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Abstract. The aim of this paper is to study the stability of perturbed set optimization

problems via general ordering sets. Firstly, for a set optimization problem (SOP) via

general ordering sets, four kinds of concepts about the minimal solutions of (SOP)

are given. Then, some properties of the four kinds of solution sets and the level

set of objective mappings are investigated. Finally, by employing the recession cone

technique, sufficient conditions of upper Painlevé–Kuratowski convergence of minimal

approximate solution sets, Painlevé–Kuratowski convergence of weak minimal approx-

imate solution sets of (SOP) are obtained, where the feasible set is perturbed. Some

examples are given to illustrate the mainly results in the paper.

1. Introduction

For the past few years, the set-valued optimization problem, as an extension of vector

optimization problems, has a growing interest for their wide applications in various fields,

such as welfare economics, robust optimization, game theory, mathematical finance, etc.

More details on set-valued optimization problems and its applications can be found in

[4, 20,21,23], for instance.

Generally speaking, there exist mainly two solution criteria for set-valued optimization

problems: the vector optimization criterion and set optimization criterion. The former

considers the efficient elements (vectors) in the union of all values of the objective set-

valued mapping. This criterion has been widely studied, see, e.g., [4,7,8,13,27]. However

the vector optimization criterion is not always suitable for all types of set-valued optimiza-

tion problems. For example, we may not compare the overall level of two football teams by

virtue of the vector optimization criterion, since the fact tell us that a team has one of the

best player does not always mean it is the best team. In order to overcome this flaw, the

latter criterion introduced by Kuroiwa in [22], is based on a comparison among the values

(sets) of objective set-valued mappings by set order relations. A set-valued optimization
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problem considered by the set optimization criterion is called a set optimization problem

(SOP, for short). Up to now, SOP has been intensively investigated by many researches,

see [5, 9, 26,36,40,41,43–45] and the references therein.

It is well known that the set order relation is an important tool to study set optimiza-

tion problems. Until now, there are many kinds of set order relations used in study of set

optimization problems, mainly including but not limited to lower set less order relation

⪯l in [5, 25, 45], upper set less order relation ⪯u in [5, 25, 36, 40], set less or KNY order

relation ⪯s (see [5]), certainly less order relation ⪯c (see [5]), possibly less order relation

⪯p in [41]. Note that the aforementioned set order relations are generally based on a

cone (named ordering cone). With the deepening of research, one can find that some

practical problems, especially some economic problems (see [1, 10]), are not suitable to

be characterized by cone-defined order relations. Hence, ordering cone has been gradu-

ally extended to general ordering set, such as improvement sets (see [6, 26] for instance),

coradiant sets (see [43, 44]) and so on. Furthermore, in 2019, Khushboo and Lalitha [21]

introduced the set order relation ⪯l
S , which relies on an arbitrary nonempty proper subset

S in image space, and established an existence result of minimal solutions for a class of

SOP. Obviously, the set order relation ⪯l
S is a generalization of some of set order relations,

for example ⪯l, ⪯E . Therefore, it is meaningful to study other aspects (e.g., stability)

of SOP under the set order relation ⪯S , which defined by an arbitrary nonempty proper

subset S in image space.

On the other hand, the stability analysis is an important topic in the study of op-

timization and related problems, and has been studied extensively by researchers, see,

e.g., [8, 14–18, 25, 26, 29–33, 43]. Up to now, the research on the stability of set optimiza-

tion problems has achieved abundant results in the literatures, such as well-posedness

[15, 16, 25, 43, 45], continuity of solution mappings [16, 24, 36, 40–42], connectedness of so-

lution sets [14, 17] and so on. However, to the best of our knowledge, for an important

aspect of the stability analysis of set optimization problems, the Painlevé–Kuratowski

convergence results are relatively few (see [15, 18, 28]). Han et al. [15] obtained the

Painlevé–Kuratowski convergence of the approximate solution sets for set optimization

problems with the continuity and convexity of objective mapping by the set order rela-

tion ⪯l. Han [18] investigated the Painlevé–Kuratowski convergence of the solution sets

for perturbed set optimization problems by the set order relation ⪯l. Recently, Peng et

al. [28] studied the Painlevé–Kuratowski convergence of (weak)-minimal solutions for set

optimization problems via improvement sets.

Motivated by the research of [15, 18, 21], by set order relation ⪯S , we propose to

investigate Painlevé–Kuratowski convergence of a class of perturbed SOP. We present four

kinds of concepts of minimal solutions with respect to ⪯S , and discuss the relationships
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among these solution sets. By virtue of the level set of objective mappings, we establish

Painlevé–Kuratowski convergence of approximate solution sets for this perturbed SOP by

recession cone technique.

This paper in four sections is organized as follows. Section 2 presents some basic

notions and preliminaries results required in the sequel, introduces four kinds of concepts

of minimal solutions and the level set of objective set-valued mappings for a class of

SOP. Section 3 investigates some related properties of these solution sets and the level

set. Under some mild assumptions, Section 4 discusses some sufficient conditions for the

Painlevé–Kuratowski convergence of solution sets for perturbed SOP via general ordering

sets. By employing the recession cone technique, we also give some illustrative examples

along the paper.

2. Preliminaries

Throughout this paper, unless specified otherwise, let X and Y be two real normed vector

spaces. The topological boundary, topological closure and topological interior of a set

A ⊆ Y are defined by ∂S, clA and intA, respectively. Let S be a nonempty proper,

closed subset of Y with intS∞ ̸= ∅, where S∞ = {y ∈ Y : s + ty ∈ S, ∀ s ∈ S, t ≥ 0} is

the recession cone of S. Let P0(Y ) be the set of all nonempty subsets of Y . The lower set

order relation and weak lower set order relation associated with S on P0(Y ) are defined,

respectively, by

A ≤S B ⇐⇒ B ⊆ A+ S,

A <S B ⇐⇒ B ⊆ A+ intS.

Let u ∈ intS∞ be fixed. For any nonnegative real number ε, the ε-lower set order relation

and weak ε-lower set order relation associated with S on P0(Y ) are defined, respectively,

by

A ≤ε
S B ⇐⇒ B ⊆ A+ S + εu,

A <ε
S B ⇐⇒ B ⊆ A+ intS + εu.

For the recession cone of nonempty subset S of Y , we collect some basic results as

follows (see, [11], [34, Section 8] and [37, p. 306]).

Lemma 2.1. For any nonempty subset S of Y , one has

(i) S∞ ̸= ∅ and S + S∞ ⊆ S;

(ii) S∞ is a convex cone;
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(iii) if S is closed, then S∞ is closed;

(iv) if S is convex, then S∞ = {y ∈ Y : s+ ty ∈ S,∃ s ∈ S, ∀ t ≥ 0};

(v) if S is a pointed, closed and convex cone, then S∞ = S;

(vi) if S is bounded (i.e., there exists some t > 0 such that S ⊆ tBY , where BY is the

open unit ball with center 0 ∈ Y ), then S∞ = {0}.

