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Abstract. The techniques of high dimensionality reduction are important tools in ma-

chine learning and data science. The method of singular value decomposition (SVD)

is a popular method in dimensionality reduction and image compression. However,

it suffers from heavily computational overhead in practice, especially for images with

high-resolution. In order to achieve the efficiency and the accuracy, we propose a

refinement of approximate invariant subspaces of matrices (REIS) algorithm based on

SVD. The theoretical contribution of our paper is threefold. Firstly, we describe the

properties of the SVD of the matrices and discuss how to apply SVD to do image

compression. Secondly, we introduce the method of REIS based on SVD for image

compression in the high-resolution images. The core of REIS is adapted to large and

real matrices in Rn×n, through some nonsymmetric algebraic Riccati equations or

their associated Sylvester equations via Newton’s method. Thirdly, some measure-

ment tools are provided such as compression ratio, mean square error, peak signal to

noise ratio and structural similarity index to compare the performance of the com-

pression factors and the quality of the compressed images. Numerical examples for

testing some real world image sets are presented to illustrate the feasibility of our

proposed algorithm.

1. Introduction

There are many applications about digital images in our daily life such as medicine, ecom-

merce, astronomy, and remote sensing [15, 20, 26, 28] and it led to some problems about

sharing and storage of enormous amounts of digital image data such as transmission slow

and storage expensive. Therefore, we need a method to reduce the amount of datum to

represent these digital images, image compression, an important area in the digital image

processing deals with techniques for reducing the storage of datum required for saving

digital images or the bandwidth required for transmitting it [17].
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The image compression technique has a lot of applications in various fields such as

medical imaging, web applications, facsimile and security industry, satellite imagery and

object recognition. The goal of image compression deals with reducing the number of bits

in order to represent an image via removing irrelevance and redundancy of the image data,

therefore, it can optimize the storage space and increase the transmission rate.

In general, image compression is broadly classified into two categories: lossless and

lossy [21, 39]. A lossless compression retains the full information with no loss of data to

reconstruct the original image. The lossless compression is useful for exact reconstruction

of images and the methods include entropy coding, Huffman coding [29], bit-plane coding

and run-length coding. The other compression called lossy compression is another type of

image compression technique. Some of information in the image can be discarded without

greatly changing the appearance of the image and the size of the image is drastically

reduced. The methods for lossy compression are discrete cosine transform [5,22], discrete

wavelet transform, transform coding and fractal compression [38].

For large-sized image data obtained in some applications of remote sensing and multi-

media, the storage space and transmission bandwidth become important and are reliant on

image compression techniques [30]. The objective of image compression is to reduce num-

ber of bits for large-sized image data in order to speed up the communication. One of the

efficient method in image compression, singular value decomposition (SVD), a powerful

tool widely used in image processing and data hiding. The SVD factorizes a real matrix

into three component matrices, called left singular vectors, singular values in diagonal,

and right singular vectors [8, 9, 24]. During factorization, some of the singular values are

removed for reconstruction and it results in the compression of the image. A brief review

of some important contributions in the image compression schemes and their applications

in image processing including SVD method and its variations is presented in the related

work in Section 2. However, the regular SVD method can not be utilized in large-sized

image data, especially high-resolution image.

In this paper, we propose the refinement of an approximate invariant subspace for

large-scale matrix in large-sized image data that employs the concept of the SVD for

image compression. The estimate of an invariant subspace for large-scale matrix can be

refined through the solution of the nonsymmetric algebraic Riccati equation (NARE).

We apply Newton’s method to the NAREs and their associated sylvester equations are

derived. The crux of the method is the inversion of some well-conditioned unstructured

matrices via the efficient and stable inversion of the associated structured but near-singular

matrices. Furthermore, we provide image compression measures such as compression ratio,

mean square error and peak signal to noise ratio to evaluate the quality of a compressed

image. Our numerical results show that our algorithm can select an appropriate number
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of singular values which guarantees the image quality.

This paper is organized as follows. In Section 2, we briefly introduce a review of

previous related work including lossy and lossless compression, especially SVD and its

variations. In Section 3, we outline the concept of the SVD including properties of the

SVD, image compression using SVD and image compression measures. Section 4 describes

the proposed lossy image compression technique, which is the refining estimate of the

invariant subspace for large-scale matrix. We apply the efficient method to solve NAREs

and get an invariant subspace, then reconstruct the compressed matrix based on the SVD

method. Our numerical results in Section 5 demonstrate the effectiveness of the proposed

lossy image compression using the refinement of the approximate invariant subspace based

on SVD. Finally, some conclusions are drawn in Section 6.

To the best of our knowledge, this is the first work to apply the REIS based on SVD in

the applications of the image compression, especially large-sized image data compression

and high-resolution image data compression.

2. Related work

In recent year, there are a lot of compression methods and their applications in image

processing described in the literature. In this section, some of the developed methods are

briefly outlined.

In general, there are two categories of the image compression methods: lossy and

lossless. In [29], the authors proposed a new lossless method of image compression by

decomposing the tree of Huffman technique (LM-DH) and this method can achieve up

to 20% compression ratio more than the classical Huffman coding technique. In [33], the

authors introduced fast Fourier transform (FFT), scalar quantization (SQ) and entropy

encoding to compress satellite images and grayscale pictures with high compression ratio

and return with a better quality. In [11], the authors presented block truncation coding

(BTC) and the method uses a two-level nonparametric quantizer and preserves the local

sample moments. Later in [23], the authors utilized the absolute moment block truncation

coding (AMBTC) and the method preserves the higher mean and lower mean of the blocks.

Furthermore, AMBTC provides better image quality than BTC at the same bit rate and

is faster compared to BTC.

Generally, SVD is a lossy compression technique which achieves compression by using

a smaller rank to approximate the original matrix representing an image. Moreover, lossy

compression has good compression ratio comparing with lossless compression while the

lossless compression provides good quality of compressed images. In [2], the authors

proposed a graph coloring technique in the quantization process based on wavelet-SVD

and the compression ratio stands between 50%–60% while the PSNR stands between
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40–80 dB. In [32], the authors presented SVD and wavelet difference reduction (WDR)

and the method is better than JPEG2000 and WDR techniques respectively. In [1], the

authors provided a way of image compression based on two mathematic concepts, SVD

and moment preserving quantizer BTC (MPQ-BTC) and the proposed algorithm has a

higher compression ratio without compromising much on the quality of the image. Later,

the authors [3] suggested two improved algorithms: an improvement of the BTC and a

new rank of SVD. The first algorithm can overcome the disadvantages of the classical

BTC and the second method shows the new rank to approximate an image using the least

amount of information. Other lossy compression including the variations of the SVD are

described. In [6], the authors applied the k-SVD algorithm to do facial image compression

based on sparse and redundant representations. Moreover, the post-processing addition of

image deblocking is introduced and the method can create a more appealing and smooth

visual facial images. In [31], the authors proposed shuffled SVD (SSVD) and the method

needs about 30% fewer singular values and singular vectors. In [4], the authors proposed

block SVD power method that overcomes the disadvantages of Matlab’s SVD function and

the algorithm can provide different degrees of error resilience which gives a better image

compression in a short execution time.

3. Singular value decomposition

In this section we discuss the implementation of the SVD in image compression. Firstly,

we introduce the theory of the SVD, move to consider properties of the SVD, then discuss

image compression using SVD, finally list some image compression measures. The SVD

was first introduced independently by Beltrami and Jordan [35]. SVD is a significant topic

in linear algebra and has some practical and theoretical applications such as scientific

computing, signal processing and automatic control. It is one of the most powerful tools

not only in finding the eigenvalues, but also being implemented in image compression and

noise removal. The SVD is a factorization of a real or complex matrix. One special feature

of SVD is that it can be proformed on any real matrix.

For any real matrix A ∈ Rm×n, there exist orthogonal matrices U = [u1, u2, . . . , um],

ui ∈ Rm, V ⊤ = [v⊤1 , v
⊤
2 , . . . , v

⊤
n ], vi ∈ R1×n and D = diag{σ1, σ2, . . . , σp} ∈ Rm×n (see [16,

p. 70]) such that

(3.1) A = UDV ⊤ =

p∑
i=1

σiuiv
⊤
i ,

where D is a diagonal matrix in which the entries along the diagonal of D are singular

values of A, σi are the singular values of A and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, p = min{m,n};
U ∈ Rm×m is a matrix containing left singular vectors of A; V ∈ Rn×n is a matrix
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containing right singular vectors of A; U and V are orthogonal matrices such that UU⊤ =

V V ⊤ = I.

3.1. Properties of the SVD

In this section, we show how to compute U , D and V in the SVD. Firstly, we try to find

orthogonal matrix U . Post-multiplying both sides of the equation (3.1) by A⊤ demon-

strates

(3.2) AA⊤ = UD2U⊤.

From equation (3.2), it is clear that the orthogonal matrix U is derived from the

eigenvectors of AA⊤ and D is obtained from the eigenvalues of AA⊤ such that σi =
√
λi,

where λi are the eigenvalues of AA⊤, i = 1, 2, . . . , p.

Analogously, we have shown that

A⊤A = V D2V ⊤,

where V is obtained from the eigenvectors of A⊤A. The following are some of the impor-

tant properties of SVD.

(1) The singular values σ1, σ2, . . . , σp are unique, however, the orthogonal matrices U

and V are not unique;

(2) Since AA⊤ = UD2U⊤, U diagonalizes AA⊤ and it follows that ui is the eigenvector

of AA⊤;

(3) Since A⊤A = V D2V ⊤, V diagonalizes A⊤A and it follows that v⊤i is the eigenvector

of A⊤A;

(4) The rank of matrix A is equal to the number of its nonzero singular values [25];

(5) If A has rank of r, then u1, u2, . . . , ur form an orthonormal basis for range space of

A, R(A) and v1, v2, . . . , vr form an orthonormal basis for range space of A⊤, R(A⊤).

3.2. Image compression using SVD

Image compression deals with the problem of reducing the amount of data required to

represent a digital image and it aims to reduce the number of bits required to represent an

image via removing the redundant or irrelevant information in an image. Redundancies

can be one of the following types [18]:
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(I) Inter-pixel Redundancy: Prediction of pixel values is based on values of its neigh-

boring pixels. The pixels of 2D intensity arrays are correlated spatially that is each

pixel is similar to or independent on neighbouring pixels, information is unnecessarily

replicated in the representation of the correlated pixels. Inter-pixed redundancy is

sometimes called spatial redundancy, inter frame redundancy, geometric redundancy.

