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A Modified Tseng’s Algorithm with Extrapolation from the Past for

Pseudo-monotone Variational Inequalities

Buris Tongnoi

Abstract. We present Tseng’s forward-backward-forward method with extrapolation

from the past for pseudo-monotone variational inequalities in Hilbert spaces. In ad-

dition, we propose a variable stepsize scheme of the extrapolated Tseng’s algorithm

governed by the operator which is pseudo-monotone, Lipschitz continuous and sequen-

tially weak-to-weak continuous. We also investigate the algorithm’s adaptive stepsize

scenario, which arises when it is impossible to calculate the Lipschitz constant of a

pseudo-monotone operator correctly. Finally, we prove a weak convergence theorem

and conduct a numerical experiment to support it.

1. Introduction

Variational inequalities (VIs) are beneficial mathematical models for solving various prob-

lems, like saddle problems, equilibrium problems, obstacle problems, and others; see [12,19]

and reference therein.

In this paper, we are concerned with the variational inequality (VI) in the type of

Hartman-Stampacchia (Stampacchia type) [14]:

(1.1) find x∗ ∈ C such that ⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ C,

where C is a nonempty closed convex subset of Hilbert space H endowed with an inner

product ⟨ · , · ⟩ and the corresponding norm ∥ · ∥ and F is monotone and L-Lipschitz con-

tinuous operator for L ≥ 0. We denote the inequality of (1.1) by VI(F,C) and assume

that its solution set is represented by Ω ̸= ∅.
The projected-gradient algorithm is the simplest method for solving variational in-

equalities, and it is defined as follows: for a starting point x0 ∈ H ,

xn+1 = PC(xn − λF (xn)), ∀n ≥ 0,

where PC denotes the projection operator onto the closed convex set C ⊆ H and λ > 0.

However, this method does not necessarily provide the convergence if F is only monotone
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(see [12, Example 12.1.3] for example). In order to converge, the method requires addi-

tional assumptions like F being cocoercive (or inverse strongly monotone, see [1, 29]) or

strongly (pseudo) monotone (see [12,17]).

The extragradient method proposed by Korpelevich in [20], which is used to solve

variational inequalities governed by Lipschitz continuous and pseudo-monotone operators,

reads as for a starting point x0 ∈ H ,

yn = PC(xn − λF (xn)), xn+1 = PC(xn − λF (yn)),

where λ ∈ (0, 1/L). We can see that the algorithm needs to compute the projection

onto C two times, which sometimes affects the method’s efficiency if the projection is

not easy to calculate. The extragradient method has gained overwhelming attention from

several authors to modify this method in multiple ways; see, e.g., [8, 15, 18]. The work of

Popov [24] gives us a sophisticated idea that we can reuse and store the computation of

the projection term in each iterative scheme for extragradient, namely

yn = PC(xn − λF (yn−1)), xn+1 = PC(xn − λF (yn)),

where λ ∈ (0, 1/(3L)). This modern concept called the extrapolated technique or extrap-

olation from the past which is given in [13] and note that the latter approach is working

within a smaller stepsize.

As an alternative extragradient method applied to solving the monotone inclusions,

Tseng [28] proposed the forward-backward-forward (FBF) algorithm. Furthermore, the

combination of Tseng’s algorithm and the extrapolated technique is also suggested in

[3,27] as known as Tseng’s algorithm with extrapolation from the past (FBF-EP). We can

demonstrate the general iterative scheme as following statement:

Tseng-G yn = PC(xn − λF (sn)), xn+1 = yn + λ(F (sn)− F (yn)),

for any choice of sn, we obtain that

1. If sn = xn, it becomes an approach based on Tseng’s forward-backward-forward

(FBF) algorithm, see also [3, 6, 28].

2. If sn = yn−1, it turns into the method, which relies on the Tseng’s algorithm with

extrapolation from the past (FBF-EP):

yn = PC(xn − λF (yn−1)), xn+1 = yn + λ(F (yn−1)− F (yn)).

In addition, if we substitute xn+1 into the first step of FBF-EP at yn+1, we get that

yn+1 = PC(yn − 2λF (yn) + λF (yn−1)),
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which is established from forward-reflected-backward algorithm in [21]. Notably,

in case C is a whole space H , both methods turn into optimistic mirror descent

(see [25,26]) in the unconstrained case shown as

yn+1 = yn − 2λF (yn) + λF (yn−1),

known as Optimistic Gradient Descent Ascent (OGDA) for Generative Adversarial

Network (GANs), see [6, 10,11] for more details.

