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The Primitive Ideal Space of the Partial-isometric Crossed Product by

Automorphic Actions of the Semigroup N2

Saeid Zahmatkesh

Abstract. Let (A,N2, α) be a dynamical system consisting of a C∗-algebra A and an

action α of N2 on A by automorphisms. Let A×piso
α N2 be the partial-isometric crossed

product of the system. We apply the fact that it is a full corner of a crossed product

by the group Z2 in order to give a complete description of its primitive ideal space.

1. Introduction

The C∗-algebras associated with semigroup dynamical systems have been extensively stud-

ied in recent years. Recall that a semigroup dynamical system is a trio (A,P, α) consisting

of a C∗-algebra A and an action α of a (unital) semigroup P on A by endomorphisms.

The C∗-algebra B corresponding to the system (A,P, α) that we study in the present

work is the one in which the endomorphisms αs, where s ∈ P , are implemented by

partial-isometries. It is universal for covariant representations of the system which means

that its (nondegenerate) representations are in bijective correspondence with covariant

representations of the system. However, this construction requires some conditions on

the system as well as the semigroup P . In [5], P is considered to be the positive cone

of a group G such that (G,P ) is quasi-lattice ordered in the sense of Nica [9], and the

algebra B is called the Nica–Toeplitz crossed product of the system (A,P, α). This algebra

is then studied in [7] for the positive cones of totally ordered abelian groups and called

the partial-isometric crossed product of the system (A,P, α). Note that the algebra B is

denoted by A×piso
α P . Finally, following these efforts, the study of the semigroup crossed

product A×piso
α P is extended to (left) LCM semigroups in [14]. Next, to understand about

the algebra A×piso
α P more, we would like to investigate its ideal structure. From [13], if

P is the positive cone of an abelian lattice-ordered group G, then A×piso
α P is a full corner

in a classical crossed product by the group G. Therefore, this corner realization provides

a way through our investigations. This is due to the fact that if a C∗-algebra B is a full

corner in a C∗-algebra A, then they are Morita equivalent, and hence, their primitive
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ideal spaces are homeomorphic (see [10]). Moreover, under some certain conditions, the

description of the primitive ideal space of group crossed products is available in earlier

works such as [4,11]. We recall that the primitive ideal space of a C∗-algebra A is denoted

by PrimA. To study the theory of the partial-isometric crossed products, readers may

refer to [5,7,14] as a preliminary background. Further studies in this regard are available

in [1–3,6, 12,13,15].

Now, in the present work, we consider the dynamical system (A,N2, α) in which N2

denotes the positive cone of the (abelian lattice-ordered) group Z2, A is a C∗-algebra,

which is not necessarily unital, and α is an action of N2 on A by automorphisms such that

α0 = id. Our goal is to describe the primitive ideal space of the partial-isometric crossed

product A×piso
α N2 of the system and its hull-kernel (Jacobson) topology completely. To do

so, since A×piso
α N2 is a full corner in a group crossed product (BZ2 ⊗A)⋊Z2 (see [13, §5]),

it suffices to describe Prim((BZ2 ⊗ A) ⋊ Z2), for which, we then apply the works on the

ideal structure of crossed products by groups available in [4, 11]. So, we need to consider

the following two conditions:

(i) when A is separable and abelian;

(ii) when A is separable and Z2 acts on PrimA freely.

Under the first condition, we apply [11, Theorem 8.39] to see that Prim((BZ2 ⊗A)⋊ Z2)

is homeomorphic to a quotient of the product space

(1.1) ∆(BZ2)×∆(A)× Ẑ2 = ∆(BZ)×∆(BZ)×∆(A)× T2,

where ∆(BZ) and ∆(A) are the spectrums of the (abelian) C∗-algebras BZ and A, respec-

tively. Then, the quotient space is identified by the disjoint union

(1.2) ∆(A) ⊔ Prim(A⋊α̇ Z) ⊔ Prim(A⋊α̈ Z) ⊔ Prim(A⋊α Z2)

through parameterizing the equivalent classes, where α̇ and α̈ are two automorphisms

corresponding to two generators of the group Z2. Finally, the open sets in (1.2) are

precisely identified by using the fact the quotient map of (1.1) onto (1.2) is open (see [11,

Remark 8.40]). Under the second condition, we apply [4, Corollary 7.35] to see that

Prim((BZ2 ⊗A)⋊ Z2) is homeomorphic to a quotient of the product space

Prim(BZ2 ⊗A) = PrimBZ2 × PrimA = PrimBZ × PrimBZ × PrimA.

This quotient space is called the quasi-orbit space, which, by a similar discussion to the

first condition, will be described along with its quotient topology precisely. Note that [15,
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Corollary 3.13] already indicates that the primitive ideals of A ×piso
α N2 are coming from

the four sets

PrimA, Prim(A⋊α̇ Z), Prim(A⋊α̈ Z) and Prim(A⋊α Z2).

So, all these ideals will also be identified in the present work under the conditions (i)

and (ii) mentioned earlier. We would like to mention that the present work is therefore a

generalization of the effort in [6] based on the results of [2].

We begin with a preliminary section containing a quick recall on some results from

[13–15], and a brief discussion on the primitive ideal space of crossed products by groups

from [4,11]. In Section 3, we identify the primitive ideals of the algebra A×piso
α N2 derived

from PrimA. In Sections 4 and 5, by applying the realization of A ×piso
α N2 as a full

corner of a crossed product by the group Z2, Prim(A ×piso
α N2) is completely described

under some certain conditions. Moreover, we identify all primitive ideals of A ×piso
α N2,

and provide necessary and sufficient conditions under which A×piso
α N2 is GCR (type I or

postliminal). In Section 6, the final section, we see that A ×piso
α N2 is primitive precisely

when A is primitive.

2. Preliminaries

2.1. The algebra A×piso
α N2 as a full corner

First of all, since Z2 is an additive group, the notation “+” is used for its action in the

present work.

Suppose that (A,N2, α) is a dynamical system consisting of a C∗-algebra A and an

action α of N2 on A by automorphisms. Let π be a nondegenerate representation of A on

a Hilbert space H. If the maps

π̃ : A→ B(ℓ2(N2)⊗H) and V : N2 → B(ℓ2(N2)⊗H)

are defined by

(π̃(a)f)(s) = π(αs(a))f(s) and (Vtf)(s) = f(s+ t)

for all f ∈ ℓ2(N2) ⊗ H ≃ ℓ2(N2, H) and s, t ∈ N2, then the pair (π̃, V ) is a covariant

partial-isometric representation of (A,N2, α) on ℓ2(N2, H). Moreover, if π is faithful, so is

π̃ (see [14, Example 4.3]).

Let A×piso
α N2 be the partial-isometric crossed product of the system (A,N2, α). Recall

from [13, §2] (see also [15, Remark 3.11]) that we have the short exact sequence

(2.1) 0 −→ ker q −→ A×piso
α N2 q−→ A⋊α Z2 −→ 0
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of C∗-algebras, and by [15, Corollary 3.13], the algebra K(ℓ2(N2))⊗A of compact operators

is contained in ker q as an (essential) ideal such that

ker q/[K(ℓ2(N2))⊗A] ≃
[
K(ℓ2(N))⊗ (A⋊α̇ Z)

]
⊕
[
K(ℓ2(N))⊗ (A⋊α̈ Z)

]
,

where α̇ and α̈ are two automorphic actions corresponding to two generators of the group

Z2. These results in [15] are obtained by applying the fact that the algebra A ×piso
α N2

is a full corner in a crossed product by the group Z2, which is provided in [13]. More

precisely, let BZ2 be the C∗-subalgebra of ℓ∞(Z2) generated by the characteristic functions

{1x ∈ ℓ∞(Z2) : x ∈ Z2}, such that

1x(y) =

1 if x ≤ y,

0 otherwise.

