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The Aα-spectral Radius and [a, b]-factors in Graphs

Yonglei Chen, Fei Wen* and Jing Ha

Abstract. Let A(G) and D(G) be the adjacency matrix and the degree matrix of G,

respectively. For any real α ∈ [0, 1], Nikiforov [12] defined the matrix Aα(G) as

Aα(G) = αD(G) + (1− α)A(G).

An [a, b]-factor of a graph G is a spanning subgraphH such that a ≤ dH(v) ≤ b for any

v ∈ V (G), where a and b are positive integers. In this paper, we give an upper bound

of Aα-spectral radius of graphs with unique perfect matching, and then present Aα-

spectral conditions for the existence of an [a, b]-factor in a graph. Our results extend

the result of Fan et al. in [4] for the unique perfect matching and [a, b]-factor of graphs,

and that of Zhao et al. in [16] for a [1, b]-odd factor of graphs.

1. Introduction

Throughout this paper, all graphs considered are simple connected and undirected. Let G

be a graph with vertex set V (G) and edge set E(G). Let A(G) and D(G) be the adjacency

matrix and the diagonal matrix of vertex degrees of G, respectively. We write dG(v), i.e.,

d(v), for the degree of the vertex v ∈ V (G), NG(v) for the neighbor set of the vertex

v ∈ V (G), and NG[v] for {v} ∪NG(v). For any real α ∈ [0, 1], Nikiforov [12] defined the

matrix Aα(G) as Aα(G) = αD(G) + (1 − α)A(G). It is easy to see that A0(G) = A(G),

A1(G) = D(G) and 2A1/2(G) = Q(G), where Q(G) is the signless Laplacian matrix.

Moreover, L(G) = (Aα(G)−Aβ(G))/(α− β) if α ̸= β for any α, β ∈ [0, 1], where L(G) is

the Laplacian matrix. The Aα-spectral radius of G is the largest eigenvalue of Aα(G), and

denoted by ρα(G). The largest eigenvalue of A(G), denoted by ρ(G), is called the spectral

radius of G. Obviously, ρα(G) = ρ(G) if α = 0.

The join and disjoint union of graphs are denoted by the symbols ∇ and ∪, respec-
tively. A matching M of G is a subset of E(G) such that any two edges of M have no

common vertices. Moreover, ifM covers all vertex ofG then it is said to be a perfect match-

ing or a 1-factor. Suppose that G1 is an empty graph with vertex set U = {u1, u2, . . . , un},
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and G2 is a complete graph with vertex setW = {v1, v2, . . . , vn}. Let G(2n, 1) be the graph

of order 2n obtained from G1 ∪ G2 by letting NG2(ui) = {v1, v2, . . . , vi} for 1 ≤ i ≤ n.

Clearly, G(2n, 1) contains a unique perfect matching. More recently, Fan, Lin and Lu [4]

determined the graph G(2n, 1) attaining the maximum spectral radius among all graphs

of order 2n with a unique perfect matching, and obtained the following result.

Theorem 1.1. [4, Theorem 1.1] If G is a connected graph of order 2n with a unique

perfect matching, then ρ(G) ≤ ρ(G(2n, 1)), with equality if and only if G ∼= G(2n, 1).

Let Aα(G) be the Aα-matrix of G, and ρα(G) be the Aα-spectral radius of G. Inspired

by the result of Theorem 1.1, we extend this result by giving the graph attaining the

maximum Aα-spectral radius among all graphs of order 2n with a unique perfect matching,

and have the following theorem.

Theorem 1.2. If G is a connected graph of order 2n with a unique perfect matching, then

ρα(G) ≤ ρα(G(2n, 1)), with equality if and only if G ∼= G(2n, 1).

In 2021, Zhao, Huang and Wang [16] provided a lower bound for the Aα-spectral radius

ρα(G) which guarantees the existence of a perfect matching in a connected graph G. Let

f(α) =


10 if 0 ≤ α ≤ 1/2,

14 if 1/2 < α ≤ 2/3,

5/(1− α) if 2/3 < α < 1.

Theorem 1.3. [16, Theorem 3] Let α ∈ [0, 1), and let G be a connected graph of even

order n with n > f(α). If ρα(G) ≥ ρα(K1∇(Kn−3 ∪ 2K1)), then G has a perfect matching

unless G = K1∇(Kn−3 ∪ 2K1), where ρα(K1∇(Kn−3 ∪ 2K1)) is equal to the largest root

of x3 − ((α + 1)n + α − 4)x2 + (αn2 + (α2 − 2α − 1)n − 2α + 1)x − α2n2 + (5α2 − 3α +

2)n− 10α2 + 15α− 8 = 0.

A spanning subgraph H is an [a, b]-factor of a graph G if a ≤ dH(v) ≤ b for each

v ∈ V (G), where a and b are positive integers. Especially, when a = b = 1, a [1, 1]-

factor of G is also called a perfect matching or a 1-factor of G. Moreover, a spanning

subgraph H is a [1, b]-odd factor of a graph G if dH(v) is odd and 1 ≤ dH(v) ≤ b for each

v ∈ V (G). In this paper, we extend the result of Theorem 1.3 by proving that the lower

bound ρα(K1∇(Kn−b−2 ∪ (b + 1)K1)) can guarantee the existence of a [1, b]-odd factor

where α ∈ [0, 1/2].

Theorem 1.4. Let α ∈ [0, 1/2], and let G be a connected graph of even order n with

n > b + 2 + α + 2(b+1)(b+2−α)2

b . If ρα(G) ≥ ρα(K1∇(Kn−b−2 ∪ (b + 1)K1)), then G has a

[1, b]-odd factor unless G = K1∇(Kn−b−2∪(b+1)K1), where ρα(K1∇(Kn−b−2∪(b+1)K1))
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is equal to the largest root of x3−((α+1)n−b+α−3)x2+(αn2+(α2−αb−α−1)n−2α+1)x−
α2n2+(3α2+2α2b−α−2αb+b+1)n−α2b2−5α2b−4α2+2αb2+8αb+5α−b2−4b−3 = 0.

Motivated by the theorem above, we pose a problem below.

Problem 1.5. Let α ∈ (1/2, 1) and G be a connected graph of even order n. Investigate

the lower bound of ρα(G) to guarantee the existence of a [1, b]-odd factor.

In the past decade, more researchers have presented different conditions for a graph

to have an [a, b]-factor. Li and Cai [11] gave a degree condition that if δ(G) ≥ a, and for

any two nonadjacent vertices u, v ∈ V (G), max{dG(u), dG(v)} ≥ an
a+b , then G has an [a, b]-

factor. Li [10] provided the neighborhood condition that G has an [a, b]-factor if δ(G) ≥
(k−1)a, n ≥ (a+b)(k(a+b)−2)

b and |NG(v1)∪NG(v2)∪· · ·∪NG(vk)| ≥ an
a+b for any independent

subset {v1, v2, . . . , vk} of V (G). Kouider and Lonc [8] gave sufficient conditions, which

involve the minimum degree, the stability number and the connectivity of a graph. Chen [2]

presented some sufficient conditions on the binding number and the minimum degree for

a graph to have an [a, b]-factor. Cho and Park [3] gave counterexamples of Matsuda’s

conjecture and proposed the following conjecture about adjacent spectral lower bound for

a graph to have an [a, b]-factor.

