Non-vanishing of L-functions of Vector-valued Modular Forms

Subong Lim* and Wissam Raji

Abstract

Kohnen proved a non-vanishing result for L-functions associated to Hecke eigenforms of integral weights on the full group. In this paper, we show a non-vanishing result for the averages of L-functions associated with the orthogonal basis of the space of cusp forms of vector-valued modular forms of weight $k \in \frac{1}{2} \mathbb{Z}$ on the full group. We also show the existence of at least one basis element whose L-function does not vanish under certain conditions. As an application, we generalize the result of Kohnen to $\Gamma_{0}(N)$ and prove the analogous result for Jacobi forms.

1. Introduction

Vector-valued modular forms have played a crucial role in the theory of modular forms. In particular, Selberg used these forms to give an estimation for the Fourier coefficients of the classical modular forms [13]. Moreover, vector-valued modular forms arise naturally in the theory of Jacobi forms, Siegel modular forms, and Moonshine. Some applications of vectorvalued modular forms stand out in high-energy physics by mainly providing a method of differential equations in order to construct the modular multiplets, and also revealing the simple structure of the modular invariant mass models [11]. Other applications concerning vector-valued modular forms of half-integer weight seem to provide a simple solution to the Riemann-Hilbert problem for representations of the modular group [2].

In [7, [8], Knopp and/or Mason gave a systematic development of the theory of vectorvalued modular forms where they introduced the foundation of the space of these forms mainly through the introduction of vector-valued Poincaré series and vector-valued Eisenstein series leading to a better understanding of the space of vector-valued modular forms. More recently, several algorithms for computing Fourier coefficients of vector-valued modular forms were determined in connection to Weil representations due to their importance in the Moonshine applications [12].

On the other hand, L-functions of vector-valued modular forms play important role in the above-mentioned computations as well so it is natural to study them. In this paper, we show a non-vanishing result for averages of L-functions associated with vector-valued

[^0]modular forms. To illustrate, we let $\left\{f_{k, 1}, \ldots, f_{k, d_{k}}\right\}$ be an orthogonal basis of $S_{k, \chi, \rho}$ with Fourier expansions
$$
f_{k, l}(\tau)=\sum_{j=1}^{m} \sum_{n+\kappa_{j}>0} b_{k, l, j}(n) e^{2 \pi i\left(n+\kappa_{j}\right) \tau} \mathbf{e}_{j}, \quad 1 \leq l \leq d_{k}
$$
where χ is a multiplier system of weight $k \in \frac{1}{2} \mathbb{Z}$ on $\mathrm{SL}_{2}(\mathbb{Z})$ and $\rho: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}_{m}(\mathbb{C})$ is an m-dimensional unitary complex representation. Here and throughout the paper, κ_{j} is a certain positive number with $0 \leq \kappa_{j}<1$. We let $t_{0} \in \mathbb{R}, \epsilon>0$, and $1 \leq i \leq m$. Then, there exists a constant $C\left(t_{0}, \epsilon, i\right)>0$ such that for $k>C\left(t_{0}, \epsilon, i\right)$ the function
$$
\sum_{l=1}^{d_{k}} \frac{\left\langle L^{*}\left(f_{k, l}, s\right), \mathbf{e}_{i}\right\rangle}{\left(f_{k, l}, f_{k, l}\right)} b_{k, l, i}\left(n_{i, 0}\right)
$$
does not vanish at any point $s=\sigma+i t_{0}$ with $(k-1) / 2<\sigma<k / 2-\epsilon$, where $\left\langle L^{*}\left(f_{k, l}, s\right), \mathbf{e}_{i}\right\rangle$ denotes the i-th component of $L^{*}\left(f_{k, l}, s\right)$ and $n_{i, 0}$ is defined by
\[

n_{i, 0}:= $$
\begin{cases}1 & \text { if } \kappa_{i}=0 \\ 0 & \text { if } \kappa_{i} \neq 0\end{cases}
$$
\]

By using the integral weight case, we generalize a result of Kohnen in [9] to $\Gamma_{0}(N)$ in Section 5. On the other hand, by using the half-integral weight case, we prove the analogous result for Jacobi forms in Section 6 .

2. Preliminaries

Let $k \in \frac{1}{2} \mathbb{Z}$ and χ be a unitary multiplier system of weight k on Γ, i.e., $\chi: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathbb{C}$ satisfies the following conditions:
(1) $|\chi(\gamma)|=1$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.
(2) χ satisfies the consistency condition

$$
\chi\left(\gamma_{3}\right)\left(c_{3} \tau+d_{3}\right)^{k}=\chi\left(\gamma_{1}\right) \chi\left(\gamma_{2}\right)\left(c_{1} \gamma_{2} \tau+d_{1}\right)^{k}\left(c_{2} \tau+d_{2}\right)^{k}
$$

where $\gamma_{3}=\gamma_{1} \gamma_{2}$ and $\gamma_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ c_{i} & d_{i}\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ for $i=1,2,3$.
Throughout this paper, we use the convention that $\sqrt{\tau}$ is chosen so that $\arg (\sqrt{\tau}) \in$ $(-\pi / 2, \pi / 2]$. Let m be a positive integer and $\rho: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}_{m}(\mathbb{C})$ an m-dimensional unitary complex representation. We assume that $\rho(-I)$ is the identity matrix, where I denotes the identity matrix. Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right\}$ denote the standard basis of \mathbb{C}^{m}. For a vector-valued function $f=\sum_{j=1}^{m} f_{j} \mathbf{e}_{j}$ on \mathbb{H} and $\gamma \in \Gamma$, define a slash operator by

$$
\left(\left.f\right|_{k, \chi, \rho} \gamma\right)(\tau):=\chi^{-1}(\gamma)(c \tau+d)^{-k} \rho^{-1}(\gamma) f(\gamma \tau)
$$

Definition 2.1. A vector-valued modular form of weight k and multiplier system χ with respect to ρ on $\mathrm{SL}_{2}(\mathbb{Z})$ is a sum $f=\sum_{j=1}^{m} f_{j} \mathbf{e}_{j}$ of functions holomorphic in \mathbb{H} satisfying the following conditions:
(1) $\left.f\right|_{k, \chi, \rho} \gamma=f$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.
(2) For each $1 \leq j \leq m$, each function f_{j} has a Fourier expansion of the form

$$
f_{j}(\tau)=\sum_{n+\kappa_{j} \geq 0} a_{j}(n) e^{2 \pi i\left(n+\kappa_{j}\right) \tau}
$$

We write $M_{k, \chi, \rho}$ for the space of vector-valued modular forms of weight k and multiplier system χ with respect to ρ on $\mathrm{SL}_{2}(\mathbb{Z})$. There is a subspace $S_{k, \chi, \rho}$ of vector-valued cusp forms for which we require that each $a_{j}(n)=0$ when $n+\kappa_{j}$ is non-positive.