(II) Coding Redundancy: It contains variable length code words selected as to match

the statistics of the original source. In the case of digital image processing, it is the

image itself or the processed version of its pixel values. Examples of this technique

are Huffman coding and Arithmetic coding.

(III) Psycho-visual Redundancy: Human eye is not fine-tuned to process any band of

frequencies. Most 2D intensity arrays consist of information that is ignored by the

human visual system. Image and video compression techniques aim at eliminating

or reducing any amount of data.

Different image compression techniques apply different methods to remove the redun-

dancies in order to represent an image without much compromise in the image quality.

When the image matrix A is decomposed into three matrices U , D and V using the SVD

and singular values σi are arranged in descending order on the diagonal of D, it follows

from the fact that the first singular value contains the greatest amount of information

and subsequent singular values contain decreasing amounts of information step by step.

Therefore, only a few singular values are kept while lower singular values containing neg-

ligible or less important information can be discarded and it will not affect the quality of

the image.

In order to achieve good amount of compressing, we rewrite the equation (3.1) via the

choice of k values

(3.3) A =

k∑
i=1

σiuiv
⊤
i = σ1u1v

⊤
1 + σ2u2v

⊤
2 + · · ·+ σkukv

⊤
k ,

where k < r. The compressed image applying (3.3) will reduce the storage space re-

quirement to k(m+ n+ 1) bytes as against the storage space requirement of mn bytes of

the original image. The choices of the difference integer k have a difference correspond-

ing image and storage. In summary, the value of k is chosen such that good amount of

compression is achieved while image quality is maintained.

3.3. Image compression measures

To compare the performance of different compression techniques and to measure the degree

to which an image is compressed, we can compute the compression factor and the quality

of the compressed image. Some performance measures are listed.
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(1) Compression Ratio (CR): It is the ratio of the storage space required to store original

image to that required to store a compressed image. It computes the extent to which

pixels in compressed image and is calculated as

CR =
m× n

k × (m+ n+ 1)
.

(2) Mean Square Error (MSE): It is the measure of deterioration of image quality as

compared to the original image when an image is compressed. It is defined as square

of the difference between pixel value of original image and the corresponding pixel

value of the compressed image averaged over the entire image, i.e.,

MSE =
∥A− Ã∥2F

mn
,

where the original image and the compressed image are denoted by A and Ã, re-

spectively.

(3) Peak Signal to Noise Ratio (PSNR): It is the ratio of maximum signal power to the

noise power that corrupts it. In image compression maximum signal power refers to

the original image and noise is introduced to compress it and noise is the deviation of

the compressed image from the original one. Hence, it follows that PSNR provides

the quality of the compressed image:

PSNR = 10 log10
2552

MSE
.

(4) Structural Similarity Index (SSIM): Structural similarity provides an alternative and

complementary method to the image quality assessment. It is based on a top-down

assumption that the human visual system is highly adapted for extracting structural

information from the scene, and therefore a measure of structural similarity should

be a good approximation of perceived image quality. Let x and y be two discrete

nonnegative signals that have been aligned with each other, and let µx, σ
2
x and σxy

be the mean of x, the variance of x and the covariance of x and y, respectively. The

SSIM models the image quality distortion as a combination of three different factors:

loss of correlation, luminance distortion, and contrast distortion, which are given as

follows:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, c(x, y) =

2σxσy + C2

σ2
x + σ2

y + C2
, s(x, y) =

σxy + C3

σxσy + C3
,

where C1, C2 and C3 are small constants given by

C1 ≡ (K1L)
2, C2 ≡ (K2L)

2, C3 ≡ C2/2.
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L is the dynamic range of the pixel values (L = 255 for 8 bits/pixel gray scale

images), and K1 ≪ 1 and K2 ≪ 1 are two scalar constants. The general form of the

SSIM between signal x and y is defined as

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y).

Therefore, the SSIM can be given by

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
,

which satisfies the following conditions:

(a) symmetry: SSIM(x, y) = SSIM(y, x);

(b) boundedness: SSIM(x, y) ≤ 1;

(c) unique maximum: SSIM(x, y) = 1 if and only if x = y.

4. Proposed lossy image compression technique

The contribution of this paper is the introduction of the concept of refinement of approx-

imate invariant subspaces based on SVD method to image compression, as the main idea

of image compression is reducing the redundancy of the image and transferring data in the

efficient form. We have to mention that this work is the first one about an application of

refinement of approximate invariant subspaces based on SVD method to high-resolution

image compression. We are not aware of any work done for high-resolution image compres-

sion problems, although SVD and other variations of SVD can be applicable for general

image compression. Therefore, our method is efficient, provided that high-resolution im-

age compression is available. It is general and many other computer visions can benefit

from using it.

In this section, we propose our contribution in which we integrate the refinement of

approximate invariant subspaces and apply it to create an algorithm that compresses an

image.

Initially the input image is read by the MATLAB software and stored as an array

of integers. If this color image is segregated into RGB or red, green, blue component

matrices. The pixel values of these matrices are converted to double data type for high

accuracy. Hence, we can obtain one of the following matrices A ∈ Rm×n for image process-

ing. When the traditional method called SVD is applied to an image, it is not compressed,

but the data take a form in which the first singular value has a great amount of image

information. Moreover, we can keep only a few singular values to represent the image

with little differences from the original. According to the information of SVD method,
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our contribution in this paper is to introduce invariant subspaces for high-resolution im-

age compression that overcomes some difficulties encountered in existing methods. Our

efficient method is to concern with the computation of the eigenvalues of largest modulus

of a large-scale matrix A and we use the dominant eigenvalues with largest modulus to do

image compressing and obtain a good quality of the reconstructed image compared to the

original image with little differences. Next, we will introduce how to adopt the invariant

subspace corresponding to sought eigenvalues.

4.1. Refinement of approximate invariant subspace of A

In order to represent it simply, we consider the standard eigenvalue problem (SEP) for

A ∈ Rn×n (A ∈ Rm×n treated similarly and consider A⊤A ∈ Rn×n):

Ax = λIx, x ̸= 0,

where λ is the eigenvalue and x ∈ Rn×1 is the following eigenvector.

From [12], an estimate of an invariant subspace for A ∈ Rn×n can be refined through

(4.1) [−R, Is]P
⊤AP [In−s, R

⊤]⊤ = 0

with R ∈ Rs×(n−s) being some correction and P = [P1, P2] ∈ Rn×n being orthogonal

(or P−1 = P⊤). We assume that P is in Householder factors (see [16, p. 224]), so that

vector multiplications by P (from the left and the right) can be computed in O(n) flops.

Here, P1 ∈ Rn×s (s ≪ n) is an accurate estimate to the basis of some invariant subspace

associated with A11 (see [34]) and the subspectral of the submatrices A11 ∈ Rs×s and

A22 ∈ R(n−s)×(n−s) are nonintersecting, providing

σ(A11) ∩ σ(A22) = ∅,

thus the invariant subspace approximated by span(P1) is isolated and well-defined. We

can rewrite (4.1) into the nonsymmetric algebraic Riccati equation (NARE)

(4.2) N (R) ≡ A22R−RA11 −RA12R+A21 = 0

with Aij = P⊤
i APj (i, j = 1, 2). The condition for the solvability of (4.2) is satisfied; see

[10,12,13,34], essentially when P1 is an accurate estimate, and the residual A21 ∈ R(n−s)×s

or the correction R are small in norm, relative to the gap between A11 and A22. Next, we

introduce the important theorem.

Theorem 4.1. (Stewart [34, Theorem 4.11]) Let P⊤AP = (Aij) be as in (4.2) with

the orthogonal P ≡ [P1, P2]. If δ = sep(A11, A22) ≡ inf∥X∥=1 ∥A11X − XA22∥ > 0 and

∥A21∥ · ∥A12∥ < δ2/4, then there exists a unique matrix R such that the columns of
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T = P1 + P2R span an invariant subspace of A and A11 + A12R is the representation of

A in span(T ). The matrix R solves the NARE A22R−RA11 −RA12R+A21 = 0 in (4.2)

with ∥R∥ < 2δ−1∥A21∥.

Note that the perturbation analysis of (4.2) has presented in [34]. We assume that

s, the dimension of the invariant subspace, is small relative to n, the dimension of A.

Throughout the refinement of the invariant subspace method, we can get the matrix

Ã11 = A11 + A12R ∈ Rs×s and the first s dominant eigenvalues with largest modulus are

located in Ã11, then we can reconstruct a new image with little differences compared to the

original one based on SVD method. In the following subsection, we attempt the refinement

of an estimate for an invariant subspace for a real matrix A by applying Newton’s method

to the NARE (4.2).

4.2. Newton’s method for solving NARE

Consider the application of Newton’s method on NARE (4.2) with R0 = 0, we may solve

the refinement of an estimate invariant subspace (REIS) problem via Sylvester equations

in the following form: (for k ≥ 0)

(4.3) Ã22Rk+1 −Rk+1Ã11 = −Ã21

with Ã22 ≡ A22 − RkA12, Ã11 ≡ A11 + A12Rk and Ã21 ≡ A21 + RkA12Rk. For the

convergence of Newton’s method in (4.2), please confer [10, 12], which are predated by

[36, 37]. Under favourable conditions in [10, 36, 37], the iterates Rk will converge to the

correction R quadratically. Note that Ã22 is low-ranked update of A22, we can compute

its inversion efficiently, through the Sherman–Morrison–Woodbury formula (SMWF)

(4.4) (B̃ ±MC̃N)−1 = B̃−1 ∓ B̃−1M(C̃−1 ±NB̃−1M)−1NB̃−1.

Furthermore, A11, A12 and A21, and thus Ã11, Ã12 and Ã21 can all be calculated

efficiently via the products of the matrix A to P⊤
1 and P1, P (in its Householder factors)

to vectors, and between vectors. Next, we need to solve the Sylvester equation (4.3). When

s = 1, (4.3) degenerates to a linear equation in Rk+1, requiring the inversion of Ã22−Ã11I,

a low-ranked update of A22 − Ã11I. Then, the solution of Sylvester equation (4.3) can be

computed the inverse iteration for Ã22 with the shift λ = Ã11.