Lemma 2.2. [38, Proposition 2.2] Let A and B be two nonempty sets in a topological

vector space. If intA ̸= ∅, then intA+B ⊂ int(A+B).

Remark 2.3. According to Lemmas 2.1(i) and 2.2, it is easy to obtained that S+intS∞ ⊆
intS ̸= ∅ and intS + S∞ ⊆ intS.

Remark 2.4. For the relation <ε
S , the following statements are true.

(i) For any ε > 0, the relation ≤ε
S is not reflexive if 0 /∈ intS, as for any bounded set B

in P0(Y ), B ≤ε
S B does not hold.

(ii) When 0 /∈ intS, the relation <ε
S is not reflexive for any ε > 0.

(iii) The relation <ε
S is reflexive for some ε > 0 (not all) if 0 ∈ intS.

Let K be a nonempty subset of X and F be a nonempty set-valued mapping from K

to Y with compact values (i.e., F (x) is a compact set for each x ∈ K). Let us consider

the set optimization problem via the general order set S as follows:

(SOP) min
S

F (x) s.t. x ∈ K.

Definition 2.5. For any ε ≥ 0, a point x0 ∈ K is said to be

(i) a minimal solution of (SOP) if for any x ∈ K,

F (x) ≤S F (x0) =⇒ F (x0) ≤S F (x);

(ii) a minimal approximate solution of (SOP) if for any x ∈ K,

F (x) ≤ε
S F (x0) =⇒ F (x0) ≤ε

S F (x);

(iii) a weak minimal solution of (SOP) if for any x ∈ K,

F (x) <S F (x0) =⇒ F (x0) <S F (x);

(iv) a weak minimal approximate solution of (SOP) if for any x ∈ K,

F (x) <ε
S F (x0) =⇒ F (x0) <

ε
S F (x).
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The minimal solution set, minimal approximate solution set, weak minimal solution

set and weak minimal approximate solution set of (SOP) are denoted, respectively, by

E(K), E(ε,K), W (K) and W (ε,K). Clearly, E(K) = E(0,K) and W (K) = W (0,K).

First, for ε ≥ 0, we define the ε-level set of F at x ∈ K by

LF (ε, x,K) = {y ∈ K : F (y) ≤ε
S F (x)} ∪ {x}.

Notice that for any ε ≥ 0 and x ∈ K, the set {y ∈ K : F (y) ≤ε
S F (x)} may be empty, but

the ε-level set LF (ε, x,K) of F is always nonempty due to x ∈ LF (ε, x,K).

Next, we recall some basic definitions and facts which will be used in the sequel.

Definition 2.6. [12, Definitions 2.5.1 and 2.5.12] Let X and Y be two topological vector

spaces. Suppose that G is a set-valued mapping from A ⊆ X to Y and x0 ∈ A.

(i) G is said to be upper semicontinuous (u.s.c, for short) at x0 if for any open set V

with G(x0) ⊆ V , there exists a neighbourhood U of x0 in X such that G(x) ⊆ V for

all x ∈ U ;

(ii) G is said to be lower semicontinuous (l.s.c, for short) at x0 if for any open set V with

G(x0) ∩ V ̸= ∅, there exists a neighbourhood U of x0 in X such that G(x) ∩ V ̸= ∅
for all x ∈ U ;

(iii) G is said to be Hausdorff upper semicontinuous (H-u.s.c, for short) at x0 if

∀V ∈ VY , ∃U ∈ V(x0), ∀x ∈ U : G(x) ⊆ G(x0) + V,

where VY denotes the class of balanced neighbourhoods of 0 ∈ Y ;

(iv) G is said to be Hausdorff lower semicontinuous (H-l.s.c, for short) at x0 if

∀V ∈ VY , ∃U ∈ V(x0), ∀x ∈ U : G(x0) ⊆ G(x) + V.

We say G is l.s.c (resp. u.s.c, H-l.s.c, H-u.s.c) on A if it is l.s.c (resp. u.s.c, H-l.s.c, H-u.s.c)

at each x ∈ A. G is said to be continuous (resp. H-continuous) on A if it is both l.s.c and

u.s.c (resp. H-u.s.c and H-l.s.c) on A.

Aubin and Ekeland given some equivalent characterizations of l.s.c and u.s.c in [2,

pp. 108–109], also see [12, Propositions 2.5.6 and 2.5.9].

Lemma 2.7. Let X and Y be two metric spaces, G : X ⇒ Y be a set-valued mapping and

x0 ∈ A.

(i) G is l.s.c at x0 if and only if for any sequence {xn} ⊆ X with xn → x0 and any

y0 ∈ G(x0), there exists yn ∈ G(xn) such that yn → y0.
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(ii) G(x0) is compact, G is u.s.c at x0 if and only if for any sequence {xn} ⊆ X with

xn → x0 and any yn ∈ G(xn), there exist y0 ∈ G(x0) and a subsequence {ynk
} of

{yn} such that ynk
→ y0.

Definition 2.8. [12, Definition 2.5.16] Suppose that X and Y are two Hausdorff topolog-

ical vector spaces. Let C be a convex cone in Y and G : X ⇒ Y be a set-valued mapping.

G is to be

(i) Hausdorff C-upper semicontinuous (H-C-u.s.c, for short) at x0 ∈ X if

∀V ∈ VY ,∃U ∈ V(x0), ∀x ∈ U : G(x) ⊆ G(x0) + V + C;

(ii) Hausdorff C-lower semicontinuous (H-C-l.s.c, for short) at x0 ∈ X if

∀V ∈ VY ,∃U ∈ V(x0),∀x ∈ U : G(x0) ⊆ G(x) + V + C;

(iii) H-C-continuous on X if it is both H-C-u.s.c and H-C-l.s.c at every x ∈ X.

Remark 2.9. From Proposition 2.2 and Remark 2.2 of [39], we know that a set-valued

mapping G is continuous, then it is H-C-continuous, and the converse may be not hold.

In other words, the concept of H-C-continuity for set-valued mappings is strictly larger

than the concept of continuity for set-valued mappings. Next we give Example 2.10 in

infinite dimensional space to show the case.

Example 2.10. (i) Let X = Y = l∞ =
{
(x1, x2, . . .) : xi ∈ R, sup{|xi| : i = 1, 2, . . .} <

+∞
}
be the set of all bounded sequence of real numbers and C = {(x1, x2, . . .) ∈ l∞ :

xi ≥ 0, i = 1, 2, . . .}. The set-valued mapping G : X ⇒ Y is defined as follows:

G(x) =




(0, βxp+ p] if x ∈ C,

[−p, 0] if x /∈ C,

where βx = supi |xi| with x = (x1, x2, . . .) ∈ X, (0, x] = {α0 + (1 − α)x : α ∈ (0, 1]} and

[−p, 0] = {α(−p) + (1− α)0 : α ∈ [0, 1]} with p = (1, 1, . . .) ∈ Y .