Conjecture 1.6. [3, Conjecture 4.4] Let a·n be an even integer at least 2, where n ≥ a+1.

If G is a graph of order n with ρ(G) > ρ(Hn,a) where Hn,a = Ka−1∇(K1 ∪Kn−a), then G

contains an [a, b]-factor.

Recently, Fan, Lin and Lu [4] confirmed Conjecture 1.6 for n ≥ 3a + b − 1 and gave

the following theorem.

Theorem 1.7. [4, Theorem 1.3] Let a, n be two positive integers such that a · n is even,

and let b ≥ a ≥ 1. If G is a graph of order n ≥ 3a + b − 1 with ρ(G) > ρ(Hn,a), then G

contains an [a, b]-factor.

Later, Wei and Zhang [15] have completely proved that Conjecture 1.6 is true. En-

lightened by the results above, we give an Aα-spectral condition to ensure that G has an

[a, b]-factor. Moreover, it also extends the result of Theorem 1.7.

For convenience, suppose that a and b are two positive integers, and set t =
⌈

an
a+b

⌉
−1.

For 1 ≤ a ≤ 2, let

f1(α) = 3a+ b− 1.

For a ≥ 3, let

f1(α) =

max
{
3a+ b− 1, 2t+ 1 + 1+α

1−α

}
if 3/4 < α < 1 and b > a,

3a+ b− 1 otherwise.
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In addition, we define

H =

Kt∇(K1 ∪Kn−t−1) if 3/4 < α < 1 and b = a,

Hn,a otherwise.

Theorem 1.8. Let a, n be two positive integers such that a ·n is even, and let b ≥ a ≥ 1.

If G is a graph of order n ≥ f1(α) with ρα(G) > ρα(H ), then G contains an [a, b]-factor

where α ∈ [0, 1).

2. Proof of Theorem 1.2

Firstly, we give some lemmas that will be used in the sequel.

Lemma 2.1. [9, Lemma 2.1], [13] Let α ∈ [0, 1) and G be a connected graph with uvi ∈
E(G) and wvi /∈ E(G) for i = 1, 2, . . . , k. Let G′ = G − {uvi} + {wvi} for i = 1, 2, . . . , k

and x be a unit eigenvector of Aα(G) corresponding to ρα(G). If xw ≥ xu, then ρα(G
′) >

ρα(G).

An edge uv in graph G is said to be a cut edge if ω(G − uv) > ω(G), where ω(G)

denotes the number of the components of G.

Lemma 2.2. [7] Let G be a connected graph with a unique perfect matching. Then G

contains a cut edge uv that is an edge of the perfect matching of G.

Lemma 2.3. [6, Lemma 8.7.2, p. 177] If M1 and M2 are two nonnegative n×n matrices

such that M1 −M2 is nonnegative, then

ρ(M1) ≥ ρ(M2),

where ρ(Mi) is the spectral radius of Mi for i = 1, 2.

Lemma 2.4. [12, Proposition 14] For α ∈ [0, 1), let G be a graph, and x a nonnegative

eigenvector to ρα(G):

(i) If G is connected, then x is positive and is unique up to scaling;

(ii) If G is disconnected and P is the set of vertices with positive entries in x, then the

subgraph induced by P is a union of components H of G with ρα(H) = ρα(G);

(iii) If G is connected and µ is an eigenvalue of Aα(G) with a nonnegative eigenvector,

then µ = ρα(G);

(iv) If G is connected, and H is a proper subgraph of G, then ρα(H) < ρα(G).
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Let G[S] be the subgraph of G induced by S for any S ⊆ V (G). If dG(u) ≥ 2 and

dG(v) = 1, then uv is called pendant edge, where uv ∈ E(G). From Lemma 2.4, we

noticed that x is positive if G is a connected graph, where x is a nonnegative eigenvector

corresponding to ρα(G). In other words, if G is a connected graph, then one can set x

as a positive unit eigenvector of Aα(G) corresponding to ρα(G). We now give a proof of

Theorem 1.2.

Proof of Theorem 1.2. Assume that G is a connected graph of order 2n, which has a

unique perfect matching M . According to Lemma 2.2, there is a cut edge u0v0 in M .

Then one can deduce that G − u0v0 is consisted of two odd components, and the edges

of each component in M are unique. Let x(0) be the positive unit eigenvector of Aα(G)

corresponding to ρα(G). Without loss of generality, we suppose that x
(0)
u0 ≥ x

(0)
v0 . Let

G1 = G− {v0w : w ∈ NG(v0) \ {u0}}+ {u0w : w ∈ V (G) \NG[u0]}.

Clearly, we can see thatG1 also has a unique perfect matching, sayM1. LetH = G−{v0w :

w ∈ NG(v0) \ {u0}} + {u0w : w ∈ NG(v0) \ {u0}}. If (NG(v0) \ {u0}) ⊆ (NG(u0) \ {v0}),
then H = G, which implies that ρα(H) ≤ ρα(G). Otherwise, there exists a vertex w

such that w ∈ NG(v0) \ {u0} and w /∈ NG(u0) \ {v0}. It then follows from Lemma 2.1

that ρα(G) < ρα(H). Consequently, ρα(G) ≤ ρα(H), with equality if and only if G ∼= H.

Meanwhile, by Lemma 2.3 it deduces that ρα(H) ≤ ρα(G1), with equality if and only if

H ∼= G1. Thus, one can obtain ρα(G) ≤ ρα(G1), with equality if and only if G ∼= G1.

Let S1 = V (G1) − {u0, v0}. Note that u0v0 is a pendant edge of G1 and u0v0 ∈ M1.

We have that the induced graph G1[S1] also contains a unique perfect matching, i.e.,

M1 \ {u0v0}. From the definition of G1[S1], it is easy to see that each component of

G1[S1] has a unique perfect matching. Again by Lemma 2.2, there is a cut edge u1v1 in

some component of G1[S1] that is contained in M1 \ {u0v0}. Let x(1) be the positive unit

eigenvector of Aα(G1) corresponding to ρα(G1). Assume that x
(1)
u1 ≥ x

(1)
v1 . Let

G2 = G1 − {v1w : w ∈ NG1[S1](v1) \ {u1}}+ {u1w : w ∈ S1 \NG1[S1][u1]}.

Clearly, G2 also has a unique perfect matching. Similar to that before, from Lemmas 2.1

and 2.3, we get ρα(G1) ≤ ρα(G2), with equality if and only if G1
∼= G2.

By repeating this process, one can construct a sequence of graphsG0, G1, G2, . . . , Gn−1,

which have a unique perfect matching:

(i) G0 = G;

(ii) for i ∈ [0, n− 2], let Si = V (Gi)− {v0, v1, . . . , vi−1, u0, u1, . . . , ui−1} and

Gi+1 = Gi − {viw : w ∈ NGi[Si](vi) \ {ui}}+ {uiw : w ∈ Si \NGi[Si][ui]},
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where uivi is a cut edge in some component of Gi[Si] that is contained in the unique

perfect matching of Gi[Si] and x
(i)
vi ≤ x

(i)
ui , where x(i) is the positive unit eigenvector

of Aα(Gi) corresponding to ρα(Gi).

