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Extremal Functions for Trudinger—Moser Inequalities Involving Various

LP-norms in High Dimension

Juan Zhao

Abstract. In this paper, we deal with two Trudinger-Moser inequalities involving

various LP-norms on a smooth bounded domain of R™, n > 3. For any p > 1, we set

[Vullz

A, () =
V= Tl

as an eigenvalue related to the n-Laplacian. Based on the method of blow-up analysis,
if p; > 1 for all 1 < j <, and satisfies

l
Qi Q;
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5@ = ;Ap @ =

J i

then we prove that

o ul 7T (14554 oy flully )”il
sup e " g=1 "0 p dx
wEHG™ (), [|[Vulln <172

1/(n—1)
1

is attained, where oy, = nw, , wp_1 is the surface area of the unit ball in R™.

Under the same assumptions as above, we conclude that

n
n
sup /eo‘"‘"ln dz
u€Hy ™ (Q), | VulR =55y ajflully, <179

is attained.

1. Introduction

Let @ be a bounded smooth domain in R", n > 3, and H&n(Q) be the completion of
C§°(9) in the norm Hu”?[&”(ﬂ) = Jo(lu]™ + [Vu|™) dz. The study of sharp constant for
Trudinger—Moser inequality traces back to 1960s and 1970s. In 1971, Moser [23| elegantly
sharpened the results of Phohozaev [27] and Trudinger |31], then established the classical

Trudinger—Moser inequality:

(1.1) sup / ™y < 400
u€Hy™ (Q), [|Vulln=1"9
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for any o < a, = nw}/f(?fl), where o, = nwi/f(?fl), wn—1 1s the surface area of the
unit ball in R™. Here and in the sequel, || - ||, denotes the LP-norm with respect to the

Lebesgue measure. There are many generalizations of in many ways. For instance,
it was generalized to higher order derivations, to compact Riemannian manifolds, to some
functions without boundary condition and to unbounded domains in R”. We refer the in-
terested readers to the papers [33},34] and references therein for more details in this topic.
Another meritorious question concerning to Trudinger—Moser inequalities is whether ex-
tremal function exists or not. It was firstly discussed by Carleson and Chang [2]. They
put forward the existence of extremal functions for ((1.1)) when €2 is unit ball in R™. Then
Flucher [13] extended this result when  is a general bounded smooth domain in two
dimension. Lin [20] generalized the existence result to a bounded smooth domain in n
dimension. Li [16,17] and Li-Liu [18] obtained the existence result on compact Rieman-
nian manifolds with or without boundary. The Trudinger—Moser inequality has been
improved in several ways. Adimurthi and Sandeep proved a singular Trudinger—Moser
inequality which generalizes to the singular weight case. Then de Souza [10] estab-
lished a sharp Trudinger—Moser type inequality for a class of Schrodinger operators in
R2. Zhou considered a sharp form of anisotropic Moser-Trudinger inequality which in-
volves L™ norm in [40], involves the anisotropic Dirichlet norm ( [o, F™(Vu) da:)% in |42,
and involves the first eigenvalue and several singular points in [41]. The problem on the
existence of extremals for the singular Trudinger—Moser inequality was solved by Csato
and Roy [9], and by Csaté, Roy and the author |7] in any dimension n > 3. Nguyen [25]
extended the ones of Yang and Zhu [36] to more general cases of the nonlinearity function
F and the weight function h. Yuan [38] considered an improved singular Trudinger—Moser
inequality in unit ball.

Adimurthi and Druet [1] established the modified inequality in dimension two as fol-
lows: Let A(2) > 0 be the first eigenvalue of the Laplace operator with respect to the
Dirichlet boundary condition. Then for any o < A(2), there holds

(1.2) sup / et (allull3) gy « 400,
weHL(Q), [, |Vul? de=1 0
Obviously, is stronger than ([1.1). The situation is quite different when the dimen-
sion n > 3. It was proved by Yang [32] that an analog of still holds when € is
a smooth bounded domain in high dimension. Later, Lu-Yang [22] replaced ||ull2 with
lul, (p < 1 < o0) in to get the same conclusion as in the case p = 2. Also,
similar result holds on Riemann surfaces [39]. In [5], Chen etc. considered an improved
fractional Trudinger—Moser inequalities on bounded intervals and the existence of their
extremals. Recently, they also investigated the optimal concentration level of anisotropic

Trudinger-Moser functionals on any bounded domain in [3]. Zhu [43] consider the im-
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proved Trudinger—Moser inequality involving LP norm in R": let