When we consider s > 1 with s ≪ n, we have to construct an algorithm to solve the

Sylvester equation (4.3), by the inversion of matrices such as A22−γI. Consider the Schur

decomposition [16, p. 313] on the small Ã11 = QZQ⊤ ∈ Rs×s, we can transform (4.3) into

(4.5) Ã22Rk+1 −Rk+1QZQ⊤ = −Ã21,
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where Q is unitary, Z is upper triangular with zj (j = 1, . . . , s) being the jth diagonal

element and ηj ∈ Cj−1 (j = 2, . . . , s; degenerate otherwise) contains elements above zj in

Z. We multiply the unitary matrix Q on the right-hand side of (4.5) and get

(4.6) Ã22X −XZ = −Â21

with X = Rk+1Q and Â21 = Ã21Q. For j = 1, 2, . . . , s, we solve the Sylvester equa-

tion (4.6), providing

(4.7) (Ã22 − zjI)xj = sj ≡ −(Â21)j +X−jηj ,

where (·)j denotes the jth column, xj = (X)j and X−j = [x1, . . . , xj−1] (j = 2, . . . , s;

degenerate otherwise). Note that Ã22 − zjI = (A22 − zjI)−RkA12, a low-ranked update

of A22 − zjI, is nonsingular since the spectra of A11 and A22 are nonintersecting and

∥Rk∥ is small. As a matter of fact, in many applications, the spectra are far apart and

A22−zjI should be well-conditioned. Next, we solve the linear systems in (4.7) and it can

be realized efficiently via the inversion of A22− zjI discussed in the next section, with the

help of the SMWF. The correction Rk+1 = XQ⊤ can be retrieved from X. When we solve

the equation (4.7) (j = 1, . . . , s) we need Ã−1U in the SMWF in (4.4) with Ã = A22−zjI,

U = Rk (degenerate for k = 0), C̃ = Is and V = A12 and the details information can be

listed in the following section.

4.3. Linear systems associated with A22 − γI

The main building block of our algorithm is the inversion of A22 − γI, for some γ, via the

efficient inversion of the near-singular A−γI. It is required for the Sylvester equation (4.3)

in Newton’s method.

Note that near-singular linear systems are modified to well-conditioned ones [7, 19],

but we solve a smaller well-conditioned linear system via a slightly bigger ill-conditioned

one, because of the inherent structure in A. The error analysis can be discussed in [14,

Section 2.3.1]. In order to solve the linear system (4.7) efficiently, we apply the efficient

inversion of A − γI. To unify the treatment for the refinement of an estimate invariant

subspace, we assume C11 C12

C21 C22

 = P⊤(A− γI)P.

It is vital that P is stored in Householder factor, so that the multiplication by P can

be carried out in O(n) computational complexity. Let Dij = P⊤
i (A−γI)−1Pj (i, j = 1, 2),
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we have D11 = (C11 − C12C
−1
22 C21)

−1, and

P⊤(A− γI)−1P ≡

D11 D12

D21 D22

 =

C11 C12

C21 C22

−1

=

 D11 −D11C12C
−1
22

−C−1
22 C21D11 C−1

22 + C−1
22 C21D11C12C

−1
22

 .

From D22v = C−1
22 v + C−1

22 C21D11C12C
−1
22 v, we can obtain

(4.8) C−1
22 v = D22v − C−1

22 C21D11C12C
−1
22 v.

Replacing C−1
22 C21D11 and C12C

−1
22 by D21 and D−1

11 D12, respectively in (4.8), for some v,

we get

(4.9) C−1
22 v = D22v −D21D

−1
11 D12v.

Therefore, the products D22v and D12v can be computed throughD11 D12

D21 D22

0
v

 = P⊤(A− γI)−1P

0
v

 ,

which is equivalent to the solution of the linear system (e.g., Gaussian elimination with

partial pivoting)

(4.10) (A− γI)y = P

0
v


with

[
D12v
D22v

]
= P⊤y. From (4.9), we also require

D11 = (C11 − C12C
−1
22 C21)

−1 and D21 = −C−1
22 C21D11,

which have only s columns and can be calculated efficiently through the linear system

(solved by Gaussian elimination with partial pivoting)

(4.11) (A− γI)W = P

Is
0


with

[
D11
D21

]
= P⊤W .
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4.4. Real Schur form

In Section 4.2, we apply the real Schur form of Ã11 on (4.3) and discuss real eigenvalues,

then we also consider the complex conjugate pair of eigenvalues zj , zj+1 = zj and the

corresponding eigenvectors xj , xj+1 = xj . We have the real Xj ∈ R(n−s)×2, spanning the

same column space as [xj , xj+1]. Corresponding, we have the real 2× 2 block Zj instead

of zj , zj+1, with ηj , ηj+1 ∈ Rj−1 above the block Zj . With (·)j1:j2 denoting the j1 to j2

columns and X−j as previously defined in Section 4.2, (4.7) is changed into

(4.12) Ã22Xj −XjZj = −(Â21)j:j+1 +X−j [ηj , ηj+1].

Applying the Kronecker product, (4.12) becomes

M̃kjv(Xj) = rj

with M̃kj ≡ I2 ⊗ Ã22 − Z⊤
j ⊗ In−s, rj ≡ v[−(Â21)j:j+1 + X−j [ηj , ηj+1]] and v[·] stacking

columns. The inversion of M̃kj is to adopt the similar structures as Ã22 repeated in the

two diagonal subblocks, which can be computed efficiently. One possible method is to

apply the diagonal blocks as pivot to eliminate the off-diagonal blocks.

Let Zj =
[ zj αj1
αj2 zj+1

]
, we have the low-ranked update

M̃kj = Mkj −

Rk 0

0 Rk

A12 0

0 A12


with

M̃kj =

 Ã22 − zjIn−s −αj2In−s

−αj1In−s Ã22 − zj+1In−s

 ,

Mkj ≡

 A22 − zjIn−s −αj2In−s

−αj1In−s A22 − zj+1In−s

 .(4.13)

Applying the structure of A on (4.13), we obtain

P⊤

A− zjIn −αj2In

−αj1In A− zj+1In

P = P⊤NjP =

∗ ∗
∗ Mkj


with

Nj ≡ I2 ⊗A− Z⊤
j ⊗ In, P =

P 0

0 P



Is 0 0 0

0 0 In−s 0

0 Is 0 0

0 0 0 In−s

 .
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The inversion of M̃kj can be utilized via the SMWF through the inversion of Mkj ,

which can in turn be done by inverting Nj as Nj is structured (cf. A− γIn with γ = zj in

Section 4.3), P is a projection and Mkj is the lower-right corner block in P⊤NjP .

4.5. Algorithm and operation counts

For high-resolution image compression, we perform the computation in the refinement of

an approximate invariant subspace based on SVD method. Firstly, we read the input

image in the mathematical software MATLAB and it is stored as an array of integers. If

this image is color, we obtain three matrices for red, green and blue components, otherwise,

the matrix A is generated for grayscale image.

For color image in the image compression, the method is similar to that in the grayscale

image, therefore, we only focus on the image compression for the grayscale image.

When we get the matrix A, we can adapt the refinement of an estimate of the invariant

subspace on A. Equations (4.1)–(4.4), the linear systems in (4.8)–(4.9) and the real Schur

form in (4.6)–(4.13), constitute our efficient method for image compression. When we get

the correction R, we can obtain the following matrix Ã11 as the dominant eigenvalues

(with largest modulus) are located in Ã11, then we apply Ã11 to reconstruct the matrix Ã

and get the compressed image.

4.6. The relationship between REIS and SVD

In summary, the details about the relationship between REIS and SVD is following listed:

(I) We specially apply the REIS based on SVD to do image compression including

large-sized image data and high-resolution image data.

(II) We only need to keep the first some singular values with largest modulus and take

out remaining small singular values from SVD in order to achieve image compression.

(III) For large-sized images and high-resolution images, we should compute dominant

eigenvalues of the large-scale matrices, which is related to singular values with largest

modulus. Therefore, we adapt efficiently the refinement of estimates of invariant

subspaces for large-scale matrices to get the dominant eigenvalues with largest mod-

ulus, through some nonsymmetric algebraic Riccati equations or their associated

Sylvester’s equations via Newton’s method.

(IV) In the applications, which have not been investigated thoroughly for large-sized im-

ages and high-resolution images associated with large-scale matrices, are important

and interesting, since they form a vital part of any eigen-solver or in the context of

the continuation of invariant subspaces.
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We summarize the algorithm for the refinement of estimates invariant subspaces in

Algorithm 4.1 below, together with the dominant operation counts on the right side.

The algorithm with real Schur form described in Section 4.4, is similar and will not be

summarized here. We assume sM flops for one linear solve of a linear system associated

with A − γIn with s right-hand-sides, and cbn (or qn) flops for one multiplication of a

vector in Rn by A or its transpose (or P or its transpose). With s-dimensional invariant

subspaces, there are s factors in one of these projections and q = 4s. For the computation

of the norm of A21 in R(n−s)×s, we assume 2s2n flops [16]. The count for the solution of

(4.7) is summarized as listed:

1. Let each linear system associated with A22 − zjIn−s require Z̃ flops.

2. For an application of the SMWF (4.4) to (4.7), the rank-s update in Ã22− zjIn−s =

(A22 − zj)I −RkA12 requires the quantities (A22 − zjI)
−1sj (from (4.7) and (A22 −

zjI)
−1Rk), totalling (s + 1)Z̃ flops. Putting all the terms together in (4.4) adds

another 2s(s+ 2)n flops.

3. Solving (4.10) and (4.11) requires (s + 1)(M + 2qn) flops, and computing C−1
22 v =

(A22−zjIn−s)
−1v in (4.9) requires (2s2+1)n flops. Summing these counts up implies

Z̃ = (s+ 1)M + [2s2 + 2(s+ 1)q + 1]n flops.

4. In total, the flop count for (4.7) is s[Z̃ + sZ̃ + 2s(s + 2)n] = s(s + 1)M + s2(s +

1)M + cans with

ca ≡ 2s3 + 4s2 + 5s+ 1 + 2(s+ 1)2q.