From the condition (2) in Definition 2.1, we see that $\chi\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right) \rho\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right)$ is a diagonal matrix whose (j, j) entry is $e^{2 \pi i \kappa_{j}}$. If $f \in S_{k, \chi, \rho}$ is a vector-valued cusp form, then $a_{j}(n)=O\left(n^{k / 2}\right)$ for every $1 \leq j \leq m$, as $n \rightarrow \infty$ by the same argument for classical modular forms (for example, see [7, Section 1]). For a vector-valued cusp form $f(z)=\sum_{j=1}^{m} \sum_{n+\kappa_{j}>0} a_{j}(n) e^{2 \pi i\left(n+\kappa_{j}\right) z} \mathbf{e}_{j}$ we define the L-series

$$
L(f, s)=\sum_{j=1}^{m} \sum_{n+\kappa_{j}>0} \frac{a_{j}(n)}{\left(n+\kappa_{j}\right)^{s}} \mathbf{e}_{j} .
$$

This series converges absolutely for $\operatorname{Re}(s) \gg 0$.
The following theorem for vector-valued modular forms follows from the same argument used for classical modular forms.

Theorem 2.2. Let $k \in \frac{1}{2} \mathbb{Z}$. If $f \in S_{k, \chi, \rho}$ is a vector-valued cusp form, then

$$
\frac{\Gamma(s)}{(2 \pi)^{s}} L(f, s)=\int_{0}^{\infty} f(i y) y^{s} \frac{d y}{y}
$$

Furthermore, $L(f, s)$ has an analytic continuation to the whole complex plane and the functional equation

$$
L^{*}(f, s)=i^{k} \chi(S) \rho(S) L^{*}(f, k-s)
$$

where

$$
L^{*}(f, s)=\frac{\Gamma(s)}{(2 \pi)^{s}} L(f, s)
$$

and $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

3. The construction of the kernel function

In what follows, we define the kernel function $R_{k, s, l}$ which will play a crucial role in determining the Fourier coefficients of the orthogonal basis of the space of vector-valued cusp forms using Petersson's scalar product. Moreover, we determine the Fourier coefficients of this kernel function using the Lipshitz summation formula.

Let l be an integer with $1 \leq l \leq m$. Define

$$
p_{s, l}(\tau):=\tau^{-s} \mathbf{e}_{l} .
$$

For $\tau \in \mathbb{H}$ and $s \in \mathbb{C}$ with $1<\operatorname{Re}(s)<k-1$, we define

$$
R_{k, s, l}:=\left.\gamma_{k}(s) \sum_{\gamma \in \mathrm{SL}_{2}(\mathbb{Z})} p_{s, l}\right|_{k, \chi, \rho} \gamma,
$$

where $\gamma_{k}(s):=\frac{1}{2} e^{\pi i s / 2} \Gamma(s) \Gamma(k-s)$.
We write $\langle\cdot, \cdot\rangle$ for the standard scalar product on \mathbb{C}^{m}, i.e.,

$$
\left\langle\sum_{j=1}^{m} \lambda_{j} \mathbf{e}_{j}, \sum_{j=1}^{m} \mu_{j} \mathbf{e}_{j}\right\rangle=\sum_{j=1}^{m} \lambda_{j} \overline{\mu_{j}} .
$$

Then, for $f, g \in M_{k, \chi, \rho}$, we define the Petersson scalar product of f and g by

$$
(f, g):=\int_{\mathcal{F}}\langle f(\tau), g(\tau)\rangle v^{k} \frac{d u d v}{v^{2}}
$$

if the integral converges, where \mathcal{F} is the standard fundamental domain for the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathbb{H} and $\tau=u+i v$.

Lemma 3.1. Let $k \in \frac{1}{2} \mathbb{Z}$ with $k>2$, and let $s \in \mathbb{C}$ with $1<\operatorname{Re}(s)<k-1$.
(1) The series $R_{k, s, l}$ converges absolutely uniformly whenever $\tau=u+i v$ satisfies $v \geq \epsilon$, $u \leq 1 / \epsilon$ for a given $\epsilon>0$, and s varies over a compact set.
(2) The series $R_{k, s, l}$ is a vector-valued cusp form in $S_{k, \chi, \rho}$.
(3) For $f \in S_{k, \chi, \rho}$, we have

$$
\left(f, R_{k, \bar{s}, l}\right)=c_{k}\left\langle L^{*}(f, s), \mathbf{e}_{l}\right\rangle,
$$

where $c_{k}:=\frac{(-1)^{k / 2} \pi(k-2)!}{2^{k-2}}$.
Proof. For the first part, note that for each $1 \leq j \leq m$, we have

$$
\left(R_{k, s, l}\right)_{j}(\tau)=\gamma_{k}(s) \sum_{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})} \chi^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)_{j, l}(c \tau+d)^{-k}\left(\frac{a \tau+b}{c \tau+d}\right)^{-s},
$$

where $\rho^{-1}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)_{j, l}$ denotes the (j, l)-th entry of the matrix $\rho^{-1}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)$ and $\left(R_{k, s, l}\right)_{j}$ denotes the j-th component of $R_{k, s, l}$. Then, we have

$$
\begin{aligned}
& \sum_{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})}\left|\chi^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)_{j, l}(c \tau+d)^{-k}\left(\frac{a \tau+b}{c \tau+d}\right)^{-s}\right| \\
\leq & \sum_{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})}\left|(c \tau+d)^{-k}\left(\frac{a \tau+b}{c \tau+d}\right)^{-s}\right|
\end{aligned}
$$

since ρ is a unitary representation. It is known that the series

$$
\sum_{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})}(c \tau+d)^{-k}\left(\frac{a \tau+b}{c \tau+d}\right)^{-s}
$$

converges absolutely uniformly whenever $\tau=u+i v$ satisfies $v \geq \epsilon, u \leq 1 / \epsilon$ for a given $\epsilon>0$, and s varies over a compact set of $1<\operatorname{Re}(s)<k-1$ (see [9, Section 4]). Therefore, the series $R_{k, s, l}$ converges absolutely uniformly whenever $\tau=u+i v$ satisfies $v \geq \epsilon, u \leq 1 / \epsilon$ for a given $\epsilon>0$, and s varies over a compact set of $1<\operatorname{Re}(s)<k-1$. The second part follows from the Fourier expansion of $R_{k, s, l}$ given in Theorem4.1.