M(Q) = inf [Vully,
u€Hy ™ (Q), u0 Hqu

then for any 0 < a < \,(€2), there holds

n 1
n—1 n\n—1
sup / eonlul" =t Adelullp) =1 gp < 400,
weHY™(Q), [|Vulln=17£

Adapting the ideas in the above conclusion, our main results are stated as

Theorem 1.1. Let ) be a bounded smooth domain in R™, n > 3. If p; > 1 for all
1 < j <, and satisfies

then we have

o u| 7T (145 a-uuun)ﬁ
sup /e " g=1 770 R dx < 400.
ueHy™(Q), [|Vulln<1 72

Theorem 1.2. Under the same assumptions of Theorem there exists a function
uy € HOI"(Q) NCYQ) and |Vui|, =1 such that

[ l =
—1 . n—
/ Gl T (14 o) T
Q

1

anlul T (1430 ol ) ™"
- s e fveall) ™ gy
w€Hy ™ (Q), [Vullo <17/

If aj = 0, the above result is the classical Trudinger-Moser inequality ; if j =1,
the above partial result is established in [43|, which he consider the condition only about
1 < pj < n. In this paper, we consider the general case p; > 1,1 < j <.

Another improvement in the classical Trudinger—Moser inequality has been es-
tablished by Tintarev in [29] in R?. More precisely, he shows that

(1.3) sup / e dz < oo

u€Hy (), | Vullj—allul|3<1 79
for any 0 < o < A(Q2). It is easy to see that is stronger than (|1.2)). Then Yang [35]
proved the existence of extremal function for the . Later, Nguyen generalize the
inequality to higher dimension n > 3 in [24]. There are many other works in this
topic, such as [48,/14,|15,|37,44] and the references therein. Similar to Theorems and

1.2l we have
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Theorem 1.3. Let ) be a bounded smooth domain in R™, n > 3. If p; > 1 for all
1 <5 <, and satisfies

then we have

sup / el dr < 400
Q

1, l
u€Hy ™ (Q), |Vullp =325, ajllully; <1

Theorem 1.4. Under the same assumptions of Theorem there exists a function

ug € HOI"(Q) N CYQ) and | Vug||? — 2221 ajlluz|ly, =1 such that

= n
/eocnlmlnI dr = sup /ea”um d.
1, 1
Q u€Hy™ (), [Vullp—35-y o llullp, <1 Q

The remaining part of this paper is organized as follows: In Section [2] we prove
Theorem by the method of blow-up analysis, which was extensively employed by
[111[12/26]. Section gives the proof of the existence of extremal function for the Trudinger—
Moser inequality involving various LP-norms. Since the proof of Theorem is almost
the same as that of Theorem we omit it here. In the last section, we will prove
Theorem [1.4] by Green-function like [32].

2. Proof of Theorem

In this section, we study the proof of Theorem [I.I} For simplicity, we introduce the

notations
1
T NRTINTE Ko "
JV(“) _ /g;aﬂﬂ 1(1+Zj:1 3l Ilpj) de, H= {u c Hé’ (Q) . HVUHn < 1}.

Recall that the n-Laplacian is defined by A,u = div(|Vu|?~2Vu) for u € HY(Q). In

order to prove Theorem [1.1] we consider the subcritical functional J,,, _. firstly.

QA

Lemma 2.1. For any small €, if p; > 1 for all 1 < j <1, satisfies maxi<j<; @ < 1
J
and Zé-:l % < 1, then there exists an extremal function u. € H N CH(Q) such that

(2.1) Jo, —e(te) = sup Jo, —c(u).
u€H

Proof. For any € > 0, we choose a maximizing sequence u; C H& () such that || V||, <
1 and

lim Jy, —e(u;) = sup Jo,, —c(u).
1——+00 wEH
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Since u; is bounded in H37n(ﬂ), we can assume u; — 1. weakly in H&’"(Q), Ui — Ue
strongly in L™(Q) and u; — u, a.e. in Q. Obviously, we have

1
n 1 =T
(an—e)us| =T (14520, oy usly, ) ™

fi=e
1

_ meT 1 L ) n ) n—=1
(o) ue | 7T (1458 e e,

— fe=ce a.e. in Q.

We claim that u. # 0. Suppose not, 1+ Z;Zl oszungj — 1, from which one can see that
fi is bounded in LP(Q) for some p > 1 and f; — 1in L'(2). Hence |Q| = sup,cy; Ja, —e (1),
which is impossible. Therefore u. # 0. Since Zé-:l % < 1, then we have

J

IVully IVl

l n l n

u . 1 O ||U )
S a, ully, — 225=1 allully; -1
7j=1

Therefore, one can get

l l

LY aglluilly, = 14+ Y aglluelly, < 1+ [|Vuelly
j=1 Jj=1

P —
1 — Vel

By Lion’s theorem in [21], one can see that f; is bounded in LP(2) for some p > 1. Since
fi = fe a.e. in Q, then f; — f. strongly in L'(Q). Therefore [, fedx = sup,ey Ja,—c(u)
and ||Vue|l, = 1. Moreover, it is not difficult to check that the corresponding Euler—
Lagrange equation of u is

n—p; p;j—1

I
2-n Lt o llu XY

(22) —Anu = %ue|ue|meaelue\n Y il e|l’pJ ¢

¢ o 1200 aglludlp,

with
L =
ae = (an — e)(l + Zaj\|u5\|;}j> o
j=1
l l
b= (1+ Lol ) /(142X el ).
j=1 Jj=1

n
_n_ =T
)\e :/ |ue|n71€a€‘UE|n d.%',
Q

where —A,ue = — div(|Vu " 2Vu,). By using the regularity theory for degenerate elliptic
equations, see [28, p. 269, Theorem 8], [30, p. 127, Theorem 1] and [19, p. 1203, Theorem 1],
we can easily get u. € C1(Q). O