As mentioned above, we see that Gi has a unique perfect matching for each i, and ρα(Gi) ≤
ρα(Gi+1) with equality if and only ifGi

∼= Gi+1(0 ≤ i ≤ n−2). Note thatGn−1
∼= G(2n, 1).

Hence the proof is completed.

3. Proof of the Theorem 1.4

In 1985, Amahashi [1] gave a sufficient and necessary condition for the existence of an odd

[1, b]-factor.

Lemma 3.1. [1, Theorem 2] Let G be a graph and let b be a positive odd integer. Then

G contains a [1, b]-odd factor if and only if for every subset S ⊆ V (G),

o(G− S) ≤ b|S|,

where o(G− S) is the number of odd components in a graph G− S.

Let ρα(G) = λ1(Aα) ≥ λ2(Aα) ≥ · · · ≥ λn(Aα) denotes all eigenvalues of Aα(G) for

α ∈ [0, 1]. Based on Rayleigh’s principle, Nikiforov [12] obtained the following conclusion.

Lemma 3.2. [12, Proposition 2] If α ∈ [0, 1] and G is a graph of order n, then

ρα(G) = λ1(Aα) = max
∥x∥2=1

⟨Aαx,x⟩ and λn(Aα) = min
∥x∥2=1

⟨Aαx,x⟩.

Moreover, if x is a unit n-vector, then ρα(G) = λ1(Aα) = ⟨Aαx,x⟩ if and only if x is an

eigenvector to ρα(G), and λn(Aα) = ⟨Aαx,x⟩ if and only if x is an eigenvector to λn(Aα).

Lemma 3.3. Let α ∈ [0, 1) and n =
∑t

i=1 ni + s. If n1 ≥ n2 ≥ · · · ≥ nt ≥ p and

n1 < n− s− p(t− 1), then

ρα(Ks∇(Kn1 ∪Kn2 ∪ · · · ∪Knt)) < ρα(Ks∇(Kn−s−p(t−1) ∪ (t− 1)Kp)).

Proof. Let G = Ks∇(Kn1 ∪Kn2 ∪· · ·∪Knt) and x be a positive unit eigenvector of Aα(G)

corresponding to ρα(G). By symmetry, one can suppose that xv = xi for all v ∈ V (Kni),

where 1 ≤ i ≤ t, and xu = y1 for all u ∈ V (Ks). Then it follows from Aα(G)x = ρα(G)x

that (ρα(G)− ((n1−1)+αs))x1 = (1−α)sy1 > 0, which gives that ρα(G) > (n1−1)+αs.

Again, for 2 ≤ j ≤ t, one can see that

(ρα(G)− (nj − 1)− αs)(x1 − xj) = (n1 − nj)x1 ≥ 0.
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Since ρα(G) > n1 − 1 + αs ≥ nj − 1 + αs, we have x1 ≥ xj for 2 ≤ j ≤ t. Let

G′ = Ks∇(Kn−s−p(t−1) ∪ (t − 1)Kp). By Lemma 3.2 and numbering the vertices of G′

properly, we can get

ρα(G
′)− ρα(G)

≥ xT (Aα(G
′)−Aα(G))x (by Lemma 3.2)

= (1− α)

( t∑
i=2

(ni − p)xi(n1x1 − pxi) +
t∑

i=2

(ni − p)xi

(
n1x1 +

t∑
j=2

(nj − p)xj − nixi

))

+ α

( t∑
i=2

(ni − p)(n1x
2
1 − px2i ) +

t∑
i=2

(ni − p)(n− p(t− 1)− ni − s)x2i

)
> 0

and so, the result follows.

Let H be a [1, b]-odd factor of a graph G. Then by the definition of [1, b]-odd factor,

for each v ∈ V (G), 1 ≤ dH(v) ≤ b− 1 ≤ b if b is an even number. Thus, one can also call

that [1, b′]-odd factor is a [1, b]-odd factor of G, where b′ = b − 1 is an odd. Therefore,

we always take b as an odd number to consider [1, b]-odd factor. Now we give a proof of

Theorem 1.4.

Proof of Theorem 1.4. We here discuss two cases in the following.

If b = 1, then n > b + 2 + α + 2(b+1)(b+2−α)2

b = 3 + α + 4(3 − α)2 > 10, moreover,

ρα(G) ≥ ρα(K1∇(Kn−b−2 ∪ (b + 1)K1)) = ρα(K1∇(Kn−3 ∪ 2K1)). Thus, it follows from

Theorem 1.3 that G has a [1, 1]-factor unless G = K1∇(Kn−3 ∪ 2K1), it therefore means

that if n > b+2+α+ 2(b+1)(b+2−α)2

b and ρα(G) ≥ ρα(K1∇(Kn−b−2 ∪ (b+1)K1)), then G

also has a [1, b]-factor unless G = K1∇(Kn−b−2 ∪ (b+ 1)K1).

If b > 1, we assume, by a contradiction, that G contains no [1, b]-odd factor. Then by

Lemma 3.1, there exists some nonempty subset S of V (G) such that q = o(G−S) > b|S|.
Let |S| = s. We assert that q and bs have the same parity. If s is an odd, then n − s

and bs are odd numbers since n is even and b is odd. As n− s is odd, the number of odd

components in G− S must be odd, i.e., q is also odd. If not, q is even, then the number

of vertices of all odd components in G − S is also even. And together with the number

of vertices of all even components in G− S, we have n− s is even, a contradiction. So, q

and bs are odd numbers. Similarly, one can prove that q and bs are even numbers if s is

an even. Thus, q and bs have the same parity. Hence q ≥ bs + 2. To promote the proof,

we first prove the following claims.

Claim 3.4. G is a spanning subgraph of G1 = Ks∇(Kn1∪Kn2∪· · ·∪Knq) for some positive

odd integers n1 ≥ n2 ≥ · · · ≥ nq with
∑q

i=1 ni = n− s.
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Proof. Note that G − S is consisted of q ≥ 1 odd components and k ≥ 0 (say) even

components. We write Xi (1 ≤ i ≤ q) for the odd components, Yj (0 ≤ j ≤ k − 1)

for the even components in G − S, where |V (X1)| ≥ |V (X2)| ≥ · · · ≥ |V (Xq)|. To

obtain some positive odd integers n1 ≥ n2 ≥ · · · ≥ nq such that
∑q

i=1 ni = n − s, we

consider Xi∇Yj for some 1 ≤ i ≤ q and 0 ≤ j ≤ k − 1. Clearly, |V (Xi∇Yj)| is an odd

number. Without loss of generality, let us join all even components of G − S to X1, i.e.,

X1∇(Y0 ∪ Y1 · · · ∪ Yk−1). We can see that |V (X1∇(Y0 ∪ Y1 · · · ∪ Yk−1))| is also an odd

number and X1∇(Y0 ∪ Y1 · · · ∪ Yk−1) must be a spanning subgraph of Kn1 for some odd

integer n1 = |V (X1∇(Y0∪Y1 · · · ∪Yk−1))|. Meanwhile, Xi (2 ≤ i ≤ q) must be a spanning

subgraph of Kni for some odd integers ni (2 ≤ i ≤ q), respectively, where ni = |V (Xi)|.
Recall that |S| = s and G[S] is a spanning subgraph ofKs. Thus, G is a spanning subgraph

of G1 = Ks∇(Kn1 ∪Kn2 ∪ · · · ∪Knq) for some positive odd integers n1 ≥ n2 ≥ · · · ≥ nq

with
∑q

i=1 ni = n− s.

