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Computing Tate–Shafarevich Groups of Multinorm One Tori of Kummer

Type

Jun-Hao Huang, Fan-Yun Hung, Pei-Xin Liang and Chia-Fu Yu*

Abstract. A multinorm one torus associated to a commutative étale algebra L over

a global field k is of Kummer type if each factor of L is a cyclic Kummer extension.

In this paper we compute the Tate–Shafarevich group of such tori based on general

formulas of Lee [4]. Our aim is to illustrate various invariants in Lee’s formulas by this

class of tori, especially from the computational aspect. We also implement an effective

algorithm using SageMath which computes the Tate–Shafarevich groups when each

factor of L is contained in a fixed concrete bicyclic extension of a cyclotomic field k.

1. Introduction

Let k be a global field and let L =
∏m

i=0Ki be a product of finite separable field extensions

Ki of k. The norm map NL/k from L to k is defined by NL/k(x) :=
∏

iNKi/k(xi) for

x = (xi) ∈ L. Let Ak denote the adele ring of k and AL := L
⊗

k Ak =
∏m

i=0AKi the

adele ring of L. We have the norm map NL/k : A×
L → A×

k , sending elements (xi) ∈ A×
L to∏

iNKi/k(xi). We say that the multinorm principle holds for L/k if

k× ∩NL/k(A×
L ) = NL/k(L

×),

where k× is viewed as a subgroup of A×
k through the diagonal map. The quotient group

X(L/k) :=
k× ∩NL/k(A×

L )

NL/k(L×)

is called the Tate–Shafarevich group of L/k, which measures the deviation of the validity

of the multinorm principle.

Hürlimann [3, Proposition 3.3] showed that the multinorm principle holds for L = K0×
K1 provided that one ofKi is cyclic and the other is Galois (the second condition is actually

superfluous as later proved by Bayer-Fluckiger, Lee and Parimala [1, Proposition 4.1]).

Pollio and Rapinchuk [9, Theorem, p. 803] and Wei [11, Corollary 3.3] showed the case

when the respect Galois closures of K0 and K1 are linearly disjoint. Moreover, Pollio
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proved [8, Theorem 1] that if K0 and K1 are abelian extensions of k, then X((K0 ×
K1)/k) = X((K0∩K1)/k) and asked whether the equality holds for more general K0 and

K1. This question was answered by Demarche and Wei [2] who constructed a family of

examples, showing that the equality X((K0×K1)/k) = X((K0∩K1)/k) is no longer true

when K0 and K1 are non-abelian Galois extensions. The study of the multinorm principle

is also inspired by the work of Prasad and Rapinchuk [10], where the authors settled the

problem of the local-global principle for embeddings of field extensions with involution into

simple algebras with involution. This provides a useful method of constructing maximal

tori with given properties in a classical group over k.

Some earlier studies were focus to determine whether the multinorm principle holds

true. In [1], Bayer-Fluckiger, Lee and Parimala made a breakthrough and gave a general

method for computing X(L/k) provided one of factors of L is cyclic over k. Moreover,

under the condition that every factor of L is cyclic over k, they gave a necessary and

sufficient condition for X(L/k) = 0 (by combining Theorem 8.1 and Propositions 8.5

and 8.6 of loc. cit.). Extending works of [1], Lee [4] gave a general formula for the group

X(L/k) when L is of p-power degree. Her formulas together with [1, Proposition 8.6]

solve the computational problem of X(L/k) completely.

The aim of this article is to compute more examples of the Tate–Shafarevich groups of

multiple norm one tori based on Lee’s general formulas. We consider the étale k-algebras

L =
∏

iKi, where each Ki/k is a cyclic extension of p-power degree and k contains the

roots of unity of degree high power of p (prime to the characteristic of k). Therefore, each

Ki/k is a Kummer extension. Lee introduced several invariants for describing X(L/k)

explicitly. However, some of these invariants are still rather technical and are not yet

easily computable. Our main task is to illustrate these invariants introduced in [4] in this

particular class of tori.

The idea is to translate all invariants in Lee’s formulas from the number-theoretic

description into a combinatorial one. This allows us to compute Tate–Sharafevich groups

much more effectively. Using the combinatorial description, we implement an algorithm

using SageMath which computes X(L) for input data where k = Q(ζpn) is the pn-th

cyclotomic field and Ki are cyclic subextensions of a bicyclic extension k(ℓ
1/pn

1 , ℓ
1/pn

2 ) with

primes ℓ1, ℓ2 ̸= p, subject to the condition
⋂m

i=0Ki = k. As our algorithm is based on a

combinatorial description, the computing time does not take much longer when either p

or n goes large.

Note that Lee’s formulas are already algorithmic. The invariants are carefully defined

upon structural recursive relations. However, in the practical issue, a direct implementing

the program using existing number theoretic packages has not yet worked so well (for

example, for a case where p = 3, n = 2 and m = 2, the computer does not give an output
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after 5 hours). A major obstruction is that computing the decomposition groups of a

Galois extension of large degree by computer is extremely time-consuming (in that case,

one needs to compute decomposition groups of a few abelian extensions of degree 54).

For this reason, we study decomposition groups in this particular case for our program

(see Section 5). We remark that [1, Theorem 8.1] is incorrect as stated; a counterexample

can be found in [4, Example 7.7]; see Remark 2.6. We state a necessary and sufficient

condition for X(L/k) = 0 based on Lee’s formulas (see Corollary 2.17).

This paper is organized as follows. In Section 2, we present several results of Bayer-

Fluckiger, Lee and Parimala and describe Lee’s formulas for the Tate–Shafarevich groups.

Section 3 discusses the assumptions in Theorem 2.13. In Section 4 we translate all in-

variants in Lee’s formulas from the number-theoretic description into a combinatorial

one in the case where k = Q(ζpn) is the pn-th cyclomotic field. Section 5 computes the

decomposition groups of any subfield extension of the aforementioned bicyclic extension

k(ℓ
1/pn

1 , ℓ
1/pn

2 ). Putting everything together in the last section, we compute the Tate–

Shafarevich group of the multinorm one torus in question and show examples.

2. The Tate–Shafarevich groups of multinorm one tori

In this section, we organize several results from Bayer-Fluckiger–Lee–Parimala [1] and

describe formulas for the Tate–Shafarevich groups of multinorm one tori due to Lee [4].

2.1.

Let k be a global field and ks a separable field extension of k whose Galois group is denoted

by Γk. Let Ωk be the set of all places of k. Let T be an algebraic torus over k. Denote by

T̂ := Homks(T,Gm) the character group of T ; it is a finite free Z-module with a continuous

action of Γk. Let H
i(k, T̂ ) denote the i-th Galois cohomology group of Γk with coefficients

in T̂ .

Definition 2.1. The i-th Tate–Shafarevich group and algebraic Tate–Shafarevich group

of T̂ are defined by

Xi(k, T̂ ) := Ker

(
H i(k, T̂ )→

∏

v∈Ωk

H i(kv, T̂ )

)

and

Xi
ω(k, T̂ ) :=

{
[C] ∈ H i(k, T̂ ) : [C]v = 0 for almost all v ∈ Ωk

}
,

respectively, where [C]v is the class of [C] inH i(kv, T̂ ) under the restriction mapH i(k, T̂ )→
H i(kv, T̂ ).
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Let L =
∏m

i=0Ki be an étale algebra over k, where each Ki is a cyclic extension of k

of degree di in ks. Let NL/k : RL/kGm,L → Gm,k be the norm morphism, and denote by

TL/k := KerNL/k

the multinorm one torus associated to L/k. Put I = {1, . . . ,m} and K ′ :=
∏

i∈I Ki.

Let E := K0
⊗

k K
′ =

∏
i∈I Ei, where Ei := K0

⊗
k Ki. We may regard the k-étale

algebra E as an étale algebra over K0 or over K ′. Let NE/K0
and NE/K′ be the norm

maps from RE/kGm,E to itself, and define a morphism f : RE/kGm,E → RL/kGm,L by

f(x) = (NE/K0
(x)−1, NE/K′(x)). One easily checks that the image of f is equal to TL/k.