For the last part, we follow the argument in [9, Lemma 1]. It is enough to consider the case when $1<\operatorname{Re}(s)<(k-1) / 2$. Note that for each $(c, d) \in \mathbb{Z}^{2}$ with $(c, d)=1$, we can find $(a, b) \in \mathbb{Z}^{2}$ such that $a d-b c=1$. Then, we see that $R_{k, s, l}(\tau)$ is equal to

$$
\begin{aligned}
& \gamma_{k}(s) \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1}} \sum_{n \in \mathbb{Z}}(c \tau+d)^{-k}\left(\frac{a \tau+b}{c \tau+d}+n\right)^{-s} \\
& \times \chi^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \chi^{-1}\left(\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)\right) \mathbf{e}_{l}
\end{aligned}
$$

where for each coprime pair $(c, d) \in \mathbb{Z}^{2}$, one chooses a fixed pair $(a, b) \in \mathbb{Z}^{2}$ such that $a d-b c=1$. Therefore, we have

$$
\begin{aligned}
& \left(R_{k, s, l}\right)_{j}(\tau) \\
= & \gamma_{k}(s) \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1}} \sum_{n \in \mathbb{Z}}(c \tau+d)^{-k}\left(\frac{a \tau+b}{c \tau+d}+n\right)^{-s} e^{-2 \pi i n \kappa_{l}} \chi^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)_{j, l} .
\end{aligned}
$$

Next, we will use the Lipschitz summation formula [10]: For $0 \leq a<1, \operatorname{Re}(s)>1$ and $\tau \in \mathbb{H}$, we have

$$
\begin{equation*}
\frac{\Gamma(s)}{(-2 \pi i)^{s}} \sum_{k \in \mathbb{Z}} \frac{e^{2 \pi i a k}}{(k+\tau)^{s}}=\sum_{n=1}^{\infty} \frac{e^{2 \pi i \tau(n-a)}}{(n-a)^{1-s}} . \tag{3.1}
\end{equation*}
$$

Therefore, we have

$$
\begin{aligned}
\left(R_{k, s, l}\right)_{j}(\tau)= & \frac{1}{2}(2 \pi)^{s} \Gamma(k-s) \sum_{n+\kappa_{l}>0}\left(n+\kappa_{l}\right)^{s-1} \\
& \times \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1}} \chi^{-1}\left(\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)_{j, l}(c \tau+d)^{-k} e^{2 \pi i\left(n+\kappa_{l}\right)(a \tau+b) /(c \tau+d)} .
\end{aligned}
$$

From this, we have

$$
R_{k, s, l}(\tau)=(2 \pi)^{s} \Gamma(k-s) \sum_{n+\kappa_{l}>0}\left(n+\kappa_{l}\right)^{s-1} P_{k, n, l}(\tau),
$$

where

$$
P_{k, n, l}(\tau)=\frac{1}{2} \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1}} \chi^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)(c \tau+d)^{-k} e^{2 \pi i\left(n+\kappa_{l}\right)(a \tau+b) /(c \tau+d)} \mathbf{e}_{l}
$$

is a vector-valued Poincaré series. Suppose that $f \in S_{k, \chi, \rho}$ has a Fourier expansion of the form

$$
f(\tau)=\sum_{j=1}^{m} \sum_{n+\kappa_{j}>0} a_{j}(n) e^{2 \pi i\left(n+\kappa_{j}\right) \tau} \mathbf{e}_{j} .
$$

By following the argument as in [7, Theorem 5.3], we have

$$
\left(f, P_{k, n, l}\right)=a_{l}(n) \frac{\Gamma(k-1)}{\left(4 \pi\left(n+\kappa_{l}\right)\right)^{k-1}}
$$

Therefore, we see that

$$
\left(f, R_{k, \bar{s}, l}\right)=c_{k}(-1)^{k / 2}(2 \pi)^{-(k-s)} \Gamma(k-s)\left\langle L(f, k-s), \mathbf{e}_{l}\right\rangle=c_{k}\left\langle L^{*}(f, s), \mathbf{e}_{l}\right\rangle
$$

We now compute the Fourier expansion of $R_{k, s, l}$ by following a similar argument as in [9, Lemma 2].

Lemma 3.2. Let $k \in \frac{1}{2} \mathbb{Z}$ with $k>2$. The function $R_{k, s, l}$ has the Fourier expansion

$$
R_{k, s, l}(\tau)=\sum_{j=1}^{m} \sum_{n+\kappa_{j}>0} r_{k, s, l, j}(n) e^{2 \pi i\left(n+\kappa_{j}\right) \tau} \mathbf{e}_{j}
$$

where $r_{k, s, l, j}(n)$ is given by

$$
\begin{aligned}
& r_{k, s, l, j}(n) \\
& =\delta_{l, j}(2 \pi)^{s} \Gamma(k-s)\left(n+\kappa_{l}\right)^{s-1}+\chi^{-1}(S) \rho^{-1}(S)_{j, l}(-1)^{k / 2}(2 \pi)^{k-s} \Gamma(s)\left(n+\kappa_{j}\right)^{k-s-1} \\
& +\frac{(-1)^{k / 2}}{2}(2 \pi)^{k}\left(n+\kappa_{j}\right)^{k-1} \frac{\Gamma(s) \Gamma(k-s)}{\Gamma(k)} \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1, a c>0}} c^{-k}\left(\frac{c}{a}\right)^{s} \\
& \quad \times\left(e^{2 \pi i\left(n+\kappa_{j}\right) d / c} e^{\pi i s} \chi^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\right)_{j, l} 1\right. \\
& \\
& \quad+F_{1}(s, k ;-2 \pi i n /(a c)) \\
& \quad+2 \pi i\left(n+\kappa_{j}\right) d / c \\
& e^{-\pi i s} \chi^{-1}\left(\left(\left(\begin{array}{cc}
-a & b \\
c & -d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{cc}
-a & b \\
c & -d
\end{array}\right)\right)_{j, l} F_{1}(s, k ; 2 \pi i n /(a c))\right),
\end{aligned}
$$

where ${ }_{1} F_{1}(\alpha, \beta ; z)$ is Kummer's degenerate hypergeometric function.
Proof. First, we consider the contribution of the terms where $a c=0$. The contribution of the terms $\pm\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$

$$
2 \gamma_{k}(s) \sum_{n \in \mathbb{Z}}(z+n)^{-s} e^{-2 \pi n \kappa_{l}} \mathbf{e}_{l}
$$

can be written, by the Lipschitz summation formula in (3.1), as follows:

$$
(2 \pi)^{s} \Gamma(k-s) \sum_{n+\kappa_{l}>0}\left(n+\kappa_{l}\right)^{s-1} e^{2 \pi i\left(n+\kappa_{l}\right) z} \mathbf{e}_{l}
$$

Note that $\left(\begin{array}{cc}0 & -1 \\ 1 & n\end{array}\right)=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$. Therefore, the contribution of the terms $\pm\left(\begin{array}{cc}0 & -1 \\ 1 & n\end{array}\right)$ is equal to

$$
\begin{align*}
& 2 \gamma_{k}(s) \sum_{n \in \mathbb{Z}}(-z)^{-s}(z+n)^{s-k} \chi^{-1}\left(\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right)\right) \chi^{-1}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) \rho^{-1}\left(\left(\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) \mathbf{e}_{l}\right. \\
= & 2 \gamma_{k}(s)(-z)^{-s} \sum_{j=1}^{m} \chi^{-1}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)_{j, l} \sum_{n \in \mathbb{Z}} e^{-2 \pi i n \kappa_{j}}(z+n)^{s-k} \mathbf{e}_{j} . \tag{3.2}
\end{align*}
$$

By the similar computation as in the case of the terms $\pm\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$, we see that 3.2 is equal to

$$
(-1)^{k / 2}(2 \pi)^{k-s} \Gamma(s) \sum_{j=1}^{m} \chi^{-1}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)_{j, l} \sum_{n+\kappa_{j}>0}\left(n+\kappa_{j}\right)^{k-s-1} e^{2 \pi i\left(n+\kappa_{j}\right) z} \mathbf{e}_{j} .
$$