Then, there is an action τ of Z2 on BZ2 given by translation. So, the system (A,N2, α)

gives rise to the group dynamical system (BZ2 ⊗A,Z2, τ ⊗α−1). Also, if BZ2,∞ is the C∗-

subalgebra of BZ2 generated by the elements {1x−1y : x ≤ y ∈ Z2}, then it is a τ -invariant

(essential) ideal of BZ2 . Now, by [13, Corollary 5.3], A ×piso
α N2 and the ideal ker q sit in

the group crossed products (BZ2 ⊗A)×τ⊗α−1 Z2 and (BZ2,∞⊗A)×τ⊗α−1 Z2, respectively,

as full corners. Thus, the information on A×piso
α N2 in [15] are indeed imported from the

group crossed product (BZ2 ⊗A)×τ⊗α−1 Z2.

2.2. The primitive ideal space of crossed products by groups

Suppose that G is an abelian countable discrete group which acts on a second countable

locally compact Hausdorff space X. So, the pair (G,X) is a second countable locally

compact transformation group, which gives rise to the separable group dynamical system

(C0(X), G, lt) with G abelian. If C0(X)⋊lt G is the group crossed product of the system,

then its primitive ideals are known by [11, Theorem 8.21], and a complete description of

the topology of Prim(C0(X) ⋊lt G) is available in [11, Theorem 8.39]. In brief, for every

x ∈ X, let

εx : C0(X) → C

be the evaluation map at x, and the sets

G · x := {t · x : t ∈ G} and Gx := {t ∈ G : t · x = x}

the G-orbit and the stability group of x, respectively. Now, there is an equivalence relation

on the product space X × Ĝ such that (x, γ) ∼ (y, µ) if

G · x = G · y (which implies that Gx = Gy) and γ|Gx = µ|Gx .

Let X × Ĝ/∼ be the quotient space equipped with the quotient topology. We have
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Theorem 2.1. [11, Theorem 8.39] Let (G,X) be a second countable locally compact

transformation group with G abelian. Then, the map

Φ: X × Ĝ→ Prim(C0(X)⋊lt G)

defined by

Φ(x, γ) := ker
(
IndGGx

(εx ⋊ γ|Gx)
)

is a continuous and open surjection which factors through a homeomorphism of X × Ĝ/∼
onto Prim(C0(X)⋊lt G).

To see more details, interested readers are referred to [11].

Next, recall that if G is a (discrete) group with the unit element e which acts on

a topological space Z, then the action of G on Z is called free (or we say G acts on Z

freely) if all stability groups are just the trivial subgroup {e}. Also, there is an equivalence

relation ∼ on Z such that

z1 ∼ z2 ⇐⇒ G · z1 = G · z2

for all z1, z2 ∈ Z. If O(Z) denotes the set of all equivalence classes, then it is called

the quasi-orbit space when equipped with the quotient topology, which is always a T0-

topological space. The equivalence class of each z ∈ Z is called the quasi-orbit of z and

denoted by O(z). As an example, if (A,G, α) is a group dynamical system, then we can

talk about the quasi-orbit space O(PrimA). This is due to the fact that the system defines

an action of G on PrimA by

t · P := αt(P ) = {αt(a) : a ∈ P}

for all t ∈ G and P ∈ PrimA.

Let (A,G, α) be a group dynamical system and π a nondegenerate representation of A

on a Hilbert space H such that kerπ = J . Recall that there is a covariant representation

(π̃, U) of (A,G, α) on the Hilbert space ℓ2(G,H) ≃ ℓ2(G)⊗H defined by

(π̃(a)f)(s) = π(αs−1(a))f(s) and (Utf)(s) = f(t−1s)

for every a ∈ A, f ∈ ℓ2(G,H), and s, t ∈ G. The corresponding (nondegenerate) repre-

sentation π̃ ⋊ U of the crossed product A ⋊α G of the system is denoted by Indπ, and

ker(Indπ) by Ind J = Ind(kerπ). Now, if in the system (A,G, α), A is separable and G

is an abelian discrete countable group, which acts on PrimA freely, then each primitive

idea of A⋊α G is of the form IndP induced by a primitive ideal P of A. More precisely,
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Theorem 2.2. [4, Corollary 7.35] Let (A,G, α) be a dynamical system in which A is

separable and G is an amenable discrete countable group. If G acts on PrimA freely, then

the map

O(PrimA) → Prim(A⋊α G)

O(P ) 7→ IndP = ker(Indπ)

is a homeomorphism, where π is an irreducible representation of A with kerπ = P . In

particular, A⋊α G is simple if and only if every G-orbit is dense in PrimA, and A⋊α G

is primitive if and only if there exists a dense G-orbit in PrimA.

Recall that we say a C∗-algebra is simple if it does not have any nontrivial ideal. It is

called primitive if it has a faithful nonzero irreducible representation, in other words, the

zero ideal is a primitive ideal of it.

3. Primitive ideals of A×piso
α N2 derived from PrimA

Let (A,N2, α) be a dynamical system consisting of a C∗-algebra A and an action α of N2

on A by automorphisms. Suppose that A×piso
α N2 is the partial-isometric crossed product

of the system. Since it is a full corner in the group crossed product (BZ2 ⊗A)⋊τ⊗α−1 Z2

by [13, Corollary 5.3], in order to describe Prim(A ×piso
α N2), it is enough to describe

Prim((BZ2 ⊗A)⋊τ⊗α−1 Z2) and its topology. First of all, since the algebra K(ℓ2(N2))⊗A

of compact operators sits in A×piso
α N2 as an essential ideal (see [15, Corollary 3.13]),

Prim(K(ℓ2(N2))⊗A) ≃ PrimA

sits in Prim(A×piso
α N2) as an open dense subset. More precisely, there is a homeomorphism

of PrimA onto the open dense subset

U :=
{
I ∈ Prim(A×piso

α N2) : K(ℓ2(N2))⊗A ̸⊂ I
}

of Prim(A ×piso
α N2). So, we first identify the elements of U , namely, the primitive ideals

of A ×piso
α N2 derived from PrimA. Then, in order to identify other primitive ideals of

A×piso
α N2 derived from the other three sets

Prim(A⋊α̇ Z), Prim(A⋊α̈ Z) and Prim(A⋊α Z2) (see §2 or §1),

and describe the topology of

Prim((BZ2 ⊗A)⋊τ⊗α−1 Z2) ≃ Prim(A×piso
α N2),

we will consider some conditions on the system (A,N2, α) so that we can apply the results

of [4, 11].

Now, the following proposition identifies the elements of U .
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Proposition 3.1. Let π : A → B(H) be a nonzero irreducible representation of A such

that P = kerπ. If (π̃, V ) is the pair defined in [14, Example 4.3] (see §2), then the

corresponding representation π̃ × V of (A ×piso
α N2, iA, iN2) is irreducible on ℓ2(N2) ⊗ H

which lives on K(ℓ2(N2))⊗A.