Both FBF and FBF-EP require only one projection per each iterative computation

and provide the weak convergence of (xn)n≥0 to a solution of VI(F,C) for monotone

Lipschitz operator F , see [7,27,28]. Because of its simplicity and generality, this algorithm

has attracted a lot of attention from many researchers, for example in [4, 7, 27]. The

improvement of Tseng’s method (FBF) goes further in the relaxation version for the

pseudo-monotone and sequentially weak-to-weak continuous operator F based on FBF,

proposed by Boţ et al. in [5]. The algorithm reads as follows: for the starting point

x0 ∈ H ,

(1.2) yn = PC(xn − λF (xn)), xn+1 = ρn(yn + λ(F (xn)− F (yn))) + (1− ρn)xn,

where λ > 0 is the stepsize and (ρn)n≥0 ⊆ [0, 1] is the sequence of relaxation parameters.

This work has shown that the convergence result holds when F is a pseudo-monotone

(not necessary to be monotone), Lipschitz continuous and sequentially weak-to-weak-

continuous operator. Sometimes, the Lipschitz constant L is unknown or is not simple

to calculate. Therefore, Boţ et al. [5] introduced an adaptive stepsize scenario for the

method (1.2).

The work of Boţ et al. [5] motivates us to investigate the convergence of Tseng’s

algorithm with extrapolation from the past (FBF-EP) in case the operator F is pseudo-

monotone, Lipschitz continuous and sequentially weak-to-weak-continuous. In addition,

we propose an adaptive stepsize approach for FBF-EP, which does not depend on the

knowledge of the Lipschitz constant. We also prove that the convergence statement holds

in finite dimensional spaces under weaker assumptions on F . In the final section of this

work, we additionally perform a numerical experiment on pseudo-monotone variational

inequalities.

Considering that the relaxation version of FBF has already been proposed for the

pseudo-monotone and sequentially weak-to-weak continuous assumptions, it would be of

great interest to investigate the relaxation version of FBF-EP with the same operator F

assumptions in this work. We have attempted to solve the relaxation version of FBF-

EP for both pseudo-monotone and sequentially weak-to-weak continuous properties, as

well as monotone Lipschitzian properties of F . However, a conclusive weak convergence
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result cannot be determined at this time. Indeed, the convergence results for Tseng’s

forward-backward-forward algorithm (FBF) are typically established through the Fejér

monotone sequence, which satisfies ∥xn+1 − x∥ ≤ ∥xn − x∥, ∀x ∈ C ⊆ H , ∀n ∈ N,
see [1, Definition 5.1]. In contrast, Tseng’s algorithm with extrapolation from the past

(FBF-EP), which yields a similar inequality, can be expressed as shown in equation (3.9).

Due to the appearance of a negative term on the right-hand side of the inequality, which

is challenging to eliminate, drawing any definitive conclusions has become a significant

challenge. Consequently, we present an open question to the reader below.

Open Question. The weak convergence of Tseng’s algorithm with extrapolation in the

relaxation version for monotone Lipschitz (and for both pseudo-monotone and sequentially

weak-to-weak continuous) operators has remained unresolved due to the presence of a

perturbed term in the inequality of Fejer-monotone sequence, which poses a significant

obstacle to obtaining weak convergence results.

2. Preliminaries

Before we present the main results, let us give the relevant background knowledge. Through-

out this work, the symbol ⇀ denotes weak convergence, → stands for strong convergence,

and N, R, R++ represent the set of all natural numbers, the set of all real numbers and

the set of all positive real numbers, respectively.

We describe various properties of the operator F as follows:

Definition 2.1. Let C be a nonempty subset of the real Hilbert space H . The mapping

F : H → H is said to be

(a) pseudo-monotone on C if it holds that for every x, y ∈ C,

⟨F (x), y − x⟩ ≥ 0 =⇒ ⟨F (y), y − x⟩ ≥ 0;

(b) monotone on C if it holds that for every x, y ∈ C,

⟨F (y)− F (x), y − x⟩ ≥ 0.

Note that every monotone operator is pseudo-monotone but the pseudo-monotone is not

necessarily monotone (see, [16] for example).

The operator F : H → H is called Lipschitz continuous with Lipschitz constant

L > 0, if for every x, y ∈ H it holds that

∥F (x)− F (y)∥ ≤ L∥x− y∥,
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and we say that the operator F is sequentially weak-to-weak continuous, if for every se-

quence (xn)n≥0 that converges weakly to x the sequence (F (xn))n≥0 also converges weakly

to F (x).

The characterization of projection mapping is a useful tool that we will employ to

present our main results, as demonstrated in the theorem below.

Theorem 2.2. [1, Theorem 3.14] Let C be a nonempty closed convex subset of H . Then

for every x and p in H ,

p = PCx ⇐⇒ [p ∈ C and ∀ y ∈ C, ⟨y − p, x− p⟩ ≤ 0].

Since the set C is a nonempty, closed, and convex subset of the Hilbert space H , there

exists a related property of C that is presented in the following theorem.

Theorem 2.3. [1, Theorem 3.32] Let C be a convex subset of H . Then the following

statements are equivalent:

(i) C is weakly sequentially closed.

(ii) C is sequentially closed.

(iii) C is closed.

(iv) C is weakly closed.