The following analogy of Lemma 3.2 in [32] is important.
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Lemma 2.2. If p; > 1 for all 1 < j < I, and satisfies maxlgjgl% < 1 and
J
> 2:1 % < 1, then we get limq_,0 Jq, —c(Ue) = SUpyey Ja, (U).

Proof. We know that Ju, —c(ue) = supyey Jan—e(u). Obviously Ju, —c(ue) < Jo, (ue) <
Supycy Ja, (1), then we have lime g Jo, —(te) < sup,ey Ja, (u). On the other hand, we

get by (2.1)),

" 1 " 1
=T l . n—1 _ =T l . n—1
/ (ol T (Lol ) ™ g g / San=ul T (1455 aylully,) ™
Q Q

e—0

1

n

.. n—6)|ue| P T (1+320_, ajllue. ) ™~

Shrg%lf/ o(an=Olue T (14T el )™
Q

which implies that sup,cy Ja, (v) < liminfe g Jo,—c(ue). Hence lime g Jo, —c(ue) =

SUPyen Jan (u). 0

Next, we will use the method of blow-up analysis to study the behavior of u. in

Lemma The following several lemmas are useful.
Lemma 2.3. Let \¢ be defined in (2.2)), there holds liminf._g A > 0.

Proof. Apparently liminf,_,g Ac > 0. Using the inequality ¢! < 1 + te for t < 0, one has

n

(2.3) / el ™1 da < Q| + .
Q
By Lemma [2.2] we can know that

(2.4) lim [ e ™™ do = sup Ju, (u) > |Q|.
=0 Jq ueH

Combining (2.3)) and ([2.4)), one gets the result directly. O

Denote ¢ = |ue|(ze) = maxgeq |ue|(z). If ¢ is bounded, then —A,u, is bounded in
L>(Q) since liminf. o A\e > 0 by Lemma Then we can assume that u. converges
to up in Hé’n(ﬂ), strongly in L*(Q2) for any s > 1 and almost everywhere in 2. From
Lemma and the Lebesgue dominated convergence theorem, we can know wug is the
desired extremal function for the supremum J,,. Without loss of generality, we may
assume ¢, = ue¢(x.) — +oo, for otherwise we consider —u, instead of u.. We assume
x — p € Q. There are two cases which contain the concentration point p lies in the interior
of Q or on 99. Using the same ideas as in [24,32,43], we can exclude the boundary blow-
up. From now on, we assume that p lies in the interior of €). The following concentration

phenomenon is indispensable in our subsequent blow-up analysis.

Lemma 2.4. Under the assumption that cc — 400, we have ue — 0 weakly in H&’n(Q),
ue — 0 strongly in L™(Q). |Vu|"dz — 0, in sense of measure, where 8, is the Dirac

measure at p. Furthermore, we have ae — oy, P — 1.
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Proof. Since || V|, =1 and uc € Hy™ (), we may assume u, — uo Weakly in Hy"(Q),
ue — ug strongly in L™(€2). Suppose ug # 0, then we have if Z] Bw (Q) <1,

1
1+Zaguueup %1+Zaguuoup <1+ 11Vuolls < T
n

Jj=1 j=1

Hence by a theorem of Lions in [21] we conclude that e2eudl ™ is hounded in L1(Q)
for some ¢ > 1 provided that e is sufficiently small. Applying the elliptic estimates to
equation , one gets c. is bounded, which contradicts ¢c — +o0. Therefore, ug = 0
and consequently o — ay,, B — 1. Assume |Vu|™ dex — p in sense of measure. We can
choose a cut-off function ¢ € C}(£), which is supported in B,,(p) C Q and equal to 1 in
B,,/2(p) for some small 79 > 0 such that

/ V(guo)|" dz <17
By (p)

for some 1 > 0 provided that € is sufficiently small. By the classical Trudinger—Moser
inequality (T.1)), we can know e®(?49)"~" is bounded in L*(2) for some s > 1. Then
the elliptic estimate to equation (2.2)) implies that . is bounded in L>°(B,, /2(p)), which

contradicts the assumption that ¢, — 4o00. Therefore, |Vu,|" dz — §,. O
Let
(2.5)
1ol e n/(n-1) 1 L
Te = A& Pe e e n- s Ye(z) = ;u€($€ +7ex), @e(x) =& (Ue(Te +1e) — €,

€

where ¢, and ¢, are defined on Q. = {x € R" : x. +r.x € Q}. A direct computation gives

I - —1
) D el

n Z oCe

_1 _n_
(26)  —Anthe(x) = e T e (el T el
=1 1+2 Zj:l oszungj

9

n

! - pi—1
—c _1) + Z OéjCe] nHue”pJ pjwfj ‘
j=1 1 +22j:1 O‘j”ue”gj

For the purpose of studying the convergence of 1. and ., we need the following

_1 n
(2‘7) _An@e(x) = ¢€n—1 6a€(|u5\m(xe+7«€r)

n/(n—1)
nedce — 0 ase— 0.