In addition, it deduces from Lemma 2.4(iv) that ρα(G) ≤ ρα(G1), where the equality

holds if and only if G ∼= G1.

Claim 3.5. For α ∈ [0, 1), we have

ρα(Ks∇(Kn1 ∪Kn2 ∪ · · · ∪Knq)) ≤ ρα(Ks∇(Kn−s−q+1 ∪ (q − 1)K1)),

where the equality holds if and only if (n1, n2, . . . , nq) = (n− s− q + 1, 1, . . . , 1).

Proof. If (n1, n2, . . . , nq) = (n− s− q + 1, 1, . . . , 1), then Ks∇(Kn1 ∪Kn2 ∪ · · · ∪Knq) =

Ks∇(Kn−s−q+1∪(q−1)K1). Hence ρα(Ks∇(Kn1∪Kn2∪· · ·∪Knq)) = ρα(Ks∇(Kn−s−q+1∪
(q − 1)K1)).

If (n1, n2, . . . , nq) ̸= (n−s−q+1, 1, . . . , 1), it follows from Lemma 3.3 that ρα(Ks∇(Kn1

∪Kn2 ∪ · · · ∪Knq)) < ρα(Ks∇(Kn−s−q+1 ∪ (q − 1)K1)). So, this proves Claim 3.5.

Claim 3.6. For α ∈ [0, 1), we have

ρα(Ks∇(Kn−s−q+1 ∪ (q − 1)K1)) ≤ ρα(Ks∇(Kn−s−bs−1 ∪ (bs+ 1)K1)),

where the equality holds if and only if q = bs+ 2.

Proof. If q = bs+ 2, then Ks∇(Kn−s−q+1 ∪ (q − 1)K1) = Ks∇(Kn−s−bs−1 ∪ (bs+ 1)K1).

So, we have ρα(Ks∇(Kn−s−q+1 ∪ (q − 1)K1)) = ρα(Ks∇(Kn−s−bs−1 ∪ (bs+ 1)K1)).

If q ≥ bs + 4, then Ks∇(Kn−s−q+1 ∪ (q − 1)K1) is a subgraph of Ks∇(Kn−s−bs−1 ∪
(bs + 1)K1). Thus, by Lemma 2.3 it deduces that ρα(Ks∇(Kn−s−q+1 ∪ (q − 1)K1)) ≤
ρα(Ks∇(Kn−s−bs−1 ∪ (bs+ 1)K1)). Now, we prove the inequation is strict, that is,

ρα(Ks∇(Kn−s−q+1 ∪ (q − 1)K1)) < ρα(Ks∇(Kn−s−bs−1 ∪ (bs+ 1)K1)).
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Let G2 = Ks∇(Kn−s−q+1 ∪ (q − 1)K1) and G3 = Ks∇(Kn−s−bs−1 ∪ (bs + 1)K1).

Clearly, V (G3) can be partitioned as V (G3) = V (Ks) ∪ V (Kn−s−bs−1) ∪ V ((bs + 1)K1),

where V (Ks) = {u1, u2, . . . , us}, V ((bs+1)K1) = {v1, v2, . . . , vbs+1} and V (Kn−s−bs−1) =

{w1, w2, . . . , wn−s−q+1, wn−s−q+2, . . . , wn−s−bs−1}. In addition, we write E1 = {wiwj | 1 ≤
i ≤ n − s − q + 1, n − s − q + 2 ≤ j ≤ n − s − bs − 1} ∪ {wiwk | n − s − q + 2 ≤ i ≤
n− s− bs− 2, i+ 1 ≤ k ≤ n− s− bs− 1}. Obviously, G2

∼= G3 − E1.

Let x (resp. y) be the positive unit eigenvectors of Aα(G3) (resp. Aα(G2)) correspond-

ing to ρα(G3) (resp. ρα(G2)). By symmetry, x takes the same value on the vertices of

V (Ks), V (Kn−s−bs−1) and V ((bs+1)K1), respectively, say x1, x2 and x3. Similarly, y takes

the same value on the vertices of V (Ks), V (Kn−s−q+1) and V ((q−1)K1), respectively, say

y1, y2 and y3. Then, it follows from Aα(G2)y = ρα(G2)y and Aα(G3)x = ρα(G3)x that

xT (ρα(G3)− ρα(G2))y

= xT (Aα(G3)−Aα(G2))y

= α

( n−s−bs−1∑
i=n−s−q+2

(n− bs− s− 2)xwiywi +

n−s−q+1∑
i=1

(q − bs− 2)xwiywi

)

+ (1− α)

( n−s−q+1∑
i=1

n−s−bs−1∑
j=n−s−q+2

(xwiywj + ywixwj ) +

n−s−bs−2∑
i=n−s−q+2

n−s−bs−1∑
k=i+1

xwiywk

)
= α((q − bs− 2)(n− bs− s− 2)x2y3 + (n− s− q + 1)(q − bs− 2)x2y2)

+ (1− α)((q − bs− 2)(n− s− q + 1)(x2y2 + y3x2) + (q − bs− 2)(q − bs− 3)x2y3)

> 0 (since q ≥ bs+ 4).

Thus, ρα(Ks∇(Kn−s−q+1 ∪ (q − 1)K1)) < ρα(Ks∇(Kn−s−bs−1 ∪ (bs+ 1)K1)).

Claim 3.7. For α ∈ [0, 1/2], if n > b+ 2 + α+ 2(b+1)(b+2−α)2

b and b > 1, then we have

ρα(Ks∇(Kn−s−bs−1 ∪ (bs+ 1)K1)) ≤ ρα(K1∇(Kn−b−2 ∪ (b+ 1)K1))

with equality holding if and only if s = 1.

Proof. If s = 1, then Ks∇(Kn−s−bs−1 ∪ (bs+ 1)K1) = K1∇(Kn−b−2 ∪ (b+ 1)K1). So we

have ρα(Ks∇(Kn−s−bs−1 ∪ (bs+ 1)K1)) = ρα(K1∇(Kn−b−2 ∪ (b+ 1)K1)).

If s ≥ 2, we should verify that ρα(Ks∇(Kn−s−bs−1 ∪ (bs+ 1)K1)) < ρα(K1∇(Kn−b−2

∪ (b+1)K1)). Let G4 = K1∇(Kn−b−2 ∪ (b+1)K1). Obviously, G4
∼= G3 −{uivj | 2 ≤ i ≤

s, 1 ≤ j ≤ b+1}+{vivj | b+2 ≤ i, j ≤ bs+1, i ̸= j}+{wivj | 1 ≤ i ≤ n−s−bs−1, b+2 ≤
j ≤ bs+ 1}.