Let SK0,K′ be the k-torus defined by the following exact sequence

(2.1) 1 −→ SK0,K′ −→ RE/k(Gm,E)
f−→ TL/k −→ 1.

The algebraic torus SK0,K′ also fits in the following exact sequence

1 −→ SK0,K′ −→ RK′/k(TE/K′)
NE/K0−−−−→ TK0/k −→ 1.

Here RK′/k(TE/K′) =
∏

i∈I RKi/k(TEi/Ki
).

Proposition 2.2. [1, Lemma 3.1] There is a functorial natural isomorphism

X1(k, ŜK0,K′) ≃X2(k, T̂L/k).

It follows from (2.1) that there is a natural isomorphismX1(k, TL/k) ≃X2(k, SK0,K′).

Then Proposition 2.2 follows from Poitou–Tate duality.

Define

X(L) := X2(k, T̂L/k) and Xω(L) := X2
ω(k, T̂L/k).

For any prime number p and any cyclic extension M of k, let M(p) denote the largest

subfield of M such that [M(p) : k] is a power of p. Also, if p divides [M : k], we denote

by M(p)prim the unique subfield of M(p) of degree p over k.

Proposition 2.3. [1, Propositions 5.16 and 8.6] Let L =
∏m

i=0Ki be a product of cyclic

extensions of respective degree di over k. Set L(p) :=
∏m

i=0Ki(p). Then we have isomor-

phisms

X(L) =
⊕

p|d0

X(K0(p)×K ′), and X(L) =
⊕

p|d

X(L(p)),

where d = gcd(d0, . . . , dm).

Note that ifKi(p) = k for some i, thenX(L(p)) = 0. Thus, if p ∤ d, thenX(L(p)) = 0.
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Theorem 2.4. Let the notation be as in Proposition 2.3. Assume that the field extensions

Ki(p) are linearly disjoint over k. Then

X(L(p)) = 0 ⇐⇒ X(L(p)prim) = 0,

where L(p)prim :=
∏m

i=0Ki(p)prim.

Proof. This is [1, Theorem 8.1]. Note that we add an additional condition that {Ki(p)}
are linearly disjoint over k. This is because the proof relies on [1, Proposition 5.13], which

should be modified by adding this condition; see also Remark 2.6.

By Theorem 2.4, it is important to compute X(L) in the case where L is a product

of cyclic extensions of degree p. More generally we have the following result [1, Proposi-

tion 8.5].

Proposition 2.5. Let p be a prime number, and L =
∏m

i=0Ki a product of distinct field

extensions of degree p such that K0/k is cyclic. Then X(L) ̸= 0 only if every field Ki

is contained in a field extension F/k of degree p2 and all local degrees of F are ≤ p.

Moreover, if the above condition is satisfied, then X(L) ≃ (Z/pZ)m−1.

Remark 2.6. Theorem 8.1 of [1] is incorrect as stated. Let k = Q(i), K0 = k( 4
√
13),

K1 = k( 4
√
17) and k(

4
√
13 · 172). We haveX(L) = Z/2Z, while Lprim = k(

√
13)×k(

√
17)×

k(
√
13) and X(Lprim) = 0; see [4, Example 7.7]. This gives a counterexample.

2.2.

In what follows, we let L =
∏m

i=0Ki, where Ki are cyclic extensions of k of degree pϵi for

a positive integer ϵi. Assume
⋂m

i=0Ki = k and ϵ0 = min0≤i≤m{ϵi}. For any i, j ∈ I, we
set

(i) pei,j = [Ki ∩Kj : k], and

(ii) ei = ϵ0 − e0,i.

Without loss of generality, we assume that ei ≥ ei+1, and notice that e1 = ϵ0 since

K0 ∩K1 = k. Note that pei = [Mi : Ki], where Mi = K0Ki and one has H1(k, T̂Ei/Ki
) ≃

Z/peiZ.
For any 0 ≤ d ≤ ϵi, let Ki(d) denote the subfield of Ki of degree pd over k.1 For a

nonempty subset c ⊆ I and an integer d > 0, set Mc(d) := ⟨Ki(d)⟩i∈c, the compositum of

Ki(d) for i ∈ c. For 0 ≤ r ≤ ϵ0, set

Ur := {i ∈ I | e0,i = r}, U>r := {i ∈ I | e0,i > r}, and U<r := {i ∈ I | e0,i < r}.
1Not to be confused this with the notation Ki(p) in Section 2.1.
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In order to describe formulas for the Tate–Shafarevich group of multinorm one tori

due to T.-Y. Lee, we need to introduce the following invariants.

Definition 2.7. For a nonempty set Ur, the algebraic patching degree ∆ω
r of Ur is the

largest nonnegative integer d ≤ ϵ0 satisfying the following two conditions:

(i) If U>r is nonempty, then MU>r(d) ⊆
⋂

i∈Ur
K0(d)Ki(d).

(ii) If U<r is nonempty, then MUr(d) ⊆
⋂

i∈U<r
K0(d)Ki(d).

If Ur = I (so r = 0), then we set ∆ω
0 = ϵ0.

We say that a field extension M of k is locally cyclic if its completion M
⊗

k kv at v is

a product of cyclic extensions of kv for all places v ∈ Ωk. Moreover, if M is a finite Galois

extension of k, then M/k is locally cyclic if and only if every decomposition group of M

over k is cyclic.

Definition 2.8. The patching degree ∆r of Ur is the largest nonnegative integer d ≤ ∆ω
r

satisfying the following two conditions:

(i) If U>r is nonempty, then K0(d)MU>r(d) is locally cyclic.

(ii) If U<r is nonempty, then K0(d)MUr(d) is locally cyclic.

If U0 = I, then we set ∆0 = ϵ0.

Definition 2.9. Let i, j ∈ I and l be a nonnegative integer. We say that i, j are l-

equivalent and denoted by i ∼l j if ei,j ≥ l or i = j. For any nonempty subset c of I, let
nl(c) be the number of l-equivalence classes of c.

Definition 2.10. For each c ⊆ I with |c| ≥ 1, the level of c is defined by

L(c) := min{ei,j : i, j ∈ c}.

Definition 2.11. (1) For a nonempty set Ur, let lr = L(Ur) and let fω
Ur

be the largest

nonnegative integer f ≤ ∆ω
r satisfying the following two conditions:

(i) The field MUr(f + lr − r) is a subfield of a bicyclic extension.

(ii) K0(f) ⊆MUr(f + lr − r).

We call fω
Ur

the algebraic degree of freedom of Ur.

(2) Similarly, for any h-equivalence class c ⊂ Ur with h ≥ L(Ur), the algebraic degree

of freedom of c, denoted by fω
c , is the largest nonnegative integer f ≤ ∆ω

r satisfying

the following two conditions:
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(i) The field Mc(f + L(c)− r) is a subfield of a bicyclic extension.

(ii) K0(f) ⊆Mc(f + L(c)− r).

According to the definition one has r ≤ fω
c ≤ fω

Ur
≤ ∆ω

r .

Definition 2.12. Let c ⊂ Ur be an h-equivalence class for some h ≥ L(Ur). The degree

of freedom fc of c is defined to be the largest nonnegative integer f ≤ fω
c such that

Mc(f + L(c)− r) is locally cyclic.

Theorem 2.13. [4, Theorem 6.5] Let TL/k be the multinorm one torus associated to a

k-étale algebra L =
∏m

i=0Ki. We have

X2
ω(k, T̂L/k) ∼=

⊕

r∈R\{0}

Z/p∆
w
r −rZ

⊕

r∈R

⊕

l≥L(Ur)

⊕

c∈Ur/∼l

(Z/pf
w
c −rZ)nl+1(c)−1,

X2(k, T̂L/k) ∼=
⊕

r∈R\{0}

Z/p∆r−rZ
⊕

r∈R

⊕

l≥L(Ur)

⊕

c∈Ur/∼l

(Z/pfc−rZ)nl+1(c)−1,

where R = {0 ≤ r ≤ ϵ0 | Ur ̸= ∅}.

2.3.