It is not difficult to find that G is H-C-l.s.c at 0. However, for any neighbourhood U

of 0, there exists some z /∈ C with z ∈ U . It follows that G(z) = [−p, 0]. Take the open

set U(p, 1/2) = {(x1, x2, . . .) ∈ l∞ : |xi − 1| < 1/2, i = 1, 2, . . .}, then

G(z) ∩ U(p, 1/2) = ∅,

which implies G is not l.s.c at 0.
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(ii) Let X = Y = l1 =
{
(ξ1, ξ2, . . .) : ξi ∈ R,

∑∞
i=1 |ξi| < +∞

}
and C = {(ξ1, ξ2, . . .) ∈

l1 : ξi ≥ 0, i = 1, 2, . . .}. We consider the set-valued mapping G : X ⇒ Y as follows:

G(x) =




[−q, 0] if x = (ξ1, ξ2, . . .) ∈ C,

[q, αxq] if x = (ξ1, ξ2, . . .) /∈ C,

where q = (1, 1, 0, 0, . . .) ∈ l1, αx = supi |ξi|+ 1, and the line segment [y, z] is defined by

[y, z] = {λy + (1− λ)z : λ ∈ [0, 1]}

with y = (y1, y2, . . .) ∈ X and z = (z1, z2, . . .) ∈ X.

After computation, G is H-C-u.s.c at 0. Consider the open set V = [−q, 0]+B(0, 1/4).

Obviously, G(0) ⊆ V . On the other hand, for any neighbourhood U of 0, there’s always

some x′ = (ξ′1, ξ
′
2, . . .) ∈ U such that ξi < 0 holds for some i ∈ N. It follows that x′ /∈ C.

Thence G(x′) = [q, αx′q] ⊈ V . This together with the arbitrariness of U that G is not

u.s.c at 0.

Similarly, from definitions of H-continuity and H-C-continuity, we have the following

proposition.

Proposition 2.11. Each H-continuous set-valued mapping is always H-C-continuous.

Remark 2.12. The converse of Proposition 2.11 does not hold in general. We give the

following Example 2.13 to show the case.

Example 2.13. (i) Let X = Y = R, C = R+. And the set-valued mapping G : X ⇒ Y is

defined as follows:

G(x) =




[0, 1] if x ∈ A,

[1, 2] if x /∈ A,

where A is the set of all rational numbers in R.
For any rational number x0, it can be check easily that G is H-C-u.s.c at x0, but G is

not H-u.s.c at x0.

(ii) Let X = Y = R, C = R+. And the set-valued mapping G : X ⇒ Y is defined as

follows:

G(x) =




[0, 2] if x ≥ 0,

(0, 1] if x < 0.

It can be check easily that G is H-C-l.s.c at 0, but G is not H-l.s.c at 0.

According to the corresponding results (see [3, Lemma 2.2.3], [15, Lemma 2.6], [39,

Proposition 2.2 and Remark 2.2], Proposition 2.11, Remark 2.12), the relations between

several types of upper/lower semicontinuity of a set-valued mapping G at x under the

condition P (i.e., G(x) is compact) are shown as Figure 2.1.
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with y = (y1, y2, · · · ) ∈ X and z = (z1, z2, · · · ) ∈ X.

After computation, G is H-C-u.s.c at 0. Consider the open set V = [−q, 0] + B(0, 1
4
).

Obviously, G(0) ⊆ V . On the other hand, for any neighbourhood U of 0, there’s always

some x′ = (ξ′1, ξ
′
2, · · · ) ∈ U such that ξi < 0 holds for some i ∈ N. It follows that x′ /∈ C.

Thence G(x′) = [q, αx′q] /⊆ V . This together with the arbitrariness of U that G is not

u.s.c at 0.

Similarly, from definitions of H-continuity and H-C-continuity, we have the following

proposition.

Proposition 2.1 Each H-continuous set-valued mapping is always H-C-continuous.

Remark 2.3 The converse of Proposition 2.1 does not hold in general. We give the

following Example 2.2 to show the case.

Example 2.2 (i) Let X = Y = R, C = R+. And the set-valued mapping G : X ⇒ Y is

defined as follows:

G(x) =

{
[0, 1], x ∈ A;

[1, 2], x /∈ A,

where A is the set of all rational numbers in R.

For any rational number x0, it can be check easily that G is H-C-u.s.c at x0, but G is

not H-u.s.c at x0.

(ii) Let X = Y = R, C = R+. And the set-valued mapping G : X ⇒ Y is defined as

follows:

G(x) =

{
[0, 2], x ≥ 0;

(0, 1], x < 0.

It can be check easily that G is H-C-l.s.c at 0, but G is not H-l.s.c at 0.

According to the corresponding results (Lemma 2.2.3 of [3], Lemma 2.6 of [14], Propo-

sition 2.2 and Remark 2.2 of [40], Proposition 2.1, Remark 2.3), the relations between

several types of upper/lower semicontinuity of a set-valued mapping G at x under the

condition P (i.e., G(x) is compact) are shown as Figure 2.1.

u.s.c H-u.s.cP

H-C-u.s.c

1.s.cH-1.s.c P

H-C-l.s.c

Figure 2.1: The relations between several types of upper/lower semicontinuity

In the study of stability of (SOP), we need also the following necessary background

on convergence and convexity.
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Figure 2.1: The relations between several types of upper/lower semicontinuity.

In the study of stability of (SOP), we need also the following necessary background

on convergence and convexity.

Definition 2.14. [35, p. 111, Section B, Chapter 4] Let {An} be a sequence of nonempty

subsets of X and A ⊆ X. We say that the sequence {An} converges in the sense of

Painlevé–Kuratowski to A (An
PK−−→ A) if

LsAn ⊆ A ⊆ LiAn,

where

LsAn =

{
a ∈ X : a = lim

k→∞
ank

, ank
∈ Ank

}
, LiAn =

{
a ∈ X : a = lim

n→∞
an, an ∈ An

}
.

The inclusion relation LsAn ⊆ A is referred as the upper part of Painlevé–Kuratowski

convergence, denoted by An
PK
⇀ A, and A ⊆ LiAn is referred as the lower part of Painlevé–

Kuratowski convergence, written as An
PK
⇁ A. Clearly, LiAn ⊆ LsAn.

The other convergent concept for sequence of sets is Hausdorff convergence. For x ∈ X

and two nonempty subsets A and B of X, set

h(x,A) = inf
a∈A

d(x, a) and e(A,B) = sup
a∈A

h(a,B).

A sequence of nonempty subsets {An} of X converges to a set A ⊆ X in the sense of

Hausdorff (An
H−→ A) if and only if e(An, A) → 0 and e(A,An) → 0. The condition

e(An, A) → 0 is the upper part of Hausdorff convergence, and denoted by An
H
⇀ A, while

the conclude relation e(A,An) → 0 is the lower part of Hausdorff convergence, and denoted

by An
H
⇁ A.

Lemma 2.15. [18, Lemma 2.3] Let {An} be a sequence of nonempty subsets of Rn and

A ⊆ Rn. Then A ⊆ LiAn if and only if for any open set W with W ∩A ̸= ∅, there exists

N ∈ N, such that An ∩W ̸= ∅ for any n > N .