Let z be the positive unit eigenvector of Aα(G4) corresponding to ρα(G4). By sym-

metry, z takes the same value on the vertices of V (K1), V (Kn−b−2) and (b + 1)V (K1),
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respectively, say z1, z2 and z3. Recall that x is the positive unit eigenvector of Aα(G3)

corresponding to ρα(G3) and takes the same value on the vertices of V (Ks), V (Kn−s−bs−1)

and V ((bs+ 1)K1), respectively, say x1, x2 and x3. Then, from Aα(G4)z = ρα(G4)z and

Aα(G3)x = ρα(G3)x it follows that

ρα(G4)z2 = α(n− b− 2)z2 + (1− α)(z1 + (n− b− 3)z2),(3.1)

ρα(G4)z3 = αz3 + (1− α)z1,(3.2)

ρα(G3)x2 = α(n− bs− 2)x2 + (1− α)(sx1 + (n− bs− s− 2)x2),(3.3)

ρα(G3)x3 = αsx3 + (1− α)sx1.(3.4)

From (3.1) and (3.2) we have

(3.5) z3 =
ρα(G4)− α− (n− b− 3)

ρα(G4)− α
z2.

From (3.3) and (3.4) we have

(3.6) x2 =
(1− α)s

ρα(G3)− αs− (n− bs− s− 2)
x1

and

(3.7) x3 =
(1− α)s

ρα(G3)− αs
x1.

Note that K1 ∪Kn−b−2 ∪ (b+ 1)K1 is a spanning subgraph of K1∇(Kn−b−2 ∪ (b+ 1)K1),

meanwhile, both G3 and G4 are the proper subgraphs of Kn. It is easy to see that

ρα(G3) < n− 1 and n− b− 2 < ρα(G4) < n− 1. Together with Aα(G3)x = ρα(G3)x and

Aα(G4)z = ρα(G4)z we get

zT (ρα(G4)− ρα(G3))x

= zT (Aα(G4)−Aα(G3))x

= α
(
− (b+ 1)(s− 1)z2x1 + b(s− 1)(n− bs− s− 1)z2x2 − (b+ 1)(s− 1)z3x3

+ b(s− 1)(n− b− s− 2)z2x3

)
+ (1− α)

(
− (b+ 1)(s− 1)z3x1 + b(s− 1)(n− bs− s− 1)z2x2

− (b+ 1)(s− 1)z2x3 + b(s− 1)(n− b− s− 2)z2x3

)
= (s− 1)α

(
− (b+ 1)z2x1 + b(n− bs− s− 1)z2

(1− α)s

ρα(G3)− αs− (n− bs− s− 2)
x1

− (b+ 1)
ρα(G4)− α− (n− b− 3)

ρα(G4)− α
z2

(1− α)s

ρα(G3)− αs
x1

+ b(n− b− s− 2)z2
(1− α)s

ρα(G3)− αs
x1

)
+ (s− 1)(1− α)

(
− (b+ 1)

ρα(G4)− α− (n− b− 3)

ρα(G4)− α
z2x1
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+ b(n− bs− s− 1)z2
(1− α)s

ρα(G3)− αs− (n− bs− s− 2)
x1 − (b+ 1)z2

(1− α)s

ρα(G3)− αs
x1

+ b(n− b− s− 2)z2
(1− α)s

ρα(G3)− αs
x1

)
(from (3.5), (3.6) and (3.7))

=
(s− 1)z2x1

(ρα(G4)− α)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

× α
(
− (b+ 1)(ρα(G4)− α)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

+ b(n− bs− s− 1)(1− α)s(ρα(G4)− α)(ρα(G3)− αs)

+ b(n− b− s− 2)(1− α)s(ρα(G4)− α)(ρα(G3)− αs− (n− bs− s− 2))

− (b+ 1)(ρα(G4)− α− (n− b− 3))(ρα(G3)− αs− (n− bs− s− 2))(1− α)s
)

+
(s− 1)z2x1

(ρα(G4)− α)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))
(1− α)

×
(
− (b+ 1)(ρα(G4)− α− (n− b− 3))(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

+ b(n− bs− s− 1)(1− α)s(ρα(G4)− α)(ρα(G3)− αs)

+ b(n− b− s− 2)(1− α)s(ρα(G4)− α)(ρα(G3)− αs− (n− bs− s− 2))

− (b+ 1)(ρα(G4)− α)(ρα(G3)− αs− (n− bs− s− 2))(1− α)s
)

=
(s− 1)z2x1

(ρα(G4)− α)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

×
(
− (b+ 1)(ρα(G4)− α− (n− b− 3))(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

+ α(b+ 1)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))(−(n− b− 3))

+ b(n− bs− s− 1)(1− α)s(ρα(G4)− α)(ρα(G3)− αs)

− (b+ 1)(ρα(G4)− α)(ρα(G3)− αs− (n− bs− s− 2))(1− α)s

+ α(b+ 1)(n− b− 3)(ρα(G3)− αs− (n− bs− s− 2))(1− α)s

+ b(n− b− s− 2)(1− α)s(ρα(G4)− α)(ρα(G3)− αs− (n− bs− s− 2))
)

=
(s− 1)z2x1

(ρα(G4)− α)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

×
(
α(b+ 1)(ρα(G3)− αs− (n− bs− s− 2))(n− b− 3)

(
(1− α)s− (ρα(G3)− αs)

)
+ b(n− bs− s− 1)(1− α)s(ρα(G4)− α)(ρα(G3)− αs)

− (b+ 1)(1− α)s(ρα(G4)− α)(ρα(G3)− αs− (n− bs− s− 2))

+ b(n− b− s− 2)(1− α)s(ρα(G4)− α)(ρα(G3)− αs− (n− bs− s− 2))

− (b+ 1)(ρα(G4)− α− (n− b− 3))(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))
)

=
(s− 1)z2x1

(ρα(G4)− α)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

×
(
− α(b+ 1)(ρα(G3)− αs− (n− bs− s− 2))(n− b− 3)(ρα(G3)− s)

+ b(n− bs− s− 1)(1− α)s(ρα(G4)− α)(ρα(G3)− αs)
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+ (b(n− b− s− 2)− (b+ 1))(1− α)s(ρα(G4)− α)(ρα(G3)− αs− (n− bs− s− 2))

− (b+ 1)(ρα(G4)− α− (n− b− 3))(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))
)

=
(s− 1)z2x1

(ρα(G4)− α)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

×
(
(ρα(G3)− αs− (n− bs− s− 2))

×
(
(1− α)s(ρα(G4)− α)(b(n− b− s− 2)− (b+ 1))− α(b+ 1)(n− b− 3)(ρα(G3)− s)

)
+ (ρα(G3)− αs)

(
(1− α)bs(n− bs− s− 1)(ρα(G4)− α)

− (b+ 1)(ρα(G4)− α− (n− b− 3))(ρα(G3)− αs− (n− bs− s− 2))
))