Proof. By the expression of r in (2.5) and A¢ in (2.2)), we have
n/(n—1)

Tneéc — )\eﬁ_ T n— 1 e QeCe

- /(n—1) _n_ T
(2.8) = B lee “*le“—“e)‘f ' / [ue| 7T el ™ d
Q

—__n_ _n_
< B tec / Juc| w1l dg
Q

Lemma 2.5. Fized any 0 < 0 < av,, we have

n/(n-1) b n/(n-1)
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for sufficiently small e. Clearly, |u€|ﬁe‘$‘“€Im is bounded in L4(2) for some ¢ > 1. From
(2.8) and recall that . — 1, ¢c — 400, we get the result. O

By the preceding lemma and elliptic estimates for quasi-linear equations [28}30], we

can get the asymptotic behavior of ¥ and ¢, as € — 0.
Lemma 2.6. ¢ — 1 and p. — ¢ in C} (R™).

Proof. Without loss of generality, we assume p; < ps < --- < p;, and consider the following
three cases:

Case 1: 1 < p; <n (1 < j <1). Note that [¢)] < 1, applying elliptic estimates
(see [30, Theorem 1]) to equation (2.6, we have Hq/)EHCl,a(BR/Q) < C, then we can apply
Arzeld—Ascoli theorem to know there exists ¢ € C1(Bp /4) such that ¢ — 1. Let R — oo,
we get ¢ — 1 in CL_(R™). It is easy to know A,y = 0 in R". Liouville type theorem
implies that ¢» = 1 in R™. On the other hand, we have in any ball Bg(0),

n

’Ue’%(xeere ) — el et _CE (|¢€‘n Iz )71)

_ m(pe(:ﬂ)(l +O((e(x) — 1)%)).

Applying Harnack inequality for n-Laplace equation [28] and Lemmal[2.5]to equation (2.7),
one can see that —A,p.(x) is bounded. Then elliptic estimates (see [30, Theorem 1])
implies that ¢, is bounded in C1*(B r/a) for some 0 < o < 1, and whence p. — ¢ in
i (),

Case 2: pj >n (1 <j<m)and1l <p; <n (m < j<1l) In this case, we should
begin exploring the boundedness of —A, () and —A,p(z). It is obviously known that

L gl oy 0

Z ij ) €

j=m+1 1 +2Zj:1 O‘]’HUEH;;L]-

= 0(1).

For p; > n (1 < j < m), we have the following inequality

—p. 1 -1
i OZJCeJ n’/ﬂnHue”zpjp?Q) b m a]CpJ " n”uEHLP] BR x ))¢pj
j=1 1+2Z] 1aJ||UEHp] B j=1 1+22j71 aj||u6||pj

i Oé]CEJ -n P] ijfl (H Hn Dj + o (1))
- 6 LP B € .
1+2Zg 1 ]” €”p3 /(Ba(

n2 pj—n -1
) , ajed " luel 7 e
Due to the expression of ¢, we can get ¢~ "r¢? — 0. Hence, >y — (Q)

J= 1+2375 O‘JH“é”pj
is bounded. In the same way we can get —A,p.(z) is bounded as well. The subsequent

discussion is similar to Case 1.
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Case 3: pj >n (1 < j <1). Under the circumstance, it is not difficult to know that

ochj " ey pi~1

l
€ LP' Q €
> Y —o.(1).

j=1 1 +2Zj:1 ajHuEng

Therefore, —A,1(z) and —Appc(x) are all bounded. In conclusion, for any p; > 1, we

have ¢ — 1 and @, — ¢ in CL (R"). Moreover,

e—0

/ em 1Y dp < liminf/ e ac (Jue P (@etrez) -2 T) da
Br/s(0) Br,s(0)

= lim inf/ eoce(\u6 o )Te_n dx
Brr./s(we)

e—0

n

“gil‘dx

1 n
< liminf(1 4 o(1))— / |[ue| =T e
e—0 )\5 ]BRTE/S(‘TE
<1
Hence ¢ satisfies the following equation

—App=en 1% i R",  (0) =0=supg, / e do < 1.
Rn n

From Lemma 4.2 in [17] and Lemma 2.1 in [6], we obtain the solution of the above equation

—1 n— n% _n_
cp(:c):—n ln<1—|—(wn1) 1|gvnl>. O

Qn

is

Define u! = min {uc, % }. Similar to [17,132], we have the following
Lemma 2.7. limc [, |Vul[*dz = % for any A > 1.