Lemma 2.16. [19, Lemma 2.1 and Corollary 2.1] Let A be a nonempty subset of X and

{An} be a sequence of nonempty subsets of X. Then the following assertions hold:

(i) if An
H
⇀ A and A is closed, then LsAn ⊆ A;
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(ii) An
H
⇀ A if and only if for any ε > 0, there exists Nε ∈ N such that

An ⊆ A+ εBX , ∀n > Nε,

where BX is the open unit ball with center 0 ∈ X.

Definition 2.17. [15, Definition 2.3] Let A be a nonempty convex subset of a real normed

vector space X, and C be a pointed, closed and convex cone with nonempty interior intC

in a real normed vector space Y . A set-valued mapping G : A ⇒ Y is said to be

(i) natural quasi C-convex on A if for any x, y ∈ A and for any t ∈ [0, 1], there exists

some λ ∈ [0, 1] such that

λG(x) + (1− λ)G(y) ⊆ G(tx+ (1− t)y) + C;

(ii) strictly natural quasi C-convex on A if for any x, y ∈ A with x ̸= y and for any

t ∈ (0, 1), there exists some λ ∈ [0, 1] such that

λG(x) + (1− λ)G(y) ⊆ G(tx+ (1− t)y) + intC.

Lemma 2.18. [15, Lemma 2.5] Let A and B be two nonempty subsets of real normed

vector space Y . If 0 < α < β, B is convex and A+ βBY ⊆ B + αBY , then A ⊆ intB.

3. Some characterizations on solution sets and the level set for (SOP)

In this section, we devote to discuss some properties of the level set and solution sets for

(SOP). We start with the following two lemmas.

Lemma 3.1. Assume that S+S ⊆ S, 0 ∈ S, K is nonempty compact and for each x ∈ K,

the set {y ∈ K : F (y) ≤S F (x)} is closed. Then E(K) ̸= ∅.

Proof. It follows from S + S ⊆ S, 0 ∈ S and Theorem 5.1 in [9] that E(K) ̸= ∅.

Lemma 3.2. Assume that S + S ⊆ S, 0 /∈ intS, x0 ∈ K.

(i) For any ε > 0, x0 ∈ E(ε,K) if and only if there does not exist any y ∈ K such that

F (y) ≤ε
S F (x0);

(ii) For any ε > 0, x0 ∈ W (ε,K) if and only if there does not exist any y ∈ K such that

F (y) <ε
S F (x0).
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Proof. (i) The sufficiency is straightforward. We only need to prove the necessity. Let

u ∈ intS∞. Suppose to the contrary that there exists y ∈ K such that F (y) ≤ε
S F (x0),

that is,

(3.1) F (x0) ⊆ F (y) + S + εu.

Since x0 ∈ E(ε,K), we have F (x0) ≤ε
S F (y), i.e.,

(3.2) F (y) ⊆ F (x0) + S + εu.

From Remark 2.3,

(3.3) S + intS∞ ⊆ intS.

It follows from (3.1), (3.2) and (3.3) that

F (x0) ⊆ F (y) + S + εu ⊆ F (x0) + S + S + 2εu

⊆ F (x0) + S + S + intS∞ + εu ⊆ F (x0) + S + intS + εu

⊆ F (x0) + intS + εu,

which is a contradiction as 0 /∈ intS and F (x0) is bounded.

Exploiting the lines of the proof of (i), the statement (ii) holds and we omit it here.

The following lemmas are necessary for us to establish our main results.

Lemma 3.3. Assume that S + S ⊆ S, 0 /∈ intS. Then

(i) for any ε ≥ 0, E(K) ⊆ E(ε,K) and W (K) ⊆ W (ε,K);

(ii) for any ε ≥ 0, E(ε,K) ⊆ W (ε,K);

(iii) for any ε > 0, W (K) ⊆ E(ε,K).

Proof. Let u ∈ intS∞.

(i) The conclusion is obvious when ε = 0. Let ε > 0 and x ∈ E(K). For any y ∈ K,

we consider the following two cases:

Case 1: F (y) ≤S F (x). We conclude that F (y) ≰ε
S F (x). If not, F (x) ⊆ F (y)+S+εu,

it follows from x ∈ E(K) that F (x) ⊆ F (x)+S+S+εu ⊆ F (x)+intS+ ε
2u. It is impossible.

Case 2: F (y) ≰S F (x). That is, F (x) ⊈ F (y) + S. By the relation S + εu ⊆ S, we

deduce

F (x) ⊈ F (y) + S + εu,

which means that F (y) ≰ε
S F (x).
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From Cases 1 and 2, one arrives at F (y) ≰ε
S F (x) for any y ∈ K. By virtue of

Lemma 3.2(i), x ∈ E(ε,K). Therefore E(K) ⊆ E(ε,K) for each ε ≥ 0. Similarly, one can

prove that W (K) ⊆ W (ε,K).

(ii) Let’s take any x ∈ E(ε,K) and any y ∈ K.

Case 1: ε = 0, we have E(0,K) = E(K), and W (0,K) = W (K). If F (y) ≮S F (x),

x ∈ W (K) trivially holds. If F (y) <S F (x), then F (x) ⊆ F (y) + intS ⊆ F (y) +S, and so

F (y) ≤S F (x). From x ∈ E(K), we can get F (x) ≤S F (y). This implies that

F (y) ⊆ F (x) + S ⊆ F (y) + S + intS ⊆ F (x) + S + S + intS ⊆ F (x) + intS,

i.e., F (x) <S F (y). Therefore x ∈ W (K).

Case 2: ε > 0, by Lemma 3.2(i), F (y) ≰ε
S F (x), that is, F (x) ⊈ F (y) + S + εu. This

together with intS ⊆ S implies that F (x) ⊈ F (y) + intS + εu. From Lemma 3.2(ii) and

the arbitrariness of y, we obtain x ∈ W (ε,K). Hence, the relation E(ε,K) ⊆ W (ε,K)

holds for any ε ≥ 0.

(iii) Let ε > 0, y ∈ K be fixed and x ∈ W (K). We need to show that x ∈ E(ε,K).

From x ∈ W (K), we have F (y) ≮S F (x) or F (y) <S F (x) implies that F (x) <S F (y).

When F (y) ≮S F (x), we have F (x)/⊂F (y) + intS by the definition of the relation ≮S .

It follows from S+εu ⊂ intS that F (x)/⊂F (y)+S+εu, that is, F (y) ≰ε
S F (x). Therefore,

x ∈ E(ε,K) because y ∈ K is arbitrary.

For the other case, we have F (y) ⊂ F (x) + intS and F (x) ⊂ F (y) + intS. We next

need to consider two cases. One is F (x)/⊂F (y)+S+ εu, i.e., F (y) ≰ε
S F (x), which implies

x ∈ E(ε,K). And the second is F (x) ⊂ F (y) + S + εu, i.e., F (y) ≤ε
S F (x). Then

F (y) ⊂ F (x) + intS ⊂ F (y) + S + intS + εu

⊂ F (x) + S + intS + intS + εu ⊂ F (x) + S + εu,

i.e., F (x) ≤ε
S F (y). It follows from Definition 2.5(ii) and y is arbitrary that x ∈ E(ε,K).