Algorithm 4.1

1: Inputs: A, P = [P1, P2] in Householder factors, ϵ > 0

2: Outputs: R, Ã = P1Ã11P
⊤
1

3: compute A11, A12, A21; ▷ 2(cb + q + 3)sn

4: Assign k = 0, R0 = 0, r0 = A21;

5: if ∥rk∥ < ϵ, then R = Rk, exit; ▷ 2s2n

6: else compute Ã11 = A11 +A12Rk ▷ 2s2n

7: compute Schur decomposition Ã11 = QZQ⊤; ▷ O(s3)

8: compute Â21 = (A21 +RkA12Rk)Q, X−jηj (j = 2, . . . , s); ▷ (2.5s+ 1.5)sn

9: solve (4.7) for X with the help of the SMWF (4.4); ▷ s(s+ 1)M + can

10: compute Rk+1 = XQ⊤, rk+1 = N (Rk+1), k ← k + 1; ▷ (2cb + q + 3)n

11: end

The final operation count for Algorithm 4.1 is s(s+1)M + c̃an flops per iteration with

c̃a ≡ ca + 6.5s2 + 1.5s + 2cb + q + 3, in addition to 2(cb + q + 3)sn flops for the initial

computation of A11, A12 and A21.
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5. Numerical examples

In this section we present the results of five numerical experiments to show the perfor-

mance of approximate invariant subspaces for large-scale matrices based on SVD in image

compression. To validate the proposed algorithm, a number of experiments were con-

ducted on real images. A set of grey-scale images, Lena, Pentagon, Fishing Boat, Barbara

and Peppers are shown in Figure 5.1 for testing the performance, of which Lena is a quite

smooth figure image; Pentagon and Fishing Boat are outdoor pictures with well-separated

background; Barbara is highly textured and Peppers is an image of natural product, con-

sisting of many but well-separated objects.

(a) Lena (b) Pentagon

(c) Fishing Boat (d) Barbara

(e) Peppers

Fig. 1 Original Image 16

(a) Lena
(a) Lena (b) Pentagon

(c) Fishing Boat (d) Barbara

(e) Peppers

Fig. 1 Original Image 16

(b) Pentagon
(a) Lena (b) Pentagon

(c) Fishing Boat (d) Barbara

(e) Peppers

Fig. 1 Original Image 16

(c) Fishing Boat
(a) Lena (b) Pentagon

(c) Fishing Boat (d) Barbara

(e) Peppers

Fig. 1 Original Image 16

(d) Barbara

(a) Lena (b) Pentagon

(c) Fishing Boat (d) Barbara

(e) Peppers

Fig. 1 Original Image 16(e) Peppers

Figure 5.1: Original image.
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As the original pixel size of images is not large-scale, we modify Figure 5.1(c)(d)(e)

into high-resolution images by using the MATLAB command imresize.m. Therefore, the

following size of each image is changed into 512× 512, 1024× 1024, 5120× 5120, 10200×
10200, 51000×51000 and 8-bit per pixel. In order to present the numerical performance of

our algorithm, we list the dimension of the invariant subspaces (k), the compression ratio

(CR), the mean square error (MSE), the peak signal to noise ratio (PSNR), the structural

similarity index (SSIM), and the CPU time in seconds (CPU) for each compressed image

in Tables 5.1–5.5 below. This ratio is often used as the compression degree and the quality

measurement between the original and compressed images. Furthermore, we draw three

figures for each compressed image to illustrate the relationship between normalize MSE

values in dB (NMSE), normalize PSNR values in dB (NPSNR) and SSIM with respect

to the selected number of singular values in proposed image compression technique. The

normalize MSE and normalize PSNR in the figures in Examples 5.1–5.4 are listed as

NMSE =
MSE(k)

MSE(k = 2)
and NPSNR =

PSNR(k)

PSNR(k = 2)
,

where MSE(k), MSE(k = 2) and PSNR(k), PSNR(k = 2) denote the MSE and PSNR

values obtained from k and k = 2, respectively. In order to see the performance of the

proposed image compression techniques, we show the quantitative comparison between

the proposed techniques and the discrete cosine transformation (DCT) [22] by use of

MSE, PSNR and SSIM for the same compression ratio in Examples 5.1–5.4. For the

largest Example 5.4, we only perform our proposed technique as the DCT compression

technique can not work. All testing images are downloaded from the image database at

the Signal and Image Processing Institute, University of South California (USC-SIPI). All

the numerical experiments are carried on a MacBook Pro with a 2.30 GHz Intel Core 8

Duo processor and 64 GB RAM, with machine accuracy eps = 2.22 × 10−16. All the

numerical results are obtained from running the MATLAB [27] Version R2022a software.

Example 5.1. Figures 5.2–5.13 show examples of images used for the system tests under

different k terms. When the values of k are taken as 2 and 10, the images are blurred

which are shown in Figures 5.2–5.3. k = 2 and 10 mean that the images are reconstructed

considering only the first two and ten singular values of the matrix D. Figures 5.4–5.5

show the reconstructed images with k = 20 and 30 which are somewhat less distorted than

Figures 5.2–5.3. By observing Figures 5.2 to 5.13, it is clear that as the value of k (i.e.,

number of singular values used for reconstruction of the compressed image) is increased,

the compressed image is close to the original image. This implies that image quality goes

on increasing as the value of k is increased. All the above observations can be summarized

in the form of Table 5.1 and Figure 5.14 as shown below.
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Example 5.1

Figures 2-13 show examples of images used for the system tests under different k terms.
When the values of k are taken as 2 and 10, the images are blurred which are shown in
Figures 2-3. k = 2 and 10 mean that the images are reconstructed considering only the
first two and ten singular values of the matrix D. Figures 4-5 show the reconstructed
images with k = 20 and 30 which are somewhat less distorted than Figures 2-3. By
observing Figures 2 to 13, it is clear that as the value of k (i.e. number of singular
values used for reconstruction of the compressed image) is increased, the compressed
image is close to the original image. It implies that image quality goes on increasing
as the value of k is increased. All the above observations can be summarized in the
form of a Table 1 and a Figure 14 as shown below.

Fig. 2 k = 2 Fig. 3 k = 10 Fig. 4 k = 20

Fig. 5 k = 30 Fig. 6 k = 41 Fig. 7 k = 51
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Figure 5.2: k = 2

Example 5.1

Figures 2-13 show examples of images used for the system tests under different k terms.
When the values of k are taken as 2 and 10, the images are blurred which are shown in
Figures 2-3. k = 2 and 10 mean that the images are reconstructed considering only the
first two and ten singular values of the matrix D. Figures 4-5 show the reconstructed
images with k = 20 and 30 which are somewhat less distorted than Figures 2-3. By
observing Figures 2 to 13, it is clear that as the value of k (i.e. number of singular
values used for reconstruction of the compressed image) is increased, the compressed
image is close to the original image. It implies that image quality goes on increasing
as the value of k is increased. All the above observations can be summarized in the
form of a Table 1 and a Figure 14 as shown below.

Fig. 2 k = 2 Fig. 3 k = 10 Fig. 4 k = 20

Fig. 5 k = 30 Fig. 6 k = 41 Fig. 7 k = 51
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Figure 5.3: k = 10

Example 5.1

Figures 2-13 show examples of images used for the system tests under different k terms.
When the values of k are taken as 2 and 10, the images are blurred which are shown in
Figures 2-3. k = 2 and 10 mean that the images are reconstructed considering only the
first two and ten singular values of the matrix D. Figures 4-5 show the reconstructed
images with k = 20 and 30 which are somewhat less distorted than Figures 2-3. By
observing Figures 2 to 13, it is clear that as the value of k (i.e. number of singular
values used for reconstruction of the compressed image) is increased, the compressed
image is close to the original image. It implies that image quality goes on increasing
as the value of k is increased. All the above observations can be summarized in the
form of a Table 1 and a Figure 14 as shown below.

Fig. 2 k = 2 Fig. 3 k = 10 Fig. 4 k = 20

Fig. 5 k = 30 Fig. 6 k = 41 Fig. 7 k = 51
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Figure 5.4: k = 20

Example 5.1

Figures 2-13 show examples of images used for the system tests under different k terms.
When the values of k are taken as 2 and 10, the images are blurred which are shown in
Figures 2-3. k = 2 and 10 mean that the images are reconstructed considering only the
first two and ten singular values of the matrix D. Figures 4-5 show the reconstructed
images with k = 20 and 30 which are somewhat less distorted than Figures 2-3. By
observing Figures 2 to 13, it is clear that as the value of k (i.e. number of singular
values used for reconstruction of the compressed image) is increased, the compressed
image is close to the original image. It implies that image quality goes on increasing
as the value of k is increased. All the above observations can be summarized in the
form of a Table 1 and a Figure 14 as shown below.

Fig. 2 k = 2 Fig. 3 k = 10 Fig. 4 k = 20

Fig. 5 k = 30 Fig. 6 k = 41 Fig. 7 k = 51
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Figure 5.5: k = 30

Example 5.1

Figures 2-13 show examples of images used for the system tests under different k terms.
When the values of k are taken as 2 and 10, the images are blurred which are shown in
Figures 2-3. k = 2 and 10 mean that the images are reconstructed considering only the
first two and ten singular values of the matrix D. Figures 4-5 show the reconstructed
images with k = 20 and 30 which are somewhat less distorted than Figures 2-3. By
observing Figures 2 to 13, it is clear that as the value of k (i.e. number of singular
values used for reconstruction of the compressed image) is increased, the compressed
image is close to the original image. It implies that image quality goes on increasing
as the value of k is increased. All the above observations can be summarized in the
form of a Table 1 and a Figure 14 as shown below.

Fig. 2 k = 2 Fig. 3 k = 10 Fig. 4 k = 20

Fig. 5 k = 30 Fig. 6 k = 41 Fig. 7 k = 51
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Figure 5.6: k = 41

Example 5.1

Figures 2-13 show examples of images used for the system tests under different k terms.
When the values of k are taken as 2 and 10, the images are blurred which are shown in
Figures 2-3. k = 2 and 10 mean that the images are reconstructed considering only the
first two and ten singular values of the matrix D. Figures 4-5 show the reconstructed
images with k = 20 and 30 which are somewhat less distorted than Figures 2-3. By
observing Figures 2 to 13, it is clear that as the value of k (i.e. number of singular
values used for reconstruction of the compressed image) is increased, the compressed
image is close to the original image. It implies that image quality goes on increasing
as the value of k is increased. All the above observations can be summarized in the
form of a Table 1 and a Figure 14 as shown below.