Proof. We first show that the restriction of π̃×V to the (essential) ideal K(ℓ2(N2))⊗A ≃
K(ℓ2(N2) ⊗ A) is the representation id⊗π. Let {e(m,n) : (m,n) ∈ N2} be the usual

orthonormal basis of ℓ2(N2), and ξ
(x,y)
(m,n)(a) denote the element

iN2(m,n)∗iA(a)
[
1− iN2(1, 0)∗iN2(1, 0)

]
iN2(x, y)

of the algebra A×piso
α N2. Recall that, by [15, Lemma 3.8], the elements of the form

ξ
(x,y)
(m,n)(a)− ξ

(x,y+1)
(m,n+1)(α(0,1)(a))

span an (essential) ideal L of A×piso
α N2 which is isomorphic to the algebra K(ℓ2(N2))⊗A

of compact operators via an isomorphism φ, such that

φ
(
(e(m,n) ⊗ e(x,y))⊗ ab∗

)
= ξ

(x,y)
(m,n)(ab

∗)− ξ
(x,y+1)
(m,n+1)(α(0,1)(ab

∗))

for all a, b ∈ A and (m,n), (x, y) ∈ N2 (see [15, Theorem 3.10]), where (e(m,n) ⊗ e(x,y)) is

the rank-one operator on ℓ2(N2) defined by g 7→ ⟨g|e(x,y)⟩e(m,n). Now, by calculation on

spanning elements, we have

(π̃ × V )
(
ξ
(x,y)
(m,n)(ab

∗)− ξ
(x,y+1)
(m,n+1)(α(0,1)(ab

∗))
)
(e(r,s) ⊗ h)

= [(π̃ × V ) ◦ φ]
(
(e(m,n) ⊗ e(x,y))⊗ ab∗

)
(e(r,s) ⊗ h)

= (id⊗π)
(
(e(m,n) ⊗ e(x,y))⊗ ab∗

)
(e(r,s) ⊗ h)

(3.1)

for all a, b ∈ A, (m,n), (x, y), (r, s) ∈ N2, and h ∈ H. Thus, (π̃ × V )|K(ℓ2(N2))⊗A = id⊗π,
from which, since the representation π is nonzero, it follows that π̃ × V lives on the ideal

K(ℓ2(N2))⊗A.

At last, to see that the representation π̃ × V is irreducible, let f be a nonzero vector

in ℓ2(N2)⊗H ≃ ℓ2(N2, H). So, there is (x, y) ∈ N2 such that f(x, y) ̸= 0, and hence, since

the representation π is irreducible, the nonzero vector f(x, y) of H is a cyclic vector for

π. Thus, it follows that

ℓ2(N2)⊗H = span
{
e(m,n) ⊗ (π(a)f(x, y)) : (m,n) ∈ N2, a ∈ A

}
.

However, we have

e(m,n) ⊗ (π(a)f(x, y)) = (π̃ × V )
(
ξ
(x,y)
(m,n)(a)− ξ

(x,y+1)
(m,n+1)(α(0,1)(a))

)
f (see (3.1)),
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which implies that

ℓ2(N2)⊗H = span
{
(π̃ × V )(ξ)f : ξ ∈ A×piso

α N2
}
.

So, every nonzero vector f of ℓ2(N2)⊗H is a cyclic vector for π̃×V , and therefore, π̃×V
is irreducible. This completes the proof.

Remark 3.2. Therefore, by Proposition 3.1, each element of U is the kernel of an irreducible

representation π̃×V induced by a primitive ideal P = kerπ of A. So, we denote ker(π̃×V )

by indP , and hence,

U = {indP : P ∈ PrimA},

which is homeomorphic to PrimA via the homeomorphism P 7→ indP . This homeomor-

phism is obtained by the composition of homeomorphisms

indP ∈ U 7→ indP ∩ (K(ℓ2(N2))⊗A) ∈ Prim(K(ℓ2(N2))⊗A),

where

indP ∩ (K(ℓ2(N2))⊗A) = ker((π̃ × V )|K(ℓ2(N2))⊗A)

= ker(id⊗π) = K(ℓ2(N2))⊗ P,

and

P ∈ PrimA 7→ K(ℓ2(N2))⊗ P ∈ Prim(K(ℓ2(N2))⊗A) (the Rieffel homeomorphism).

Remark 3.3. One can immediately see that A ×piso
α N2 is not simple as it contains the

algebra K(ℓ2(N2))⊗A as a proper nonzero ideal and A ̸= 0.

4. The topology of Prim(A×piso
α N2) when A is abelian and separable

First, recall that Ẑ, the dual of the group Z, is isomorphic to T via the map z ∈ T 7→
γz ∈ Ẑ, such that γz(n) = zn for all n ∈ Z. Therefore, Ẑ2 ≃ T2 via the isomorphism

(z1, z2) ∈ T2 7→ γ(z1,z2) ∈ Ẑ2, such that

γ(z1,z2)(m,n) = zm1 z
n
2 = γz1(m)γz2(n).

Now, if in the system (A,N2, α), A is abelian and separable, then (BZ2 ⊗A)⋊τ⊗α−1 Z2

is isomorphic to the crossed product C0(X) ⋊lt Z2 associated with the second countable

locally compact transformation group (Z2, X), where X = ∆(BZ2 ⊗A) is the spectrum of

the (abelian) algebra BZ2 ⊗A. Thus, by Theorem 2.1,

Prim((BZ2 ⊗A)⋊τ⊗α−1 Z2) ≃ Prim(A×piso
α N2)
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is homeomorphic to the quotient space X × T2/∼. In order to get a precise description

of X × T2/∼, firstly, since

BZ2 = B(Z×Z) ≃ BZ ⊗BZ (this isomorphisms intertwines the actions τ and (lt⊗ lt)),

it follows by [10, Theorem B.45] (or [10, Theorem B.37]) that

X ≃ ∆(BZ)×∆(BZ)×∆(A).

Moreover, by [6, Lemma 3.3], ∆(BZ) is homeomorphic to the open dense subset Z ∪ {∞}
of the two-point compactification {−∞} ∪ Z ∪ {∞} of Z. Therefore, we actually need to

describe

(4.1)
[
(Z ∪ {∞})× (Z ∪ {∞})×∆(A)

]
× T2/∼ .

To do so, we first need to see that how the group Z2 acts on the product space

(4.2) X ≃ (Z ∪ {∞})× (Z ∪ {∞})×∆(A).

For every (m,n) ∈ Z2, ϕ ∈ ∆(A), and r, s ∈ Z, we have

(m,n) · ((r, s), ϕ) = ((r +m, s+ n), ϕ).

This is due to the fact that ((r, s), ϕ) is an element of the spectrum of the (essential) ideal

C0(Z2)⊗A ≃ C0(Z)⊗ C0(Z)⊗A

of the algebra BZ2 ⊗A, which is invariant under the action τ⊗α−1. Therefore, the crossed

product (C0(Z2)⊗A)⋊τ⊗α−1 Z2 sits in the algebra (BZ2 ⊗A)⋊τ⊗α−1 Z2 as an (essential)

ideal (see [15, Theorem 3.7]). Furthermore, by [11, Lemma 7.4], we have

(C0(Z2)⊗A)⋊τ⊗α−1 Z2 ≃ (C0(Z2)⊗A)⋊τ⊗id Z2 ≃ K(ℓ2(Z2))⊗A.

Next, for every (m,n) ∈ Z2 and ϕ ∈ ∆(A),

(m,n) · ((∞,∞), ϕ) = ((∞+m,∞+ n), ϕ ◦ α(m,n)) = ((∞,∞), ϕ ◦ α(m,n)).

Finally, to see that how Z2 acts on the elements of the forms ((r,∞), ϕ) and ((∞, r), ϕ),

where r ∈ Z and ϕ ∈ ∆(A), first note that the action α of Z2 induces two actions α̇

and α̈ (corresponding to two generators of the group Z2) of (the subgroup) Z on A by

automorphisms, such that

α̇n := α(n,0) and α̈n := α(0,n)
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for every n ∈ Z. Thus, there are two group crossed products A ⋊α̇ Z and A ⋊α̈ Z,
correspondingly. The primitive ideal spaces of them are quotients of the space ∆(A)× T
which we denote them by ∆(A)×T/∼(1) and ∆(A)×T/∼(2), respectively. Now, ((r,∞), ϕ)

is an element of the spectrum of the (essential) ideal

(C0(Z)⊗BZ)⊗A

of BZ2⊗A ≃ (BZ⊗BZ)⊗A, which is indeed invariant under the action τ⊗α−1. Moreover,

there is an isomorphism

ψ : (C0(Z)⊗BZ)⊗A→ C0(Z)⊗ (BZ ⊗A)

such that

((1x − 1x+1)⊗ 1y)⊗ a 7→ (1x − 1x+1)⊗ (1y ⊗ α̇x(a))

for all x, y ∈ Z and a ∈ A. By inspection on spanning elements, one can see that for every

(m,n) ∈ Z2 the following diagram commutes:

(C0(Z)⊗BZ)⊗A C0(Z)⊗ (BZ ⊗A)

(C0(Z)⊗BZ)⊗A C0(Z)⊗ (BZ ⊗A).
u

τ(m,n)⊗α(−m,−n)

w

ψ

u

ltm⊗(ltn⊗α̈−n)

w

ψ

Therefore, it follows that

(m,n) · ((r,∞), ϕ) = ((r +m,∞+ n), ϕ ◦ α̈n) = ((r +m,∞), ϕ ◦ α(0,n))

for every (m,n) ∈ Z2, r ∈ Z, and ϕ ∈ ∆(A). Note that also, by [11, Lemma 2.65], the

isomorphism ψ induces an isomorphism of the (essential) ideal

((C0(Z)⊗BZ)⊗A)⋊τ⊗α−1 Z2

of (BZ2 ⊗A)⋊τ⊗α−1 Z2 onto the algebra

(C0(Z)⊗ (BZ ⊗A))⋊lt⊗(lt⊗α̈−1) (Z× Z)

≃ [C0(Z)⋊lt Z]⊗
[
(BZ ⊗A)⋊lt⊗α̈−1 Z

]
≃ K(ℓ2(Z))⊗

[
(BZ ⊗A)⋊lt⊗α̈−1 Z

]
of compact operators (see also [15, Theorem 3.7] and [15, Remark 3.11]). A similar dis-

cussion shows that

(m,n) · ((∞, r), ϕ) = ((∞+m, r + n), ϕ ◦ α̇m) = ((∞, r + n), ϕ ◦ α(m,0))

for every (m,n) ∈ Z2, r ∈ Z, and ϕ ∈ ∆(A).
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Lemma 4.1. The quotient space (4.1), as a set, is identified by the disjoint union of four

sets

(4.3) ∆(A) ⊔ Prim(A⋊α̇ Z) ⊔ Prim(A⋊α̈ Z) ⊔ Prim(A⋊α Z2),

where Prim(A⋊α Z2) is a quotient of the product space ∆(A)× T2.

Proof. For every r, s ∈ Z and ϕ ∈ ∆(A), the stability group of the element ((r, s), ϕ) of

(4.2) is the trivial subgroup {(0, 0)}, and its Z2-orbit is Z2 × {ϕ} = Z× Z× {ϕ}. So, the
element ((r, s), ϕ, (z1, z2)) of the product space

(4.4) X × T2 ≃
[
(Z ∪ {∞})× (Z ∪ {∞})×∆(A)

]
× T2

can only be equivalent to an element ((m,n), ψ, (w1, w2)) of the same type, and since ∆(A)

is Hausdorff, we have

((r, s), ϕ, (z1, z2)) ∼ ((m,n), ψ, (w1, w2))

⇐⇒ Z2 · ((r, s), ϕ) = Z2 · ((m,n), ψ)

⇐⇒ Z2 × {ϕ} = Z2 × {ψ}

⇐⇒ Z2 × {ϕ} = Z2 × {ψ}

⇐⇒ Z2 × {ϕ} = Z2 × {ψ}.

It thus follows that

((r, s), ϕ, (z1, z2)) ∼ ((m,n), ψ, (w1, w2)) ⇐⇒ ϕ = ψ.

Therefore, all elements ((r, s), ϕ, (z1, z2)) in which ϕ ∈ ∆(A) is fixed and (r, s) and (z1, z2)

are running in Z2 and T2, respectively, are in the same equivalence class in (4.1), which

can be parameterized by ϕ ∈ ∆(A).

Next, the stability group of the element ((∞,∞), ϕ) of (4.2) equals the stability group

Z2
ϕ of ϕ when Z2 acts on ∆(A) via the action α (corresponding to the crossed prod-

uct A ⋊α Z2). Its Z2-orbit is {(∞,∞)} × (Z2 · ϕ), where Z2 · ϕ is the Z2-orbit of ϕ.

Moreover, the element ((∞,∞), ϕ, (z1, z2)) of (4.4) can only be equivalent to an element

((∞,∞), ψ, (w1, w2)) of the same type, and we have

((∞,∞), ϕ, (z1, z2)) ∼ ((∞,∞), ψ, (w1, w2))

⇐⇒ Z2 · ((∞,∞), ϕ) = Z2 · ((∞,∞), ψ) and γ(z1,z2)|Z2
ϕ
= γ(w1,w2)|Z2

ϕ

⇐⇒ {(∞,∞)} × (Z2 · ϕ) = {(∞,∞)} × (Z2 · ψ) and γ(z1,z2)|Z2
ϕ
= γ(w1,w2)|Z2

ϕ

⇐⇒ {(∞,∞)} × Z2 · ϕ = {(∞,∞)} × Z2 · ψ and γ(z1,z2)|Z2
ϕ
= γ(w1,w2)|Z2

ϕ

⇐⇒ {(∞,∞)} × Z2 · ϕ = {(∞,∞)} × Z2 · ψ and γ(z1,z2)|Z2
ϕ
= γ(w1,w2)|Z2

ϕ
.
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Therefore,

((∞,∞), ϕ, (z1, z2)) ∼ ((∞,∞), ψ, (w1, w2))

⇐⇒ Z2 · ϕ = Z2 · ψ and γ(z1,z2)|Z2
ϕ
= γ(w1,w2)|Z2

ϕ
,

which implies that ((∞,∞), ϕ, (z1, z2)) ∼ ((∞,∞), ψ, (w1, w2)) precisely when the pairs

(ϕ, (z1, z2)) and (ψ, (w1, w2)) are in the same equivalence class in the quotient space ∆(A)×
T2/∼= Prim(A⋊α Z2). Consequently, we can parameterize the equivalence class of each

element ((∞,∞), ϕ, (z1, z2)) in (4.1) by the class of the pair (ϕ, (z1, z2)) in Prim(A⋊αZ2).

At last, it is left to discuss on the parametrization of the equivalence classes of the

elements of the forms ((∞, r), ϕ, (z1, z2)) and ((r,∞), ϕ, (z1, z2)) in (4.1). We only do this

for ((∞, r), ϕ, (z1, z2)) as the parametrization of the other one follows similarly. Firstly, let

Żϕ and Ż ·ϕ denote the stability group and the Z-orbit of ϕ, respectively, when the group

Z acts on ∆(A) via the action α̇ (corresponding to the crossed product A ⋊α̇ Z). Then,

the stability group of the element ((∞, r), ϕ) of (4.2) is Żϕ × {0}, which is isomorphic to

Żϕ, and its Z2-orbit is (
{∞} × Z

)
× Ż · ϕ.

It therefore follows that the element ((∞, r), ϕ, (z1, z2)) can only be equivalent to an ele-

ment ((∞, s), ψ, (w1, w2)) of the same type. Moreover,

((∞, r), ϕ, (z1, z2)) ∼ ((∞, s), ψ, (w1, w2))

⇐⇒ Z2 · ((∞, r), ϕ) = Z2 · ((∞, s), ψ) and γ(z1,z2)|(Żϕ×{0}) = γ(w1,w2)|(Żϕ×{0})

⇐⇒
(
{∞} × Z

)
× Ż · ϕ =

(
{∞} × Z

)
× Ż · ψ and γz1 |Żϕ

= γw1 |Żϕ

⇐⇒ {∞} × Z× Ż · ϕ = {∞} × Z× Ż · ψ and γz1 |Żϕ
= γw1 |Żϕ

⇐⇒ Ż · ϕ = Ż · ψ and γz1 |Żϕ
= γw1 |Żϕ

.