Proof. We have by the equation (2.2]) and the divergence theorem,

/V( Ce)+'nd /( “)" Aucd
Ue — 7 T = — Ue — — Ue AT
Q A 9 A n
! n—p; p;—1
:/ (Ue_z) IBE " 1 a‘\ué\n = _|_Z OéJHUEH JUEJ dx
: A 12y agludly,

Jj=1

1 . L L
> / (1 — A) ce(l+ 06(1))ﬂ—u£’lea€|”‘*‘ Ydr + 0c(1)
Bre. (z0) Ae

z/BR (“D L+ 0.1 >>f§ P T da o (1)

- <1 - ix) /B eI dr + oc(1).

Letting € — 0, we obtain
c.\ T
v (n-%)

lim inf /
e—0 0
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By the same argument, we establish that

lim 1nf/ IVul ™ da Z

/ vufy"der/
Q Q

we get the result. O

Since

The following lemma is used in proving the existence of extremal functions of the
Trudinger—Moser inequality. Because it provides the asymptotic behavior of u, we include

it here.
n n

— —1
Lemma 2.8. limsup,_,q [, e*<% " dz < |Q + limp_ 4o limsup, fBRr . et dg.

Proof. For any A > 1, from the expression of A, in ([2.2)), we have

n
—1
/eanE| dx_/ eOée‘u6| d$+/ eOée|ue|n dx
Q ue< >

_n_ n—1
S/eae|u?nl dr + A LAe.
Q n—1

Ce

}‘m

By Lemma one has [, eelwd ™1 g 2] as € — 0. Let € — O first, then A — 1, one

has

(2.9) limsup/ acul™" gy < |9] + lim sup
Q

e—0 e—0 Cen—l

On the other hand, from the definition of r¢ in ({2.5),

= A n_
BRre(ze) Becd™ = Br(0)

nﬁl
lim limsup / e%<¥  dx = limsup
]BRTE(Ie)

which gives

R—=400 0 =0 on-1

Together with (2.9), the lemma is completed. O

Using the same method of Lemma 4.9 in [32], one can prove without any difficulty
that

lim/gbcef i goelue 7T Cdx = ¢(p), Vo< OFQ).

e—0 Q

The following is similar to Lemma 3.10 in [43].
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Lemma 2.9. Let f € L'(2), and u € C1(Q) N H&’H(Q) satisfy the following equation

—Aw—f+§:%mwpwm
7j=1

where Z] 1 )\ajm < 1. Then for any 1 < s < n, we have ||Vulls < C||f|l1 for some

constant C dependmg only on p;, s, aj, n, Ap. ().

We omit the proof here. The interested readers can refer [32] and its corrigendum
in [32] to get the detailed process of argumentation. Using Lemma we can prove the

following

1 1
Lemma 2.10. For any 1 < s <n, ¢/ ' uc is bounded in Ho (). ¢ Tue — G weakly in

HY5(Q) for any 1 < s < n, where G is a Green function satisfying

—AnG =0y + Zz‘:l O‘j”GHZ;ijprl in
G=0 on O0S).

1

Furthermore, ¢ ue — G in C1(Y) for any domain ' CcC Q\ {p}.

Proof. By (12.2)) we have

pj—1

l
= Be 25 | ‘nif
(2.10) —-A, (ce" lue) = c mul ! efelte + Z ;
Ae j=1 1 +2Zj:1 ajHuEng

1 1
i n—1 n—pj; n—1
aglles uel, ™ (el ue)

1

1
From Lemmas and we can get ¢’ ue is bounded in H, 1 *(Q). Assume ¢/ tue — G
weakly in Hle(Q). Testing equation (2 with ¢ € C3°(€2), we have

/ A ( d‘”—/%eﬁeue” T gl T gy
Q

Q; L —pi s =
D s e R I
i=1 ;

7=1 aj”u€”pj

[
m+2/%wwwwﬁm
j=17¢

Hence

I
[, voIver26is =0+ 3 [ alcli;o6n " or
=1

Therefore,

—AG =4, —i—ZaJHGHn Pigpi—1
7j=1
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in a distributional sense. The usual elliptic estimates give the second assertion, which

completes the proof of Lemma [2.10) O

Proof of Theorem 1.1 When ¢, — 400, a straightforward calculation gives

n* _n_
T () = / (=0 T (1455 luclly, ) ™ =1) (an—e)hued T g,

n 1
—1 l — _n_
< el wﬁnwm%ﬁlﬂ/melm

Q
_1_ % 2n n
:effl —1aglles “6”17 e 10(21 1 ffed ™ ue Pj) eQnluel ™1 g,
Q
By using Lemma and the classical Trudinger—-Moser inequality ((1.1) completes the
proof of Theorem O