We use Theorem 2.13 to revisit the criterion for the vanishing of the groups X2
ω(k, T̂L/k)

and X2(k, T̂L/k) [1, Theorem 8.1].

Definition 2.14. A subset c ⊂ I with |c| > 1 is said to be admissible if c is an l-

equivalence class in Ur for some r ≥ 0. The integer r, denoted supp(c), is called the

support of c. Let Adm be the set of admissible subsets of I, which depends only on the

set {ei,j}1≤i≤m,1≤j≤m.

Theorem 2.13 can be reformulated as follows.

Theorem 2.15. We have

X2
ω(k, T̂L/k) ∼=

⊕

r∈R\{0}

Z/p∆
w
r −rZ⊕

⊕

c∈Adm

(Z/pf
w
c −rZ)nL(c)+1(c)−1,

X2(k, T̂L/k) ∼=
⊕

r∈R\{0}

Z/p∆r−rZ⊕
⊕

c∈Adm

(Z/pfc−rZ)nL(c)+1(c)−1.

Proposition 2.16. Let r0 > 0 be the smallest integer such that Ur is nonempty.

(1) We have X2
ω(k, T̂L/k) = 0 if and only if ∆ω

r0 = r0 and fω
U0

= 0.

(2) We have X2(k, T̂L/k) = 0 if and only if ∆r0 = r0 and fU0 = 0.
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Proof. By Theorem 2.15, X2
ω(k, T̂L/k) = 0 if an only if ∆ω

r = r for all r ∈ R \ {0} and

fω
c = r for all admissible subsets c of support r. Since r ≤ fω

c ≤ ∆ω
r , the first condition

∆ω
r = r implies that fω

c = r for all admissible subsets c of support r ≥ 1. Also one has

0 ≤ fω
c ≤ fω

U0
if c ⊂ U0, so that the above condition is equivalent to ∆ω

r = r for all

r ∈ R\ {0} and fω
U0

= 0. By [4, Proposition 4.3], we have ∆ω
r0 − r0 ≥ ∆ω

r − r. This proves

the first statement.

We now show r ≤ fc ≤ fUr ≤ ∆r. By [4, Proposition 5.8], if r ≤ f ≤ fω
c and i ∈ c,

then

Mc(f + L(c)− r) = K0(f)Ki(f + L(c)− r).

Since f ≤ fω
Ur
, one also has

MUr(f + L(Ur)− r) = K0(f)Ki(f + L(Ur)− r).

Therefore, MUr(f + L(Ur)− r) ⊂Mc(f + L(c)− r). Hence if Mc(f + L(c)− r) is locally

cyclic then MUr(f + L(Ur)− r) is locally cyclic. It follows that fc ≤ fUr .

For r ≤ f ≤ fω
Ur
≤ ∆ω

r and i ∈ Ur, one has

K0(f)Ki(f) ⊂ K0(f)Ki(f + L(Ur)− r) = MUr(f + L(Ur)− r)

and hence K0(f)KUr(f) ⊂MUr(f + L(Ur)− r). Since f ≤ ∆ω
r , one also has

K0(f)KU>r(f) ⊂
⋂

i∈Ur

K0(f)Ki(f) ⊂ K0(f)Ki(f) ⊂MUr(f + L(Ur)− r).

Therefore, if MUr(f + L(Ur)− r) is locally cyclic, then K0(f)KU>r(f) and K0(f)KUr(f)

are both locally cyclic. It follows that fUr ≤ ∆r. This shows r ≤ fc ≤ fUr ≤ ∆r.

The second statement follows from the same argument and [4, Proposition 4.10].

We spread out the conditions in Proposition 2.16 and have the following result.

Corollary 2.17. Consider the following five conditions:

(a) MUr0
(r0 + 1) ⊂ ⋂i∈U<r0

K0(r0 + 1)Ki(r0 + 1);

(b) MU0(1 + L(U0)) is a subfield of a bicyclic extension of k and it contains K0(1);

(c) K0(r0 + 1)MUr0
(r0 + 1) is locally cyclic;

(d) If U>r0 is nonempty, then K0(r0 + 1)MU>r0
(r0 + 1) is locally cyclic;

(e) MU0(1 + L(U0)) is locally cyclic.

Then we have
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(1) X2
ω(k, T̂L/k) ̸= 0 if and only if either condition (a) or condition (b) holds.

(2) X2(k, T̂L/k) = 0 if and only if either the conditions (a), (c) and (d) hold, or the

conditions (b) and (e) hold.

Proof. (1) By Proposition 2.16(1), we have X2
ω(k, T̂L/k) ̸= 0 if and only if either ∆ω

r0 ≥
r0 + 1 or fω

U0
≥ 1. Note that if U>r ̸= ∅, then MU>r(r + 1) = K0(r + 1) and hence the

condition

MU>r(r + 1) ⊂
⋂

i∈Ur

K0(r + 1)Ki(r + 1)

always holds. Therefore, we have ∆ω
r0 ≥ r0 + 1 if and only if condition (a) holds. On the

other hand, the condition fω
U0
≥ 1 holds if and only if condition (b) holds. This proves (1).

(2) By Proposition 2.16(2), we have X2(k, T̂L/k) ̸= 0 if and only if either ∆r0 ≥ r0+1

or fU0 ≥ 1. By definition, we have ∆r0 ≥ r0 + 1 if and only if ∆ω
r0 ≥ r0 + 1 and both

conditions (c) and (d) hold. The first condition holds if and only if condition (a) holds.

On the other hand, we have

(2.2) fU0 ≥ 1 ⇐⇒ fω
U0
≥ 1 and condition (e) holds.

Again, fω
U0
≥ 1 holds if and only if condition (b).

Remark 2.18. Assume that Ki are distinct cyclic extensions of degree p over k. We see

from (2.2) that X(L) ̸= 0 if and only if (i) K0 ⊂ MU0(1), (ii) MU0(1) is a subfield of a

bicyclic extension, and (iii) MU0(1) is locally cyclic. This is the same as Proposition 2.5

in this special case.

3. Remarks on the conditions for Theorem 2.13

3.1.

Note that the assumption e1 ≥ e2 ≥ · · · ≥ em is unnecessary. We can choose some permu-

tation σ ∈ Sm such that eσ(i) ≥ eσ(i+1). The invariants ei,j are identical up to σ. From the

definition of ℓ-equivalence, Ur, ϵi, (algebraic) patching degrees ∆
(ω)
r , (algebraic) degrees of

freedom fω
c , etc., we see that they are identical after the action of σ. Therefore the Tate–

Shafarevich groups X(L) and Xω(L) given by the formula without the assumption are

the same as those given by the formula with the assumption. As a result, for implementing

an algorithm, we do not need to rearrange of our input data so that this assumption for

ordering {ei} holds.
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3.2.

In this subsection, we discuss whether we have the same results without the condition⋂m
i=0Ki = k. That is, setting F =

⋂m
i=0Ki and considering L/F as an étale F -algebra,

we compare the groups X2(k, T̂L/k) and X2(F, T̂L/F ).

First we denote

TL
F = RL/FGm,L, TL := RL/kGm,L = RF/kT

L
F , TF = RF/kGm,F ,

and let TL/F = KerNL/F and TL/k = KerNL/k, where NL/F =
∏m

i=0NKi/F and NL/k =∏m
i=0NKi/k are the norm maps. Let k̃ = K0K1 · · ·Km be the composition of Ki, and set

G = Gal(k̃/k), Hi = Gal(k̃/Ki), and H = Gal(k̃/F ).

Lemma 3.1. (1) We have H1(F, T̂L/F ) = H1(H, T̂L/F ) = 0.

(2) We have H1(Fw, T̂Lw/Fw
) = H1(Hw, T̂L/F ) = 0, where w is any place of F , Hw is

the decomposition group, and Lw = L
⊗

F Fw.

Proof. (1) The first equality follows from that the group H1(F, T̂L/F ) is independent of

the choice of the splitting field. Using the short exact sequence of H-modules

0 −→ Z −→ T̂L
F =

m⊕

i=0

IndHHi
Z −→ T̂L/F −→ 0,

we have the long exact sequence

0 = H1(H, T̂L
F ) −→ H1(H, T̂L/F ) −→ H2(H,Z) −→ H2(H, T̂L

F ).