This implies that ((∞, r), ϕ, (z1, z2)) ∼ ((∞, s), ψ, (w1, w2)) if and only if the pairs (ϕ, z1)

and (ψ,w1) are in the same equivalence class in the quotient space ∆(A) × T/ ∼(1)=

Prim(A⋊α̇Z). Thus, the equivalence class of each element ((∞, r), ϕ, (z1, z2)) in (4.1) can

be parameterized by the class of the pair (ϕ, z1) in Prim(A ⋊α̇ Z). Note that a similar

discussion shows that each element ((r,∞), ϕ, (z1, z2)) can only be equivalent to an element

of the same type, and its equivalence class in (4.1) is parameterized by the class of the

pair (ϕ, z2) in ∆(A)× T/∼(2)= Prim(A⋊α̈ Z). This completes the proof.

We are now ready to describe the topology of Prim(A×piso
α N2) precisely.

Theorem 4.2. Let (A,N2, α) be a dynamical system consisting of a separable abelian C∗-

algebra A and an action α of N2 on A by automorphisms. Then, Prim(A ×piso
α N2) is
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homeomorphic to the disjoint union (4.3) equipped with the quotient topology in which the

open sets are in the following four forms:

(a) O ⊂ ∆(A), where O is open in ∆(A);

(b) O ∪ W1, where O is a nonempty open subset of ∆(A) and W1 is an open set in

Prim(A⋊α̇ Z);

(c) O ∪ W2, where O is a nonempty open subset of ∆(A) and W2 is an open set in

Prim(A⋊α̈ Z); and

(d) O ∪ W1 ∪ W2 ∪ W , where O, W1, and W2 are nonempty open subsets of ∆(A),

Prim(A⋊α̇ Z), and Prim(A⋊α̈ Z), respectively, and W is an open set in Prim(A⋊α

Z2).

Proof. Assume that q̃ is the quotient map of the product space

(4.5)
[
(Z ∪ {∞})× (Z ∪ {∞})×∆(A)

]
× (T× T)

onto (4.3). Let q1 : ∆(A) × T → Prim(A ⋊α̇ Z), q2 : ∆(A) × T → Prim(A ⋊α̈ Z), and
q : ∆(A) × T2 → Prim(A ⋊α Z2) be the quotient maps. Recall that these quotient maps

are all open (see [11, Remark 8.40]). Let B̃ be the set of all elements

U1 × U2 ×O × (V1 × V2),

where each Ui is either {ni} or Jni = {ni, ni + 1, ni + 2, . . .} ∪ {∞} for some ni ∈ Z
(see [6, Lemma 3.3]), O is an open set in ∆(A), and each Vi is an open subset of T.
Obviously, B̃ is a basis for the topology of the product space (4.5). Therefore, the forward

image of the elements of B̃ by q̃ forms a basis for the quotient topology of (4.3) which we

denote it by B. But, first note that, since each Ui has two forms, the elements of B̃ have

totally four forms as follows:

(i) {n1} × {n2} ×O × (V1 × V2);

(ii) Jn1 × {n2} ×O × (V1 × V2);

(iii) {n1} × Jn2 ×O × (V1 × V2); and

(iv) Jn1 × Jn2 ×O × (V1 × V2).

Therefore, accordingly, B is the union of the following four sets (see Lemma 4.1):

B1 := {O ⊂ ∆(A) : O is open in ∆(A)},

B2 := {O ∪ q1(O × V1) : O is a nonempty open subset of ∆(A), and V1 is open in T},

B3 := {O ∪ q2(O × V2) : O is a nonempty open subset of ∆(A), and V2 is open in T},
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and

B4 := {O ∪ q1(O × V1) ∪ q2(O × V2) ∪ q(O × (V1 × V2)) :

O is a nonempty open subset of ∆(A),

and each Vi is a nonempty open subset of T}.

So, the rest follows from the facts that the open sets q1(O×V1), q2(O×V2), and q(O×(V1×
V2)) form bases for the topological spaces Prim(A⋊α̇ Z), Prim(A⋊α̈ Z), Prim(A⋊α Z2),

respectively.

Remark 4.3. Recall that the primitive ideals of A ×piso
α N2 derived from Prim(A ⋊α Z2)

form a closed subset of Prim(A×piso
α N2) (see (2.1)), which is

F := {J ∈ Prim(A×piso
α N2) : ker q ⊂ J}.

Under the conditions of Theorem 4.2, these ideals are actually the kernels of the irre-

ducible representations
(
IndZ

2

Z2
ϕ
(ϕ⋊ γ(z,w)|Z2

ϕ
)
)
◦ q corresponding to the elements (equiva-

lence classes) [(ϕ, (z, w))] of ∆(A) × T2/∼= Prim(A ⋊α Z2). We denote ker
(
[IndZ

2

Z2
ϕ
(ϕ ⋊

γ(z,w)|Z2
ϕ
)] ◦ q

)
by J[(ϕ,(z,w))], and therefore,

F = {J[(ϕ,(z,w))] : ϕ ∈ ∆(A), (z, w) ∈ T2}.

Also, the homeomorphism of Prim(A⋊α Z2) onto F is given by the map

[(ϕ, (z, w))] 7→ J[(ϕ,(z,w))].

Next, we want to identify the primitive ideals of A ×piso
α N2 derived from Prim(A ⋊α̇

Z) and Prim(A ⋊α̈ Z), respectively, under the conditions of Theorem 4.2. Consider the

semigroup dynamical system (A,N, α̇), corresponding to which, there is the following short
exact sequence

(4.6) 0 −→ K(ℓ2(N))⊗A −→ A×piso
α̇ N q̇−→ A⋊α̇ Z −→ 0

of C∗-algebras (see [2,12]). So, corresponding to each element (equivalent class) [(ϕ, z)] of

∆(A)× T/∼(1)≃ Prim(A⋊α̇ Z), the composition

(4.7)
(
IndZŻϕ

(ϕ⋊ γz|Żϕ
)
)
◦ q̇

gives a nonzero irreducible representation π̇ : A ×piso
α̇ N → B(H) of (A ×piso

α̇ N, jA, v) on

a Hilbert space H, where Żϕ denotes the stability group of ϕ when the group Z acts on

∆(A) via the action α̇. It follows that K(ℓ2(N))⊗ (ker π̇) is a primitive ideal of the algebra
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K(ℓ2(N)) ⊗ (A ×piso
α̇ N), which by [15, Corollary 3.12] sits in A ×piso

α N2 as an (essential)

ideal I1 (more precisely, I1 is the ideal Iγ in [15]). Also, I1 contains the algebra

K(ℓ2(N2))⊗A ≃ K(ℓ2(N)⊗ ℓ2(N))⊗A ≃ K(ℓ2(N))⊗ [K(ℓ2(N))⊗A]

of compact operators as an (essential) ideal (see again [15]). Recall that the map T : N →
B(ℓ2(N)) defined by Tn(em) = em+n on the usual orthonormal basis {em : m ∈ N} of

ℓ2(N) is a representation of N by isometries, such that

K(ℓ2(N)) = span{Tm(1− TT ∗)T ∗
n : m,n ∈ N}, T := T1.

Indeed, for every m,n ∈ N, Tm(1 − TT ∗)T ∗
n is a rank-one operator on ℓ2(N) such that

f 7→ ⟨f |en⟩em. Now, the following lemma identifies the primitive ideals of A ×piso
α N2

coming from Prim(A⋊α̇ Z).

Lemma 4.4. Define the maps

ρ̇ : A→ B(ℓ2(N)⊗H) and Ẇ : N2 → B(ℓ2(N)⊗H)

by

(ρ̇(a)f)(n) = (π̇ ◦ jA)(α̈n(a))f(n) and Ẇ(m,n) = T ∗
n ⊗ π̇(vm),

respectively, for all a ∈ A, f ∈ ℓ2(N) ⊗ H, and m,n ∈ N. Then, the pair (ρ̇, Ẇ ) is

a covariant partial-isometric representation of the system (A,N2, α) on the Hilbert space

ℓ2(N)⊗H ≃ ℓ2(N, H), such that the corresponding (nondegenerate) representation ρ̇× Ẇ

of (A ×piso
α N2, i) is irreducible on ℓ2(N) ⊗ H, which lives on the ideal I1 ≃ K(ℓ2(N)) ⊗

(A×piso
α̇ N) but vanishes on K(ℓ2(N2))⊗A.