The contribution of the terms with $a c \neq 0$ at the j-th component is given by

$$
\begin{align*}
\gamma_{k}(s) \int_{i C}^{i C+1} \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1, a c \neq 0}}(c z+d)^{-k}\left(\frac{a z+d}{c z+d}\right)^{-s} \chi^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)_{j, l} e^{-2 \pi i\left(n+\kappa_{j}\right) z} d z \tag{3.3}\\
=\gamma_{k}(s) \int_{i C}^{i C+1} \sum_{m \in \mathbb{Z}} \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1, a c \neq 0}}(c(z+m)+d)^{-k}\left(\frac{a(z+m)+b}{c(z+m)+d}\right)^{-s} \\
\quad \times e^{-2 \pi i m \kappa_{j}} \chi^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)_{j, l} e^{-2 \pi i\left(n+\kappa_{j}\right) z} d z
\end{align*}
$$

for any fixed positive real number C. By the change of variables $z \mapsto z+m(m \in \mathbb{Z})$, we see that (3.3) is equal to
$\gamma_{k}(s) \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\(c, d)=1, a c \neq 0}} \chi^{-1}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)_{j, l} \int_{i C-\infty}^{i C+\infty}(c z+d)^{-k}\left(\frac{a z+b}{c z+d}\right)^{-s} e^{-2 \pi i\left(n+\kappa_{j}\right) z} d z$.

By the change of variables $z \mapsto z-d / c$, we see that (3.4) is equal to

$$
\begin{array}{r}
\gamma_{k}(s) \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1, a c \neq 0}} c^{-k} e^{2 \pi i\left(n+\kappa_{j}\right) d / c} \chi^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)_{j, l} \tag{3.5}\\
\quad \times \int_{i C-\infty}^{i C+\infty} z^{-k}\left(-\frac{1}{c^{2} z}+\frac{a}{c}\right)^{-s} e^{-2 \pi i\left(n+\kappa_{j}\right) z} d z .
\end{array}
$$

If $a c>0$, then we have

$$
z^{-s}\left(-\frac{1}{c^{2} z}+\frac{a}{c}\right)^{-s}=\left(-\frac{1}{c^{2}}+\frac{a}{c} z\right)^{-s}
$$

Therefore, by the change of variable $z \mapsto(c / a) i t$, we see that the integral in (3.5) is equal to

$$
\begin{equation*}
(-1)^{k / 2} 2 \pi\left(\frac{c}{a}\right)^{-k+s+1} \frac{1}{2 \pi i} \int_{C-i \infty}^{C+i \infty} t^{-k+s}\left(t+\frac{i}{c^{2}}\right)^{-s} e^{2 \pi\left(n+\kappa_{j}\right)(c / a) t} d t \tag{3.6}
\end{equation*}
$$

Note that for $\operatorname{Re}(\mu), \operatorname{Re}(\nu)>0, p \in \mathbb{C}$, we have

$$
\frac{1}{2 \pi i} \int_{C-i \infty}^{C+i \infty}(t+\alpha)^{-\mu}(t+\beta)^{-\nu} e^{p t} d t=\frac{1}{\Gamma(\mu+\nu)} p^{\mu+\nu-1} e^{-\beta p}{ }_{1} F_{1}(\mu, \mu+\nu ;(\beta-\alpha) p)
$$

(see [6]). Therefore, (3.6) can be written as

$$
(-1)^{k / 2} \frac{(2 \pi)^{k}}{\Gamma(k)}\left(n+\kappa_{j}\right)^{k-1}\left(\frac{c}{a}\right)^{s}{ }_{1} F_{1}(s, k ;-2 \pi i n /(a c)) .
$$

From this, we see that the contribution of the terms with $a c>0$ at the j-th component is equal to

$$
\begin{aligned}
& \frac{(-1)^{k / 2}}{2}(2 \pi)^{k}\left(n+\kappa_{j}\right)^{k-1} \frac{\Gamma(s) \Gamma(k-s)}{\Gamma(k)} \\
\times & \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1, a c>0}} c^{-k}\left(\frac{c}{a}\right)^{s} e^{2 \pi i\left(n+\kappa_{j}\right) d / c} e^{\pi i s} \chi^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)_{j, l}{ }_{1} F_{1}(s, k ;-2 \pi i n /(a c)) .
\end{aligned}
$$

The contribution of the terms with $a c<0$ at the j-th component is obtained by the same argument if we replace (a, c) by $(-a, c)$.

4. The main result

In this section, we give the main result where we determine the non-vanishing of the averages of L-functions associated with the orthogonal basis of the space of cusp forms. We also show the existence of at least one basis element whose L-function does not vanish under certain conditions. Let

$$
n_{j, 0}:= \begin{cases}1 & \text { if } \kappa_{j}=0 \\ 0 & \text { if } \kappa_{j} \neq 0\end{cases}
$$

Theorem 4.1. Let $k \in \frac{1}{2} \mathbb{Z}$ with $k>2$. Let $\left\{f_{k, 1}, \ldots, f_{k, d_{k}}\right\}$ be an orthogonal basis of $S_{k, \chi, \rho}$ with Fourier expansions

$$
f_{k, l}(\tau)=\sum_{j=1}^{m} \sum_{n+\kappa_{j}>0} b_{k, l, j}(n) e^{2 \pi i\left(n+\kappa_{j}\right) \tau} \mathbf{e}_{j}, \quad 1 \leq l \leq d_{k}
$$

Let $t_{0} \in \mathbb{R}, \epsilon>0$, and $1 \leq j \leq m$. Then, there exists a constant $C\left(t_{0}, \epsilon, j\right)>0$ such that for $k>C\left(t_{0}, \epsilon, j\right)$ the function

$$
\sum_{l=1}^{d_{k}} \frac{\left\langle L^{*}\left(f_{k, l}, s\right), \mathbf{e}_{j}\right\rangle}{\left(f_{k, l}, f_{k, l}\right)} b_{k, l, j}\left(n_{j, 0}\right)
$$

does not vanish at any point $s=\sigma+i t_{0}$ with $(k-1) / 2<\sigma<k / 2-\epsilon$.
Remark 4.2. Note that

$$
\sum_{l=1}^{d_{k}} \frac{\left\langle L^{*}\left(f_{k, l}, s\right), \mathbf{e}_{j}\right\rangle}{\left(f_{k, l}, f_{k, l}\right)} b_{k, l, j}\left(n_{j, 0}\right)
$$

is the $n_{j, 0}$-th Fourier coefficient of $R_{k, \bar{s}, j}$. Therefore, it is equal to a nonzero constant multiple of

$$
\left(R_{k, \bar{s}, j}, P_{k, n_{j, 0}, j}\right)
$$

Therefore, Theorem 4.1 implies the nonvanishing of $\left\langle L^{*}\left(P_{k, n_{j, 0}, j}, s\right), \mathbf{e}_{j}\right\rangle$.
Proof of Theorem 4.1. By Lemma 3.1, we have

$$
R_{k, \bar{s}, j}=\sum_{l=1}^{d_{k}} \frac{\left(f_{k, l}, R_{k, \bar{s}, j}\right)}{\left(f_{k, l}, f_{k, l}\right)} f_{k, l}=c_{k} \sum_{l=1}^{d_{k}} \frac{\left\langle L^{*}\left(f_{k, l}, s\right), \mathbf{e}_{j}\right\rangle}{\left(f_{k, l}, f_{k, l}\right)} f_{k, l} .
$$