Next, we present the fertile lemma confirming the sequence’s convergence and summa-

bility associated with a specific form of inequality. This lemma is essential and applied

multiple times in this work. Additionally, we provide the equivalent property of the convex

function in the subsequent theorem.

Lemma 2.4. [7, Lemma 2.1] Let (αn)n∈N be a sequence in [0,+∞) (bounded from be-

low), let (βn)n∈N be a sequence in [0,+∞), and let (ϵn)n∈N be a summable sequence (i.e.,∑
n∈N ϵn < +∞) in [0,+∞) such that ∀n ∈ N, αn+1 ≤ αn − βn + ϵn. Then (αn)n∈N has

a limit, and (βn)n∈N is summable.

Theorem 2.5. [1, Theorems 9.1 or 10.23] Let f : H → (−∞,+∞] be (quasi) convex.

Then the following statements are equivalent:

(i) f is weakly sequentially lower semicontinuous.

(ii) f is sequentially lower semicontinuous.

(iii) f is lower semicontinuous.

(iv) f is weakly lower semicontinuous.

Now, we present the proposition of a continuous pseudo-monotone operator on a

nonempty, convex, and closed set. Additionally, this proposition establishes an identi-

cal relationship between the Stampacchia and Minty types of variational inequality (VI).
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Proposition 2.6. [9, Lemma 2.1] Let C be a nonempty, convex and closed subset of the

real Hilbert space H and let F : H → H be an operator which is pseudo-monotone on C

and continuous. Then for every x ∈ C we have

⟨F (x), y − x⟩ ≥ 0 ⇐⇒ ⟨F (y), y − x⟩ ≥ 0, ∀ y ∈ C.

Another version of variational inequality is called Minty type:

Find x∗ ∈ C such that ⟨F (x), x− x∗⟩ ≥ 0, ∀x ∈ C.

Notably, Proposition 2.6 implies that the solution sets of two variational inequalities in

both Stampacchia type (1.1) and Minty type are the same when they are performed over a

nonempty closed convex set and governed by pseudo-monotone and continuous operators.

To demonstrate the weak convergence of our proposed algorithm in this work, we

utilize a valid theorem known as Opial’s Lemma, presented below.

Lemma 2.7. [23, Opial’s Lemma] Let S be a nonempty subset of H , and (xk)k≥0 a

sequence of elements of H . Assume that

(i) for every z ∈ S, limk→+∞ ∥xk − z∥ exists;

(ii) every weak sequential limit point of (xk)k≥0 belongs to S as k → +∞.

Then xk converges weakly as k → +∞ to a point in S.

In the next section we will demonstrate our approach and its proof using the appro-

priate tools.

3. Main results

In this section, we introduce Tseng’s algorithm with extrapolation from the past for

pseudo-monotone variational inequalities, and we show a weak convergence result using

Opial’s lemma.

Theorem 3.1. Let Ω ̸= ∅ be the solution set of the variational inequality problem of F on

C, namely VI(F,C), let F : H → H be pseudo-monotone on H , Lipschitz continuous

with constant L and sequentially weak-to-weak continuous. Let C be a nonempty, convex

and closed subset of the real Hilbert space H . Let x0, y−1 ∈ H . Assume that the sequence

(xn)n≥0 is generated by the following algorithm

(3.1) yn = PC(xn − λnF (yn−1)), xn+1 = yn + λn(F (yn−1)− F (yn))

with 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1/(2L). Then the sequence (xn)n∈N converges

weakly to a point in Ω.
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The idea of the proof. We first try to show the inequality (3.11) by using Ω ̸= ∅, the

pseudo-monotonicity of F , Theorem 2.2 (property of the projection operator) and the

Lipschitz continuity of F . Then we rearrange formula (3.11) and apply Lemma 2.4 to

conclude that limn→+∞ ∥xn−x∗∥2 exists which is the first condition of Opial’s lemma (see

Lemma 2.7). For the rest of the proof, we need to verify the second condition of Opial’s

lemma, namely, if x̂ is a weak sequential cluster point of (xn)n≥0, then x̂ ∈ C.

Let x∗ be an arbitrary element in Ω and let n ≥ 0 be fixed. Then we have

⟨F (x∗), y − x∗⟩ ≥ 0, ∀ y ∈ C.

Substituting y := yn ∈ C into the inequality yields

⟨F (x∗), yn − x∗⟩ ≥ 0.

From the pseudo-monotonicity of F on C, it follows that

(3.2) ⟨F (yn), yn − x∗⟩ ≥ 0.

Since yn = PC(xn − λnF (yn−1)) according to Theorem 2.2, we get

(3.3) ⟨y − yn, yn − xn + λnF (yn−1)⟩ ≥ 0, ∀ y ∈ C,

which yields for y = x∗ ∈ C:

(3.4) ⟨x∗ − yn, yn − xn + λnF (yn−1)⟩ ≥ 0.