3. Proof of Theorem

In this section, we give the proof of Theorem by dividing it into two steps:
Step 1: Upper bound of J,,. Under the assumption that ¢. = 400 and v — p € (),
the following holds:

(3.1) sup / eO‘EI“E'" de < Q|+ — Wnol gomAptltgtotiiy T
ueHy ™ (), | Vulln<1 /€2
where A, is defined in (3.2)).
Inspired by [18}32], we need the following result due to Carleson and Chang [2]: Let

B be the unit ball in R"™. Given a function sequence (ue)eso C Hé’"(IB%) with ||[Vuel, = 1.
If [Vue|™ de — 6o weakly in sense of measure, then

limsup/ e 7T Ydr < \B\(l—i—eH ERRNEE )
B

e—0

Let G be as in Lemma then G takes the form
(3.2) G:—alln|x—p|+Ap+g(x),

where A, is a constant depending only on «, 8, p, g(p) = 0, g(z) is continuous at p, and
g(x) € CHQ\{p}). Readers can refer [17] to get more information about the representation
of G(z).

Denote Bs(p) = {z € R" : |x — p| < 6} by B; and 9B;(p) by 0Bs for simplicity. By

Lemma and (3.2), we have

/ |Vue" dz =cc ™" (/ |VG\"dx+o€(1)>
Q\Bs Q\Bjs
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__n_ oG
=c T GIVG"2 ds—i—ZaJHGHp + 0c(1)
OB
e L + A, +Za G2 + o05(1)
¢ oy 0" J Pj ’

J=1
where o.(1) = 0 as € = 0, 05(1) — 0 as § — 0. Let b = supgp, uc and u = (ue — be)*.
Then T, € Hy™"(Bs) and
1

Vi |"de <7e=1—c " 071115 + A, +Z%HG||,, + 0.(1) + 05(1)
B5 n ] 1

By the result of Carleson and Chang at the beginning of the section,

Ué/Te/ |n_

dr < gnn=L (1 + el+%+“'+ﬁ) .
n

(3.3) limsup/ en
Bs

e—0

Now we focus on Bg, (z.). By Lemma ¢e = ¢ in CL_(R™), and whence u, = cc+0c(1).
We have

l
_n_ _n_
elue| T = (an —€) 1+Z¢“J‘HUEHZJ~ |ue| =1

< ap 1+Zo‘j||u6||gj [Ue + be| =T

l
n o n _n_
<o Fan Y — Gy, + ——anTE ™ b+ 0c(1),
7j=1

Using Lemma [2.10] again, we have by the definition of 7. that

_n_ _n_ ]_ __n_ 1
s il T B In— s T Ayt Za]HGHp + 0c(1) + 05(1)
€ n ] 1
|7 1 1 : .
San oy In <+ an Ay + an > ajllGlln 4 0c(1) + 05(1)
T j=1

Similarly we have

n

@b = (e QﬁG+o€(1)) Ll

o, g + Ap + 0c(1) + 0s(1).

Combining the above inequalities, we obtain on Bp, (),

n_ _n_ 1
Qelue| =T < an‘ﬂg/Tﬁl/"‘”—l + ln(s—n + anAp + oc(1) +05(1),
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which together with (3.3)) and Lemma gives

1
n—1

lim

n
1
eoelue™ T g < Q) + Wn=1 anAp+ltg+o+
e—0 Q n

Then according to Lemma we conclude

sup Jo, (u) < Q] + St A et
ueH n

Step 2: FEuxistence of extremal functions. We will construct a blow-up sequence ¢, €
Hy"™(Q) such that | V|, =1 and

1
T l n—1 Wh— 1., 1
/ ea"‘(bf‘" ' (szzl) dx > |Q\ + = leo‘”‘L‘pH*ZJr =
Q n

Let r = |x — p|, where p is a concentration point. Set G=G+ oo Inr — Ay, Define

n
0-1-07ﬁ (_%_nl In (H—Cn (E) " )+B) for r < Re,

(171 20 aglGllg,)
ané

3|

be = 5 for Re < r < 2Re,
€ n_ ! n
(m=T+xt s aslGllg,)
G for r > 2Re,

3|

(T4 agliGlg,)

1
where ¢, = (22=1) "1, € C§°(Bare(p)) is a cutoff function, n =1 on Bre(p), [|[Vnl|Le =
O(ﬁ), B is a constant to be determined later, and R, ¢ depending on € will also be chosen
later such that Re — 0 and R — 4o00. In order to assure that ¢, € H& "(Q), we set

_ e
c—i—c_ﬁ (_n 1111 <1+cn <R€> >+B> zc_ﬁ (—nlnRe—i-Ap).
o € o,

1
Multiplying both sides of the above equation by c¢»T, we get

T — 2210 (14 ¢,R7T + B) = —— In Re + 4,
Qi On
which gives that
_n_ - 1 __n_
(3.4) et = - lne+ = Inc, — B+ A, +O(R »1).
Qp Qp