If we take the first Fourier coefficients of both sides at the j-th component, then by Lemma 3.2 we have

$$
\left.\begin{array}{l}
c_{k} \sum_{l=1}^{d_{k}} \frac{\left\langle L^{*}\left(f_{k, l}, s\right), \mathbf{e}_{j}\right\rangle}{\left(f_{k, l}, f_{k, l}\right)} b_{k, l, j}\left(n_{j, 0}\right) \\
=(2 \pi)^{s} \Gamma(k-s) \widetilde{\kappa}_{j}^{s-1}+\chi^{-1}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)_{j, j}(-1)^{k / 2}(2 \pi)^{k-s} \Gamma(s) \widetilde{\kappa}_{j}^{k-s-1} \\
+\frac{(-1)^{k / 2}}{2}(2 \pi)^{k} \widetilde{\kappa}_{j}^{k-1} \frac{\Gamma(s) \Gamma(k-s)}{\Gamma(k)} \sum_{\begin{array}{c}
(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1, a c>0
\end{array}} c^{-k}\left(\frac{c}{a}\right)^{s} \tag{4.1}\\
\quad \times\left(e^{2 \pi i\left(n+\kappa_{j}\right) d / c} e^{\pi i s} \chi^{-1}\left(\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\right)_{j, j}\right. \\
1
\end{array} F_{1}(s, k ;-2 \pi i n /(a c))\right\}
$$

where

$$
\widetilde{\kappa}_{j}:= \begin{cases}1 & \text { if } \kappa_{j}=0 \\ \kappa_{i} & \text { if } \kappa_{j} \neq 0\end{cases}
$$

Suppose that

$$
c_{k} \sum_{l=1}^{d_{k}} \frac{\left\langle L^{*}\left(f_{k, l}, s\right), \mathbf{e}_{j}\right\rangle}{\left(f_{k, l}, f_{k, l}\right)} b_{k, l, j}\left(n_{j, 0}\right)=0
$$

If we divide 4.1 by $(2 \pi)^{s} \Gamma(k-s) \kappa_{j}^{s-1}$, we have

$$
\begin{aligned}
-1= & \rho^{-1}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)_{j, j}(-1)^{k / 2}(2 \pi)^{k-2 s} \frac{\Gamma(s)}{\Gamma(k-s)} \widetilde{\kappa}_{j}^{k-2 s} \\
& +\frac{(-1)^{k / 2}(2 \pi)^{k-s} \widetilde{\kappa}_{j}^{k-s}}{2 \Gamma(k-s)} \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1, a c>0}} c^{-k}\left(\frac{c}{a}\right)^{s} \\
& \times\left(e^{2 \pi i\left(n+\kappa_{j}\right) d / c} e^{\pi i s} \chi^{-1}\left(\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)_{j, j}\right. \\
& 1 f_{1}(s, k ;-2 \pi i n /(a c)) \\
& \left.+e^{-2 \pi i\left(n+\kappa_{j}\right) d / c} e^{-\pi i s} \chi^{-1}\left(\left(\begin{array}{cc}
-a & b \\
c & -d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{cc}
-a & b \\
c & -d
\end{array}\right)\right)_{j, j} f_{1}(s, k ; 2 \pi i n /(a c))\right),
\end{aligned}
$$

where

$$
{ }_{1} f_{1}(\alpha, \beta ; z):=\frac{\Gamma(\alpha) \Gamma(\beta-\alpha)}{\Gamma(\beta)}{ }_{1} F_{1}(\alpha, \beta ; z) .
$$

Let $s=k / 2-\delta-i t_{0}$, where $\epsilon<\delta<1 / 2$. Then, we have

$$
\begin{align*}
-1= & \chi^{-1}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)_{j, j}(-1)^{k / 2}\left(2 \pi \widetilde{\kappa}_{j}\right)^{2 \delta+2 i t_{0}} \frac{\Gamma\left(k / 2-\delta-i t_{0}\right)}{\Gamma\left(k / 2+\delta+i t_{0}\right)} \\
+ & \frac{(-1)^{k / 2}\left(2 \pi \widetilde{\kappa}_{j}\right)^{k / 2+\delta+i t_{0}}}{2 \Gamma\left(k / 2+\delta+i t_{0}\right)} \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1, a c>0}} c^{-k / 2-\delta-i t_{0}} a^{-k / 2+\delta+i t_{0}} \\
& \times\left(e^{2 \pi i\left(n+\kappa_{j}\right) d / c} e^{\pi i\left(k / 2-\delta-i t_{0}\right)} \chi^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)_{j, j}\right. \tag{4.2}\\
& \times{ }_{1} f_{1}\left(k / 2-\delta-i t_{0}, k ;-2 \pi i n /(a c)\right) \\
& +e^{-2 \pi i\left(n+\kappa_{j}\right) d / c} e^{-\pi i\left(k / 2-\delta-i t_{0}\right)} \chi^{-1}\left(\left(\begin{array}{cc}
-a & b \\
c & -d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{cc}
-a & b \\
c & -d
\end{array}\right)\right)_{j, j} \\
& \left.\times{ }_{1} f_{1}\left(k / 2-\delta-i t_{0}, k ; 2 \pi i n /(a c)\right)\right) .
\end{align*}
$$

For $\operatorname{Re}(\beta)>\operatorname{Re}(\alpha)>0$, we have

$$
{ }_{1} f_{1}(\alpha, \beta ; z)=\int_{0}^{1} e^{z u} u^{\alpha-1}(1-u)^{\beta-\alpha-1} d u
$$

By [1, 13.21], for $\operatorname{Re}(\alpha)>1, \operatorname{Re}(\beta-\alpha)>1$, and $|z|=1$, we have

$$
\left|{ }_{1} f_{1}(\alpha, \beta ; z)\right| \leq 1
$$

If we take absolute values in (4.2), then we have

$$
\begin{align*}
1 \leq & \left(2 \pi \widetilde{\kappa}_{j}\right)^{2 \delta} \frac{\left|\Gamma\left(k / 2-\delta-i t_{0}\right)\right|}{\left|\Gamma\left(k / 2+\delta+i t_{0}\right)\right|} \\
& +\frac{\left(2 \pi \widetilde{\kappa}_{j}\right)^{k / 2+\delta}}{2\left|\Gamma\left(k / 2+\delta+i t_{0}\right)\right|} \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1, a c>0}}|c|^{-k / 2-\delta}|a|^{-k / 2+\delta}\left(e^{\pi t_{0}}+e^{-\pi t_{0}}\right) \tag{4.3}
\end{align*}
$$

By [1, 6.147], we have

$$
\frac{\left|\Gamma\left(k / 2-\delta-i t_{0}\right)\right|}{\left|\Gamma\left(k / 2+\delta+i t_{0}\right)\right|} \sim\left(\frac{k}{2}\right)^{-2 \delta}
$$

as $k \rightarrow \infty$. Therefore, 4.3) becomes $1 \leq 0$ as $k \rightarrow \infty$, which is a contradiction.
We now give a corollary that is a direct consequence of Theorem 4.1 which basically demonstrates the existence of a basis element of the space of vector-valued cusp forms whose L-function does not vanish.