>
(s− 1)z2x1

(ρα(G4)− α)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

×
(
(ρα(G3)− αs− (n− bs− s− 2))

n− b− 3

2

×
(
s(b(n− b− s− 2)− (b+ 1))− (b+ 1)(ρα(G3)− s)

)
+ (ρα(G3)− αs)

(1
2
bs(n− bs− s− 1)(ρα(G4)− α)

− (b+ 1)(ρα(G3)− αs− (n− bs− s− 2))(ρα(G4)− α− (n− b− 3))
))

(since α ∈ [0, 1/2] and ρα(G4) > n− b− 2)

>
(s− 1)z2x1

(ρα(G4)− α)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

×
(
(ρα(G3)− αs− (n− bs− s− 2))

n− b− 3

2

×
(
2(b(n− b− s− 2)− (b+ 1))− (b+ 1)(n− 1− s)

)
+ (ρα(G3)− αs)

(1
2
bs(n− b− 2− α)− (b+ 1)(bs+ 2s− αs)(b+ 2− α)

))
(since s ≥ 2, ρα(G3) < n− 1 and n− b− 2 < ρα(G4) < n− 1)

=
(s− 1)z2x1

(ρα(G4)− α)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

×
(
(ρα(G3)− αs− (n− bs− s− 2))

n− b− 3

2

×
(
(b− 1)n− (2b(s+ b+ 3) + 2− (s+ 1)(b+ 1))

)
+ s(ρα(G3)− αs)

(1
2
b(n− b− 2− α)− (b+ 1)(b+ 2− α)(b+ 2− α)

))
>

(s− 1)z2x1

(ρα(G4)− α)(ρα(G3)− αs)(ρα(G3)− αs− (n− bs− s− 2))

×
(
(ρα(G3)− αs− (n− bs− s− 2))

n− b− 3

2

×
(
(b− 1)n− (2b(s+ b+ 3) + 2− 2b(s+ 1))

)
+ s(ρα(G3)− αs)

(1
2
bn− 1

2
b(b+ 2 + α)− (b+ 1)(b+ 2− α)(b+ 2− α)

))
(since b > 1)
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> 0

(
since n > b+ 2 + α+

2(b+ 1)(b+ 2− α)2

b

)
.

Claim 3.8. For any b ≥ 1, we have K1∇(Kn−b−2∪ (b+1)K1) contains no [1, b]-odd factor.

Proof. Let V1 = V (K1), V2 = V (Kn−b−2) and V3 = V ((b+1)K1). Taking S = V1 we have

o(G−S) = b+2 > b|S| = b. Thus, by Lemma 3.1 it follows that K1∇(Kn−b−2∪(b+1)K1)

contains no [1, b]-odd factor.

Combining Claims 3.5, 3.6, 3.7 and 3.8, the proof is therefore completed.

4. Proof of Theorem 1.8

In this section, we firstly present some preliminaries, and then give a proof of Theorem 1.8.

Lemma 4.1. [11, Theorem 5] Let G be a graph of order n ≥ 2a+ b+ a2−a
b with minimum

degree δ(G) ≥ a, and a, b be two integers such that 1 ≤ a < b. If

max{dG(u), dG(w)} ≥ an

a+ b

for any two nonadjacent vertices u and w of G, then G contains an [a, b]-factor.

A spanning subgraph H is an [a, b]-factor of a graph G, if a ≤ dH(v) ≤ b for each

v ∈ V (G), where a and b are positive integers. Especially, if a = b = k, then [a, b]-factor

is also called a k-factor.

Lemma 4.2. [14] Suppose k ≥ 3. Let G be a connected graph of order n ≥ 4k − 3 with

minimum degree δ(G) where k · n is even and δ(G) ≥ k. If

max{dG(u), dG(w)} ≥ n

2

for any two nonadjacent vertices u and w of G, then G contains an k-factor.

Lemma 4.3. Let G be a connected graph of order n and let u, w be two nonadjacent

vertices of G. If 1 ≤ max{dG(u), dG(w)} ≤ t, then ρα(G) ≤ ρα(Kt∇(2K1 ∪ Kn−t−2)),

with equality if and only if G ∼= Kt∇(2K1 ∪Kn−t−2).

Proof. Let x be a positive unit eigenvector of Aα(G) corresponding to ρα(G). By num-

bering the vertices in V (G) \ {u,w} appropriately, we may assume that V (G) \ {u,w} =

{v1, v2, . . . , vn−2} with xv1 ≥ xv2 ≥ · · · ≥ xvn−2 . Let

G′ = G− {uv | v ∈ NG(u)} − {wv | v ∈ NG(w)}+ {uvi, wvi | 1 ≤ i ≤ t}.

We note that u and w are two nonadjacent vertices of G such that 1 ≤ max{dG(u), dG(w)}
≤ t, which implies that t ≤ n − 2. Thus, by Lemma 2.1 it follows that ρα(G) ≤ ρα(G

′),
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with equality holds if and only if G ∼= G′. On the other hand, since G′ is a spanning graph

of Kt∇(2K1 ∪Kn−t−2), from Lemma 2.4(iv) we have ρα(G
′) ≤ ρα(Kt∇(2K1 ∪Kn−t−2)),

the equality holds if and only if G′ ∼= Kt∇(2K1 ∪ Kn−t−2). Therefore, combining with

above one can get that ρα(G) ≤ ρα(Kt∇(2K1 ∪ Kn−t−2)), with equality if and only if

G ∼= G′ ∼= Kt∇(2K1 ∪Kn−t−2), i.e., G ∼= Kt∇(2K1 ∪Kn−t−2).

Lemma 4.4. [12, Proposition 4] Let 1 ≥ α > β ≥ 0. If G is a graph of order n with

Aα(G) = Aα and Aβ(G) = Aβ, then

λk(Aα)− λk(Aβ) ≥ 0

for any 1 ≤ k ≤ n. If G is connected, then the inequality is strict, unless k = 1 and G is

regular.

As usual, we write Kn−1 + v for Kn−1 ∪ v, and Kn−1 + e for the complete graph of

order n− 1 with a pendent edge.

Lemma 4.5. [5, Theorem 2] Let G be a graph of order n and spectral radius ρ(G). If

ρ(G) ≥ n− 2,

then G contains a Hamiltonian path unless G = Kn−1 + v ∼= Hn,1. If the inequality is

strict, then G contains a Hamiltonian cycle unless G = Kn−1 + e ∼= Hn,2.

Now we give a proof of Theorem 1.8 in the following.

Proof of Theorem 1.8. Let G be a graph satisfying the assumption of Theorem 1.8. We

assert that G is connected. If not, we may assume that G1, G2, . . . , Gl (l ≥ 2) are the

components of G. Then ρα(G) = max{ρα(G1), ρα(G2), . . . , ρα(Gl)} ≤ ρα(Kn−1) = n− 2,

a contradiction. Moreover, we declare that δ(G) ≥ a. If 1 ≤ δ(G) ≤ a− 1, then together

with δ(Hn,a) = a and the structure of Hn,a one can see that G is a spanning subgraph of

Hn,a, where a ≥ 2. Hence ρα(G) ≤ ρα(Hn,a), it is a contradiction.