A straightforward calculation shows

/ [Voe|" dx
r<Re

n—1 enRP=T  n—1
= n l n dZ
an (7T + 325 allG7) Jo (1+2)
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nol / (+z)-n'
an (7T + 35y g Gllg,) Jo (1+2)n
_ n—2 ~f n—1—k
A (ZC ! k) 1 +ln(1+0nR*>+0<R‘”’*>>
o (7T + Y a|Glle) \im k-
nfl ( T 1 1 o
- = 1H(1+can1)<1++~~+)+O(R n1)>,
o (7T + Y5 o5llGI7) 2 n—1

—2)!
where CF_, = %, and we have used

nf2 n 1— ka 1
—1

Z n—k—1 tot n—1

k=0

by induction. Taking into account the expression of ¢, then

n—1

‘v¢e‘n dx = —n_
/Q an (e T + Y0 |G )

A
o lne—i-lncn—i-ian P14+
n—1 n—1

+ + 1
n—1

1
2
n - n n 1
j+O(R "1)+O((Re) log RelogR>>.

Since [, |[V¢e|™ dz = 1, we obtain

n _1 _1
et =~ et ” lncn+Apfn (1+
Qnp Qnp 7))

(3.5)
+O(R %) +0 ((Re)" " = mR) .

Combining ((3.4]) and ( ., we have

—1 1 1 n 1
B=" <1++---+>+O(Rnl)+0<(Re)"1n"RlnR>.
€

Qp 2 n—1

Set R = —Ine¢, which satisfies Re — 0 as ¢ — 0. Since

71/2 71/2 n2

+ O(c" 1RPJ €?1) + O((Re)™ (—In(Re))")
T+ Y agllGlg

I1G1I5,
ellp, = —

)

then it is easy to see that

l
ap|de| T | 14 ZajH¢EHZj

j=1
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> anc% —nln <1 + e, <T)nl> + 1% B—}—O(c_%)
€ n
n2 2 2 l n2
Za2||G||2”+O 1Y Rver | +0 (Y (Re)” (~In(Re)"

(” -1) C” j j=1 j=1

1 1
anne+(n1)lncn+anAp+<1++...+>

_n_ ap a2 G
—nln<1+cn<T>n_1>— 21 SIGI +I,
€

(n— 1)cn 1
where
n2 n n2 n2 ! ﬁ an a2 G
L=0(c 1Y Rver | +0 () (Re)" (~In(Re))" | and D = (Zﬂ 11) ” Iv;
j=1 j=1 n—1)en-1

With the above estimates, we get

1
‘I”_l l n—1
/ Gomloe T (LE iy alleely,) T
BR&
n
1 1 n—1
> enlneJr("1)ln6”+a"‘4p+(1+2+“'+w)D+L/ e nin (1+en () ™) dx
Bre

 RA—T
> cnfleanAp+(1+%+-~+ﬁ)—D+L /C 72 "
- 0 (1+2)"

n— 1)wy,— 1y 1 )_ 1 __n_
> (= Dot antpt (L boity)-oen (L O(R™"1)
n n—1
1 1 1 1
> Wn—l anAptltytetoly _ Wnol poonAptldg ety | L,
n n
where we have used
n 1— kck 1

n—k—1 n—1

M !
O [ V]
"

On the other hand,
n 1
/ eomnlee ™ (4 jorallocly) ™ dx > / (1+ anle 7 1) d
Q\Br. QN\B2re

>\Q|+

__on
Z%IIGH '+ O(R @7).
So we conclude
n 1
(3.6) /€an¢€|n_1(1+z aH(ﬁellp]) Cdr > |Q + — Wnol onAptitgtotils
Q n

The contradiction between (3.1) and (3.6)) implies that ¢, is bounded. Then elliptic esti-
mate implies that Theorem holds.
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4. Proof of Theorem

In this section, we will prove Theorem Similarly, we first consider the subcritical

function, it is not difficult to check that the Euler—Lagrange equation of wu. is

1 n—
(4.1) At = —tue|ue| =1 eeluel l—i—Zoz]HueHn Pi i1
7j=1

with
Qe = (a” - 6)7 Ae = / !ue!ﬁeae\uelnﬂ da.
Q

Comparing and , we conclude that the above discussion of the proof of The-
orem [I.1] is nearly same as that of Theorem [I.3] so we omit here. Unlike the proof of
Theorem [1.2] we use a different approach to prove Theorem [I.4] First we have the follow-
ing upper bound inequality

= Wn—1 1,4 1
(4.2) sup / onlul "L g < |Qf 4+ 22 eonAp It ot
weHY™(Q), | Vullp =32y ayllully, <179 n

Then we need to construct a test function contradicting (4.2). The following lemma is

crucial in the subsequent computation process.
Lemma 4.1. Let G be the n-Green function in the above (3.2)).