Remark 3.4. Lemma 3.3 extends the corresponding results (i.e., Remarks 2.3–2.5) of [18]

from the cone case to the general ordering set case.

Lemma 3.5. Assume that 0 /∈ intS, S + S ⊂ S. Then, for any ε ≥ 0, x0 ∈ K,

E(ε, LF (ε, x0,K)) ⊆ E(ε,K).

Proof. If ε = 0, the conclusion is straightforward.

If ε > 0, by contradiction, let

(3.4) v ∈ E(ε, LF (ε, x0,K))
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and v /∈ E(ε,K). Then, there exists z ∈ K such that F (z) ≤ε
S F (v), i.e.,

(3.5) F (v) ⊆ F (z) + S + εu.

We claim that z ∈ LF (ε, x0,K). As v ∈ E(ε, LF (ε, x0,K)), we need to consider the

following two cases:

Case 1: v = x0. Then F (z) ≤ε
S F (v) = F (x0).

Case 2: v ̸= x0. Then F (x0) ⊆ F (v) + S + εu. It follows from (3.5) that

F (x0) ⊆ F (v) + S + εu ⊆ F (z) + S + 2εu ⊆ F (z) + S + εu.

Thus, we can get z ∈ LF (ε, x0,K) from Cases 1 and 2. It follows from z ∈ LF (ε, x0,K),

F (z) ≤ε
S F (v) and Lemma 3.2(i) that v /∈ E(ε, LF (ε, x0,K)), which contradicts (3.4).

Lemma 3.6. Assume that ε > 0, S + S ⊆ S, 0 /∈ intS. Then, for any x0 ∈ K,

x0 ∈ E(ε,K) ⇐⇒ LF (ε, x0,K) = {x0}.

Proof. By virtue of Lemma 3.2(i), the necessity is true. Now, we prove that the suffi-

ciency. As ε > 0 and 0 /∈ intS, we have F (x) ≰ε
S F (x) for each x ∈ K. It follows from

LF (ε, x0,K) = {x0} that {y ∈ K : F (y) ≤ε
S F (x0)} is empty. Therefore, there does not

exist y ∈ K such that F (y) ≤ε
S F (x0). In view of Lemma 3.2(i), x0 ∈ E(ε,K).

Lemma 3.7. Assume that K is closed, F is H-S∞-u.s.c on K with S-closed values (i.e.,

for each x ∈ K, F (x) +S is closed). Then, LF (ε, x,K) is closed for all ε ≥ 0 and x ∈ K.

Proof. Let ε ≥ 0 and x ∈ K. From the definition of LF (ε, x,K), we only need to show

that the set M := {y ∈ K : F (y) ≤ε
S F (x)} is closed. Let sequence {xn} ⊆ M with

xn → x0 ∈ X. Clearly, xn ∈ K. By the closeness of K, x0 ∈ K. On the other hand, for

any n ∈ N, F (xn) ≤ε
S F (x), that is,

(3.6) F (x) ⊆ F (xn) + S + εu, n = 1, 2, . . . .

As F is H-S∞-u.s.c at x0, for any neighbourhood V of origin 0 in Y , when n is sufficiently

large, one has

(3.7) F (xn) ⊆ F (x0) + V + S∞.

By (3.6) and (3.7), for n sufficiently large,

F (x) ⊆ F (xn) + S + εu ⊆ F (x0) + V + S + S∞ + εu.

It follows from Lemma 2.1 and the arbitrariness of V that

F (x) ⊆ F (x0) + S + εu.

That is, F (x0) ≤ε
S F (x), i.e., x0 ∈ M . This proves that M is closed. Hence, LF (ε, x,K)

is closed for any ε ≥ 0.
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4. Painlevé–Kuratowski convergence of approximate solution sets

In this section, under some suitable conditions, we study the upper Painlevé–Kuratowski

convergence of minimal approximate solution sets and Painlevé–Kuratowski convergence

of weak minimal approximate solution sets for (SOP) under the case that the feasible set

is perturbed. In the rest of this paper, we always assume that X is a finite-dimensional

space Rn.

Lemma 4.1. Let {εn} ⊆ R+ with εn ↘ ε0. {Kn} is a sequence of nonempty sets in X,

and K ⊆ X is bounded. Assume that

(i) S + S ⊆ S, 0 /∈ intS;

(ii) LsKn ⊆ K, and there exist δ > 0 and N ∈ N such that for any n > N , Kn ⊆
K + δBX ;

(iii) F is H-S∞-continuous with S-closed values on K.

Then, for any α > 0, x ∈ K and each sequence {xn ∈ Kn : n ∈ N} with xn → x, there

exists n0 ∈ N such that

LF (εn, xn,Kn) ⊆ LF (ε0, x,K) + αBX , ∀n > n0.

Proof. Let u ∈ intS∞. Suppose to the contrary, without loss of generality, that there

exists α0 > 0 such that

LF (εn, xn,Kn) ⊈ LF (ε0, x,K) + α0BX , ∀n ∈ N.

This implies for each n ∈ N, there exists

(4.1) yn ∈ LF (εn, xn,Kn),

but

(4.2) yn /∈ LF (ε0, x,K) + α0BX .

Obviously, yn ∈ Kn. From xn → x and x ∈ LF (ε0, x,K), there exists N1 ∈ N such that

(4.3) xn ∈ LF (ε0, x,K) + α0BX , ∀n > N1.

By (4.2) and (4.3), we obtain that xn ̸= yn when n > N1. It follows from (4.1) that

(4.4) F (xn) ⊆ F (yn) + S + εnu, ∀n > N1.

From (ii) and K is bounded, {yn} is bounded. Without loss the generality, we can assume

that yn → y0 ∈ X. Combining this with LsKn ⊆ K, we have y0 ∈ K.
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Next, we show that F (x) ⊆ F (y0)+S+ε0u. Note that −θu+intS∞ is a neighbourhood

V of origin 0 in Y for any θ > 0. Since F is H-S∞-l.s.c at x, there exists a neighbourhood

Ux of x such that

(4.5) F (x) ⊆ F (x′)− θu+ intS∞ + S∞, ∀x′ ∈ Ux.

Due to F is H-S∞-u.s.c at y0, there exists a neighbourhood Uy0 of y0 such that

(4.6) F (y′) ⊆ F (y0)− θu+ intS∞ + S∞, ∀ y′ ∈ Uy0 .

It follows from xn → x and yn → y0 that there exists N2 ∈ N such that xn ∈ Ux and

yn ∈ Uy0 for n > N2. This together with (4.4)–(4.6) that, for n > max{N1, N2}, we have

F (x) ⊆ F (xn)− θu+ intS∞ + S∞ ⊆ F (yn) + S + εnu− θu+ intS∞ + S∞

⊆ F (y0)− 2θu+ εnu+ 2 intS∞ + 2S∞ + S ⊆ F (y0)− 2θu+ εnu+ intS.