Multiplying both sides of (3.2) by λn > 0 we have

⟨λnF (yn), yn − x∗⟩ ≥ 0 (or ⟨x∗ − yn,−λnF (yn)⟩ ≥ 0),

adding the above inequality to (3.4) yields

⟨x∗ − yn, yn − xn + λnF (yn−1)− λnF (yn)⟩ ≥ 0,

or, equivalently,

⟨x∗ − yn, xn+1 − xn⟩ ≥ 0.

Then, using (3.1) we obtain that

⟨xn+1 − x∗, xn+1 − xn⟩

≤ ⟨xn+1 − yn, xn+1 − xn⟩

= ∥xn+1 − xn∥2 + ⟨xn − yn, xn+1 − xn⟩

= ∥xn+1 − xn∥2 + ⟨xn − yn, yn + λnF (yn−1)− λnF (yn)− xn⟩

= ∥xn+1 − xn∥2 − ∥xn − yn∥2 + λn⟨xn − yn, F (yn−1)− F (yn)⟩.

(3.5)
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On the other hand, we have

(3.6) ∥xn+1 − x∗∥2 − ∥xn − x∗∥2 + ∥xn+1 − xn∥2 = 2⟨xn+1 − x∗, xn+1 − xn⟩.

Combining (3.5) and (3.6), we obtain that

∥xn+1 − x∗∥2

= ∥xn − x∗∥2 − ∥xn+1 − xn∥2 + 2⟨xn+1 − x∗, xn+1 − xn⟩

≤ ∥xn − x∗∥2 − ∥xn+1 − xn∥2

+ 2
[
∥xn+1 − xn∥2 − ∥xn − yn∥2 + λn⟨xn − yn, F (yn−1)− F (yn)⟩

]
= ∥xn − x∗∥2 + ∥xn+1 − xn∥2 − 2∥xn − yn∥2 + 2λn⟨xn − yn, F (yn−1)− F (yn)⟩.

(3.7)

Using the Lipschitz continuity of F and (3.1), we obtain that

∥xn+1 − xn∥2

= ∥yn + λnF (yn−1)− λnF (yn)− xn∥2

= ∥yn − xn∥2 + 2λn⟨yn − xn, F (yn−1)− F (yn)⟩+ λ2
n∥F (yn−1)− F (yn)∥2

≤ ∥yn − xn∥2 + 2λn⟨yn − xn, F (yn−1)− F (yn)⟩+ λ2
nL

2∥yn−1 − yn∥2.

(3.8)

From (3.7) and (3.8), we derive

∥xn+1 − x∗∥2

≤ ∥xn − x∗∥2 +
[
∥yn − xn∥2 + 2λn⟨yn − xn, F (yn−1)− F (yn)⟩+ λ2

nL
2∥yn−1 − yn∥2

]
− 2∥xn − yn∥2 + 2λn⟨xn − yn, F (yn−1)− F (yn)⟩

= ∥xn − x∗∥2 − ∥yn − xn∥2 + λ2
nL

2∥yn−1 − yn∥2.

(3.9)

By parallelogram identity, we know that ∥yn − yn−1∥2 + ∥(xn − yn) + (xn − yn−1)∥2 =

2∥xn − yn∥2 + 2∥xn − yn−1∥2, hence together with the Lipschitz property of F we obtain

that

∥xn − yn∥2 ≥ −∥xn − yn−1∥2 +
1

2
∥yn − yn−1∥2

= −∥yn−1 + λn−1(F (yn−2)− F (yn−1))− yn−1∥2 +
1

2
∥yn − yn−1∥2

≥ −(λn−1L)
2∥yn−2 − yn−1∥2 +

1

2
∥yn − yn−1∥2.

(3.10)

It follows from (3.9) and (3.10) that

∥xn+1 − x∗∥2

≤ ∥xn − x∗∥2 −
[
−(λn−1L)

2∥yn−2 − yn−1∥2 +
1

2
∥yn − yn−1∥2

]
+ λ2

nL
2∥yn−1 − yn∥2.
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Thus, we have

(3.11) ∥xn+1−x∗∥2+
(
1

2
− (λnL)

2

)
∥yn−yn−1∥2 ≤ ∥xn−x∗∥2+(λn−1L)

2∥yn−2−yn−1∥2.

Since lim supn→∞ λn < 1/(2L), then we have lim supn→∞[2(λnL)
2] < 1/2. This means

that

lim inf
n→∞

{
1

2
− 2(λnL)

2

}
> 0,

and so there exists n0 ∈ N such that

(3.12)
1

2
− 2(λnL)

2 > η > 0, ∀n > n0, for some η ∈ R++.

Now, from (3.11) we can derive the following inequality, for all n > n0,

∥xn+1 − x∗∥2 +
(
1

2
− 2(λnL)

2

)
∥yn − yn−1∥2 + (λnL)

2∥yn − yn−1∥2

≤ ∥xn − x∗∥2 + (λn−1L)
2∥yn−2 − yn−1∥2.