Proof. Firstly, some routine calculations (on spanning elements) show that the pair (ρ̇, Ẇ )

is indeed a covariant partial-isometric representation of (A,N2, α) on ℓ2(N)⊗H which we

skip them here.

Next, to see that the corresponding representation ρ̇×Ẇ : (A×piso
α N2, i) → B(ℓ2(N)⊗

H) is irreducible on ℓ2(N) ⊗ H, we show that every nonzero vector f ∈ ℓ2(N) ⊗ H is a

cyclic vector for ρ̇× Ẇ . Since f ̸= 0, there is y ∈ N such that f(y) is a nonzero vector in

H. Therefore, since the representation π̇ is irreducible, f(y) is a cyclic vector for π̇, and

hence, the elements {
en ⊗ [π̇(v∗mjA(a)vx)f(y)] : a ∈ A,n,m, x ∈ N

}
span the Hilbert space ℓ2(N)⊗H (recall that A×piso

α̇ N = span
{
v∗mjA(a)vx : a ∈ A,m, x ∈

N
}
). We show the each spanning element en ⊗ [π̇(v∗mjA(a)vx)f(y)] belongs to

span
{
(ρ̇× Ẇ )(η)f : η ∈ A×piso

α N2
}
,
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which implies that f is cyclic for ρ̇× Ẇ . Take the element

(4.8) η
(x,y)
(m,n)(a) := iN2(m,n)∗iA(a)

[
1− iN2(0, 1)∗iN2(0, 1)

]
iN2(x, y)

of A ×piso
α N2. See in [15, Lemma 3.8] that, in fact, the elements of the form (4.8) span

the (essential) ideal I1 of A×piso
α N2. Now, one can calculate to see that

(ρ̇× Ẇ )
(
η
(x,y)
(m,n)(a)

)
f =

(
Tn ⊗ π̇(v∗m)

)
ρ̇(a)

[
1− (T ⊗ 1)(T ∗ ⊗ 1)

](
T ∗
y ⊗ π̇(vx)

)
f

=
(
Tn ⊗ π̇(v∗m)

)
ρ̇(a)

[
(1− TT ∗)⊗ 1

](
T ∗
y ⊗ π̇(vx)

)
f

=
(
Tn ⊗ π̇(v∗m)

)
ρ̇(a)

[
(1− TT ∗)T ∗

y ⊗ π̇(vx)
]
f

= en ⊗
[
π̇(v∗mjA(a)vx)f(y)

]
(4.9)

for all a ∈ A and n,m, x ∈ N. It thus follows that f is a cyclic vector for ρ̇× Ẇ .

To see that the restriction of ρ̇×Ẇ to the ideal I1 ≃ K(ℓ2(N))⊗(A×piso
α̇ N) is nonzero,

we first show that the restriction (ρ̇× Ẇ )|I1 is the representation

id⊗π̇ : K(ℓ2(N))⊗ (A×piso
α̇ N) → B(ℓ2(N)⊗H),

such that (id⊗π̇)(S ⊗ ξ) = S ⊗ π̇(ξ) for all S ∈ K(ℓ2(N)) and ξ ∈ A×piso
α̇ N. It is enough

to see this on spanning elements, and therefore, we calculate

(id⊗π̇)
(
[Tn(1− TT ∗)T ∗

y ]⊗ [v∗mjA(a)vx]
)
(er ⊗ h)

=
(
Tn(1− TT ∗)T ∗

y ⊗ π̇(v∗mjA(a)vx)
)
(er ⊗ h)

= [Tn(1− TT ∗)T ∗
y er]⊗

[
π̇(v∗mjA(a)vx)h

]
∈ ℓ2(N)⊗H,

(4.10)

which is equal to en ⊗ [π̇(v∗mjA(a)vx)h] if r = y, otherwise, zero for all m,n, x, y, r ∈ N,
a ∈ A, and h ∈ H. On the other hand, see in [15, Proposition 3.9] that the isomorphism

I1 ≃ K(ℓ2(N)) ⊗ (A ×piso
α̇ N), which we denote by Ψ1 here, takes each spanning element

[Tn(1 − TT ∗)T ∗
y ] ⊗ [v∗mjA(a)vx] of the algebra K(ℓ2(N)) ⊗ (A ×piso

α̇ N) to the spanning

element η
(x,y)
(m,n)(a) of the ideal I1 (see (4.8)). Now, by a similar calculation to (4.9), we

have

(ρ̇× Ẇ )|I1
(
Ψ1

(
[Tn(1− TT ∗)T ∗

y ]⊗ [v∗mjA(a)vx]
))

(er ⊗ h)

= (ρ̇× Ẇ )|I1
(
η
(x,y)
(m,n)(a)

)
(er ⊗ h)

= en ⊗
[
π̇(v∗mjA(a)vx)h

](4.11)

if r = y, otherwise, zero for all m,n, x, y, r ∈ N, a ∈ A, and h ∈ H. Thus, it follows by

comparing (4.10) and (4.11) that we indeed have

(4.12) (ρ̇× Ẇ )|I1≃K(ℓ2(N))⊗(A×piso
α̇ N) = id⊗π̇.
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Consequently, since the representations id and π̇ are nonzero, it follows from (4.12) that

the restriction of ρ̇× Ẇ to the ideal I1 must be nonzero.

Finally, since

(ρ̇× Ẇ )|K(ℓ2(N2))⊗A = (id⊗π̇)|K(ℓ2(N2))⊗A

and ker π̇ contains the algebra K(ℓ2(N))⊗A as an ideal (see (4.6) and the definition of π̇

in (4.7)), it follows that

ker(id⊗π̇) = K(ℓ2(N))⊗ ker π̇ ⊃ K(ℓ2(N))⊗
(
K(ℓ2(N))⊗A

)
≃ K(ℓ2(N2))⊗A,

and therefore, the representation ρ̇×Ẇ vanishes on the idealK(ℓ2(N2))⊗A. This completes

the proof.

Remark 4.5. It therefore follows by Lemma 4.4 that, under the conditions of Theorem 4.2,

each primitive ideal of A×piso
α N2 coming from Prim(A⋊α̇Z) is the kernel of an irreducible

representation ρ̇ × Ẇ corresponding to the pair (ρ̇, Ẇ ) induced by an element [(ϕ, z)] of

∆(A)× T/∼(1)≃ Prim(A⋊α̇ Z). Let J̇[(ϕ,z)] denote ker(ρ̇× Ẇ ). So, the map

J̇[(ϕ,z)] 7→ J̇[(ϕ,z)] ∩ I1 = ker((ρ̇× Ẇ )|I1) = ker(id⊗π̇) = K(ℓ2(N))⊗ ker π̇

is a bijection between the subset of Prim(A ×piso
α N2) consisting of the primitive ideals

J̇[(ϕ,z)] and the closed subspace

F1 :=
{
P ∈ Prim(I1) : K(ℓ2(N2))⊗A ⊂ P

}
of Prim(I1) ≃ Prim(A ×piso

α̇ N). Moreover, F1 is homeomorphic to Prim(A ⋊α̇ Z) by the

composition of the following homeomorphisms

Prim(A⋊α̇ Z) −→
{
I ∈ Prim(A×piso

α̇ N) : K(ℓ2(N))⊗A ⊂ I
} the Rieffel homeomorphism−−−−−−−−−−−−−−−−−→ F1,

such that

[(ϕ, z)] 7→ ker
(
[IndZŻϕ

(ϕ⋊ γz|Żϕ
)] ◦ q̇

)
= ker π̇ 7→ K(ℓ2(N))⊗ ker π̇.

Therefore, the map [(ϕ, z)] 7→ J̇[(ϕ,z)] embeds the set Prim(A ⋊α̇ Z) in Prim(A ×piso
α N2)

as a subset.

