0 (resp. HSC(w) = 0) implies that
Sw+ 8w >0 (resp. s, + Sw =0).

Define the set of the conformal class of w as follows:
{w} ={e"w|ueC?M;R)}.

From Proposition [.2] we may take a Gauduchon metric wp in the conformal class of

w such that wy = f5''w € {w}, where fy is a positive smooth function. Let gy be the

associated almost Hermitian metric with respect to the real (1, 1)-form wyp.
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Lemma 3.2. [3 (1.7)] Let (M?", J,w) be a real 2n-dimensional compact almost Hermitian
manifold with n > 2. One has that

n n ~ n ~ n
/ SwoWo :/ Josww", / SwoWp :/ fosww™.
M M M M

Proof. Let T'(g), I'(go) denote the Christoffel symbols of g, go respectively. Just writing
I" or B means that they do not depend on any metrics. Note that choosing an arbitrarily

chosen local (1,0)-frame {e;}, since we have I'(g )U = g"%ei(g;5) — 9" gﬂBllS, we compute

for the Gaudhuchon metric gg = f»—7 = g,
D(g0)%; = gb*es((90)55) — 95" (90) ;7B
zf’ﬁg’“gei(fﬁgjs) frETg e gﬂB’
= g"%ei(g5s) — 99 B + I g e (f7 ) gjs
10 + o onls 7))y
Now, we choose a local unitary (1,0)-frame {e;} with respect to g around an arbitrary

chosen point pg € M satisfying (2.13]). Note that {ei} is a local (1,0)-frame with respect
to the metric go from the construction. From and (| -, at po,

R(w) g = R(w)%kgﬂ
= {ez 7T (9)ix) 19,1
= {ei(T%) — e5(D(90)ix) + T(90)5 T3y, — T%,T(g0)3 — BT (90)sk + B3l
—i—e]fei{log fn—l ) }0kr } 9,7
— Rw)y00),1fo ™ + eies{ log(/7T) gy
— fy T {R(w0) g + 0:0:{ 1os(F7T) o)y
where we have used [ei,ejf] (po) = 0 and that B%, B%, ng and FZ-E? do not depend on

metrics and B%(po) = B%(po) = I‘gk(po) = I'% (pg) = 0. From the relation between the
curvatures of w and wyp in (3.2)), we obtain that at po,

(3.1)

(3.2)

= g glglR(wo)wkl

= gi/f! (fow1 R(w) 50 — 0i0:{ 10g(f77) }(90),7)

_ g g g On%lR(w)W — g 0:05{ 1og(f77)}
= fo_ﬁsw — o log(fi1),

where A is the Laplacian with respect to the metric gyg. Since the point pgy is chosen
arbitrary, we have that from (3.3)),

__1
wo — fO nt Sw — nAO log(fﬁ) on whole M.
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Similarly, we compute at pg,

Swp = gézgij(WO)im
= Gl (57 R(w) 5 — 060 1og(f71) } (g0)0)
=y g gy TG [T R(w) 5 — 06010 log(f 7))
= fy T, — Aglog(f7T).

(3.4)

Since the point py is arbitrary, we have that §,,, = fo " 1 — Aplog(fn 1) on whole M.
By applying the Stokes’ theorem, we obtain that

— 1
1 1 n—1
/Aolog(frh)w(’}:/ n68 og(f 1) Ny wy
M M

wp
:n/ 8510g(fﬁ)/\wg_l
(3.5) = / d(9log( fn 1) -4 / 9 log( fn 1) A Qwd™!
M
:/ dlogfnlawg h /1ogfnlaaw" !

where we used that (5—|—A+Z)(510g(fﬁ)/\w6“1) =0, (0—|—A+Z)(log(fﬁ)8wgfl) =0,
and 90wyt = —(00 + AA + AA)wi ™t = —00w) ! = 0 since wy is Gauduchon and
Awg_l = ng_l = 0. Integrating (3.3]), we have that from (3.5)),

__1 _n_
/ stwg:/ fo ”1swf0"1w":/ fosuw™.
M M M

Similarly, by integrating ([3.4) and from (3.5), we have that [, Su,wf = [5; foSww™. O

4. Proofs of Proposition [1.30], Theorems [1.31| and [1.32

We first investigate the case of n = 2. Let (M*, J,w) be a real 4-dimensional compact
Kahler-like almost Hermitian manifold and let g be the associated almost Hermitian metric
of w. Let {e,} be an arbitrary chosen local (1,0)-frame around a point py € M 4 with
respect to the metric g and let {6"} be a local associated coframe with respect to {e,} in
this section.

We define the torsion (1, 0)-form (see [14]) b

wy = T-]% = gle'kZ’ n = —w;0".

)
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Note that for any real (1,1)-form o = \/—102-30i A 67, we have

e

(1) 90 =T (eilogp) —ejlop) — Bl — Bioys + Bois)0' A6 A 0",
Then we have from (2.19)), (2.23) and (4.1J),
(4.2) n = —Adw.

Lemma 4.1. [19, Lemma 3.1] Let (M*, J,w) be a real 4-dimensional almost Hermitian
manifold. Then one has that
Oow=—nAw.

Proof. From (2.24) for r = k = 1, we have that A(Ow — L(Adw)) = 0. Since A is injective
(see |24, Lemma 6.24]), we obtain that

(4.3) Ow — L(Adw) =
Combining (4.3) with (4.2), we have
Ow = L(Adw) = —n A w. O

We restate the following lemma combining Lemma with the case of n > 3 in [19,
Lemma 3.1].

Lemma 4.2. Let (M?", J,w) be an almost Hermitian manifold with n > 2. Then one has
that
oWt = —p AWt

We also have the following lemma. We can give a proof in the same manner by taking

n = 2 and using *w = w in the case of n = 2 as well.