Using the canonical isomorphism H2(H,Z) ≃ Hom(H,Q/Z) we get

H1(H, T̂L/F ) ≃ Ker

(
Hom(H,Q/Z)→

m⊕

i=0

Hom(Hi,Q/Z)
)
.

Since
⋂

iKi = F , one has H = H0 · · ·Hm and hence H1(H, T̂L/F ) = 0.

(2) By the construction, we have TL/F

⊗
F Fv = TLw/Fv

. Thus, the ΓFv -module T̂Lw/Fw

is equal to T̂L/F when viewed as a ΓFv by an inclusion ΓFv ↪→ ΓF . As its first Galois

cohomology is independent of the choice of a splitting field, one gets

H1(Fw, T̂Lw/Fw
) ≃ H1(Hw, T̂Lw/Fw

) ≃ H1(Hw, T̂L/F ).

By the same argument as (1), one obtains H1(Fw, T̂Lw/Fw
) = 0. This completes the proof

of the lemma.
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Lemma 3.2. Let T be an algebraic torus over k and K/k a Galois splitting field for T

with Galois group G. There is a natural isomorphism X2
•(G, T̂ )

∼−→ X2
•(k, T̂ ), where

• ∈ {ω, ∅}.

Proof. These are well-known results. The case for • = ∅ follows from the fact that the

groupX1(G,T ) is independent of the choice of the splitting fieldK; see [6, Sections 3.3 and

3.4] and the Poitou–Tate duality (see [7, Theorem 6.10] and [5, Theorem 8.6.8]). We give

a proof for the case • = ω for the reader’s convenience. Let K ′ be another Galois splitting

field for T containing K with Galois groups G′ = Gal(K ′/k) and H ′ = Gal(K ′/K). Since

T̂ is a trivial H ′-module, H1(H ′, T̂ ) = Hom(H ′, T̂ ) = 0. By Hochschild–Serre’s spectral

sequence, we have the exact sequence

0 −→ H2(G, T̂ ) −→ H2(G′, T̂ ) −→ H2(H ′, T̂ ).

Thus, to show X2
ω(G, T̂ )

∼−→X2
ω(G

′, T̂ ), it suffices to show X2
ω(H

′, T̂ ) = 0. Since T̂ is a

trivial H ′-module, it is equivalent to show X2
ω(H

′,Z) = 0. As H2(H ′,Z) ≃ H1(H ′,Q/Z),
this follows from that

Ker

(
Hom(H ′,Q/Z) −→

∏

C

Hom(C,Q/Z)
)

= 0,

where C runs through all cyclic subgroups of H ′.

Proposition 3.3. There is a natural injective map ι̂ : X2
•(k, T̂L/k)→X2

•(F, T̂L/F ), where

• ∈ {ω, ∅}.

Proof. First we relate the tori TL/F and TL/k by the following exact sequence, which can

be checked directly at their ks-points

1 −→ RF/k(TL/F )
ι−→ TL NL/F−→ TF −→ 1.

Taking the dual yields an exact sequence

0 −→ T̂F/k

N̂L/F−→ T̂L/k
ι̂−→ IndGH T̂L/F −→ 0.

This gives the following commutative diagram

H1(H, T̂L/F ) //

��

H2(G, T̂F/k)
N̂L/F //

rF/k

��

H2(G, T̂L/k)
ι̂ //

rL/k

��

H2(H, T̂L/F )

rL/F

��∏
w|v H

1(Hw, T̂L/F ) // H2(Gv, T̂F/k)
N̂L/F,v// H2(Gv, T̂L/k)

ι̂v //
∏

w|v H
2(Hw, T̂L/F )
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for every decomposition group Gv of G, where w runs through places of F over v. By

Lemma 3.1, we have H1(H, T̂L/F ) = 0 and H1(Hw, T̂L/F ) = 0, so the maps N̂L/F and

N̂L/F,v are injective. Suppose an element x ∈ H2(G, T̂L/k) lies in Ker ι̂ satisfying rL/k(x) =

0. Let y ∈ H2(G, T̂F/k) be the unique element with N̂L/F (y) = x. Then rF/k(y) = 0 as the

map N̂L/F,v is injective. It follows that X2
•(G, T̂L/k) ∩ Ker ι̂ ≃X2

•(G, T̂F/k). Since F/k

is cyclic, the group X2
ω(G, T̂F/k) = 0 by [4, Proposition 2.2] and hence X2(G, T̂F/k) = 0.

Since X2
•(G, T̂L/k) ∩Ker ι̂ = 0, by Lemma 3.2 the map

ι̂ : X2
•(k, T̂L/k) = X2

•(G, T̂L/k) ↪→X2
•(H, T̂L/F ) = X2

•(F, T̂L/F )

is injective.

Corollary 3.4. Notation being as above, if X2
•(F, T̂L/F ) = 0, then X2

•(k, T̂L/k) = 0.

Proposition 3.3 shows the inclusion relation X2
•(k, T̂L/k) ↪→ X2

•(F, T̂L/F ). However,

we do not know whether they are actually isomorphic. If so, we could replace k by F and

assume
⋂

iKi = k without loss of generality in Lee’s formulas.

4. Multinorm one tori of Kummer type

4.1. Kummer extensions

For a moment, let k be a field which contains a primitive N -th root of unity, where N ≥ 2

is a positive integer prime to the characteristic of k. Recall that a Kummer extension

L/k of exponent N is a finite abelian field extension, whose Galois group Gal(L/k) is of

exponent N , that is, σN = 1 for any σ ∈ Gal(L/k). For example, if char k ̸= 2 then a

quadratic extension L = k(
√
a), where a ∈ k is not a square, is a Kummer extension.

Biquadratic extensions and multiquadratic extensions are also Kummer extensions. More

generally, for any nonzero element a ∈ k, k(a1/N ) is a Kummer extension whose degree m

divides N .

Kummer theory establishes the following one-to-one correspondence

(4.1){
Kummer extensions over k of exponent N

}
←→

{
finite subgroups of k×/(k×)N

}
.

For any finite subgroup W of k×/(k×)N , we define

KW := k
(
w1/N : w ∈W

)

and associate KW to W . Conversely, let L be a Kummer extension of k. Since L is of

exponent N , L can be written as a compositum of cyclic extensions k(a
1/N
1 ) · · · k(a1/Nm ),

where ai ∈ k×. We associate it to the subgroup

WL = ⟨ai | i = 1, . . . ,m⟩,
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where ai denotes the image of ai in k×/(k×)N .

Let µN be the group of N -th roots of unity in k×. There is a perfect pairing

Gal(KW /k)×W −→ µN

(σ,w) 7−→ σ(w1/N )

w1/N .

This gives a natural identification Gal(KW /k) = Hom(W,µN ). If W1 ⊂ W2 are two sub-

groups of k×/(k×)N , the natural projection Gal(KW2/k)→ Gal(KW1/k) is the restriction

to W1:

Hom(W2, µN ) −→ Hom(W1, µN ).

Inclusion, composition, and intersection of groups Wi correspond to those of Kummer

extensions.

Proposition 4.1. Let W and Wi (i = 1, 2) be subgroups of k×/(k×)N and KW and KWi

be the corresponding Kummer extensions. Then

(1) KW1 ⊂ KW2 if and only if W1 ⊂W2.

(2) W = W1W2 if and only if KW = KW1KW2.

(3) W = W1 ∩W2 if and only if KW1 ∩KW2 = KW .

4.2. Group theoretic description for X2
ω(k, T̂L/k) and X2(k, T̂L/k)

For the rest of this section, let k be a global field in which p−1 ∈ k and L =
∏m

i=0Ki an

étale k-algebra as in Section 2.2. Let N = pn be a power of p such that [Ki : k] divides N

for all i. Suppose that k contains a primitive N -th root of unity. We further assume that

each Ki can be written as k(αi), where αi = a
1/pn

i for some ai ∈ Q×. We may assume

ai ∈ Z: if ai = a
b , we can set a′i = aib

pn so that k(a
1/pn

i ) = k(a′i
1/pn).