(3.13)

By (3.12), (3.13) and Lemma 2.4, we obtain that ∥xn − x∗∥2 + (λn−1L)
2∥yn−2 − yn−1∥2

converges (hence it is bounded) and
∑

n∈N
(
1/2−2(λnL)

2
)
∥yn−yn−1∥2 < +∞. Moreover,

from (3.12) we have

(3.14)
∑
n∈N

∥yn − yn−1∥2 < +∞,

which implies yn − yn−1 → 0 as n → +∞. Recall from (3.9) that ∥xn+1 − x∗∥2 ≤
∥xn − x∗∥2 − ∥yn − xn∥2 + (λnL)

2∥yn−1 − yn∥2. Since lim supn→+∞ λn < 1/(2L) (and

0 < lim infn∈N λn) and (3.14) by using Lemma 2.4 again, we obtain

(3.15)
∑
n∈N

∥yn − xn∥2 < +∞,

and limn→+∞ ∥xn−x∗∥2 exists. Furthermore, we also obtain that limn→+∞ ∥yn−xn∥2 = 0.

In this part of the proof we will show the second part of Opial’s Lemma. We proceed

similarly as in [5, Theorem 2.1]. Let x̂ ∈ H be a weak sequential cluster point of xn as

n → +∞. Since limn→+∞ ∥xn − yn∥ = 0, we also have yn ⇀ x̂ as n → +∞. Furthermore,

since F is Lipschitz continuous, ∥F (yn−1) − F (yn)∥ → 0 as n → +∞. We want to show

that x̂ ∈ Ω. We assume that F (x̂) ̸= 0, otherwise the conclusion follows automatically.

For every n ≥ 0. Since (yn)n≥0 ⊆ C, and C is weakly closed (by Theorem 2.3), then we

have x̂ ∈ C. From (3.3), for all y ∈ C,

⟨y − yn, xn − λnF (yn−1)− yn⟩ ≤ 0,
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or, equivalently,

(3.16)
1

λn
⟨xn − yn, y − yn⟩ ≤ ⟨F (yn−1)− F (yn), y − yn⟩+ ⟨F (yn), y − yn⟩.

Considering the inequality (3.16) and taking into account that limn→+∞ ∥xn − yn∥ = 0,

∥F (yn−1) − F (yn)∥ → 0 (as n → +∞), (yn)n≥0 is bounded and lim infn→+∞ λn > 0, it

follows

∀ y ∈ C, 0 ≤ lim inf
n→+∞

⟨F (yn), y − yn⟩.

On the other hand, we have that (yn)n≥0 converges weakly to x̂ as n → +∞. Since F is

sequentially weak-to-weak continuous, (F (yn))n≥0 converges weakly to F (x̂) as n → +∞.

Because the norm mapping is convex (or quasi convex) by Theorem 2.5, it is weakly

sequentially lower semicontinuous. So we have 0 < ∥F (x̂)∥ ≤ lim infn→+∞ ∥F (yn)∥.
Then there exists n−1 ≥ 0 such that F (yn) ̸= 0 for all n ≥ n−1. Let (ϵk)k≥0 be a

positive strictly decreasing sequence which converges to 0 as k → +∞ and y ∈ C.

Since supN≥0 infn≥N ⟨F (yn), y − yn⟩ = lim infn→+∞⟨F (yn), y − yn⟩ > −ϵ0, there exits

N0 ≥ 0 such that infn≥N0⟨F (yn), y − yn⟩ > −ϵ0. Taking n0 > max{N0, n−1}, we have

⟨F (yn0), y − yn0⟩+ ϵ0 > 0 and F (yn0) ̸= 0. We can continue this construction inductively

and assume to this end that n0 < n1 < · · · < nk are given. Then there exists Nk+1 ≥ 0

such that infn≥Nk+1
⟨F (yn), y − yn⟩ > −ϵk+1 (> −ϵ0). Taking nk+1 > max{Nk+1, nk}, we

have

⟨F (ynk+1
), y − ynk+1

⟩+ ϵk+1 ≥ 0 and F (ynk+1
) ̸= 0.

In this way, we obtain a strictly increasing sequence (nk)k≥0 with the property that

(3.17) ⟨F (ynk
), y − ynk

⟩+ ϵk ≥ 0 and F (ynk
) ̸= 0, ∀ k ≥ 0.

Setting for every k ≥ 0,

zk :=
F (ynk

)

∥F (ynk
)∥2

,

it holds that ⟨F (ynk
), zk⟩ = 1. According to (3.17) we have that

0 ≤ ⟨F (ynk
), y − ynk

⟩+ ϵk = ⟨F (ynk
), y − ynk

⟩+ ⟨F (ynk
), ϵkzk⟩

= ⟨F (ynk
), y + ϵkzk − ynk

⟩, ∀ k ≥ 0, ∀ y ∈ C.