Corollary 4.3. Let $k \in \frac{1}{2} \mathbb{Z}$ with $k>2$. Let $\left\{f_{k, 1}, \ldots, f_{k, d_{k}}\right\}$ be an orthogonal basis of $S_{k, \chi, \rho}$ with Fourier expansions

$$
f_{k, l}(\tau)=\sum_{j=1}^{m} \sum_{n+\kappa_{j}>0} b_{k, l, j}(n) e^{2 \pi i\left(n+\kappa_{j}\right) \tau} \mathbf{e}_{j}, \quad 1 \leq l \leq d_{k}
$$

Let $t_{0} \in \mathbb{R}$ and $\epsilon>0$.
(1) For any $k>C\left(t_{0}, \epsilon, j\right)$, any $1 \leq j \leq m$, and any $s=\sigma+i t_{0}$ with

$$
\frac{k-1}{2}<\sigma<\frac{k}{2}-\epsilon,
$$

there exists a basis element $f_{k, l} \in S_{k, \chi, \rho}$ such that

$$
\left\langle L^{*}\left(f_{k, l}, s\right), \mathbf{e}_{j}\right\rangle \neq 0 \quad \text { and } \quad b_{k, l, j}\left(n_{j, 0}\right) \neq 0 .
$$

(2) There exists a constant $C\left(t_{0}, \epsilon\right)>0$ such that for any $k>C\left(t_{0}, \epsilon\right)$, and any $s=$ $\sigma+i t_{0}$ with

$$
\frac{k-1}{2}<\sigma<\frac{k}{2}-\epsilon \quad \text { and } \quad \frac{k}{2}+\epsilon<\sigma<\frac{k+1}{2},
$$

there exists a basis element $f_{k, l} \in S_{k, \chi, \rho}$ such that

$$
L\left(f_{k, l}, s\right) \neq 0
$$

5. The case of $\Gamma_{0}(N)$

In what follows, we consider the case of a scalar-valued modular form on the congruence subgroup $\Gamma_{0}(N)$. By using Theorem 4.1, we can extend Kohnen's result in 9 to the case of $\Gamma_{0}(N)$. To illustrate, let N be a positive integer and let $\Gamma=\Gamma_{0}(N)$. Let $S_{k}(\Gamma)$ be the space of cusp forms of weight k on Γ. Let $\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ be the set of representatives of $\Gamma \backslash \mathrm{SL}_{2}(\mathbb{Z})$ with $\gamma_{1}=I$. For $f \in S_{k}(\Gamma)$, we define a vector-valued function $\tilde{f}: \mathbb{H} \rightarrow \mathbb{C}^{m}$ by $\widetilde{f}=\sum_{j=1}^{m} f_{j} \mathbf{e}_{j}$ and

$$
f_{j}=\left.f\right|_{k} \gamma_{j}, \quad 1 \leq j \leq m
$$

where $\left(\left.f\right|_{k}\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)\right)(z):=(c z+d)^{-k} f(\gamma z)$. Then, \widetilde{f} is a vector-valued modular form of weight k and the trivial multiplier system with respect to ρ on $\mathrm{SL}_{2}(\mathbb{Z})$, where ρ is a certain m dimensional unitary complex representation such that $\rho(\gamma)$ is a permutation matrix for each $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ and is an identity matrix if $\gamma \in \Gamma$. Then, the map $f \mapsto \widetilde{f}$ induces an isomorphism between $S_{k}(\Gamma)$ and $S_{k, \rho}$, where $S_{k, \rho}$ denotes the space of vector-valued cusp forms of weight k and trivial multiplier system with respect to ρ on $\mathrm{SL}_{2}(\mathbb{Z})$.

Suppose that $f, g \in S_{k}(\Gamma)$. Then, we have

$$
(\widetilde{f}, \widetilde{g})=\int_{\mathcal{F}}\langle\widetilde{f}, \widetilde{g}\rangle y^{k} \frac{d x d y}{y^{2}}=\sum_{j=1}^{m} \int_{\mathcal{F}}\left(\left.f\right|_{k} \gamma_{j}\right)(z) \overline{\left(\left.g\right|_{k} \gamma\right)(z)} y^{k} \frac{d x d y}{y^{2}}=(f, g)
$$

where (f, g) denotes the Petersson inner product. Therefore, if $f, g \in S_{k}(\Gamma)$ such that f and g are orthogonal, then \tilde{f} and \widetilde{g} is also orthogonal.

Corollary 5.1. Let k be a positive even integer with $k>2$. Let N be a positive integer and $\Gamma=\Gamma_{0}(N)$. Let $\left\{f_{k, 1}, \ldots, f_{k, e_{k}}\right\}$ be an orthogonal basis of $S_{k}(\Gamma)$. Let $t_{0} \in \mathbb{R}, \epsilon>0$. Then, there exists a constant $C\left(t_{0}, \epsilon\right)>0$ such that for $k>C\left(t_{0}, \epsilon\right)$ there exists a basis element $f_{k, l} \in S_{k}(\Gamma)$ satisfying

$$
L\left(\widetilde{f_{k, l}}, s\right) \neq 0
$$

at any point $s=\sigma+i t_{0}$ with

$$
\frac{k-1}{2}<\sigma<\frac{k}{2}-\epsilon \quad \text { and } \quad \frac{k}{2}+\epsilon<\sigma<\frac{k+1}{2} .
$$

6. The case of Jacobi forms

Let k be a positive even integer and m be a positive integer. Let $J_{k, m}$ be the space of Jacobi forms of weight k and index m on $\mathrm{SL}_{2}(\mathbb{Z})$. From now, we use the notation $\tau=u+i v \in \mathbb{H}$ and $z=x+i y \in \mathbb{C}$. We review basic notions of Jacobi forms (for more details, see [5]). Let F be a complex-valued function on $\mathbb{H} \times \mathbb{C}$. For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z}), X=(\lambda, \mu) \in \mathbb{Z}^{2}$, we define

$$
\left(\left.F\right|_{k, m} \gamma\right)(\tau, z):=(c \tau+d)^{-k} e^{-2 \pi i m \frac{c z^{2}}{c \tau+d}} F(\gamma(\tau, z))
$$

and

$$
\left(\left.F\right|_{m} X\right)(\tau, z):=e^{2 \pi i m\left(\lambda^{2} \tau+2 \lambda z\right)} F(\tau, z+\lambda \tau+\mu),
$$

where $\gamma(\tau, z)=\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right)$.
With these notations, we introduce the definition of a Jacobi form.
Definition 6.1. A Jacobi form of weight k and index m on $\mathrm{SL}_{2}(\mathbb{Z})$ is a holomorphic function F on $\mathbb{H} \times \mathbb{C}$ satisfying
(1) $\left.F\right|_{k, m} \gamma=F$ for every $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$,
(2) $\left.F\right|_{m} X=F$ for every $X \in \mathbb{Z}^{2}$,
(3) F has the Fourier expansion of the form

$$
\begin{equation*}
F(\tau, z)=\sum_{\substack{l, r \in \mathbb{Z} \\ 4 m l-r^{2} \geq 0}} a(l, r) e^{2 \pi i l \tau} e^{2 \pi i r z} \tag{6.1}
\end{equation*}
$$