Case 1: 1 ≤ a ≤ 2. Let 0 ≤ α < 1. Then by Lemma 4.4, ρα(G) = λ1(Aα) ≥
λ1(A0) = ρ(G). Note that ρα(Hn,2) ≥ ρα(Hn,1) = n − 2. So, one can deduce that

ρα(G) > ρα(Hn,1) ≥ ρ(Hn,1) = n− 2 for a = 1, and ρα(G) > ρα(Hn,2) ≥ ρ(Hn,2) ≥ n− 2

for a = 2. On the other hand, from Lemma 4.5 we know that G contains a Hamiltonian

path for a = 1 and a Hamiltonian cycle for a = 2. Thus, if ρα(G) > ρα(Hn,1), then G

contains a 1-factor, and if ρα(G) > ρα(Hn,2), then G contains a 2-factor.

Case 2: a ≥ 3. Assume by a contradiction, that G is a graph of order n ≥ f1(α) which

contains no [a, b]-factor. Since 3a+b−1−(2a+b+ a2−a
b ) = a−

(
1+ a2−a

b

)
= (a−1)(b−a)

b ≥ 0

and 3a + b − 1 − (4k − 3) = 2 ≥ 0, we have n ≥ 3a + b − 1 ≥ 2a + b + a2−a
b and

n ≥ 3a+ b− 1 ≥ 4k − 3. So, by Lemmas 4.1 and 4.2, there are two nonadjacent vertices
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u and w such that max{dG(u), dG(w)} ≤
⌈

an
a+b

⌉
− 1 ≤

⌈
n
2

⌉
− 1. Let t =

⌈
an
a+b

⌉
− 1. Then

t ≥ max{dG(u), dG(w)} ≥ δ(G) ≥ a ≥ 3 and n ≥ 2t+ 1 (since t =
⌈

an
a+b

⌉
− 1 ≤

⌈
n
2

⌉
− 1 <(

n
2+1

)
−1). Thus, one can deduce that ρα(G) ≤ ρα(Kt∇(2K1∪Kn−t−2)) from Lemma 4.3.

In order to prove ρα(Kt∇(2K1 ∪Kn−t−2)) < ρα(Hn,a), we now discuss two subcases

as follows.

Subcase 2.1: 0 ≤ α ≤ 3/4 and b ≥ a or 3/4 < α < 1 and b > a.

We first give a claim, which can be used in subsequent proof.

Claim 4.6. If t ≥ a ≥ 3 and n ≥ f1(α), then (n− t− 2)(n− 2− α(a− 1))(1− α)t− (t−
a+ 1)(2α+ (1− α)(t+ 2))(α+ (1− α)a) > 0.

Proof. If 0 ≤ α ≤ 3/4 and b ≥ a, then (n− t− 2)− (t−a+1) = n− 2t− 1+a− 2 ≥ 1 and

n− 2− α(a− 1)− 2α− (1− α)(t+ 2)

= n− t− 4 + α(t− a) + α ≥ 2t+ 1− t− 4 + α(t− a) + α ≥ α

by n ≥ 2t+ 1 and t ≥ a ≥ 3. Thus, we have

(n− t− 2)(n− 2− α(a− 1))(1− α)t− (t− a+ 1)(2α+ (1− α)(t+ 2))(α+ (1− α)a)

≥ (t− a+ 1 + 1)(α+ 2α+ (1− α)(t+ 2))(1− α)t

− (t− a+ 1)(2α+ (1− α)(t+ 2))(α+ (1− α)a)

= (t− a+ 1 + 1)α(1− α)t+ (t− a+ 1 + 1)(2α+ (1− α)(t+ 2))(1− α)t

− (t− a+ 1)(2α+ (1− α)(t+ 2))α− (t− a+ 1)(2α+ (1− α)(t+ 2))(1− α)a

≥ (t− a+ 1 + 1)α(1− α)t+ (2α+ (1− α)(t+ 2))(1− α)t

− (t− a+ 1)(2α+ (1− α)(t+ 2))α.

Set h(α) = (t− a+ 1+ 1)α(1− α)t+ (2α+ (1− α)(t+ 2))(1− α)t− (t− a+ 1)(2α+

(1−α)(t+2))α, i.e., h(α) = (t2− t)α2+(−2t2−3t+2a−2)α+ t2+2t. Through a simple

calculation, one can see that h(α) is opening up, and its symmetric axis is

α =
2t2 + t+ 2(t− a+ 1)

2(t2 − t)
≥ 2t2 + t+ 2

2(t2 − t)
(since t ≥ a)

=
2t2 − 2t+ 3t+ 2

2(t2 − t)
= 1 +

3t+ 2

2(t2 − t)
> 1.

Hence, h(α) is monotonically decreasing in [0, 1).

Note that

h

(
3

4

)
= (t2 − t)

(
3

4

)2

+ (−2t2 − 3t+ 2a− 2)

(
3

4

)
+ t2 + 2t

=
1

16
t2 − 13

16
t+

3

2
(a− 1) ≥ 1

16

(
t− 13

2

)2

− 1

16

132

4
+ 3 (since a ≥ 3)
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> 0.

Thus, we can deduce that if α ∈ [0, 3/4], then (n− t− 2)(n− 2− α(a− 1))(1− α)t− (t−
a+ 1)(2α+ (1− α)(t+ 2))(α+ (1− α)a) > 0.

If 3/4 < α < 1 and b > a, then (n− t− 2)− (t− a+1) = n− 2t− 1+ a− 2 ≥ 1+ 1+α
1−α

and

n− 2− α(a− 1)− 2α− (1− α)(t+ 2)

= n− t− 4 + α(t− a) + α ≥ 2t+ 1 +
1 + α

1− α
− t− 4 + α(t− a) + α

≥ 1 + α

1− α
+ α > α

by n ≥ 2t+ 1 + 1+α
1−α and t ≥ a ≥ 3. Thus, we have

(n− t− 2)(n− 2− α(a− 1))(1− α)t− (t− a+ 1)(2α+ (1− α)(t+ 2))(α+ (1− α)a)

≥
(
t− a+ 1 + 1 +

1 + α

1− α

)
(α+ 2α+ (1− α)(t+ 2))(1− α)t

− (t− a+ 1)(2α+ (1− α)(t+ 2))(α+ (1− α)a)

=

(
t− a+ 1 + 1 +

1 + α

1− α

)
α(1− α)t

+

(
t− a+ 1 + 1 +

1 + α

1− α

)
(2α+ (1− α)(t+ 2))(1− α)t

− (t− a+ 1)(2α+ (1− α)(t+ 2))α− (t− a+ 1)(2α+ (1− α)(t+ 2))(1− α)a

≥
(
t− a+ 1 + 1 +

1 + α

1− α

)
α(1− α)t+

(
1 +

1 + α

1− α

)
(2α+ (1− α)(t+ 2))(1− α)t

− (t− a+ 1)(2α+ (1− α)(t+ 2))α

= (t− a+ 1)α
(
(1− α)t− (2α+ (1− α)(t+ 2))

)
+

(
1 +

1 + α

1− α

)
α(1− α)t

+

(
1 +

1 + α

1− α

)
(2α+ (1− α)(t+ 2))(1− α)t

= −2α(t− a+ 1) +

(
1 +

1 + α

1− α

)
α(1− α)t+

(
1 +

1 + α

1− α

)
(2α+ (1− α)(t+ 2))(1− α)t

= −2α(t− a+ 1) + 2αt+

(
1 +

1 + α

1− α

)
(2α+ (1− α)(t+ 2))(1− α)t > 0.