Since F is pseudo-monotone on H , it yields

(3.18) ⟨F (y + ϵkzk), y + ϵkzk − ynk
⟩ ≥ 0, ∀ k ≥ 0.

Using that (F (ynk
))n≥0 is bounded (since (F (yn))n≥0 converges weakly to F (x̂)), we have

lim
k→+∞

∥ϵkzk∥ = lim
k→+∞

ϵk
∥F (ynk

)∥
= 0.
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Taking the limit in (3.18) as k → +∞, we obtain

⟨F (y), y − x̂⟩ ≥ 0, ∀ k ≥ 0.

As y was arbitrarily chosen in C, it follows from Proposition 2.6 that x̂ ∈ Ω. Hence, by

Opial’s lemma (see Lemma 2.7), we can conclude that the sequence xn converges weakly

to a point in Ω.

Remark 3.2. (i) Following the proof of Theorem 3.1, we can demonstrate the first part of

Opial’s lemma (limn→+∞ ∥xn−x∗∥ exists) by using the assumption that F is pseudo-

monotone on C (not necessary on H ) and Ω ̸= ∅. Moreover, we also obtain from

this part of the proof that
∑

n∈N ∥yn − yn−1∥2 < +∞ and
∑

n∈N ∥yn − xn∥2 < +∞.

(ii) For the second part, the sequentially weak-to-weak continuity and pseudo-monotonicity

on H of F are essential to prove that every weak cluster point of (xn)n≥0 belongs

to the solution set of VI(F,C).

(iii) Notice from the proof of Theorem 3.1 that if we suppose D is an open set of H

containing C, it has seen that y ∈ C ⊂ D and there exists δ > 0 such that B(y, δ) ⊂
D. Since ϵkzk → 0, then y + ϵkzk → y ∈ C ⊂ D (as k → 0). Hence, there is k′ > 0

such that y+ ϵkzk ∈ B(y, δ) ⊂ D, ∀ k ≥ k′. Therefore, we can relax the assumption

of F as a pseudo-monotone on D. Note that B(y, δ) is an open ball with center y

and radius δ.

Remark 3.3 (Adaptive stepsize strategy). On the other hand, when (an upper bound of)

the Lipschitz constant of F is not available, we can use in our algorithm the following

stepsize strategy, see also [5]:

λn+1 :=

min
{ µ∥yn−1−yn∥
∥F (yn−1)−F (yn)∥ , λn

}
if F (yn−1)− F (yn) ̸= 0,

λn otherwise,

where µ ∈ (0, 1/2) and λ0 > 0. The sequence (λn)n≥0 is nonincreasing. If F (yn−1) −
F (yn) ̸= 0, for n ≥ 0, then it holds

µ∥yn−1 − yn∥
∥F (yn−1)− F (yn)∥

≥ µ∥yn−1 − yn∥
L∥yn−1 − yn∥

=
µ

L
,

which shows that (λn)n≥0 is bounded from below by min{λ0, µ/L} (this means limn→+∞ λn

exits). Notice that, if λ0 ≤ µ/L, then (λn)n≥0 is a constant sequence, which leads to a fixed

stepsize strategy. Consequently, the limn→+∞ λn exists and it is a positive real number.

We can adapt the proof of Theorem 3.1 to the new adaptive stepsize strategy. On the
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other hand, from (3.8), we can write

∥xn+1 − xn∥2 = ∥yn − xn∥2 + 2λn⟨yn − xn, F (yn−1)− F (yn)⟩+ λ2
n∥F (yn−1)− F (yn)∥2

≤ ∥yn − xn∥2 + 2λn⟨yn − xn, F (yn−1)− F (yn)⟩+
λ2
nµ

2

λ2
n+1

∥yn−1 − yn∥2.

Then it follows from (3.7) and the above inequality that

∥xn+1 − x∗∥2

≤ ∥xn − x∗∥2 +
[
∥yn − xn∥2 + 2λn⟨yn − xn, F (yn−1)− F (yn)⟩+

λ2
nµ

2

λ2
n+1

∥yn−1 − yn∥2
]

− 2∥xn − yn∥2 + 2λn⟨xn − yn, F (yn−1)− F (yn)⟩

= ∥xn − x∗∥2 − ∥xn − yn∥2 +
λ2
nµ

2

λ2
n+1

∥yn−1 − yn∥2.

(3.19)

By parallelogram identity, we know that ∥yn − yn−1∥2 + ∥(xn − yn) + (xn − yn−1)∥2 =

2∥xn − yn∥2 + 2∥xn − yn−1∥2, then

∥xn − yn∥2 ≥ −∥xn − yn−1∥2 +
1

2
∥yn − yn−1∥2

= −∥yn−1 + λn−1(F (yn−2)− F (yn−1))− yn−1∥2 +
1

2
∥yn − yn−1∥2

= −∥λn−1(F (yn−2)− F (yn−1))∥2 +
1

2
∥yn − yn−1∥2

≥ −
(
λn−1µ

λn

)2

∥yn−2 − yn−1∥2 +
1

2
∥yn − yn−1∥2.