Since θ > 0 is arbitrary, εn ↘ ε0 and F is S-closed on K, let θ → 0 and n → ∞, we obtain

F (x) ⊆ F (y0) + S + ε0u,

which implies that y0 ∈ LF (ε0, x,K). It follows from yn → y0 that yn ∈ LF (ε0, x,K) +

α0BX for n sufficiently large, which contradicts (4.2).

Remark 4.2. It follows from Lemma 2.16 that Lemma 4.1 remain actually valid if the

assumption (ii) is replaced by any of the following assumptions:

(a) LsKn ⊆ K and {Kn} is uniform bounded (i.e., there exist δ > 0 and n0 ∈ N such

that Kn ⊆ δBX for each n > n0);

(b) K is closed and Kn
H
⇀ K.

Lemma 4.3. Let {εn} ⊆ R+ with εn ↗ ε0, {Kn} be a sequence of nonempty sets in X

and K ⊆ X with LsKn ⊆ K, S + S ⊆ S, 0 /∈ intS. For any x0, y0 ∈ K, any sequence

{xn ∈ Kn : n ∈ N} with xn → x0 and {yn ∈ Kn : n ∈ N} with yn → y0, suppose that

(i) F is H-S∞-u.s.c at x0 and H-S∞-l.s.c at y0;

(ii) F (yn) is S-convex (i.e., F (yn) + S is convex) for each n ∈ N;

(iii) F (x0) is compact, and F (x0) ⊆ F (y0) + intS + ε0u with u ∈ intS∞.

Then, there exists n0 ∈ N such that

F (xn) ⊆ F (yn) + intS + εnu, ∀n > n0.
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Proof. Let u ∈ intS∞. From F (x0) ⊆ F (y0)+intS+ε0u and the openness of z+intS+ε0u

for any z ∈ F (y0), we have that

{z + intS + ε0u : z ∈ F (y0)}

is an open covering of F (x0). Since F (x0) is compact, there exists a finite subset {z1, z2,
. . . , zm} of F (y0) such that

F (x0) ⊆
m⋃

i=1

{zi + intS + ε0u} = {z1, z2, . . . , zm}+ intS + ε0u.

Obviously, {z1, z2, . . . , zm}+ intS + ε0u is open. As a result, for some δ > 0,

(4.7) F (x0) + 3δBY ⊆ {z1, z2, . . . , zm}+ intS + ε0u.

Note that F is H-S∞-u.s.c at x0 and F (x0) is compact, it follows from Lemma 2.6 in [15],

F is S∞-u.s.c at x0. Therefore, for BY , there exists a neighbourhood U1 of x0 such that

F (x) ⊆ F (x0) + δBY + S∞, ∀x ∈ U1.

By xn → x0, there exists N1 ∈ N such that xn ∈ U1 for any n > N1. That is,

(4.8) F (xn) ⊆ F (x0) + δBY + S∞, ∀n > N1.

From F is H-S∞-l.s.c at y0 and Lemma 2.6 in [15], F is S∞-l.s.c at y0. For BY and any

i ∈ {1, 2, . . . ,m}, there exists a neighbourhood U i(y0) of y0 such that

F (y) ∩ (zi + δBY − S∞) ̸= ∅, ∀ y ∈ U i(y0).

Especially, let U2(y0) =
⋂m

i=1 U
i(y0), by yn → y0, then there exists N2 ∈ N such that

(4.9) F (yn) ∩ (zi + δBY − S∞) ̸= ∅, ∀ i ∈ {1, 2, . . . ,m}, ∀n > N2.

Let N3 = max{N1, N2}. We now claim that for any n > N3, we have

F (xn) ⊆ F (yn) + intS + εnu.

Taking into account (4.7) and (4.8), for n > N3,

(4.10) F (xn) + 2δBY ⊆ F (x0) + 3δBY + S∞ ⊆ {z1, z2, . . . , zm}+ intS + ε0u.

By (4.10), for each hn ∈ F (xn) + 2δBY , there exist kn ∈ {1, 2, . . . ,m} and s′n ∈ intS such

that

(4.11) hn = zkn + s′n + ε0u.
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From (4.9), F (yn) ∩ (zk + δBY − S∞) ̸= ∅ for any n > N3. Thence, for any fixed n > N3,

there exist vn ∈ F (yn), bn ∈ BY and u′n ∈ S∞ such that

(4.12) vn = zkn + δbn − u′n.

It follows from (4.11) and (4.12) that

hn = vn − δbn + s′n + u′n + ε0u ∈ F (yn) + δBY + intS + ε0u, ∀n > N3.

Applying the arbitrariness of hn ∈ F (xn) + 2δBY , we derive that

F (xn) + 2δBY ⊆ F (yn) + δBY + intS + ε0u ⊆ F (yn) + δBY + S + ε0u, ∀n > N3.

By hypothesis (ii), F (yn) + S + ε0u is convex. According to Lemma 2.18, one has

F (xn) ⊆ F (yn) + intS + ε0u, ∀n > N3.

Consequently,

F (xn) ⊆ F (yn) + intS + U(ε0u), ∀n > N3,

where U(ε0u) is neighbourhood of ε0u. By applying εn ↗ ε0, there exists N4 ∈ N such

that εnu ∈ U(ε0u) for any n > N4. Let N0 = max{N3, N4}, one has

F (xn) ⊆ F (yn) + intS + εnu, ∀n > N0.

This completes the proof.

Next, we discuss the upper Painlevé–Kuratowski convergence of weak minimal approx-

imate solution sets.

Theorem 4.4. Let {εn} ⊆ R+ with εn ↗ ε0 > 0, S + S ⊆ S, 0 /∈ intS, {Kn} be a

sequence of nonempty sets in X and K ⊆ X with Kn
PK−−→ K. For any x0, y0 ∈ K, any

sequence {xn ∈ Kn : n ∈ N} with xn → x0 and {yn ∈ Kn : n ∈ N} with yn → y0, suppose

that

(i) F (x0) is compact;

(ii) F (yn) is S-convex for each n ∈ N;

(iii) F is H-S∞-u.s.c at x0 and H-S∞-l.s.c at y0.

Then, LsW (εn,Kn) ⊆ W (ε0,K).
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Proof. For any x ∈ LsW (εn,Kn), according to the definition of LsW (εn,Kn), there exists

xnk
∈ W (εnk

,Knk
) such that xnk

→ x. Obviously, xnk
∈ Knk

. Hence x ∈ K due to

LsKnk
⊆ K.

Next, we show that x ∈ W (ε0,K). If not, assume that x /∈ W (ε0,K). Then, by

Lemma 3.2, there exists y ∈ K such that F (y) <ε0
S F (x), that is,

F (x) ⊆ F (y) + intS + ε0u.