(a) The sets {G > t} form a sequence of approximately small balls of radii p;, =
1

et A=) In other words, Bp—r,(p) € {G >t} C Byyyr,(p) with re/py — 0

as t — +oo. In particular, limy_, o e|{G > t}| = %ean“‘?.

b) [oet VG dz =1 + Eé’:l OéjHGng + O(t"e™nt) as t — +o0.
) fG:t IVG|"ldr =1+ O(t"e ) as t — +oo0.
d) Joos |VG| ds 2wy~ iea"(Ap_t) (1+O(t"e=ont)) ast — +oo.

The proof is similar to that in [32] so we omit the process of proof here. Then we take

c— e (B (14 e TTe W) £ B) fort > 4,
fe(t) = 1 '

c n-1t for t < t.

with ¢, = (wp1/n)/" D, ¢, = a-In i, R, B and C are constants to be chosen later
such that R — +o0 and Re — 0 as ¢ — 0. Let G be as above. Set

¢e(r) = fe(G(2)).
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To ensure ¢. € Hy" (), we assume

1 (n—1 n n 1
43 e In(14cR™T)+B) = ¢ atin—
(4.3) c—c < o n(l+c )+ > anc n

We have by Lemma [4.1|(b) that

l
n __n_ n 1 n nin 1
/C¥<té ‘V¢e| =c n—1 70[” ln 4R6 + JEI a]HG”pJ + O ((RE) ].n -R€>

An elementary calculation shows

an_y n
te ].+C€ n— 16 nl

n—l, en R
/0 1+3
ln 1—i—cRn1)— 1_|_}_|_...+ 1
2 n—1
o),

Hence we have by Lemma [4.1fc) that

—+o00 1
Vqﬁendx:/ (¢ "</ va|" ds> dt
/G»e' | , HOr LV e

—+o00
_ / O (1+ O(t"eot)) dt
te
n—1 __n_ n_ 1 1
= c n= <1n(1+cnR"1)—(1+2+---+ >)

Qp n—1

ot (O(R_nzl) +0 <(Re)" log" }ilogR)) .

Therefore,

l
n—1 _ _n 1 1 )
[ 1voran = PR (1 gk ) e =Yl

1 n n mn 1
T n—1 1 1 Rn—l JE— n— 1 1 J—
o c n( + Cp )+anc nRE

e <0(Rn”1) +0 <(Re)"1n” Ri In R>> .

€

+

Since ||Voe|y — Z] 1 %[@llp, =1, then we have

n n—1 1 1 n—1 n n 1
1 — _ 14+ 2 4+... In (1 Rn-1 = ln—
¢ Qy, < 4_2+ +n—1>+ Qap, n( +on )+an nRe

n 1
+O(R " 71)+0 <(Re)"ln" RelnR> .
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Combining (4.2)) and (4.3)), which gives

n—1 1 1 o nin 1
B=- <1+2+-~ 1>+0(R "1)+O<(Re) In RelnR>.

Qn —
For t > t., one can check that

O‘TLfE(t)ﬁ —anC" =1 —nln (1+Cn€ ATe” "Omlt) -

B
n—la"

L O(R75T) + <(Re) " éelnR)

1 1 _ 9n_
5 —i—il—i—(n—1)lncn—nlne—nln(1+cne Al 1t)
n_

O(R 1) + <(Re) In" ée lnR) +O(c 71102 R).

Then by Lemma it is easy to see that

n +oo _n_ 1
AL :/ anlfe(8) 77T (/ d > dt
e Xz e S
/GZt6 te G=t ‘VG’

Wn— 1 1
2 n 167neanAp+1+§+"'+ﬁ
n

X (1 +O(R™#1) +0 ((Re)” In” ;ElnR) +O(c 71 In? R))

y wﬁ /+oo e_ant _ (1 + O(tne—cxnt)) dt.
te (1—|—Cn6 e nm 1t)

Then we obtain

e Wn—1 A 1ol 1
enl®el "1 g0 > N on ptltst 453
G>te n

X <1 + O(R_%) +0 ((Re)” In" ;belnR> + O(c_% In? R)) .

On the other hand,

/ eanlqulm dx 2 / (1+Oén’¢e’ﬁ) dx
G<te G<tc
1

> [Q] + O((RO)™) + 0 <(>( Re) s R) |

€

Combining the above estimates, we get

j/ omléel T g > |0 4 UnLeanAptit ittty
[¢) n
__n _ __n 1
+ aye (1?2 <O (c (n=1% (Re)™ In" e In R)
€

n n _TLQf n
+O0(c @=D?R™ 1)+ O0(c = 2 12 R)).
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Taking R = —loge, we immediately have

o e 7T Wn—1 apA,+1+i4..+-L
enl®e dr > |Q| + —— T2 =
Q n

This completes the proof of Theorem
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