(3.20)

It follows from (3.19) and (3.20) that

∥xn+1 − x∗∥2 ≤ ∥xn − x∗∥2 −

[
−
(
λn−1µ

λn

)2

∥yn−2 − yn−1∥2 +
1

2
∥yn − yn−1∥2

]

+
λ2
nµ

2

λ2
n+1

∥yn−1 − yn∥2.

Thus

∥xn+1 − x∗∥2 +

(
1

2
−
(

λnµ

λn+1

)2
)
∥yn − yn−1∥2

≤ ∥xn − x∗∥2 +
(
λn−1µ

λn

)2

∥yn−2 − yn−1∥2.
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Hence

∥xn+1 − x∗∥2 +

(
1

2
− 2

(
λnµ

λn+1

)2
)
∥yn − yn−1∥2 +

(
λnµ

λn+1

)2

∥yn − yn−1∥2

≤ ∥xn − x∗∥2 +
(
λn−1µ

λn

)2

∥yn−2 − yn−1∥2.

Since µ ∈ (0, 1/2), then

0 <
1

2
− 2µ2 = lim

n→+∞

(
1

2
− 2

(
λnµ

λn+1

)2
)
.

This means that there exists n00 ∈ N such that 1
2 − 2

( λnµ
λn+1

)2
> η > 0, ∀n > n00 for some

η ∈ R.
The proof of convergence is similar to the proof in Theorem 3.1. By using Lemma 2.4,

we have that the sequence (xn)n≥0 is bounded and
∑∞

n=2

(
1
2−2

( λnµ
λn+1

)2)∥yn−yn−1∥2 < +∞
and moreover

∑
n∈N ∥yn−yn−1∥2 < +∞. Now from (3.19), the fact that limn→+∞ λn exists

and
∑

n∈N ∥yn − yn−1∥2 < +∞, by using Lemma 2.4 again, we obtain that
∑

n∈N ∥yn −
xn∥2 < +∞. Furthermore, we also get that limn→+∞ ∥x∗ − xn∥2 = 0. The rest of the

proof is similar to one of Theorem 3.1.

Next, we will show that the convergence result in Theorem 3.1 holds in finite dimen-

sional spaces under a weaker assumption: F is pseudo-monotone only on C (⊂ H ) instead

of H .

Theorem 3.4. Let H be a finite-dimensional real Hilbert space. Assume that the solution

set Ω is nonempty, F is pseudo-monotone on C and Lipschitz continuous with constant

L > 0, and 0 < lim infn→+∞ λn ≤ lim supn→+∞ λn < 1/(2L). Then the sequence (xn)n≥0

generated by (3.1) converges to a solution of VI(F,C).

Proof. Let x∗ ∈ Ω be fixed. The first part of Opial’s lemma follows directly from Re-

mark 3.2(i). Thus we have limn→+∞ ∥xn − x∗∥ exists. In addition, we have also that∑
n∈N ∥yn − xn∥2 < +∞, hence limn→+∞ ∥yn − xn∥ = 0 (see also (3.15)). Let us prove

the second part of Opial’s lemma. Let x̂ be a cluster point of (xn)n≥0. Then there

exists a subsequence (xnk
)k≥0 of (xn)n≥0, which converges to x̂ as k → +∞. Since

limn→+∞ ∥yn − xn∥ = 0, then (ynk
)k≥0 also converges to x̂ as k → +∞. Let y ∈ C be

fixed. It follows from (3.3) that

(3.21) ⟨y − ynk
, ynk

− xnk
+ λnk

F (ynk−1)⟩ ≥ 0, ∀ k ≥ 0.

Because the sequence (λnk
)k≥0 is bounded, it has a subsequence which converges to λ̃ > 0

(since 0 < lim infn→+∞ λn). Taking the limit along this subsequence in (3.21) and using
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that F is continuous, we obtain

⟨y − x̂, F (x̂)⟩ ≥ 0.

Since y ∈ C was chosen arbitrarily, it follows that x̂ is a solution of VI(F,C). Now we can

apply the Opial’s Lemma (see Lemma 2.7) to complete the proof.

4. Numerical experiments for pseudo-monotone variational inequalities

In this part, we consider a numerical experiment which is carried out in order to compare

the classical Tseng’s algorithm (FBF) and our algorithm (FBF-EP) for solving pseudo-

monotone variational inequalities. We implemented the numerical codes in MATLAB and

performed all computations on a Windows desktop with an Intel(R) Core(TM) i5-8250U

processor at 1.60 GHz up to 1.8 GHz and RAM of 8 GB. In this experiment, we considered

variational inequalities governed by a pseudo-monotone operator, which is not monotone.

Example 4.1. We follow the construction of the experiment in [5] and give our example

in a higher dimension (10 and 20 dimensions). It will be shown as below.