By virtue of K ⊆ LiKn, there exists yn ∈ Kn such that yn → y. From Lemma 4.3, there

exists k0 ∈ N such that

F (xnk
) ⊆ F (ynk

) + intS + εnk
u, ∀ k > k0.

It follows that for any k > k0, F (ynk
) <ε0

S F (xnk
), which contradicts xnk

∈ W (εnk
,Knk

).

Therefore, LsW (εn,Kn) ⊆ W (ε0,K).

Next, we verify Theorem 4.4 by the following example.

Example 4.5. Let X = R, Y = R2, S = {(1/3, 1/3)} + R2
+, u = (1, 1), ε0 = 2/3, εn =

2/3−1/(2n), K = [−1, 3], Kn = [−1−1/n, 3+1/n], A = {t(0, 0)+(1−t)(0, 1) : t ∈ [0, 1]}.
The mapping F : X ⇒ Y is defined as

F (x) = {(|x|, x)}+A.

It is easy to see that εn ↗ ε0 and all the other assumptions in Theorem 4.4 are

satisfied. By calculation, W (ε0,K) = [−1, 1] and W (εn,Kn) = [−1− 1/n, 1− 1/(2n)]. It

is not difficult to verify that LsW (εn,Kn) = Ls[−1−1/n, 1−1/(2n)] ⊆ [−1, 1] = W (ε0,K).

Hence, Theorem 4.4 is applicable.

Remark 4.6. Compared to Theorem 3.1 in [18], Theorem 4.4 extended the order cone to

the general ordering set. Moreover, the continuity of objective mapping is weakened to

the Hausdorff cone continuity.

Next, we establish the lower Painlevé–Kuratowski convergence results for minimal

approximate solution sets and weak minimal approximate solution sets.

Theorem 4.7. Let {εn} ⊆ R+ with εn ↘ ε0 > 0, {Kn} be a sequence of nonempty sets

in X and be uniform bounded. Suppose that

(i) S + S ⊆ S and 0 ∈ ∂S;

(ii) Kn and K are compact with Kn
PK−−→ K;

(iii) F is H-S∞-continuous with S-closed values on Kn;
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(iv) for any n ∈ N and x ∈ Kn, {y ∈ Kn : F (y) ≤S F (x)} is closed.

Then, E(ε0,K) ⊆ LiE(εn,Kn).

Proof. Taking any x0 ∈ E(ε0,K). Obviously, x0 ∈ K. By (ii), there exists xn ∈ Kn

such that xn → x0. It follows from Lemma 3.6 that LF (ε0, x0,K) = {x0}. By virtue of

Lemma 4.1, for any δ > 0, there exists n0 ∈ N such that

(4.13) LF (εn, xn,Kn) ⊆ {x0}+ δBX , ∀n > n0.

As a result, for any n > n0, LF (εn, xn,Kn) is bounded. Similar to the proof of Lemma 3.7,

one has {yn ∈ LF (εn, xn,Kn) : F (yn) ≤εn
S F (xn)} is closed. Combining this with Lem-

mas 3.1 and 3.3, we get E(εn, LF (εn, xn,Kn)) is nonempty. Taking any un ∈ E(εn, LF (εn,

xn,Kn)) (n = 1, 2, . . .), it follows from Lemma 3.5 that un ∈ E(εn,Kn). Applying

(4.13) and the arbitrariness of δ > 0, one has un → x0, ∀n > n0. Consequently,

x0 ∈ LiE(εn,Kn). Therefore, E(ε0,K) ⊆ LiE(εn,Kn).

To verify Theorem 4.7, we give the following example.

Example 4.8. Let X = R, Y = R2, S = {(x1, x2) ∈ R2 : x1 < 0, x2 ≥ 2} ∪ R2
+. Taking

ε0 = 1/2, εn = 1/2 + 1/n, u = (1, 1), K = [−1, 3] and Kn = [−1, 3 + 1/n], n = 1, 2, . . ..

Define mapping F : X ⇒ Y as follows:

F (x) = {(|x|, x− 1)}+B,

where B = {z ∈ R2 : z = t(0, 0) + (1− t)(0, 1), t ∈ [0, 1]}.
It can be verified that all the hypotheses in Theorem 4.7 are satisfied. By calcu-

lation, S∞ = R2
+, E(ε0,K) = [−1, 0), E(εn,Kn] = [−1, 1/n). Obviously, E(ε0,K) ⊆

LiE(εn,Kn). Thus, Theorem 4.7 is valid.

Theorem 4.9. Let {εn} ⊆ R+ with εn ↘ ε0 > 0, {Kn} is a sequence of nonempty sets

in X, K ⊆ X is convex. If S is a closed, pointed convex cone in Y and 0 ∈ ∂S. Suppose

that

(i) Kn, K are compact and Kn
PK−−→ K;

(ii) F is H-S∞-continuous and strictly natural quasi S∞-convex on K;

(iii) for any n ∈ N and x ∈ Kn, {y ∈ Kn : F (y) ≤S F (x)} is closed. Moreover, x ∈ K,

{y ∈ K : F (y) ≤S F (x)} is also closed.

Then, W (ε0,K) ⊆ LiW (εn,Kn).
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Proof. Let u ∈ intS∞. From Lemma 3.1, E(K) is nonempty. Therefore, E(ε0,K) ̸= ∅ by

Lemma 3.3(i). For any open set V with W (ε0,K) ∩ V ̸= ∅, we deduce that

(4.14) E(ε0,K) ∩ V ̸= ∅.

Indeed, if not, suppose that E(ε0,K) ∩ V = ∅. Then for any m0 ∈ W (ε0,K) ∩ V ,

m0 /∈ E(ε0,K). By Lemma 3.2, there exists p0 ∈ K such that F (p0) ≤ε0
S F (m0), that is,

(4.15) F (m0) ⊆ F (p0) + S + ε0u ⊆ F (p0) + intS.

We consider the following two cases:

Case 1: m0 ̸= p0. From the strictly natural quasi S∞-convexity of F on K, for any

t ∈ (0, 1), there exists λ ∈ [0, 1] such that

(4.16) λF (m0) + (1− λ)F (p0) ⊆ F (tm0 + (1− t)p0) + intS∞.

Next, we show that

(4.17) F (m0) ⊆ F (tm0 + (1− t)p0) + intS∞, ∀ t ∈ (0, 1).

Suppose, by contradiction, that there exist q0 ∈ F (m0) and t0 ∈ (0, 1) such that

(4.18) q0 /∈ F (t0m0 + (1− t0)p0) + intS∞.

We can find v0 ∈ F (p0) and s0 ∈ intS such that q0 = v0 + s0 by (4.15). It follows from

(4.16) and Lemma 2.1(v) that q0 ∈ F (t0m0+(1−t0)p0)+intS∞, which contradicts (4.18).

So (4.17) holds.

Sincem0 ∈ V and V is open, there exists some t′ ∈ (0, 1) such that t′m0+(1−t′)p0 ∈ V .