The correspondence (4.1) enables us to describeX2
ω(k, T̂L/k) andX2(k, T̂L/k) in terms

of information on the group k×/(k×)p
n
. First, we set Wi = ⟨ai⟩ to be the subgroup

corresponding to Ki. For any nonempty subset I of I = {1, . . . ,m}, we let WI = ⟨ai | i ∈
I⟩ be the group corresponding to MI . We define Wi(d), WI(d) as groups corresponding

to Ki(d) and MI(d), respectively. Note that the order of ai in k×/(k×)p
n

is pϵi , so

Ki(d) = k(a
pϵi−d/pn

i ) and Wi(d) =
〈
a
pϵi−d/pn

i

〉
.

We translate the first definitions in Section 2 as follows.

(1) For i, j ∈ I, i and j are ℓ-equivalent if and only if Wi(ℓ) = Wj(ℓ).

(2) The set Ur = {i ∈ I |W0(r) = W0 ∩Wi = Wi(r)}.

(3) For any subset c ⊂ I ′, L(c) = min
{
ℓ |Wi(ℓ) = Wi ∩Wj = Wj(ℓ) for any i, j ∈ c

}
.
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With the above language, we can rewrite the definitions of algebraic patching degrees

and algebraic degrees of freedom. If U0 = I, then we set the algebraic patching de-

gree ∆ω
0 = ϵ0. Otherwise, the algebraic patching degree of freedom ∆ω

r for nonempty Ur

is the maximal positive integer d satisfying two conditions:

(i) If U>r is nonempty, then WU>r(d) ⊂
⋂

i∈Ur
W0(d)Wi(d).

(ii) If U<r is nonempty, then WUr(d) ⊂
⋂

i∈U<r
W0(d)Wi(d).

Now the algebraic degree of freedom fω
c for an admissible set c ⊂ Ur can be defined as the

largest nonnegative integer f ≤ ∆ω
r satisfying two conditions:

(i) Wc(f + L(c)− r) is a cyclic group or a bicyclic group.

(ii) W0(f) ⊂Wc(f + L(c)− r).

Before we rewrite the definition of patching degrees and degrees of freedom, recall that

we have to check whether a field is locally cyclic in the definition of patching degrees ∆r.

We need to describe whether a Kummer extension is locally cyclic in terms of groups, too.

Let K/k be a Kummer extension and v a place of k. Let w be a place of K lying over v.

The decomposition group Gv = Gal(Kw/kv) corresponds to a subgroup Wv of k×v /(k
×
v )

pn

through the duality between Gal(K/k) and W .

Gal(Kw/kv) = Gv
oo //

� _

��

Wv ⊂ k×v /(k
×
v )

pn

Gal(K/k) oo //W ⊂ k×/(k×)p
n

πv

OOOO

The natural map πv : k
×/(k×)p

n → k×v /(k
×
v )

pn is surjective as k× is dense in k×v and

(k×v )
pn is open in k×v . By the duality, πv maps W onto Wv. Recall that K/k being locally

cyclic at v means that Kw/kv is cyclic for any w | v, and this is equivalent to saying that

πv(W ) is cyclic for any v.

Now we can redefine the patching degree ∆r to be the maximal positive integer d ≤ ∆ω
r

satisfying two conditions:

(i) If U>r is nonempty then πv(W0(d)WU>r(d)) is cyclic for all places v in k.

(ii) If U<r is nonempty then πv(W0(d)WUr(d)) is cyclic for all places v in k.

On the other hand, for an admissible set c ⊂ Ur the degree of freedom fc is the largest

nonnegative integer f ≤ fω
c such that πv(Wc(f +L(c)− r)) is a cyclic group for any place

v of k.
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4.3. Cyclotomic cases: the combinatorial description for X2
ω(kT̂L/k) and X2(k, T̂L/k)

In this subsection we define

W = ⟨a : a ∈ Q×⟩ ⊂ k×/(k×)p
n
,

that is, the image of ι : Q×/(Q×)p
n → k×/(k×)p

n
. Because each component Ki of L is of

the form k(a
1/pn

i ) where ai is an integer, the group Wi corresponding to Ki is contained

in W. We shall investigate the structure of W. Let P denote the set of prime numbers in

Q.

Proposition 4.2. (1) If p is odd, then W ≃ Q>0/(Q>0)
pn ≃⊕ℓ∈P Z/pnZ.

(2) Suppose p = 2.

(a) If N = 2, then W ≃⊕ℓ∈P∪{−1} Z/2Z.

(b) If N = 4, then W ≃ Z/2Z×⊕ℓ∈P Z/4Z.

(c) If N ≥ 8, then W ≃ Z/2Z× Z/2n−1Z×⊕ℓ∈P\{2} Z/2nZ.

Proof. (1) The second isomorphism follows from the unique factorization property for

positive integers and we show the first isomorphism. Write Q× = {±1} × Q>0. As p is

odd, we have

Q×/(Q×)p
n
= {±1}/{±1}pn ×Q>0/(Q>0)

pn = Q>0/(Q>0)
pn .

Thus, it suffices to show that the induced map ι : Q>0/(Q>0)
pn → k×/(k×)p

n
is injective.

Suppose a is a positive integer such that a = αpn for some α ∈ k×. Let ℓ be a prime

integer not equal to p, then ℓ is unramified in k and hence the valuation vℓ sends each

element of k× to an integer. Therefore, vℓ(a) = pnvℓ(α) ∈ pnZ. Replacing a by abp
n
for

a suitable b ∈ Q>0, we may assume that vℓ(a) = 0 for all primes ℓ ̸= p and thus a = pr

for some r ∈ Z≥0. We need to show pn | r. Again replacing a by some abp
n
, we may

assume that 0 ≤ r < pn. Suppose that 0 < r < pn, then pr/p
n
is not contained in Q.

The Galois closure of Q(pr/p
n
) is Q(pr/p

n
, ζpm) for some 1 ≤ m ≤ n and is non-abelian.

However, pr/p
n
= α ∈ k and k = k(pr/p

n
) contains a non-abelian extension Q(pr/p

n
, ζpm),

a contradiction. Therefore, r = 0 and the integer a must be 1, and hence we conclude

that ker(ι) = {1}.
(2) When N = p = 2, k is simply Q and thus

W = Q×/(Q×)2 ≃
⊕

ℓ∈P∪{−1}

Z/2Z.

Now suppose N = 2n ≥ 4. Observe that
√
2 ∈ Q(ζ8) and −1 ∈ (k×)2. If ℓ is a prime

integer other than 2, then the argument in part (1) applies, so ker(ι) = ker(ι|⟨−1,2⟩). It
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suffices to study the restriction of ι to ⟨−1, 2⟩. First, the restriction of ι to ⟨−1⟩ is injective:
if −1 = α2n for some α ∈ k, then k must contain primitive 2n+1-roots of unity, which is

absurd. Next, we turn to the restriction of ι to ⟨2⟩. Note that
√
2 ∈ Q(ζ8), while

4
√
2 is

not contained in Q(ζN ) since Q( 4
√
2)/Q is not an abelian extension. From this, we deduce

that if N = 4, then the restriction of ι to ⟨2⟩ is injective. We also deduce that if N ≥ 8,

then the kernel of the restriction is ⟨22n−1⟩. In conclusion, if N = 4, then ker ι is trivial

and

W ≃ Z/2Z×
⊕

ℓ∈P
Z/4Z;

if N = 2n ≥ 8, then ker ι = ker(ι|⟨2⟩) and

W ≃ Z/2Z× Z/2n−1Z×
⊕

ℓ∈P\{2}

Z/2nZ.

The structure of W determined, we may describe the corresponding groups Wi of the

cyclic fields Ki in combinatorial terms. Note that each Wi is a finite cyclic subgroup of

W for 0 ≤ i ∈ m, so we can use only finitely many generators to describe the groups Wi.