Fig. 2 k = 2 Fig. 3 k = 10 Fig. 4 k = 20

Fig. 5 k = 30 Fig. 6 k = 41 Fig. 7 k = 51
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Figure 5.7: k = 51

Fig. 8 k = 60 Fig. 9 k = 73 Fig. 10 k = 90

Fig. 11 k = 110 Fig. 12 k = 130 Fig. 13 k = 151

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
2 127.875 2128.965 14.849 0.016 12.627
10 25.575 1023.328 18.031 0.059 12.193
20 12.788 704.816 19.65 0.108 10.14
30 8.525 577.241 20.517 0.14 12.053
41 6.238 445.753 21.64 0.183 11.997
51 5.015 368.077 22.471 0.21 13.515
60 4.263 327.12 22.984 0.234 80.914
73 3.602 263.101 23.93 0.271 10.714
90 2.842 212.081 24.866 0.304 14.095
110 2.325 162.983 26.009 0.347 27.139
130 1.967 129.718 27.001 0.384 11.816
151 1.694 107.1 27.833 0.416 35.812

Table 1 Example 5.1: Summary of the Result for Image
Compression

18

Figure 5.8: k = 60

Fig. 8 k = 60 Fig. 9 k = 73 Fig. 10 k = 90

Fig. 11 k = 110 Fig. 12 k = 130 Fig. 13 k = 151

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
2 127.875 2128.965 14.849 0.016 12.627
10 25.575 1023.328 18.031 0.059 12.193
20 12.788 704.816 19.65 0.108 10.14
30 8.525 577.241 20.517 0.14 12.053
41 6.238 445.753 21.64 0.183 11.997
51 5.015 368.077 22.471 0.21 13.515
60 4.263 327.12 22.984 0.234 80.914
73 3.602 263.101 23.93 0.271 10.714
90 2.842 212.081 24.866 0.304 14.095
110 2.325 162.983 26.009 0.347 27.139
130 1.967 129.718 27.001 0.384 11.816
151 1.694 107.1 27.833 0.416 35.812

Table 1 Example 5.1: Summary of the Result for Image
Compression
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Figure 5.9: k = 73

Fig. 8 k = 60 Fig. 9 k = 73 Fig. 10 k = 90

Fig. 11 k = 110 Fig. 12 k = 130 Fig. 13 k = 151

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
2 127.875 2128.965 14.849 0.016 12.627
10 25.575 1023.328 18.031 0.059 12.193
20 12.788 704.816 19.65 0.108 10.14
30 8.525 577.241 20.517 0.14 12.053
41 6.238 445.753 21.64 0.183 11.997
51 5.015 368.077 22.471 0.21 13.515
60 4.263 327.12 22.984 0.234 80.914
73 3.602 263.101 23.93 0.271 10.714
90 2.842 212.081 24.866 0.304 14.095
110 2.325 162.983 26.009 0.347 27.139
130 1.967 129.718 27.001 0.384 11.816
151 1.694 107.1 27.833 0.416 35.812

Table 1 Example 5.1: Summary of the Result for Image
Compression
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Figure 5.10: k = 90

Fig. 8 k = 60 Fig. 9 k = 73 Fig. 10 k = 90

Fig. 11 k = 110 Fig. 12 k = 130 Fig. 13 k = 151

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
2 127.875 2128.965 14.849 0.016 12.627
10 25.575 1023.328 18.031 0.059 12.193
20 12.788 704.816 19.65 0.108 10.14
30 8.525 577.241 20.517 0.14 12.053
41 6.238 445.753 21.64 0.183 11.997
51 5.015 368.077 22.471 0.21 13.515
60 4.263 327.12 22.984 0.234 80.914
73 3.602 263.101 23.93 0.271 10.714
90 2.842 212.081 24.866 0.304 14.095
110 2.325 162.983 26.009 0.347 27.139
130 1.967 129.718 27.001 0.384 11.816
151 1.694 107.1 27.833 0.416 35.812

Table 1 Example 5.1: Summary of the Result for Image
Compression
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Figure 5.11: k = 110

Fig. 8 k = 60 Fig. 9 k = 73 Fig. 10 k = 90

Fig. 11 k = 110 Fig. 12 k = 130 Fig. 13 k = 151

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
2 127.875 2128.965 14.849 0.016 12.627
10 25.575 1023.328 18.031 0.059 12.193
20 12.788 704.816 19.65 0.108 10.14
30 8.525 577.241 20.517 0.14 12.053
41 6.238 445.753 21.64 0.183 11.997
51 5.015 368.077 22.471 0.21 13.515
60 4.263 327.12 22.984 0.234 80.914
73 3.602 263.101 23.93 0.271 10.714
90 2.842 212.081 24.866 0.304 14.095
110 2.325 162.983 26.009 0.347 27.139
130 1.967 129.718 27.001 0.384 11.816
151 1.694 107.1 27.833 0.416 35.812

Table 1 Example 5.1: Summary of the Result for Image
Compression
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Figure 5.12: k = 130

Fig. 8 k = 60 Fig. 9 k = 73 Fig. 10 k = 90

Fig. 11 k = 110 Fig. 12 k = 130 Fig. 13 k = 151

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
2 127.875 2128.965 14.849 0.016 12.627
10 25.575 1023.328 18.031 0.059 12.193
20 12.788 704.816 19.65 0.108 10.14
30 8.525 577.241 20.517 0.14 12.053
41 6.238 445.753 21.64 0.183 11.997
51 5.015 368.077 22.471 0.21 13.515
60 4.263 327.12 22.984 0.234 80.914
73 3.602 263.101 23.93 0.271 10.714
90 2.842 212.081 24.866 0.304 14.095
110 2.325 162.983 26.009 0.347 27.139
130 1.967 129.718 27.001 0.384 11.816
151 1.694 107.1 27.833 0.416 35.812

Table 1 Example 5.1: Summary of the Result for Image
Compression

18

Figure 5.13: k = 151
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Table 5.1: Summary of the result for image compression in Example 5.1.

k CR MSE (dB) PSNR (dB) SSIM CPU (s)

2 127.875 2128.965 14.849 0.016 12.627

10 25.575 1023.328 18.031 0.059 12.193

20 12.788 704.816 19.65 0.108 10.14

30 8.525 577.241 20.517 0.14 12.053

41 6.238 445.753 21.64 0.183 11.997

51 5.015 368.077 22.471 0.21 13.515

60 4.263 327.12 22.984 0.234 80.914

73 3.602 263.101 23.93 0.271 10.714

90 2.842 212.081 24.866 0.304 14.095

110 2.325 162.983 26.009 0.347 27.139

130 1.967 129.718 27.001 0.384 11.816

151 1.694 107.1 27.833 0.416 35.812

(a) NMSE (b) NPSNR

(c) SSIM

Fig. 14 The diagram of curve for the image of ”Lena” in the three measurements (a) NMSE (b)
NPSNR (c) SSIM

In the above Table 1 and Figure 14, degree of compression is measured using CR.
MSE, PSNR values expressed in dB and SSIM are used as a measure of image quality.
Following conclusions can be drawn on the basis of the above table 1 and figures 2-14:

1. Value of k represents the number of singular values used in the reconstruction of
the compressed image.

2. Smaller the value of k, the more is the compression ratio (i.e. less storage space
is required) but image quality deteriorates (i.e. larger MSE and smaller PSNR
values).

3. As the value of k increases, image quality improves (the normalize MSE is dimin-
ishing by degrees and the normalize PSNR/SSIM are upward progressively) but
more storage space is required to store the compressed image.

4. Therefore, we strike a balance between storage space required and image quality
for good image compression. And from the above observations, we can find that
optimum compression results are obtained when MSE of the compressed image
is less than or equal to 212.081 dB (i.e. MSE ≤ 212.081 dB). In our example, it
is obtained when the value of k is 90.
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(a) NMSE(a) NMSE (b) NPSNR

(c) SSIM

Fig. 14 The diagram of curve for the image of ”Lena” in the three measurements (a) NMSE (b)
NPSNR (c) SSIM
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Figure 5.14: The diagram of curve for the image of “Lena” in the three measurements.

In the above Table 5.1 and Figure 5.14, degree of compression is measured using CR.

MSE, PSNR values expressed in dB and SSIM are used as a measure of image quality.

Following conclusions can be drawn on the basis of Table 5.1 and Figures 5.2–5.14:

1. Value of k represents the number of singular values used in the reconstruction of the

compressed image.

2. Smaller the value of k, the more is the compression ratio (i.e., less storage space is

required) but image quality deteriorates (i.e., larger MSE and smaller PSNR values).
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3. As the value of k increases, image quality improves (the normalize MSE is diminish-

ing by degrees and the normalize PSNR/SSIM are upward progressively) but more

storage space is required to store the compressed image.

4. Therefore, we strike a balance between storage space required and image quality

for good image compression. And from the above observations, we can find that

optimum compression results are obtained when MSE of the compressed image is

less than or equal to 212.081 dB (i.e., MSE ≤ 212.081 dB). In our example, it is

obtained when the value of k is 90.

5. Generally, the choice of k depends on the application. For example, in some appli-

cations, if image quality is important then higher values of k are chosen. However,

the storage space is more important than image quality, in the case lower k values

are taken.

6. When k is equal to the rank of the image matrix, the reconstructed image is almost

same as the original one. As k increases further, it is negligible decrease in MSE

and increase in PSNR values. This means that it is negligible improvement in the

image quality.

7. As an example, we fix the same compression ratio (CR = 1.694) to show MSE,

PSNR, SSIM and their figures, respectively. The MSE value of the proposed com-

pression technique for Lena image is 107.1 lower than that of DCT compression

about 17543.782. However, the PSNR and SSIM values for the proposed compres-

sion technique are 27.833 and 0.416 higher than that of DCT compression technique

about 5.69 and 0.00002, respectively. The figures of our proposed technique and

DCT compression are shown in Figure 5.15. From the above information, the pro-

posed technique outperforms DCT compression technique.
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information, the proposed technique outperforms DCT compression technique.