As a results, t′m0 + (1− t′)p0 /∈ E(ε0,K). By virtue of Lemma 3.2, there is w0 ∈ K such

that F (w0) ≤ε0
S F (t′m0 + (1− t′)p0), that is,

F (t′m0 + (1− t′)p0) ⊆ F (w0) + S + ε0u.

From (4.17), one has

F (m0) ⊆ F (t′m0 + (1− t′)p0) + intS∞ ⊆ F (w0) + S + intS∞ + ε0u

⊆ F (w0) + intS + ε0u,

i.e., F (w0) <
ε0
S F (m0), which contradicts m0 ∈ W (ε0,K).

Case 2: m0 = p0. Similarly, it is easy to prove that there is w0 ∈ K such that

F (w0) <
ε0
S F (m0). This contradicts m0 ∈ W (ε0,K).

Therefore, (4.14) is true. From Theorem 4.7 and Lemma 2.15, there exists N0 ∈ N
such that

(4.19) V ∩ E(εn,Kn) ̸= ∅, ∀n > N0.
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By Lemma 3.3(ii), E(εn,Kn) ⊆ W (εn,Kn). Therefore, for n > N0, we derive V ∩
W (εn,Kn) ̸= ∅ by (4.19). Taking into account Lemma 2.15, we conclude that W (ε0,K) ⊆
LiW (εn,Kn).

Remark 4.10. In 2020, by using natural quasi cone-convexity and continuity for objective

mappings, Han et al. obtained the Painlevé–Kuratowski convergence of the approximate

solution sets for SOP (see [18]). Theorems 4.7 and 4.9 improve Theorem 3.2 in [18] from

the following three aspects:

(i) The natural quasi cone-convexity of object mapping on Kn has been removed;

(ii) The continuity of object mapping is weakened to the Hausdorff cone continuity (see

Remark 2.12);

(iii) The order cone be extended to the general ordering set in this paper.

In fact, we can also use the following example to show that Theorem 4.9 is still true

whether S is a cone or not.

Example 4.11. Let X = R, Y = R2, ε0 = 2/3, εn = 2/3 + 1/n, K = [−1, 3] and

Kn = [−1− 1/n, 3 + 1/n], n = 1, 2, . . .. Taking S = S1 ∪ S2 ∪ R2
+ and u = (1, 1), where

S1 =

{
(x, y) ∈ R2 : y ≥ −1

2
x+

1

2
, x ≤ −1

}
, S2 = {(x, y) ∈ R2 : y ≥ −x,−1 ≤ x ≤ 0}.

Define mapping G : X ⇒ Y as follows:

G(x) = {(|x|, x− 1)}+A,

where, A = {t(0, 0) + (1− t)(0, 1) : t ∈ [0, 1]}.
Noticed that S∞ = {(x, y) ∈ R2 : y ≥ −x, x ≤ 0}∪R2

+, all assumptions of Theorem 4.9

are fulfilled. After calculation,

E(εn,Kn) = [−1− 1/n, 2/3 + 1/n) and E(ε0,K) = [−1, 2/3).

Moreover, E(ε0,K) ⊆ LiE(εn,Kn) = [−1, 2/3]. Hence, Theorem 4.9 is valid.

However, Kn is nonconvex for any n. Therefore, for Theorem 3.2 of [18], the condition

that G is strictly natural quasi S∞-convex on Kn is not satisfied. As a result, Theorem 3.2

of [18] is unapplicable here.

At last, we provide Example 4.12 to illustrate Remark 4.10.
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Example 4.12. Let X = Y = R, S = R+. K = [−2, 2] and Kn = [−2, 2 + 2/n]. Taking

ε0 = 1, εn = 1 + 1/n and u = 1. Consider the set-valued mapping G : X ⇒ Y as follows:

G(x) =





[3, 4] if x ∈ [−2,−1],

[0, 8] if x ∈ (−1, 1),

[2 + x, 3 + x] else.

Clearly, it is easy to verify that all conditions of Theorems 4.7 and 4.9 are satisfied

and S∞ = R+. After calculation, one has

E(εn,Kn) = (−1, 1 + 1/n), E(ε0,K) = (−1, 1),

W (εn,Kn) = (−1, 1 + 1/n), W (ε0,K) = (−1, 1).

Obviously,

E(ε0,K) ⊆ LiE(εn,Kn) = [−1, 1] and W (ε0,K) ⊆ LiW (εn,Kn) = [−1, 1].

Hence, Theorems 4.7 and 4.9 are applicable.

However, it’s not hard to get that G is not continuous on K. Indeed, for x0 = −1

and V = (2, 5). We have G(−1) = [3, 4] ⊆ V . But for any neighbourhood U of x0 = −1,

There is always y ∈ U ∩ (−1, 1) ̸= ∅ such that G(y) = [0, 8] ⊈ V . It follows that G is not

u.s.c at x0. Consequently G is not continuous on K. Therefore, Theorem 3.2 of [18] is

unapplicable here.

5. Conclusions

In this paper, by virtue of a general set order relation, the Painlevé–Kuratowski con-

vergence of approximate solution sets to SOP under the feasible set is perturbed is dis-

cussed for the first time. With the help of the recession cone technique, we establish the

upper Painlevé–Kuratowski convergence of minimum approximate solution sets and the

Painlevé–Kuratowski convergence of the weak minimum approximate solution sets under

the assumption that εn is monotone. In addition, another interesting work that deserve

study is to study other aspects of set optimization problems with the set order relation

≤S , such as connectedness of solution sets and Hausdorff continuity of solution mappings.

We will study further in the future.
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proximate efficient solutions for perturbed semi-infinite vector optimization problems,

Optim. Lett. 12 (2018), no. 6, 1339–1356.

[30] Z. Y. Peng, J. W. Peng, X. J. Long and J. C. Yao, On the stability of solutions for

semi-infinite vector optimization problems, J. Global Optim. 70 (2018), no. 1, 55–69.

[31] Z. Y. Peng, J. J. Wang, X. J. Long and F. P. Liu, Painlevé–Kuratowski conver-

gence of solutions for perturbed symmetric set-valued quasi-equilibrium problem via

improvement sets, Asia-Pac. J. Oper. Res. 37 (2020), no. 4, 2040003, 22 pp.

[32] Z. Y. Peng, X. Wang and X. M. Yang, Connectedness of approximate efficient solu-

tions for generalized semi-infinite vector optimization problems, Set-Valued Var. Anal.

27 (2019), no. 1, 103–118.

[33] Z. Y. Peng, Z. Y. Wang and X. M. Yang, Connectedness of solution sets for weak gen-

eralized symmetric Ky Fan inequality problems via addition-invariant sets, J. Optim.

Theory Appl. 185 (2020), no. 1, 188–206.

[34] R. T. Rockafellar, Convex Analysis, Princeton Math. Ser. 28, Princeton University

Press, Princeton, NJ, 1970.

[35] R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer Berlin, Heidelberg,

2004.

[36] P. H. Sach, Stability property in bifunction-set optimization, J. Optimiz. Theory Appl.

177 (2018), no. 2, 376–398.
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