Lemma 4.3. [19, Lemma 3.2] Let (M?", J,w) be a real 2n-dimensional compact almost
Hermitian manifold with n > 2. Then, one has that

(4.4) n=—Aow=+v—-19 w
For any (1,0)-form a, we have that 0o = %aiﬁj A 0%, and by using and (2.4),
(4.5) Via; = e;(az) F o = ej( ;) — B o = 83-0@-.
We compute by applying (4.4) and ( .,
(4.6) 90w = —V/—10n = F(wﬂ’) \/jlﬁjwﬂj/\ 0t = —ﬁv]—.wiei A 93,

where V is the Chern connection.
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We have from (2.8)),

kl 7
where P; = gkiRz’ij is the first Chern—Ricci curvature, and we used that T3, = =T = —w;

and B, = —B7, = —T7.. By combining (4.6) with , and by summing over indices 4,

7 with respect to the metric w, we obtain that

(4.8) Sw — 8w = (00 w,w) + TTTE

EO T
Since the formula (4.8) holds for n > 3 as well (see |19, (3.7)]), we restate the following

statement for n > 2.

Lemma 4.4. Let (M?", J,w) be a real 2n-dimensional compact almost Hermitian manifold
with n > 2. Then we have

(4.9) S0 — 8w = (00 w,w) + TTTE

SiT )
where (90" w,w) = g7 g"M (90" w)igiss = 9" g"(— /= 1Vqwi)V/—1gjp = —g7 V;w;.
We consider the general dimension n > 2 in the following computations. We have the

following proposition, which implies that Theorem holds from Lemma [1.12)

Proposition 4.5. Let (M?",J,w) be a compact almost Hermitian manifold with n > 2
and HSC(w) > 0. Assume that TZTF’E >0, then [y, swowy > 0.

Proof. We may take a Gauduchon metric wg in the conformal class of w such that wy =
1

n—1

0 'w € {w}, where fy is a positive smooth function. Let gy be the associated almost
Hermitian metric with respect to wg. Define dV,, := 2—‘7}1 By integrating the formula (4.9)
for wg, assuming TZT;3 > 0, we obtain that from (2.21)),

~ — _ .
/ (Swo — Suwo) AVgy = / (00" wo,wo) dVy, —i—/ TZ’]’T;; dVy,
M M M
= (8 wo, D wo) + / THTE dVy,
M
. _

= /M ’8 WO’Q dVg, + /M TZZT?Z} dVy,
>0

and

/ (Suy — B )™ > 0.
M



826 Masaya Kawamura

Since we have assumed HSC(w) > 0, we have that s, +§, > 0 from Lemma we get
that by using (4.10)),

1 ~ 1
/ SwoWy = 2/ (Swo + Swo )W + 2/ (Swo — Swo )Wy = / fo(sw + 5w)w™ >0,
M M M

where we have used the positivity of the smooth function fj. O

From Proposition [L.26{(ii), we conclude that we have k(M) = —oo, which means that
Proposition holds. By applying Lemma we conclude that Theorem [I.31] holds.
Since the following lemma tells us that we have TZT% > 0 on a real 4-dimensional almost
Hermitian manifold, we conclude that Theorem holds.

Lemma 4.6. On a real 4-dimensional almost Hermitian manifold, we have that

(4.10) T} T > 0.

The equality TZT% = 0 holds if and only if T, = T%.
Proof. We compute that
TiT5

= gﬂ’fg“gpqurg,ST;quk = gf’faqrauT;le = gjk(leTl + leTl + TQJT2 + TQJT2 )

= T12T1 + T12T11 + T21T2 + T21T21 == T12T1172 - T12T% — T12T2 + T12T22
= (T12 - T12)(T% - T%) = (T12 - T122)(T112 - T122) = |T112 - T12|2 > 0. [

Remark 4.7. On a real 4-dimensional compact almost Hermitian manifold (M*,.J,w), let

us assume that there exists an almost Hermitian metric @ on M* such that

/sanS/ SHw?.
M M

Let g be the associated almost Hermitian metric with respect to w and let us define
dVg = %,2 Then we obtain that

oz/ (s@—gg)dvg—/ <&9*w,a}>dvg+/ TITL dv;
M M M "
(4.11) :/ |3*c~u|2dV§+/ THT dVy
M M
— oz—/ |a*w|2dv§:/ T} T dV;.
M M J

Combining TZT;3 >0 on M* from Lemma |4.6| with (4.11]), we obtain that

/T’"le _/ T, — TH 2w =0,
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which tells that TZC/}’E =0 (i.e,, T{y = Tf). Then we get from [&.11), [, |0 @o[*w? =0,
which gives us that 8 @y = 0 on M*%. Hence, the metric & is almost Kahler on M*, then

we must have 7" = 0 and the manifold must be Kahler from Lemma [1.12

Proposition 4.8. Let (M*, J,w) be a real 4-dimensional compact almost Hermitian man-
ifold. Assume that there exists an almost Hermitian metric @ on M* such that fM spw? <
[y Saw?. Then the manifold is Kdhler.

Similarly, as in Proposition assuming that there exists an almost Hermitian
metric @ such that [, sz@" < [}, 550", by integrating the equation (£.9) for @, then

I Tijf}w" < 0. Hence, the following statement holds.
7j

Proposition 4.9. Let (M?",.J,w) be a real 2n-dimensional compact almost Kihler man-
ifold with n > 3. Assume that there exists an almost Hermitian metric @ such that
Jay 559" < [y, 55@0" on M. Then the manifold is Kdhler.
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