(a) Our Proposed Technique (b) DCT

Fig. 15 The images of ”Lena” when CR= 1.694

Example 5.2

Figures 16-27 describe examples of images used for the system tests under different k
terms. Figure 16 displays the result of the reconstruction image using 2 singular values,
and Figure 17 shows the result using 11 singular values and so on. The observation on
those examples, we found when k ≤ 101, the images are blurry and with the increase
of singular values we have a approach to the original image. Table 2 shows a summary
of the results obtained with the measure of CR, MSE, PSNR, SSIM and CPU time
for the tested images.
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Figure 5.15: The images of “Lena” when CR = 1.694.
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Example 5.2. Figures 5.16–5.27 describe examples of images used for the system tests

under different k terms. Figure 5.16 displays the result of the reconstruction image using

2 singular values, and Figure 5.17 shows the result using 11 singular values and so on. The

observation on those examples, we found when k ≤ 101, the images are blurry and with

the increase of singular values we have a approach to the original image. Table 5.2 shows

a summary of the results obtained with the measure of CR, MSE, PSNR, SSIM and CPU

time for the tested images.

Fig. 16 k = 2 Fig. 17 k = 11 Fig. 18 k = 21

Fig. 19 k = 30 Fig. 20 k = 41 Fig. 21 k = 50

Fig. 22 k = 101 Fig. 23 k = 150 Fig. 24 k = 200
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Figure 5.16: k = 2
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Figure 5.17: k = 11
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Figure 5.18: k = 21
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Figure 5.19: k = 30

Fig. 16 k = 2 Fig. 17 k = 11 Fig. 18 k = 21

Fig. 19 k = 30 Fig. 20 k = 41 Fig. 21 k = 50

Fig. 22 k = 101 Fig. 23 k = 150 Fig. 24 k = 200

21

Figure 5.20: k = 41
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Figure 5.21: k = 50
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Figure 5.22: k = 101
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Figure 5.23: k = 150
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Figure 5.24: k = 200
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Fig. 25 k = 251 Fig. 26 k = 301 Fig. 27 k = 352

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
2 255.875 691.932 19.73 0.013 11.644
11 46.523 608.641 20.287 0.048 12.59
21 24.369 530.326 20.885 0.082 12.261
30 17.058 487.121 21.254 0.106 11.229
41 12.482 440.676 21.69 0.131 23.697
50 10.235 412.473 21.977 0.149 45.308
101 5.067 317.4 23.115 0.228 23.573
150 3.412 266.637 23.872 0.284 171.583
200 2.559 228.956 24.533 0.335 96.372
251 2.039 200.427 25.111 0.38 40.957
301 1.7 176.482 25.664 0.42 43.791
352 1.462 155.218 26.221 0.459 37.623

Table 2 Example 5.2: Summary of the Result for Image
Compression
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Figure 5.26: k = 301
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Figure 5.27: k = 352

Table 5.2: Summary of the result for image compression in Example 5.2.

k CR MSE (dB) PSNR (dB) SSIM CPU (s)

2 255.875 691.932 19.73 0.013 11.644

11 46.523 608.641 20.287 0.048 12.59

21 24.369 530.326 20.885 0.082 12.261

30 17.058 487.121 21.254 0.106 11.229

41 12.482 440.676 21.69 0.131 23.697

50 10.235 412.473 21.977 0.149 45.308

101 5.067 317.4 23.115 0.228 23.573

150 3.412 266.637 23.872 0.284 171.583

200 2.559 228.956 24.533 0.335 96.372

251 2.039 200.427 25.111 0.38 40.957

301 1.7 176.482 25.664 0.42 43.791

352 1.462 155.218 26.221 0.459 37.623

(a) NMSE (b) NPSNR

(c) SSIM

Fig. 28 The diagram of curve for the image of ”Pentagon” in the three measurements (a) NMSE
(b) NPSNR (c) SSIM

With the results from Table 2 and Figure 28, we have a couple of the observations:
1. Using less singular value (smaller k), the better compression ratio is achieved.
2. But, the more singular value is used (larger k), the quality measurement MSE

is smaller (the NMSE becomes reducing) and PSNR is larger (the NPSNR and
SSIM are rising stage by stage for better image quality), then the reconstructed
images are more equal to the original one.

3. For the testing image, the acceptable image quality is about with k = 150, and
the compression ratio is 3.412.

4. The reconstructed image is close to original one when k = 352. At this point, the
CR= 1.462, and MSE= 155.218.

5. As an example, we fix the same compression ratio (CR=3.412) to show MSE,
PSNR, SSIM and their figures, respectively. The MSE value of the proposed
compression technique for Pentagon image is 266.637 lower than that of DCT
compression about 19393.149. However, the PSNR and SSIM values for the pro-
posed compression technique are 23.872 and 0.284 higher than that of DCT
compression technique about 5.254 and 0.00002, respectively. The figures of our
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(c) SSIM

Figure 5.28: The diagram of curve for the image of “Pentagon” in the three measurements.
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With the results from Table 5.2 and Figure 5.28, we have a couple of the observations:

1. Using less singular value (smaller k), the better compression ratio is achieved.

2. But, the more singular value is used (larger k), the quality measurement MSE is

smaller (the NMSE becomes reducing) and PSNR is larger (the NPSNR and SSIM

are rising stage by stage for better image quality), then the reconstructed images

are more equal to the original one.

3. For the testing image, the acceptable image quality is about with k = 150, and the

compression ratio is 3.412.

4. The reconstructed image is close to original one when k = 352. At this point, the

CR = 1.462, and MSE = 155.218.

5. As an example, we fix the same compression ratio (CR = 3.412) to showMSE, PSNR,

SSIM and their figures, respectively. The MSE value of the proposed compression

technique for Pentagon image is 266.637 lower than that of DCT compression about

19393.149. However, the PSNR and SSIM values for the proposed compression

technique are 23.872 and 0.284 higher than that of DCT compression technique about

5.254 and 0.00002, respectively. The figures of our proposed technique and DCT

compression are shown in Figure 5.29. Overall, the proposed technique overcomes

DCT compression technique.
proposed technique and DCT compression are shown in the Figure 29. Overall,
the proposed technique overcomes DCT compression technique.

(a) Our Proposed Technique (b) DCT

Fig. 29 The images of ”Pentago” when CR= 3.412

Example 5.3

Figures 30-41 represent examples of images used for the system tests under different k
terms. Since the pixel size of Fishing Boat is large-scale with 5120×5120, the first seven
reconstruction images in Figures are still blurry. When k ≥ 151, the reconstruction
images are visible in Figures 37. When we take k = 500, the compressed image is
close to the original one and it shows the efficiency of our proposed algorithm. Table 3
presents a summary of the results obtained with the measure of k, CR, MSE, PSNR,
SSIM and CPU for the tested image. Moreover, we plot some figures to show the
trends between NMSE, NPSNR, SSIM and the selected number of singular values k.

Fig. 30 k = 2 Fig. 31 k = 11 Fig. 32 k = 21
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(b) DCT

Figure 5.29: The images of “Pentago” when CR = 3.412.

Example 5.3. Figures 5.30–5.41 represent examples of images used for the system tests

under different k terms. Since the pixel size of Fishing Boat is large-scale with 5120 ×
5120, the first seven reconstruction images in figures are still blurry. When k ≥ 151, the

reconstruction images are visible in Figure 5.37. When we take k = 500, the compressed

image is close to the original one and it shows the efficiency of our proposed algorithm.
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Figure 5.30: k = 2
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the proposed technique overcomes DCT compression technique.
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Figure 5.31: k = 11
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Figure 5.32: k = 21
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Figure 5.36: k = 100
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Figure 5.37: k = 151
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Figure 5.38: k = 200
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Figure 5.40: k = 351
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Figure 5.41: k = 500
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Table 5.3 presents a summary of the results obtained with the measure of k, CR, MSE,

PSNR, SSIM and CPU for the tested image. Moreover, we plot some figures to show the

trends between NMSE, NPSNR, SSIM and the selected number of singular values k.

Table 5.3: Summary of the result for image compression in Example 5.3.

k CR MSE (dB) PSNR (dB) SSIM CPU (s)

2 1279.875 1696.532 15.835 0.026 10.435

11 232.705 1219.155 17.27 0.057 17.78

21 121.893 915.422 18.515 0.085 18.976

40 63.994 630.717 20.132 0.123 30.388

60 42.663 504.351 21.104 0.152 124.052

82 31.216 402.450 22.084 0.178 138.578

100 25.598 326.188 22.996 0.198 192.216

151 16.952 190.797 25.325 0.246 214.307

200 12.799 119.67 27.351 0.287 253.806

250 10.239 76.449 29.297 0.333 158.331

351 7.293 34.082 32.806 0.43 390.688

500 5.12 7.361 39.461 0.555 49.525
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Fig. 42 The diagram of curve for the image of ”Fishing Boat” in the three measurements (a) NMSE
(b) NPSNR (c) SSIM
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(b) NPSNR
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(c) SSIM

Figure 5.42: The diagram of curve for the image of “Fishing Boat” in the three measure-

ments.

Based on the results from Table 5.3 and Figure 5.42, we can get some conclusions:

1. Smaller the value of k, the larger is the compression ratio and the mean square

error, but otherwise the smaller is the peak signal to noise ratio and the structural

similarity index.
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2. Since the value of k is increasing, the normalize MSE is gradually decreasing, but

the normalize PSNR and the SSIM are raising step by step.

3. For the testing image, the acceptable image quality is about with k = 200, and the

CR, MSE, PSNR and SSIM are 12.799, 119.67, 27.351 and 0.287, respectively.

4. The compressed image approaches original one when k = 500. At this point, the

CR = 5.12, PSNR = 39.461, SSIM = 0.555, and CPU = 49.525.

5. In the example, we fix the same compression ratio (CR = 25.598) to show MSE,

PSNR, SSIM and their figures, respectively. The MSE value of the proposed com-

pression technique for Fishing Boat image is 326.188 lower than that of DCT com-

pression about 1462.233. However, the PSNR and SSIM values for the proposed

compression technique are 22.996 and 0.198 higher than that of DCT compres-

sion technique about 16.481 and 0.002, respectively. The figures of our proposed

technique and DCT compression are shown in Figure 5.43. Overall, the proposed

technique overcomes DCT compression technique.