Similarly, the semigroup dynamical system (A,N, α̈) gives rise to the following short

exact sequence

(4.13) 0 −→ K(ℓ2(N))⊗A −→ A×piso
α̈ N q̈−→ A⋊α̈ Z −→ 0.

Therefore, corresponding to each element [(ϕ,w)] of ∆(A)× T/∼(2)≃ Prim(A⋊α̈ Z), the
composition (

IndZZ̈ϕ
(ϕ⋊ γw|Z̈ϕ

)
)
◦ q̈
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defines a nonzero irreducible representation π̈ of (A×piso
α̈ N, kA, u) on a Hilbert space H,

where Z̈ϕ denotes the stability group of ϕ when the group Z acts on ∆(A) via the action

α̈. Hence, K(ℓ2(N)) ⊗ (ker π̈) is a primitive ideal of the algebra K(ℓ2(N)) ⊗ (A ×piso
α̈ N),

which again by [15, Corollary 3.12], sits in A×piso
α N2 as an (essential) ideal I2 (note that,

I2 is actually the ideal Iδ in [15]). Now, we have

Lemma 4.6. Define the maps

ρ̈ : A→ B(ℓ2(N)⊗H) and Ẅ : N2 → B(ℓ2(N)⊗H)

by

(ρ̈(a)f)(m) = (π̈ ◦ kA)(α̇m(a))f(m) and Ẅ(m,n) = T ∗
m ⊗ π̈(un)

respectively, for all a ∈ A, f ∈ ℓ2(N) ⊗ H, and m,n ∈ N. Then, the pair (ρ̈, Ẅ ) is

a covariant partial-isometric representation of the system (A,N2, α) on the Hilbert space

ℓ2(N)⊗H, such that the corresponding (nondegenerate) representation ρ̈× Ẅ of (A×piso
α

N2, i) is irreducible on ℓ2(N)⊗H, which lives on the ideal I2 ≃ K(ℓ2(N))⊗ (A×piso
α̈ N) but

vanishes on K(ℓ2(N2))⊗A.

Proof. We skip the proof as it is similar to the proof of Lemma 4.4.

Remark 4.7. Thus, by Lemma 4.6, under the conditions of Theorem 4.2, the primitive ide-

als of A×piso
α N2 derived from Prim(A⋊α̈Z) are the kernels of the irreducible representations

ρ̈×Ẅ induced by elements [(ϕ,w)] of ∆(A)×T/∼(2)≃ Prim(A⋊α̈Z). So, we denote these
ideals by J̈[(ϕ,w)], and hence, the map [(ϕ,w)] ∈ Prim(A⋊α̈Z) 7→ J̈[(ϕ,w)] ∈ Prim(A×piso

α N2)

is an embedding (of sets).

In addition, as a refinement of Lemma 4.1, we would like to mention that the maps

P 7→ indP, [(ϕ, z)] 7→ J̇[(ϕ,z)], [(ϕ,w)] 7→ J̈[(ϕ,w)], and [(ϕ, (z, w))] 7→ J[(ϕ,(z,w))]

combine to give a bijective correspondence of the disjoint union (4.3) onto Prim(A×piso
α N2).

Proposition 4.8. Let (A,N2, α) be a dynamical system consisting of a separable abelian

C∗-algebra A and an action α of N2 on A by automorphisms. Then A×piso
α N2 is GCR if

and only if the orbit space Z2 \∆(A) is T0.

Proof. Recall that, by [8, Theorem 5.6.2], A×piso
α N2 is GCR if and only if

ker q and A⋊α Z2 ≃ C0(∆(A))⋊lt Z2

are GCR (see (2.1)), and by [11, Theorem 8.43], A⋊α Z2 is GCR if and only if the orbit

space Z2 \ ∆(A) is T0. So, it is enough to see that if Z2 \ ∆(A) is a T0 space, then the
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ideal ker q is GCR. Suppose that Z2 \∆(A) is T0. To see that the algebra ker q is GCR,

since, by [15, Corollary 3.13], we have

ker q/[K(ℓ2(N2))⊗A] ≃
[
K(ℓ2(N))⊗ (A⋊α̇ Z)

]
⊕
[
K(ℓ2(N))⊗ (A⋊α̈ Z)

]
,

and A is abelian, again, by [8, Theorem 5.6.2], it is enough show that the algebras

A⋊α̇ Z and A⋊α̈ Z

are GCR. Let Ż\∆(A) and Z̈\∆(A) denote the orbit spaces corresponding to the actions

α̇ and α̈ of Z on A, respectively. Suppose that σ : ∆(A) → Z2 \ ∆(A) and σ1 : ∆(A) →
Ż\∆(A) are the orbit maps. One can see that the map Ψ1 : Ż\∆(A) → Z2 \∆(A) defined

by

Ż · ϕ 7→ Z2 · ϕ

is bijective, where Ż · ϕ denotes the Z-orbit of ϕ ∈ ∆(A) corresponding to the action

α̇. Moreover, we clearly have Ψ1 ◦ σ1 = σ, by applying which, it follows the map Ψ1

is actually a homeomorphism. Therefore, the orbit space Ż \ ∆(A) must also be T0. A

similar argument shows that Z̈ \∆(A) is T0, too, and hence, again by [11, Theorem 8.43],

the (group) crossed products A⋊α̇ Z and A⋊α̈ Z are GCR. This completes the proof.

Proposition 4.9. Let (A,N2, α) be a dynamical system consisting of a separable abelian

C∗-algebra A and an action α of N2 on A by automorphisms. Then A ×piso
α N2 is not

CCR.

Proof. Since A×piso
α N2 and

(BZ2 ⊗A)⋊τ⊗α−1 Z2 ≃ C0(X)⋊lt Z2

are Morita equivalent, it is enough to see that C0(X)⋊lt Z2 is not CCR (see [11, Propo-

sition I.43]). Since for the element ((m,n), ϕ) ∈ X, where m,n ∈ Z and ϕ ∈ ∆(A) (see

(4.2)), we have

Z2 · ((m,n), ϕ) = Z2 × {ϕ} = Z2×{ϕ} =
(
Z×Z

)
×{ϕ} =

[
(Z∪{∞})× (Z∪{∞})

]
×{ϕ},

it follows that the Z2-orbit of ((m,n), ϕ) is not closed in X. Thus, by [11, Theorem 8.44],

C0(X)⋊lt Z2 is not CCR.

5. The topology of Prim(A×piso
α N2) when A is separable and Z2 acts on PrimA

freely

Assume that in the system (A,N2, α), the C∗-algebra A is separable, and the action of

Z2 on PrimA is free. Now, consider the group dynamical system (BZ2 ⊗ A,Z2, τ ⊗ α−1)
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in which the algebra (BZ2 ⊗ A) is certainly separable and Z2 is an abelian (discrete)

countable group. To describe the action of Z2 on Prim(BZ2 ⊗ A), first note that, by [10,

Theorem B.45], Prim(BZ2 ⊗A) = Prim(BZ ⊗BZ ⊗A) is homeomorphic to

(5.1) PrimBZ × PrimBZ × PrimA ≃ (Z ∪ {∞})× (Z ∪ {∞})× PrimA.

Then, by a similar discussion to the one given at the beginning of §4, one can see that Z2

acts on the product space (5.1) as follows:

(m,n) · ((r, s), P ) = ((r +m, s+ n), P ), (m,n) · ((∞,∞), P ) = ((∞,∞), α(−m,−n)(P )),

(m,n) · ((∞, s), P ) = ((∞, s+ n), α(−m,0)(P )) = ((∞, s+ n), α̇−m(P )),

and

(m,n) · ((r,∞), P ) = ((r +m,∞), α(0,−n)(P )) = ((r +m,∞), α̈−n(P ))

for all (m,n) ∈ Z2, P ∈ PrimA, and r, s ∈ Z. So, it is not difficult to see that, in fact, Z2

also acts on Prim(BZ2 ⊗A) freely, and therefore, by Theorem 2.2,

Prim((BZ2 ⊗A)⋊τ⊗α−1 Z2) ≃ Prim(A×piso
α N2)

is homeomorphic to the quasi-orbit space

(5.2) O
(
Prim(BZ2 ⊗A)

)
= O

(
(Z ∪ {∞})× (Z ∪ {∞})× PrimA

)
.