Therefore, the claim holds.

Let G1
∼= Kt∇(2K1 ∪ Kn−t−2) and G2

∼= Hn,a. Then V (G1) can be partitioned as

V (G1) = V (2K1)∪V (Kt)∪V (Kn−t−2), where V (2K1) = {u,w}, V (Kt) = {v1, v2, . . . , vt}
and V (Kn−t−2) = {vt+1, . . . , vn−2}. Obviously, G2

∼= G1−{uvi | a ≤ i ≤ t}+{wvj | t+1 ≤
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j ≤ n − 2}. Let x (resp. y) be the positive unit eigenvectors of Aα(G1) (resp. Aα(G2))

corresponding to ρα(G1) (resp. ρα(G2)). By symmetry, x takes the same components on

the vertices of V (2K1), V (Kt) and V (Kn−t−2) respectively, say x1, x2 and x3. Similarly, y

takes the same components on the vertices of V (K1), V (Ka−1) and V (Kn−a) respectively,

say y1, y2 and y3. Then, from Aα(G1)x = ρα(G1)x and Aα(G2)y = ρα(G2)y, one can

obtain that

ρα(G1)x3 = α(n− 3)x3 + (1− α)(tx2 + (n− t− 3)x3),(4.1)

ρα(G2)y1 = α(a− 1)y1 + (1− α)(a− 1)y2,(4.2)

ρα(G2)y3 = α(n− 2)y3 + (1− α)((a− 1)y2 + (n− a− 1)y3).(4.3)

From (4.1) we have

(4.4) x2 =
ρα(G1)− α(n− 3)− (1− α)(n− t− 3)

(1− α)t
x3.

From (4.2) and (4.3) we get

(4.5) (ρα(G2)− α(a− 1))y1 = (ρα(G2)− α(n− 2)− (1− α)(n− a− 1))y3.

Combining ρα(G2) ≥ n− 2 = α(n− 2) + (1− α)(n− 2), n ≥ 3a+ b− 1 and b ≥ a ≥ 3, it

is easy to see that

ρα(G2)− α(a− 1) ≥ α(n− 2) + (1− α)(n− 2)− α(a− 1)

= α(n− a− 1) + (1− α)(n− 2)

≥ α(2a+ b− 2) + (1− α)(3a+ b− 3) > 0,

and

ρα(G2)− α(n− 2)− (1− α)(n− a− 1)

≥ α(n− 2) + (1− α)(n− 2)− α(n− 2)− (1− α)(n− a− 1) = (1− α)(a− 1) > 0.

Moreover,

ρα(G2)− α(a− 1)− (ρα(G2)− α(n− 2)− (1− α)(n− a− 1))

= α(n− 2− a+ 1) + (1− α)(n− a− 1) = n− a− 1 ≥ 2a+ b− 2 > 0,

that is, ρα(G2)− α(a− 1) > ρα(G2)− α(n− 2)− (1− α)(n− a− 1).

Hence, it follows from (4.5) that y1 < y3 and

(4.6) y3 =
ρα(G2)− α(a− 1)

ρα(G2)− α(n− 2)− (1− α)(n− a− 1)
y1.
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Together with Aα(G1)x = ρα(G1)x and Aα(G2)y = ρα(G2)y, we have

yT (ρα(G2)− ρα(G1))x

= yT (Aα(G2)−Aα(G1))x

= α
(
(n− t− 2)(x1y3 + x3y3)− (t− a+ 1)(x1y1 + x2y3)

)
+ (1− α)

( n−2∑
j=t+1

(xwyvj + xvjyw)−
t∑

i=a

(xuyvi + xviyu)

)
= α

(
(n− t− 2)(x1y3 + x3y3)− (t− a+ 1)(x1y1 + x2y3)

)
+ (1− α)

(
(n− t− 2)(x1y3 + x3y3)− (t− a+ 1)(x1y3 + x2y1)

)
= α

(
(n− t− 2)x1y3 − (t− a+ 1)x1y1 + (n− t− 2)x3y3 − (t− a+ 1)x2y3

)
+ (1− α)

(
((n− t− 2)− (t− a+ 1))x1y3 + (n− t− 2)x3y3 − (t− a+ 1)x2y1

)
> α

(
((n− t− 2)− (t− a+ 1))x1y3 + (n− t− 2)x3y3 − (t− a+ 1)x2y3

)
+ (1− α)

(
((n− t− 2)− (t− a+ 1))x1y3 + (n− t− 2)x3y3 − (t− a+ 1)x2y1

)
(since y1 < y3)

≥ α((n− t− 2)x3y3 − (t− a+ 1)x2y3)

+ (1− α)((n− t− 2)x3y3 − (t− a+ 1)x2y1) (since n ≥ 2t+ 1)

> (n− t− 2)x3y3 − (t− a+ 1)x2y1 (since y1 < y3)

= x3y1

(
(n− t− 2)

ρα(G2)− α(a− 1)

ρα(G2)− α(n− 2)− (1− α)(n− a− 1)

− (t− a+ 1)
ρα(G1)− α(n− 3)− (1− α)(n− t− 3)

(1− α)t

)
(from (4.4) and (4.6))

> x3y1

(
(n− t− 2)(n− 2− α(a− 1))

α+ (1− α)a
− (t− a+ 1)(2α+ (1− α)(t+ 2))

(1− α)t

)
(since ρα(G1) < n− 1 and n− 2 ≤ ρα(G2) < n− 1)

= x3y1
(n− t− 2)(n− 2− α(a− 1))(1− α)t− (t− a+ 1)(2α+ (1− α)(t+ 2))(α+ (1− α)a)

(α+ (1− α)a)(1− α)t

> 0 (by Claim 4.6).

Thus, we have ρα(G1) < ρα(G2), i.e., ρα(Kt∇(2K1 ∪Kn−t−2)) < ρα(Hn,a). Together

with ρα(G) ≤ ρα(Kt∇(2K1∪Kn−t−2)), one can obtain ρα(G) < ρα(Hn,a), a contradiction.

Subcase 2.2: 3/4 < α < 1 and b = a.

Note that ρα(G) ≤ ρα(Kt∇(2K1 ∪ Kn−t−2)) and Kt∇(2K1 ∪ Kn−t−2) is a spanning

graph of Kt∇(K1 ∪ Kn−t−1). According to Lemma 2.3, we get ρα(G) ≤ ρα(Kt∇(2K1 ∪
Kn−t−2)) ≤ ρα(Kt∇(K1 ∪Kn−t−1)), also a contradiction.

Therefore, the proof is completed.
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