For example, suppose N = 2n ≥ 8 and K = k(a1/N ) for some integer a ̸= 0. If

a = (−1)n−1 · 2n2 ·
∏

ℓ∈P′\{2}

ℓnℓ

for a finite subset P′ ⊂ P, then the corresponding finite subgroup is the cyclic subgroup of

W generated by (n−1, n2, (nℓ)ℓ∈P′\{2}).

Using Proposition 4.1, one can compute effectively algebraic patching degrees ∆ω
r and

algebraic degrees of freedom fω
c . However, to compute patching degrees ∆r and fc, we

will need to analyze further the image of a subgroup W in k×v /(k
×
v )

pn . We shall do this

when each Ki is in a fixed concrete bicyclic extension in the next section.

5. Computing decomposition groups: the case of subfields contained in a bicyclic

extension

In the following sections, we shall further restrict to a special case. Fix a prime integer

p and a positive integer n. Let k := Q(ζ) be the pn-th cyclotomic field, where ζ is a

primitive pn-th root of unity in Q, the algebraic closure of Q in C. We fix an algebraic

closure Qℓ of Qℓ and an embedding Q ↪→ Qℓ.

Let ℓ1 and ℓ2 be two distinct prime integers with ℓi ̸= p, and let F := k(α1, α2),

where α1 = ℓ
1/pn

1 and α2 = ℓ
1/pn

2 . Let m ≥ 1 be a positive integer. We assume that each

component Ki of the étale k-algebra L =
∏m

i=0Ki is of the form Ki = k(αai
1 αbi

2 ), that is,
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a cyclic subextension of F/k, where ai and bi are integers satisfying 0 ≤ ai, bi < pn. The

Galois group G = Gal(F/k) is bicyclic of order p2n generated by two elements τ1, τ2,

τ1(α1) = α1ζ, τ1(α2) = α2, τ2(α1) = α1, τ2(α2) = α2ζ.

Therefore, any subfield of the form Mc(d), which appears in the definition of algebraic

degrees of freedom, is automatically a subfield of the bicyclic extension F .

5.1. Decomposition groups and local cyclicity

Set Fi = k(αi) with Galois group Gi = Gal(Fi/k) for i = 1, 2. We have a natural

isomorphism

G
∼−→ G1 ×G2, σ 7→ (σ|F1 , σ|F2).

For any prime ℓ, write w, w1, w2, and v for the places of F , F1, F2 and k, respectively, lying

over ℓ with respect to the embedding Q ↪→ Qℓ. If ℓ ∤ pℓ1ℓ2, then ℓ is unramified in both

F1 and F2 and hence ℓ is unramified in F . Let Gv, G1,v and G2,v be the decomposition

groups of v in G, G1 and G2, respectively.

For any integers m1 ̸= 0 and r, denote by [r]m1 the residue class of r in Z/m1Z. If m1

and r are coprime, let ord([r]m1) denote the order of [r]m1 in (Z/m1Z)×. In the following

lemma we investigate the ramification after we add a pn-th root of an integer to Qℓ(ζ).

Lemma 5.1. Let ℓ ̸= p be a prime number.

(1) For any positive integer s, the field extension Qℓ(ζ, ℓ
s/pn)/Qℓ(ζ) is totally ramified

of degree pn−vp(s), where vp is the normalized valuation at p.

(2) For any positive integer r not divisible by ℓ, the field extension Qℓ(ζ, r
1/pn)/Qℓ(ζ) is

unramified of degree

(5.1) pmax{min{n,s1}−(s1−s2),0},

where s1 = vp(ℓ− 1) and s2 = vp(ord([r]ℓ)).

Proof. (1) We first consider the case where s = 1. As Qℓ(ζ, ℓ
1/pn) is the splitting field of

the polynomial f(X) = Xpn − ℓ over Qℓ(ζ), it suffices to show that f(X) is irreducible.

Since ℓ is unramified in Q(ζ), the element ℓ is a uniformizer of the complete discrete

valuation ring Zℓ[ζ]. By Eisenstein’s criterion, f(X) is irreducible in Zℓ[ζ][X]. Therefore,

Qℓ(ζ, ℓ
1/pn)/Qℓ(ζ) is totally ramified of degree pn.

For general s, write s = pvp(s)s′. Then Qℓ(ζ, ℓ
s/pn) = Qℓ(ζ, ℓ

s′/pn
′
) with n′ = n− vp(s).

Since s′ is prime to p, Qℓ(ζ, ℓ
s′/pn

′
) = Qℓ(ζ, ℓ

1/pn
′
) is a totally ramified extension over

Qℓ(ζ) of degree pn−vp(s).
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(2) Since ℓ ∤ pr, the prime ℓ is unramified in both Q(ζ) and Q(r1/p
n
), and therefore

Qℓ(ζ, r
1/pn) is an unramified extension of Qℓ(ζ). Denote the residue fields of Qℓ(ζ) and

Qℓ(ζ, r
1/pn) by Fℓf1 and Fℓf2 , respectively. Then

[
Qℓ(ζ, r

1/pn) : Qℓ(ζ)
]
=

f2
f1

.

We have f1 = ord([ℓ]pn), the smallest positive integer f such that ℓf ≡ 1 (mod p)n. Put

s1 = vp(ℓ− 1), the smallest positive integer s such that ℓ ≡ 1 (mod p)s. If s1 = 0, let f0

be the smallest positive integer such that p divides ℓf0 − 1, then we have f1 = f0p
n−1. If

s1 > 0, then f1 = pmin{n−s1,0}.

We know Fℓf2 is the splitting field of the polynomial f(X) = Xpn − r over Fℓ. Let G

be the finite abelian group in F×
ℓ generated by all roots α of f(X). Since p divides the

cardinality of G, every root α has order pn ord([r]ℓ) by the fundamental theorem of abelian

groups. Thus, f2 is the smallest positive integer such that pn ord([r]ℓ) divides ℓ
f2 − 1. Put

s2 = vp(ord([r]ℓ)). If s1 = 0, then s2 = 0 and f2 = f0p
n+s2−1 = f0p

n−1. If s1 > 1, then

f2 = pmin{n+s2−s1,0}.

Thus, if s1 = 0, then f2/f1 = 1. If s1 ≥ 1, then

f2
f1

=





ps2 if s1 ≤ n,

pn−(s1−s2) if s1 − s2 ≤ n ≤ s1,

1 if n ≤ s1 − s2.

This gives the degree in (5.1).

Now we investigate the structure of the decomposition group Gv, where v is a place of

k lying over the prime ℓ.

Lemma 5.2. Let ℓ be a prime and v a place of k lying over ℓ. Let Gv, G1,v and G2,v be

the decomposition groups of v in G, G1 and G2, respectively.

(1) If ℓ = p, then Gv is a cyclic group.

(2) If ℓ is ℓ1 or ℓ2, then Gv ≃ G1,v ×G2,v. Moreover, if ℓ = ℓ1, then G1,v ≃ Z/pnZ and

G2,v ≃ Z/pm12Z, where

m12 = max
{
min{n, s1} − (s1 − s2), 0

}
, s1 := vp(ℓ1 − 1), s2 := vp(ord([ℓ2]ℓ1)).

If ℓ = ℓ2, then G1,v ≃ Z/pm21Z and G2,v ≃ Z/pnZ, where

m21 = max
{
min{n, s1} − (s1 − s2), 0

}
, s1 := vp(ℓ2 − 1), s2 := vp(ord([ℓ1]ℓ2)).
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Proof. (1) By Kummer theory, it suffices to show that the group W = ⟨ℓ1, ℓ2⟩ generated
by ℓ1 and ℓ2 in k×p /(k

×
p )

pn is cyclic. Note that W is a finite p-group contained in the image

of Z×
p and hence in the image of 1 + pZp. As a profinite group 1 + pZp is isomorphic to

Zp, and any finite quotient of 1 + pZp is isomorphic to (1 + pZp)/(1 + pr+1Zp) ≃ Zp/p
rZp

for some r ≥ 0, which is a cyclic group. Therefore, W is cyclic and kp(α1, α2) is a cyclic

extension over kp.