But again, a similar discussion to Lemma 4.1 shows that the quasi-orbit space (5.2), as a

set, corresponds to the disjoint union

(5.3) PrimA ⊔ O1(PrimA) ⊔ O2(PrimA) ⊔ O(PrimA),

where O1(PrimA), O2(PrimA), and O(PrimA) are the quasi-orbit spaces homeomorphic

to Prim(A⋊α̇ Z), Prim(A⋊α̈ Z), and Prim(A⋊α Z2), respectively. Now, we have

Theorem 5.1. Let (A,N2, α) be a dynamical system consisting of a separable C∗-algebra

A and an action α of N2 on A by automorphisms. Suppose that the action of Z2 on PrimA

is free. Then, Prim(A×piso
α N2) is homeomorphic to the disjoint union (5.3) equipped with

the quotient topology in which the open sets are in the following four forms:

(a) O ⊂ PrimA, where O is open in PrimA;

(b) O ∪W1, where O is a nonempty open subset of PrimA and W1 is an open set in

O1(PrimA);

(c) O ∪W2, where O is a nonempty open subset of PrimA and W2 is an open set in

O2(PrimA); and
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(d) O ∪W1 ∪W2 ∪W , where O, W1, and W2 are nonempty open subsets of PrimA,

O1(PrimA), and O2(PrimA), respectively, and W is an open set in O(PrimA).

Proof. We skip the proof as it follows by a similar argument to the proof of Theorem 4.2,

using the fact that, for any (group) dynamical system (B,G, β), the quasi-orbit map

σ : PrimB → O(PrimB) is continuous and open (see [11, Lemma 6.12]).

Remark 5.2. Under the conditions of Theorem 5.1, the primitive ideals of A×piso
α N2 coming

from Prim(A⋊αZ2) ≃ O(PrimA) are indeed the kernels of the irreducible representations

(Indπ) ◦ q = (π̃ ⋊ U) ◦ q of A×piso
α N2, where π is an irreducible representation of A such

that kerπ = P (see §2). Moreover, (Indπ) ◦ q is actually the associated representation

π̃ ×piso U of A ×piso
α N2 corresponding to the covariant partial-isometric representation

(π̃, U) of (A,N2, α). Therefore, each element of the closed subspace

F = {J ∈ Prim(A×piso
α N2) : ker q ⊂ J}

of Prim(A×piso
α N2) is the kernel of an irreducible representation π̃ ×piso U corresponding

to the quasi-orbit O(P ), which we denote by JO(P ). Hence, the map O(P ) → JO(P ) is a

homeomorphism of O(PrimA) ≃ Prim(A⋊α Z2) onto the closed subspace F .

Also, note that, the primitive ideals of A ×piso
α N2 derived from Prim(A ⋊α̇ Z) ≃

O1(PrimA) and Prim(A ⋊α̈ Z) ≃ O2(PrimA) can similarly be identified by looking at

Lemmas 4.4 and 4.6, respectively. To be more precise, for each quasi-orbit O1(P ) ∈
O1(PrimA) and O2(P ) ∈ O2(PrimA), there is an irreducible representation π of A such

that P = kerπ. Now, if Ind1 π and Ind2 π denote the induced representations of the

crossed products A⋊α̇ Z and A⋊α̈ Z, respectively, then the compositions

π̇ := (Ind1 π) ◦ q̇ and π̈ := (Ind2 π) ◦ q̈

are nonzero irreducible representations of the algebras A×piso
α̇ N and A×piso

α̈ N, respectively
(see (4.6) and (4.13)). Then, the rest follows from Lemmas 4.4 and 4.6. We denote

the primitive ideal of A ×piso
α N2 corresponding to O1(P ) ∈ O1(PrimA) by JO1(P ), and

similarly, the one corresponding to O2(P ) ∈ O2(PrimA) by JO2(P ).

Remark 5.3. Recall that the primitive ideal space of any C∗-algebra is a locally compact

space, and if a C∗-algebra is separable, then its primitive ideal space is second countable.

A (not necessarily Hausdorff) locally compact space X is called almost Hausdorff if each

locally compact subspace V contains a relatively open nonempty Hausdorff subset (see [11,

Definition 6.1]). If a C∗-algebra is GCR, then its primitive ideal space is almost Hausdorrff

with respect to the hull-kernel (Jacobson) topology (see [11, pages 171, 172]). Therefore,

if A is a separable GCR C∗-algebra, then the spectrum Â of A is a second countable

almost Hausdorff locally compact space as it is homeomorphic to PrimA. Now, suppose



514 Saeid Zahmatkesh

that (A,G, α) is a group dynamical system in which the algebra A is separable and G is

an abelian discrete countable group. If G acts on Â freely, then it follows from [16] that

A⋊αG is GCR if and only if A is GCR and every G-orbit in Â is discrete. However, every

G-orbit in Â is discrete if and only if, for every [π] ∈ Â, the map G→ G · [π] defined by

s 7→ s · [π] := [π ◦ αs−1 ]

is a homeomorphism, which by [11, Theorem 6.2 (Mackey-Glimm Dichotomy)], is equiva-

lent to saying that the orbit space G \ Â is T0. Therefore, if (the abelian group) G in the

separable system (A,G, α) acts on Â freely, then A⋊α G is GCR if and only if A is GCR

and the orbit space G \ Â is T0.

Proposition 5.4. Let (A,N2, α) be a dynamical system consisting of a separable C∗-

algebra A and an action α of N2 on A by automorphisms. Suppose that Z2 acts on Â

freely. Then, A×piso
α N2 is GCR if and only if A is GCR and the orbit space Z2 \ Â is T0.

Proof. We skip the proof as it follows by a similar discussion to the proof of Proposition 4.8

and Remark 5.3.

6. Primitivity of A×piso
α N2

Finally, we have

Theorem 6.1. Let (A,N2, α) be a dynamical system consisting of a (nonzero) C∗-algebra

A and an action α of N2 on A by automorphisms. Then, A ×piso
α N2 is primitive if and

only if A is primitive.

Proof. If A×piso
α N2 is primitive, then it has a faithful nonzero irreducible representation

ρ, and hence, ker ρ, which is the zero ideal, is a primitive ideal of A ×piso
α N2. But, this

ideal can only be derived from PrimA as all primitive ideals of A ×piso
α N2 except the

ones derived from PrimA contain the algebra K(ℓ2(N2)) ⊗ A. Therefore, it follows from

Proposition 3.1 that the representation ρ is the representation π̃ × V corresponding to

a pair (π̃, V ) induced by a (nonzero) irreducible representation π of A. It thus follows

that the restriction of ρ = π̃ × V to the ideal K(ℓ2(N2)) ⊗ A of A ×piso
α N2, which is the

representation id⊗π, is a (nonzero) faithful irreducible representation of K(ℓ2(N2)) ⊗ A.

So, the algebra K(ℓ2(N))⊗A is primitive, which implies that A must be primitive (in fact,

kerπ = {0}).
Conversely, if A is primitive, then it has a faithful nonzero irreducible representation

π. Let π̃ × V be the (nonzero) irreducible representation of A ×piso
α N2 corresponding

to the pair (π̃, V ) induced by the representation π (see again Proposition 3.1). Now,

the restriction (π̃ × V )|K(ℓ2(N2))⊗A = id⊗π is faithful as the representations id and π are
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(see [10, Corollary B.11]). Therefore, since K(ℓ2(N2))⊗A is an essential ideal of A×piso
α N2

(see [15, Corollary 3.13]), it follows that the representation π̃ × V must be faithful. So,

the algebra A×piso
α N2 is primitive.
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