We denote by $J_{k, m}$ the vector space of all Jacobi forms of weight k and index m on $\mathrm{SL}_{2}(\mathbb{Z})$. If a Jacobi form satisfies the condition $a(l, r)=0$ if $4 m l-r^{2}=0$, then it is called a Jacobi cusp form. We denote by $S_{k, m}$ the vector space of all Jacobi cusp forms of weight k and index m on $\mathrm{SL}_{2}(\mathbb{Z})$.

For $1 \leq j \leq 2 m$, we consider the theta series

$$
\theta_{m, j}(\tau, z):=\sum_{\substack{r \in \mathbb{Z} \\ r \equiv j(\bmod 2 m)}} e^{2 \pi i r^{2} \tau /(4 m)} e^{2 \pi i r z}
$$

Suppose that $F(\tau, z)$ is a holomorphic function of z and satisfies

$$
\left.F\right|_{m} X=F \quad \text { for every } X \in \mathbb{Z}^{2} .
$$

Then we have

$$
\begin{equation*}
F(\tau, z)=\sum_{1 \leq j \leq 2 m} F_{j}(\tau) \theta_{m, j}(\tau, z) \tag{6.2}
\end{equation*}
$$

with uniquely determined holomorphic functions $F_{a}: \mathbb{H} \rightarrow \mathbb{C}$. Furthermore, if F is a Jacobi form in $J_{k, m}$ with the Fourier expansion (6.1), then functions in $\left\{F_{j} \mid 1 \leq j \leq 2 m\right\}$ have the Fourier expansions

$$
F_{j}(\tau)=\sum_{\substack{n \geq 0 \\ n+j^{2} \equiv 0(\bmod 4 m)}} a\left(\frac{n+j^{2}}{4 m}, j\right) e^{2 \pi i n \tau /(4 m)}
$$

In [3], it is proved that the Petersson inner product of skew-holomorphic Jacobi cusp forms can be expressed as the sum of partial L-values of skew-holomorphic Jacobi cusp forms. Similarly, for a Jacobi cusp form $F \in J_{k, m}$ with its Fourier expansion 6.1), we define partial L-functions of F by

$$
L(F, j, s):=\sum_{\substack{n \in \mathbb{Z}, n>0 \\ n+j^{2} \equiv 0(\bmod 4 m)}} \frac{a\left(\frac{n+j^{2}}{4 m}, j\right)}{\left(\frac{n}{4 m}\right)^{s}}
$$

for $1 \leq j \leq 2 m$.

We write $\mathrm{Mp}_{2}(\mathbb{R})$ for the metaplectic group. The elements of $\mathrm{Mp}_{2}(\mathbb{R})$ are pairs $(\gamma, \phi(\tau))$, where $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$, and ϕ denotes a holomorphic function on \mathbb{H} with $\phi(\tau)^{2}=c \tau+d$. The product of $\left(\gamma_{1}, \phi_{1}(\tau)\right),\left(\gamma_{2}, \phi_{2}(\tau)\right) \in \operatorname{Mp}_{2}(\mathbb{R})$ is given by

$$
\left(\gamma_{1}, \phi_{1}(\tau)\right)\left(\gamma_{2}, \phi_{2}(\tau)\right)=\left(\gamma_{1} \gamma_{2}, \phi_{1}\left(\gamma_{2} \tau\right) \phi_{2}(\tau)\right)
$$

The map

$$
\left(\begin{array}{lll}
a & b \\
c & d
\end{array}\right) \mapsto \widetilde{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)}=\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \sqrt{c \tau+d}\right)
$$

defines a locally isomorphic embedding of $\mathrm{SL}_{2}(\mathbb{R})$ into $\mathrm{Mp}_{2}(\mathbb{R})$. Let $\mathrm{Mp}_{2}(\mathbb{Z})$ be the inverse image of $\mathrm{SL}_{2}(\mathbb{Z})$ under the covering map $\mathrm{Mp}_{2}(\mathbb{R}) \rightarrow \mathrm{SL}_{2}(\mathbb{R})$. It is well known that $\mathrm{Mp}_{2}(\mathbb{Z})$ is generated by \widetilde{T} and \widetilde{S}.

We define a $2 m$-dimensional unitary complex representation $\widetilde{\rho}_{m}$ of $\mathrm{Mp}_{2}(\mathbb{Z})$ by

$$
\widetilde{\rho}_{m}(\widetilde{T}) \mathbf{e}_{j}=e^{-2 \pi i j^{2} /(4 m)} \mathbf{e}_{j} \quad \text { and } \quad \widetilde{\rho}_{m}(\widetilde{S}) \mathbf{e}_{j}=\frac{i^{1 / 2}}{\sqrt{2 m}} \sum_{j^{\prime}=1}^{2 m} e^{2 \pi i j j^{\prime} /(2 m)} \mathbf{e}_{j^{\prime}}
$$

Let χ be a multiplier system of weight $1 / 2$ on $\mathrm{SL}_{2}(\mathbb{Z})$. We define a map $\rho_{m}: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow$ $\mathrm{GL}_{2 m}(\mathbb{C})$ by

$$
\rho_{m}(\gamma)=\chi(\gamma) \widetilde{\rho}_{m}(\widetilde{\gamma})
$$

for $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$. The map ρ_{m} gives a $2 m$-dimensional unitary representation of $\mathrm{SL}_{2}(\mathbb{Z})$.
Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{2 m}\right\}$ denote the standard basis of $\mathbb{C}^{2 m}$. For $F \in S_{k, m}$, we define a vector-valued function $\widetilde{F}: \mathbb{H} \rightarrow \mathbb{C}^{2 m}$ by $\widetilde{F}=\sum_{j=1}^{2 m} F_{j} \mathbf{e}_{j}$, where F_{j} is defined by the theta expansion in 6.2). Then, the map $F \mapsto \widetilde{F}$ induces an isomorphism between $S_{k, m}$ and $S_{k-1 / 2, \bar{\chi}, \rho_{m}}$ (for more details, see [5, Section 5] and [4, Section 3.1]).