(2) If ℓ = ℓ1, then F1,w1 = Qℓ1(ζ, α1) is totally ramified of degree pn over kv =

Qℓ1(ζ) and F2,w2 = Qℓ1(ζ, α2) is unramified of degree pm12 over kv by Lemma 5.1. Since

F1,w1F2,w2 = Fw and F1,w1 ∩ F2,w2 = kv, we have Gv ≃ G1,v ×G2,v ≃ Z/pnZ × Z/pm12Z.
Similarly, we have the same result for ℓ = ℓ2.

Let W = ⟨ℓ1, ℓ2⟩ be the subgroup of k×/(k×)p
n
generated by ℓ1 and ℓ2. With these

generators, we shall write W = Z/pnZ× Z/pnZ. Each subfield Ki = k(αai
1 αbi

2 ) ⊂ F then

corresponds to the cyclic subgroup of W generated by the element (ai, bi). Recall that

[Ki : k] = pϵi and we assume ϵ0 = min{ϵi | 0 ≤ i ≤ m}. We can write (ai, bi) = pn−ϵi(a′i, b
′
i)

such that p does not divide both a′i and b′i. For any subset c ⊂ I = {1, . . . ,m} and any

positive integer d ≤ min{ϵi | i ∈ c}, the composition field Mc(d) corresponds to the

subgroup Wc(d) = pn−d⟨(a′i, b′i) : i ∈ c⟩.
We have identified the Galois group G = Gal(F/k) with Hom(W,µ), where µ denotes

the cyclic group ⟨ζ⟩. For the basis (1, 0), (0, 1) of W , we have a dual basis τ1, τ2 for

Hom(W,µ):

τ1((1, 0)) = τ2((0, 1)) = ζ, τ1((0, 1)) = τ2((1, 0)) = 1.

We set H := Gal(Mc(d)/k) and write π : G→ H for the natural projection, which can be

represented as the restriction map

π : Hom(W,µ)→ Hom(Wc(d), µ).

The condition that Mc(d)/k is locally cyclic is equivalent to that for any finite place v of

k, the decomposition group Hv at v is cyclic. If Gv is the decomposition group at v, then

Hv = π(Gv). This provides a method to check whether Mc(d) is locally cyclic.

Lemma 5.3. Let c ⊂ I be a subset and d be a positive integer with d ≤ ϵ0. Write

Wc(d) = pn−d⟨(c1(c), d1(c)), (0, d2(c))⟩

as a subgroup of Z/pnZ×Z/pnZ for some c1(c), d1(c), d2(c) ∈ Z/pnZ using row reduction.

Let m12 and m21 be the integers as in Lemma 5.2. Then Mc(d) is locally cyclic if and

only if

pn−dc1(c) ∈ pm21Z and pn−dd2(c) ∈ pm12Z.
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Proof. Let ℓ be a prime integer and v a place of k over ℓ. If ℓ ∤ pℓ1ℓ2, then v is unramified

in F and Gv is cyclic. If v = p, then Gv is cyclic by Lemma 5.2. Thus, it suffices to

check the cyclicity of Hv at ℓ = ℓ1 or ℓ = ℓ2. Let Wv ⊂ W be the subgroup such that

Gv = Hom(W/Wv, µ). Then Hv is cyclic if and only if the quotient Wc(d)/Wv is cyclic.

If ℓ = ℓ1, then Gv = Z/pnZ × Z/pm12Z and Wv = {0} × pm12Z/pnZ by Lemma 5.2.

Thus, the quotient group Wc(d)/Wv is cyclic if and only if

pn−dc1(c) = 0 or pn−dd2(c) ≡ 0 (mod pm12).

If ℓ = ℓ2, then Gv = Z/pm21Z×Z/pnZ and Wv = pm21Z/pnZ×{0} by Lemma 5.2. Thus,

the quotient group Wc(d)/Wv is cyclic if and only if

pn−dc1(c) ≡ 0 (mod pm21) or pn−dd2(c) = 0.

To sum up, Mc(d) is locally cyclic if and only if pn−dc1(c) ∈ pm21Z and pn−dd2(c) ∈
pm12Z.

Corollary 5.4. Let F = k(α1, α2) be the bicylic field extension as above. Then F is

locally cyclic if and only if

n ≤ min
{
vp(ℓ1 − 1)− vp(ord[ℓ2]ℓ1), vp(ℓ2 − 1)− vp(ord[ℓ1]ℓ2)

}
.

6. Computing Tate–Shafarevich groups and examples

In view of Section 5, we have made some assumptions on k and Ki. Our aim is to

compute the Tate–Shafarevich groups X2
ω(k, T̂L/k) and X2(k, T̂L/k) using Theorem 2.13.

We implemented several computer programs that computed all the invariants mentioned

in the theorem. The programs use the mathematical software SageMath and can be found

at

https://github.com/hfy880916/Tate-Shafarevich-groups-of-multinorm-one-torus.

There are some advantages to making the assumptions above. First, each Ki is con-

tained in the bicyclic extension k( pn
√
ℓ1,

pn
√
ℓ2), so we do not have to check whether a field

Mc(d) is a subfield when we compute the algebraic degree of freedom of an equivalence

class c. Furthermore, the conditions “Mc(d) is locally cyclic” and “K0(f) is contained

in Mc(d)” that appear in the definitions can be converted to problems in finite abelian

groups. With these advantages, we can calculate (algebraic) patching degrees and (al-

gebraic) degrees of freedom of examples in reasonable time: the most time-consuming

invariant is degree of freedoms fc, where it took 8.96 and 12 seconds to compute {fc}
in Examples 6.1 and 6.2, respectively. Below we illustrate the results by showing two

examples.

https://github.com/hfy880916/Tate-Shafarevich-groups-of-multinorm-one-torus
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Example 6.1. We put p = 3 and n = 3, so k = Q(ζ27). Choose the primes ℓ1 = 5

and ℓ2 = 19. We consider the multinorm one torus defined by the following extensions

over k: K0 = k( 27
√
5), K1 = k( 27

√
5× 19), K2 = k( 27

√
52 × 193), K3 = k( 27

√
53 × 195),

K4 = k( 27
√
55 × 1911). We list ai and bi as follows:

a0 = 1, a1 = 1, a2 = 2, a3 = 3, a4 = 5,

b0 = 0, b1 = 1, b2 = 3, b3 = 5, b4 = 11.

We see that the Ki’s are linearly disjoint. Now we list the eij ’s,

[eij ] =




3 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 3




.

In this case the only nonempty Ur is U0 = {1, 2, 3, 4} = I, and it has four 1-equivalence

classes {1}, {2}, {3}, {4}. We compute that L(U0) = 0, the algebraic patching de-

gree ∆ω
0 = 3, and the patching degree ∆0 = 3. We compute and list the algebraic degrees

of freedom fω
c and degrees of freedom fc for equivalence classes c = U0, {1}, {2}, {3}, {4}.

Table 6.1: The algebraic degrees of freedom and degrees of freedom in Example 6.1.

c U0 {1} {2} {3} {4}
fω
c 3 0 0 0 0

fc 1 NE NE NE NE

In Table 6.1, “NE” stands for “does not exist”. Using Theorem 2.13 we compute the

Tate–Shafarevich groups,

X2
ω(k, T̂L/k) ≃ (Z/p(3−0)Z)(4−1) = Z/27Z× Z/27Z× Z/27Z,

X2(k, T̂L/k) ≃ (Z/p(1−0)Z)(4−1) = Z/3Z× Z/3Z× Z/3Z.

Example 6.2. Let p, n, k, ℓ1, ℓ2, m be the same as in Example 6.1. Consider a dif-

ferent mutlinorm one torus defined by the following field extensions: K0 = k( 27
√
5),

K1 = k( 27
√
5× 19), K2 = k( 27

√
52 × 193), K3 = k( 27

√
54 × 199), K4 = k( 27

√
510 × 1919).

We list ai and bi as follows:

a0 = 1, a1 = 1, a2 = 2, a3 = 4, a4 = 10,

b0 = 0, b1 = 1, b2 = 3, b3 = 9, b4 = 19.
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TheKi’s are no longer linearly disjoint so we expect the components of the Tate–Shafarevich

groups to be less regular. We list the eij ’s,

[eij ] =




3 0 0 1 0

0 3 0 0 2

0 0 3 0 0

1 0 0 3 0

0 2 0 0 3




.