Based on the results from Table 3 and Figure 42, we can get some conclusions:
1. Smaller the value of k, the larger is the compression ratio and the mean square

error, but otherwise the smaller is the peak signal to noise ratio and the structural
similarity index.

2. Since the value of k is increasing, the normalize MSE is gradually decreasing, but
the normalize PSNR and the SSIM are raising step by step.

3. For the testing image, the acceptable image quality is about with k = 200, and
the CR, MSE, PSNR and SSIM are 12.799, 119.67, 27.351 and 0.287, respectively.

4. The compressed image approaches original one when k = 500. At this point, the
CR= 5.12, PSNR= 39.461, SSIM= 0.555, and CPU= 49.525.

5. In the example, we fix the same compression ratio (CR=25.598) to show MSE,
PSNR, SSIM and their figures, respectively. The MSE value of the proposed com-
pression technique for Fishing Boat image is 326.188 lower than that of DCT
compression about 1462.233. However, the PSNR and SSIM values for the pro-
posed compression technique are 22.996 and 0.198 higher than that of DCT
compression technique about 16.481 and 0.002, respectively. The figures of our
proposed technique and DCT compression are shown in the Figure 43. Overall,
the proposed technique overcomes DCT compression technique.

(a) Our Proposed Technique (b) DCT

Fig. 43 The images of ”Fishing Boat” when CR= 25.598

Example 5.4

Figures 44-55 represent examples of images used for the system tests under different
k terms. When we take the value of k ≤ 201, the reconstruction images are blurry
in Figures 44-50. With the more singular values used, the compressed images become
more and more visible. When the value of k is taken 600, the reconstruction image is
close to the original one with the pixel size 10200 × 10200 and it shows the efficiency
of our proposed algorithm. We list Table 4 and three figures to describe a summary
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(b) DCT

Figure 5.43: The images of “Fishing Boat” when CR = 25.598.

Example 5.4. Figures 5.44–5.55 represent examples of images used for the system tests

under different k terms. When we take the value of k ≤ 201, the reconstruction images are

blurry in Figures 5.44–5.50. With the more singular values used, the compressed images

become more and more visible. When the value of k is taken 600, the reconstruction image

is close to the original one with the pixel size 10200 × 10200 and it shows the efficiency

of our proposed algorithm. We list Table 5.4 and three figures to describe a summary of

the results obtained with the measure of k, CR, MSE, PSNR, SSIM, CPU and the trends

between NMSE, NPSNR, SSIM and k.
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of the results obtained with the measure of k, CR, MSE, PSNR, SSIM, CPU and the
trends between NMSE, NPSNR, SSIM and k.

Fig. 44 k = 2 Fig. 45 k = 10 Fig. 46 k = 20

Fig. 47 k = 51 Fig. 48 k = 101 Fig. 49 k = 150
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Figure 5.44: k = 2

of the results obtained with the measure of k, CR, MSE, PSNR, SSIM, CPU and the
trends between NMSE, NPSNR, SSIM and k.

Fig. 44 k = 2 Fig. 45 k = 10 Fig. 46 k = 20

Fig. 47 k = 51 Fig. 48 k = 101 Fig. 49 k = 150
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Figure 5.45: k = 10

of the results obtained with the measure of k, CR, MSE, PSNR, SSIM, CPU and the
trends between NMSE, NPSNR, SSIM and k.

Fig. 44 k = 2 Fig. 45 k = 10 Fig. 46 k = 20

Fig. 47 k = 51 Fig. 48 k = 101 Fig. 49 k = 150

28

Figure 5.46: k = 20

of the results obtained with the measure of k, CR, MSE, PSNR, SSIM, CPU and the
trends between NMSE, NPSNR, SSIM and k.

Fig. 44 k = 2 Fig. 45 k = 10 Fig. 46 k = 20

Fig. 47 k = 51 Fig. 48 k = 101 Fig. 49 k = 150
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Figure 5.47: k = 51

of the results obtained with the measure of k, CR, MSE, PSNR, SSIM, CPU and the
trends between NMSE, NPSNR, SSIM and k.

Fig. 44 k = 2 Fig. 45 k = 10 Fig. 46 k = 20

Fig. 47 k = 51 Fig. 48 k = 101 Fig. 49 k = 150
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Figure 5.48: k = 101

of the results obtained with the measure of k, CR, MSE, PSNR, SSIM, CPU and the
trends between NMSE, NPSNR, SSIM and k.

Fig. 44 k = 2 Fig. 45 k = 10 Fig. 46 k = 20

Fig. 47 k = 51 Fig. 48 k = 101 Fig. 49 k = 150
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Figure 5.49: k = 150

Fig. 50 k = 201 Fig. 51 k = 250 Fig. 52 k = 301

Fig. 53 k = 400 Fig. 54 k = 500 Fig. 55 k = 601

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
2 2549.875 2217.745 14.672 0.017 26.574
10 509.975 1606.138 16.073 0.042 40.776
20 254.988 1144.203 17.546 0.066 71.595
51 99.995 646.817 20.023 0.109 233.444
101 50.493 410.688 21.996 0.163 506.02
150 33.998 292.339 23.472 0.213 640.837
201 25.372 212.334 24.861 0.251 1096.584
250 20.399 156.979 26.172 0.27 291.706
301 16.943 110.515 27.697 0.273 574.588
400 12.749 53.086 30.881 0.278 2791.985
500 10.2 35.332 32.649 0.283 1329.791
601 8.485 32.065 33.07 0.286 16723.542

Table 4 Example 5.4: Summary of the Result for Image
Compression

29

Figure 5.50: k = 201
Fig. 50 k = 201 Fig. 51 k = 250 Fig. 52 k = 301

Fig. 53 k = 400 Fig. 54 k = 500 Fig. 55 k = 601
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500 10.2 35.332 32.649 0.283 1329.791
601 8.485 32.065 33.07 0.286 16723.542

Table 4 Example 5.4: Summary of the Result for Image
Compression
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Figure 5.51: k = 250
Fig. 50 k = 201 Fig. 51 k = 250 Fig. 52 k = 301

Fig. 53 k = 400 Fig. 54 k = 500 Fig. 55 k = 601

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
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10 509.975 1606.138 16.073 0.042 40.776
20 254.988 1144.203 17.546 0.066 71.595
51 99.995 646.817 20.023 0.109 233.444
101 50.493 410.688 21.996 0.163 506.02
150 33.998 292.339 23.472 0.213 640.837
201 25.372 212.334 24.861 0.251 1096.584
250 20.399 156.979 26.172 0.27 291.706
301 16.943 110.515 27.697 0.273 574.588
400 12.749 53.086 30.881 0.278 2791.985
500 10.2 35.332 32.649 0.283 1329.791
601 8.485 32.065 33.07 0.286 16723.542

Table 4 Example 5.4: Summary of the Result for Image
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Figure 5.52: k = 301

Fig. 50 k = 201 Fig. 51 k = 250 Fig. 52 k = 301

Fig. 53 k = 400 Fig. 54 k = 500 Fig. 55 k = 601

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
2 2549.875 2217.745 14.672 0.017 26.574
10 509.975 1606.138 16.073 0.042 40.776
20 254.988 1144.203 17.546 0.066 71.595
51 99.995 646.817 20.023 0.109 233.444
101 50.493 410.688 21.996 0.163 506.02
150 33.998 292.339 23.472 0.213 640.837
201 25.372 212.334 24.861 0.251 1096.584
250 20.399 156.979 26.172 0.27 291.706
301 16.943 110.515 27.697 0.273 574.588
400 12.749 53.086 30.881 0.278 2791.985
500 10.2 35.332 32.649 0.283 1329.791
601 8.485 32.065 33.07 0.286 16723.542
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Figure 5.53: k = 400

Fig. 50 k = 201 Fig. 51 k = 250 Fig. 52 k = 301

Fig. 53 k = 400 Fig. 54 k = 500 Fig. 55 k = 601

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
2 2549.875 2217.745 14.672 0.017 26.574
10 509.975 1606.138 16.073 0.042 40.776
20 254.988 1144.203 17.546 0.066 71.595
51 99.995 646.817 20.023 0.109 233.444
101 50.493 410.688 21.996 0.163 506.02
150 33.998 292.339 23.472 0.213 640.837
201 25.372 212.334 24.861 0.251 1096.584
250 20.399 156.979 26.172 0.27 291.706
301 16.943 110.515 27.697 0.273 574.588
400 12.749 53.086 30.881 0.278 2791.985
500 10.2 35.332 32.649 0.283 1329.791
601 8.485 32.065 33.07 0.286 16723.542

Table 4 Example 5.4: Summary of the Result for Image
Compression
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Figure 5.54: k = 500

Fig. 50 k = 201 Fig. 51 k = 250 Fig. 52 k = 301

Fig. 53 k = 400 Fig. 54 k = 500 Fig. 55 k = 601

k CR MSE (dB) PSNR (dB) SSIM CPU (s)
2 2549.875 2217.745 14.672 0.017 26.574
10 509.975 1606.138 16.073 0.042 40.776
20 254.988 1144.203 17.546 0.066 71.595
51 99.995 646.817 20.023 0.109 233.444
101 50.493 410.688 21.996 0.163 506.02
150 33.998 292.339 23.472 0.213 640.837
201 25.372 212.334 24.861 0.251 1096.584
250 20.399 156.979 26.172 0.27 291.706
301 16.943 110.515 27.697 0.273 574.588
400 12.749 53.086 30.881 0.278 2791.985
500 10.2 35.332 32.649 0.283 1329.791
601 8.485 32.065 33.07 0.286 16723.542

Table 4 Example 5.4: Summary of the Result for Image
Compression

29

Figure 5.55: k = 601
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Table 5.4: Summary of the result for image compression in Example 5.4.

k CR MSE (dB) PSNR (dB) SSIM CPU (s)

2 2549.875 2217.745 14.672 0.017 26.574

10 509.975 1606.138 16.073 0.042 40.776

20 254.988 1144.203 17.546 0.066 71.595

51 99.995 646.817 20.023 0.109 233.444

101 50.493 410.688 21.996 0.163 506.02

150 33.998 292.339 23.472 0.213 640.837

201 25.372 212.334 24.861 0.251 1096.584

250 20.399 156.979 26.172 0.27 291.706

301 16.943 110.515 27.697 0.273 574.588

400 12.749 53.086 30.881 0.278 2791.985

500 10.2 35.332 32.649 0.283 1329.791

601 8.485 32.065 33.07 0.286 16723.542

(a) NMSE (b) NPSNR

(c) SSIM

Fig. 56 The diagram of curve for the image of ”Fishing Boat” in the three measurements (a) NMSE
(b) NPSNR (c) SSIM

With the results from Table 4 and Figure 56, we can have some observations:
1. Using less singular value, the better compression ratio and less storage space are

achieved but the quality of reconstruction image is blurry when k = 2.
2. With the increase of value k, the NPSNR and the SSIM are gradually enlarging;

however, the NMSE is declining step by step.
3. For the testing image, the acceptable image quality is about with k = 250, and the

CR, MSE, PSNR, SSIM and CPU are 20.399, 156.979, 26.172, 0.27 and 291.706,
respectively.