Suppose that $F, G \in S_{k, m}$. The Petersson inner product of F and G by

$$
(F, G):=\int_{\mathrm{SL}_{2}(\mathbb{Z})^{J} \backslash \mathbb{H} \times \mathbb{C}} v^{k} e^{-4 \pi m y^{2} / v} F(\tau, z) \overline{G(\tau, z)} \frac{d x d y d u d v}{v^{3}},
$$

where $\mathrm{SL}_{2}(\mathbb{Z})^{J}=\mathrm{SL}_{2}(\mathbb{Z}) \ltimes \mathbb{Z}^{2}$. Then, by Theorem 5.3 in [5], we have

$$
(F, G)=\frac{1}{\sqrt{2 m}}(\widetilde{F}, \widetilde{G})
$$

Note that $\rho_{m}(-I)$ is not equal to the identity matrix in $\mathrm{GL}_{2 m}(\mathbb{C})$. Instead, we have

$$
\rho_{m}(-I) \mathbf{e}_{j}=i \mathbf{e}_{2 m-j} .
$$

Then, the corresponding kernel function $R_{k, s, l}$ has the Fourier expansion

$$
R_{k, s, l}(\tau)=\sum_{j=1}^{2 m} \sum_{n+\kappa_{j}>0} r_{k, s, l, j}(n) e^{2 \pi i\left(n+\kappa_{j}\right) \tau} \mathbf{e}_{j}
$$

where $r_{k, s, l, j}(n)$ is given by

$$
\begin{aligned}
r_{k, s, l, j}(n)= & \frac{1}{2} \delta_{l, j}(2 \pi)^{s} \Gamma(k-s)\left(n+\kappa_{i}\right)^{s-1}+\frac{i}{2} \delta_{2 m-l, j}(2 \pi)^{s} \Gamma(k-s)\left(n+\kappa_{2 m-l}\right)^{s-1} \\
& +\frac{1}{2} \chi^{-1}(S) \rho^{-1}(S)_{j, l}(-1)^{k / 2}(2 \pi)^{k-s} \Gamma(s)\left(n+\kappa_{j}\right)^{k-s-1} \\
& +\frac{i}{2} \chi^{-1}(S) \rho^{-1}(S)_{j, 2 m-l}(-1)^{k / 2}(2 \pi)^{k-s} \Gamma(s)\left(n+\kappa_{j}\right)^{k-s-1} \\
& +\frac{(-1)^{k / 2}}{2}(2 \pi)^{k}\left(n+\kappa_{j}\right)^{k-1} \frac{\Gamma(s) \Gamma(k-s)}{\Gamma(k)} \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\
(c, d)=1, a c>0}} c^{-k}\left(\frac{c}{a}\right)^{s} \\
& \times\left(e^{2 \pi i\left(n+\kappa_{j}\right) d / c} e^{\pi i s} \chi^{-1}\left(\left(\begin{array}{lll}
a & b \\
c & d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)_{j, l}\right. \\
1 & F_{1}(s, k ;-2 \pi i n /(a c)) \\
& \left.+e^{-2 \pi i\left(n+\kappa_{j}\right) d / c} e^{-\pi i s} \chi^{-1}\left(\left(\begin{array}{cc}
-a & b \\
c & -d
\end{array}\right)\right) \rho^{-1}\left(\left(\begin{array}{cc}
-a & b \\
c & -d
\end{array}\right)\right)_{j, l}{ }^{1} F_{1}(s, k ; 2 \pi i n /(a c))\right) .
\end{aligned}
$$

By the similar argument, we prove the same result as in Corollary 4.3 for the representation ρ_{m}. From this, we have the following corollary.

Corollary 6.2. Let k be a positive even integer with $k>2$. Let $\left\{F_{k, m, 1}, \ldots, F_{k, m, d}\right\}$ be an orthogonal basis of $S_{k, m}$. Let $t_{0} \in \mathbb{R}$ and $\epsilon>0$.
(1) For any $k>C\left(t_{0}, \epsilon, j\right)$, any $1 \leq j \leq 2 m$, and any $s=\sigma+i t_{0}$ with

$$
\frac{2 k-3}{4}<\sigma<\frac{2 k-1}{4}-\epsilon
$$

there exists a basis element $F_{k, m, l} \in S_{k, m}$ such that

$$
L\left(F_{k, m, l}, j, s\right) \neq 0
$$

(2) There exists a constant $C\left(t_{0}, \epsilon\right)>0$ such that for any $k>C\left(t_{0}, \epsilon\right)$, and any $s=$ $\sigma+i t_{0}$ with

$$
\frac{2 k-3}{4}<\sigma<\frac{2 k-1}{4}-\epsilon \quad \text { and } \quad \frac{2 k-1}{4}+\epsilon<\sigma<\frac{2 k+1}{4}
$$

there exist a basis element $F_{k, m, l} \in S_{k, m}$ and $j \in\{1, \ldots, 2 m\}$ such that

$$
L\left(F_{k, m, l}, j, s\right) \neq 0
$$

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, Dover, New York, 1965.
[2] P. Bantay and T. Gannon, Vector-valued modular functions for the modular group and the hypergeometric equation, Commun. Number Theory Phys. 1 (2007), no. 4, 651-680.
[3] D. Choi and S. Lim, Pairings of harmonic Maass-Jacobi forms involving special values of partial L-functions, J. Number Theory 157 (2015), 442-467.
[4] , The Eichler-Shimura cohomology theorem for Jacobi forms, Monatsh. Math. 182 (2017), no. 2, 271-288.
[5] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progr. Math. 55, Birkhäuser Boston, Boston, MA, 1985.
[6] A. Erdélyi and Bateman Manuscript Project Staff, Tables of Integral Transforms I, McGraw-Hill, New York, 1954.
[7] M. Knopp and G. Mason, On vector-valued modular forms and their Fourier coefficients, Acta Arith. 110 (2003), no. 2, 117-124.
[8] M. Knopp and G. Mason, Vector-valued modular forms and Poincaré series, Illinois J. Math. 48 (2004), no. 4, 1345-1366.
[9] W. Kohnen, Nonvanishing of Hecke L-functions associated to cusp forms inside the critical strip, J. Number Theory 67 (1997), no. 2, 182-189.
[10] R. Lipschitz, Untersuchung der Eigenschaften einer Gattung von unendlichen Reihen, J. Reine Angew. Math. 105 (1889), 127-156.
[11] X.-G. Liu and G.-J. Ding, Modular flavor symmetry and vector-valued modular forms J. High Energy Phys. (2022), no. 3, Paper No. 123, 40 pp.
[12] T. Magnusson and M. Raum, On the computation of general vector-valued modular forms, arXiv:2202.06676.
[13] A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math. VIII, 1-15, American Mathematical Society, Providence, RI, 1965.

Subong Lim
Department of Mathematics Education, Sungkyunkwan University, Jongno-gu, Seoul 110-745, South Korea
E-mail address: subong@skku.edu

Wissam Raji
Department of Mathematics, American University of Beirut (AUB) and a Founder of the Number Theory Research Unit at the Center for Advanced Mathematical Sciences (CAMS) at AUB, Beirut, Lebanon
E-mail address: wr07@aub.edu.lb

[^0]: Received July 12, 2023; Accepted March 6, 2024.
 Communicated by Shinichi Kobayashi.
 2020 Mathematics Subject Classification. 11F12, 11F50.
 Key words and phrases. L-function, vector-valued modular form, Jacobi form.
 *Corresponding author.