In this case we have two nonempty Ur’s, U0 = {1, 2, 4} and U1 = {3}. We present the

ℓ-equivalence relations that need to be considered as follows.

16 JUN-HAO HUANG, FAN-YUN HUNG, PEI-XIN LIANG, AND CHIA-FU YU

Example 6.2. Let p, n, k, ℓ1, ℓ2,m be the same as in Example 6.1. Consider a different mut-
linorm one torus defined by the following field extensions: K0 = k( 27

√
5), K1 = k( 27

√
5× 19),

K2 = k( 27
√
52 × 193), K3 = k( 27

√
54 × 199), K4 = k( 27

√
510 × 1919). We list ai and bi as follows:

a0 = 1, a1 = 1, a2 = 2, a3 = 4, a4 = 10,

b0 = 0, b1 = 1, b2 = 3, b3 = 9, b4 = 19.

The Ki’s are no longer linearly disjoint so we expect the components of the Tate-Shafarevich
groups to be less regular. We list the eij ’s,

[eij ] =




3 0 0 1 0
0 3 0 0 2
0 0 3 0 0
1 0 0 3 0
0 2 0 0 3




.

In this case we have two nonempty Ur’s, U0 = {1, 2, 4} and U1 = {3}. We present the ℓ-
equivalence relations that need to be considered as follows.

(a) ℓ = 0 (b) ℓ = 1, 2 (c) ℓ = 3

Figure 1. For i, j ∈ Ur, they are connected by a line if i ∼ℓ j.

The set R = {0, 1}, and we compute that L(U0) = 0, L(U1) = 3. We compute the algebraic
patching degrees ∆ω

r and patching degrees ∆r,

∆ω
0 = 3, ∆ω

1 = 3, ∆0 = 1, ∆1 = 1.

We compute and list the algebraic degrees of freedom fω
c and degrees of freedom fc for equivalence

classes c = U0, {1, 4}, {1}, {4}, {2}, and U1.

c U0 {1, 4} {1} {4} {2} U1

fω
c 3 0 0 0 0 1
fc 1 NE NE NE NE NE

Table 2. The algebraic degrees of freedom and degrees of freedom in Example
6.2.

Hence the Tate-Shafarevich groups are

X2
ω(k, T̂L/k) ≃ Z/p3−1Z⊕ (Z/p3−0Z)2−1 = Z/9Z× Z/27Z;

X2(k, T̂L/k) ≃ (Z/p1−0Z)2−1 = Z/3Z.

(a) ℓ = 0
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Example 6.2. Let p, n, k, ℓ1, ℓ2,m be the same as in Example 6.1. Consider a different mut-
linorm one torus defined by the following field extensions: K0 = k( 27

√
5), K1 = k( 27

√
5× 19),

K2 = k( 27
√
52 × 193), K3 = k( 27

√
54 × 199), K4 = k( 27

√
510 × 1919). We list ai and bi as follows:

a0 = 1, a1 = 1, a2 = 2, a3 = 4, a4 = 10,

b0 = 0, b1 = 1, b2 = 3, b3 = 9, b4 = 19.

The Ki’s are no longer linearly disjoint so we expect the components of the Tate-Shafarevich
groups to be less regular. We list the eij ’s,

[eij ] =




3 0 0 1 0
0 3 0 0 2
0 0 3 0 0
1 0 0 3 0
0 2 0 0 3




.

In this case we have two nonempty Ur’s, U0 = {1, 2, 4} and U1 = {3}. We present the ℓ-
equivalence relations that need to be considered as follows.

(a) ℓ = 0 (b) ℓ = 1, 2 (c) ℓ = 3

Figure 1. For i, j ∈ Ur, they are connected by a line if i ∼ℓ j.

The set R = {0, 1}, and we compute that L(U0) = 0, L(U1) = 3. We compute the algebraic
patching degrees ∆ω

r and patching degrees ∆r,

∆ω
0 = 3, ∆ω

1 = 3, ∆0 = 1, ∆1 = 1.

We compute and list the algebraic degrees of freedom fω
c and degrees of freedom fc for equivalence

classes c = U0, {1, 4}, {1}, {4}, {2}, and U1.

c U0 {1, 4} {1} {4} {2} U1

fω
c 3 0 0 0 0 1
fc 1 NE NE NE NE NE

Table 2. The algebraic degrees of freedom and degrees of freedom in Example
6.2.

Hence the Tate-Shafarevich groups are

X2
ω(k, T̂L/k) ≃ Z/p3−1Z⊕ (Z/p3−0Z)2−1 = Z/9Z× Z/27Z;

X2(k, T̂L/k) ≃ (Z/p1−0Z)2−1 = Z/3Z.

(b) ℓ = 1, 2
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Example 6.2. Let p, n, k, ℓ1, ℓ2,m be the same as in Example 6.1. Consider a different mut-
linorm one torus defined by the following field extensions: K0 = k( 27

√
5), K1 = k( 27

√
5× 19),

K2 = k( 27
√
52 × 193), K3 = k( 27

√
54 × 199), K4 = k( 27

√
510 × 1919). We list ai and bi as follows:

a0 = 1, a1 = 1, a2 = 2, a3 = 4, a4 = 10,

b0 = 0, b1 = 1, b2 = 3, b3 = 9, b4 = 19.

The Ki’s are no longer linearly disjoint so we expect the components of the Tate-Shafarevich
groups to be less regular. We list the eij ’s,

[eij ] =




3 0 0 1 0
0 3 0 0 2
0 0 3 0 0
1 0 0 3 0
0 2 0 0 3




.

In this case we have two nonempty Ur’s, U0 = {1, 2, 4} and U1 = {3}. We present the ℓ-
equivalence relations that need to be considered as follows.

(a) ℓ = 0 (b) ℓ = 1, 2 (c) ℓ = 3

Figure 1. For i, j ∈ Ur, they are connected by a line if i ∼ℓ j.

The set R = {0, 1}, and we compute that L(U0) = 0, L(U1) = 3. We compute the algebraic
patching degrees ∆ω

r and patching degrees ∆r,

∆ω
0 = 3, ∆ω

1 = 3, ∆0 = 1, ∆1 = 1.

We compute and list the algebraic degrees of freedom fω
c and degrees of freedom fc for equivalence

classes c = U0, {1, 4}, {1}, {4}, {2}, and U1.

c U0 {1, 4} {1} {4} {2} U1

fω
c 3 0 0 0 0 1
fc 1 NE NE NE NE NE

Table 2. The algebraic degrees of freedom and degrees of freedom in Example
6.2.

Hence the Tate-Shafarevich groups are

X2
ω(k, T̂L/k) ≃ Z/p3−1Z⊕ (Z/p3−0Z)2−1 = Z/9Z× Z/27Z;

X2(k, T̂L/k) ≃ (Z/p1−0Z)2−1 = Z/3Z.

(c) ℓ = 3

Figure 6.1: For i, j ∈ Ur, they are connected by a line if i ∼ℓ j.

The set R = {0, 1}, and we compute that L(U0) = 0, L(U1) = 3. We compute the

algebraic patching degrees ∆ω
r and patching degrees ∆r,

∆ω
0 = 3, ∆ω

1 = 3, ∆0 = 1, ∆1 = 1.

We compute and list the algebraic degrees of freedom fω
c and degrees of freedom fc for

equivalence classes c = U0, {1, 4}, {1}, {4}, {2}, and U1.

Table 6.2: The algebraic degrees of freedom and degrees of freedom in Example 6.2.

c U0 {1, 4} {1} {4} {2} U1

fω
c 3 0 0 0 0 1

fc 1 NE NE NE NE NE

Hence the Tate–Shafarevich groups are

X2
ω(k, T̂L/k) ≃ Z/p3−1Z⊕ (Z/p3−0Z)2−1 = Z/9Z× Z/27Z,

X2(k, T̂L/k) ≃ (Z/p1−0Z)2−1 = Z/3Z.
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