4. The reconstruction image is close to original one when k = 601. At this point,
the CR= 8.485, PSNR= 33.07, SSIM= 0.286, and CPU= 16723.542.

5. In the example, we fix the same compression ratio (CR=20.399) to show MSE,
PSNR, SSIM and their figures, respectively. The MSE value of the proposed
compression technique for Barbara image is 156.979 lower than that of DCT com-
pression about 15847.982. However, the PSNR and SSIM values for the proposed
compression technique are 26.172 and 0.27 higher than that of DCT compres-
sion technique about 6.131 and 0.0002, respectively. The figures of our proposed
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With the results from Table 4 and Figure 56, we can have some observations:
1. Using less singular value, the better compression ratio and less storage space are

achieved but the quality of reconstruction image is blurry when k = 2.
2. With the increase of value k, the NPSNR and the SSIM are gradually enlarging;

however, the NMSE is declining step by step.
3. For the testing image, the acceptable image quality is about with k = 250, and the

CR, MSE, PSNR, SSIM and CPU are 20.399, 156.979, 26.172, 0.27 and 291.706,
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4. The reconstruction image is close to original one when k = 601. At this point,
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(c) SSIM

Figure 5.56: The diagram of curve for the image of “Fishing Boat” in the three measure-

ments.

With the results from Table 5.4 and Figure 5.56, we can have some observations:

1. Using less singular value, the better compression ratio and less storage space are

achieved but the quality of reconstruction image is blurry when k = 2.

2. With the increase of value k, the NPSNR and the SSIM are gradually enlarging;

however, the NMSE is declining step by step.
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3. For the testing image, the acceptable image quality is about with k = 250, and the

CR, MSE, PSNR, SSIM and CPU are 20.399, 156.979, 26.172, 0.27 and 291.706,

respectively.

4. The reconstruction image is close to original one when k = 601. At this point, the

CR = 8.485, PSNR = 33.07, SSIM = 0.286, and CPU = 16723.542.

5. In the example, we fix the same compression ratio (CR = 20.399) to show MSE,

PSNR, SSIM and their figures, respectively. The MSE value of the proposed com-

pression technique for Barbara image is 156.979 lower than that of DCT compression

about 15847.982. However, the PSNR and SSIM values for the proposed compres-

sion technique are 26.172 and 0.27 higher than that of DCT compression technique

about 6.131 and 0.0002, respectively. The figures of our proposed technique and

DCT compression are shown in Figure 5.57. From the above information, the pro-

posed technique outperforms DCT compression technique.
technique and DCT compression are shown in the Figure 57. From the above
information, the proposed technique outperforms DCT compression technique.

(a) Our Proposed Technique (b) DCT

Fig. 57 The images of ”Barbara” when CR= 20.399

Example 5.5

Figures 58-69 denote examples of images used for the system tests under different k
terms. Due to the high-resolution image of Peppers with 51000×51000, the compressed
images in Figures 64 are blurry when k ≤ 200. When the value of k is taken 700,
the reconstruction image is close to the original one and it expresses the efficiency of
our proposed algorithm. Table 5 and three figures represent a summary of the results
obtained with the measure of k, CR, MSE, PSNR, SSIM, CPU and the tendencies
between NMSE, NPSNR, SSIM and k.

Fig. 58 k = 3 Fig. 59 k = 10 Fig. 60 k = 21

31
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terms. Due to the high-resolution image of Peppers with 51000×51000, the compressed
images in Figures 64 are blurry when k ≤ 200. When the value of k is taken 700,
the reconstruction image is close to the original one and it expresses the efficiency of
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between NMSE, NPSNR, SSIM and k.
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(b) DCT

Figure 5.57: The images of “Barbara” when CR = 20.399.

Example 5.5. Figures 5.58–5.69 denote examples of images used for the system tests

under different k terms. Due to the high-resolution image of Peppers with 51000× 51000,

the compressed images in Figure 5.64 are blurry when k ≤ 200. When the value of k

is taken 700, the reconstruction image is close to the original one and it expresses the

efficiency of our proposed algorithm. Table 5.5 and three figures represent a summary

of the results obtained with the measure of k, CR, MSE, PSNR, SSIM, CPU and the

tendencies between NMSE, NPSNR, SSIM and k.
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technique and DCT compression are shown in the Figure 57. From the above
information, the proposed technique outperforms DCT compression technique.

(a) Our Proposed Technique (b) DCT

Fig. 57 The images of ”Barbara” when CR= 20.399

Example 5.5

Figures 58-69 denote examples of images used for the system tests under different k
terms. Due to the high-resolution image of Peppers with 51000×51000, the compressed
images in Figures 64 are blurry when k ≤ 200. When the value of k is taken 700,
the reconstruction image is close to the original one and it expresses the efficiency of
our proposed algorithm. Table 5 and three figures represent a summary of the results
obtained with the measure of k, CR, MSE, PSNR, SSIM, CPU and the tendencies
between NMSE, NPSNR, SSIM and k.
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Figure 5.58: k = 3

technique and DCT compression are shown in the Figure 57. From the above
information, the proposed technique outperforms DCT compression technique.
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Figure 5.60: k = 21
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Figure 5.68: k = 600
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Figure 5.69: k = 700
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Table 5.5: Summary of the result for image compression in Example 5.5.

k CR MSE (dB) PSNR (dB) SSIM CPU (s)

3 8499.917 1467.028 16.466 0.015 632.377

10 2549.975 934.195 18.426 0.047 591.191

21 1214.274 621.809 20.194 0.07 456.953

51 499.995 308.784 23.234 0.107 2514.909

102 249.998 157.904 26.147 0.173 1915.459

152 167.762 91.877 28.499 0.211 9991.022

200 127.499 58.351 30.47 0.245 13245.557

301 84.717 22.343 34.639 0.272 15601.574

401 63.59 12.478 37.169 0.275 43232.312

503 50.695 9.309 38.442 0.28 41294.957

600 42.5 7.594 39.326 0.283 57485.781

700 36.428 6.475 40.019 0.285 45241.042

Since we begin the smallest dimension of the invariant subspace k = 3, we do the

normalize MSE and normalize PSNR as follows:

NMSE =
MSE(k)

MSE(k = 3)
and NPSNR =

PSNR(k)

PSNR(k = 3)
.

(a) NMSE (b) NPSNR

(c) SSIM

Fig. 70 The diagram of curve for the image of ”Peppers” in the three measurements (a) NMSE (b)
NPSNR (c) SSIM

Based on the results from Table 5 and Figure 70, we can conclude some
observations:

1. For the testing image, the acceptable image quality is with k = 301, and the CR,
MSE, PSNR, SSIM and CPU are 84.717, 22.343, 34.639, 0.272 and 15601.574,
respectively.

2. The compressed image is close to original one when k = 700. At this point, the
CR= 36.428, MSE= 6.475, PSNR= 40.019, SSIM= 0.285, and CPU= 45241.042.

6 Conclusions

In this article, we propose the REIS algorithm with applications to do image compres-
sion and high dimensionality reduction especially high-resolution images, by knitting
the singular value decomposition (SVD) together with the REIS algorithm. Our refine-
ment procedures will be useful as part of any eigen-solver. In particular, they will be
useful for the CIS problem, or when subspace methods are used to compute the initial
invariant subspace. Theoretical results and numerical experiments are established to
show the validity and rationality of our proposed algorithm. Our algorithm is much
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(c) SSIM

Figure 5.70: The diagram of curve for the image of “Peppers” in the three measurements.

Based on the results from Table 5.5 and Figure 5.70, we can conclude some observa-

tions:

1. For the testing image, the acceptable image quality is with k = 301, and the CR,
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MSE, PSNR, SSIM and CPU are 84.717, 22.343, 34.639, 0.272 and 15601.574, re-

spectively.

2. The compressed image is close to original one when k = 700. At this point, the

CR = 36.428, MSE = 6.475, PSNR = 40.019, SSIM = 0.285, and CPU = 45241.042.

6. Conclusions

In this article, we propose the REIS algorithm with applications to do image compres-

sion and high dimensionality reduction especially high-resolution images, by knitting the

singular value decomposition (SVD) together with the REIS algorithm. Our refinement

procedures will be useful as part of any eigen-solver. In particular, they will be useful for

the CIS problem, or when subspace methods are used to compute the initial invariant sub-

space. Theoretical results and numerical experiments are established to show the validity

and rationality of our proposed algorithm. Our algorithm is much cheaper with O(n)

computational complexity per iteration and show some performance measures including

compression ratio, mean square error, peak signal to noise ratio and structural similarity

index.

The main contribution of this paper is to show why SVD works for the REIS algorithm

from a theoretical point of view. To do this, we first consider the decaying property of

singular values of the matrices during iterations of the REIS algorithm, and determine

the target rank k in the SVD process. In the high-resolution image, we have presented

the algorithm for the refinement of invariant subspace for large-scale matrix A. Our tech-

nique solves the NARE (4.2) by the quadratically convergent Newton’s method, and we

provide a sufficient condition for the convergence of the REIS algorithm. Furthermore,

we also discuss the operation counts of the REIS algorithm to show O(n) computational

complexity per iteration. Numerical experiments on some real-world data sets demon-

strate the numerical behavior of the proposed algorithm, and show the effectiveness of our

theoretical results.

In the era of big data, the size of the data is usually so huge that the data collections

cannot be stored in main memory. Our proposed REIS algorithm based on the SVD

provides low-rank approximations of large-scale matrices which is a powerful tool in order

to save memory requirement and keep good quality of high-resolution images.
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