We consider the VI(F,C) with

C =

{
x ∈ Rm :

m∑
i=1

xi ≤ 5, 0 ≤ xi ≤ 5,∀ i = 1, . . . ,m

}

and

F : Rm → Rm, F (x) = (e−∥x∥2 + α)(Mx+ p),

where ∥ · ∥ denotes the Euclidean norm on Rm, α = 0.1, p is a given vector in Rm, e is an

exponential function and choose the matrix M as: For m = 10, we pick

M10 :=



25 −5 10 0 10 5 15 5 10 0

−5 37 −8 18 −2 5 −3 11 −8 0

10 −8 14 −3 7 1 3 6 14 9

0 18 −3 34 0 −2 10 21 2 0

10 −2 7 0 21 6 17 0 7 11

5 5 1 −2 6 5 6 −1 1 1

15 −3 3 10 17 6 31 2 7 3

5 11 6 21 0 −1 2 29 15 6

10 −8 14 2 7 1 7 15 56 10

0 0 9 0 11 1 3 6 10 41



,
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and for m = 20, we choose

M20

:=



25 −5 10 0 10 5 15 5 10 0 25 −5 10 0 10 5 15 5 10 0

−5 37 −8 18 −2 5 −3 11 −8 0 −5 37 −8 18 −2 5 −3 11 −8 0

10 −8 14 −3 7 1 3 6 14 9 10 −8 14 −3 7 1 3 6 14 9

0 18 −3 34 0 −2 10 21 2 0 0 18 −3 34 0 −2 10 21 2 0

10 −2 7 0 21 6 17 0 7 11 10 −2 7 0 21 6 17 0 7 11

5 5 1 −2 6 5 6 −1 1 1 5 5 1 2 6 5 6 −1 1 1

15 −3 3 10 17 6 31 2 7 3 15 −3 3 10 17 6 31 2 7 3

5 11 6 21 0 −1 2 29 15 6 5 11 6 21 0 −1 2 29 15 6

10 −8 14 2 7 1 7 15 56 10 10 −8 14 2 7 1 7 15 56 10

0 0 9 0 11 1 3 6 10 41 0 0 9 0 11 1 3 6 10 41

25 −5 10 0 10 5 15 5 10 0 41 −5 10 0 10 5 15 5 10 0

−5 37 −8 18 −2 5 −3 11 −8 0 −5 46 −8 18 −2 5 −3 11 −8 0

10 −8 14 −3 7 1 3 6 14 9 10 −8 18 −3 7 1 3 6 14 9

0 18 −3 34 0 −2 10 21 2 0 0 18 −3 35 0 −2 10 21 2 0

10 −2 7 0 21 6 17 0 7 11 10 −2 7 0 25 6 17 0 7 11

5 5 1 −2 6 5 6 −1 1 1 5 5 1 −2 6 14 6 −1 1 1

15 −3 3 10 17 6 31 2 7 3 15 −3 3 10 17 6 47 2 7 3

5 11 6 21 0 −1 2 29 15 6 5 11 6 21 0 −1 2 54 15 6

10 −8 14 2 7 1 7 15 56 10 10 −8 14 2 7 1 7 15 72 10

0 0 9 0 11 1 3 6 10 41 0 0 9 0 11 1 3 6 10 50



,

which are positive definite matrices (the matrices were constructed from the upper tri-

angular matrices in both 10 and 20 dimensions and followed Theorem 8.3.3 in [22]). In

general, the operator F is not monotone (see Bianchi et al. [2]). Moreover, we can show

that this operator is pseudo-monotone (see Boţ et al. [5]), i.e., for all x,y ∈ Rm such that

⟨F (x),y − x⟩ ≥ 0 and since g(x) := e−∥x∥2 + α ≥ 0 then we have ⟨Mx + p,y − x⟩ ≥ 0

and thus

⟨F(y),y − x⟩ = g(y)⟨My + p,y − x⟩ ≥ g(y)(⟨My + p,y − x⟩ − ⟨Mx+ p,y − x⟩)

= g(y)(⟨M(y − x) + p,y − x⟩) ≥ 0.

We computed the unique solution x∗ of the variational inequality VI(F,C) by running

10000 iterations of Tseng’s algorithm for all n ≥ 0 and stepsize λn = 0.49/L.

In the first trial, we give p = 1m, a vector in Rm which all elements are equal to one.

We compared the performances of the Tseng’s algorithm (FBF) and the Tseng’s algorithm

with extrapolation (FBF-EP) by considering the random initial points

For 10 dimensions:

x10
0 = (−4, 1, 8,−9, 0,−1, 8, 3, 10, 2)T ,

y10
−1 = ŷ10

−1 := (8,−10,−8, 5,−2,−2, 2,−10,−2,−9)T ,
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For 20 dimensions:

x20
0 = (−5, 1, 3,−9, 0,−1, 8,−5, 3,−2,−1, 0, 2,−8, 4, 0,−3,−10, 1, 2)T ,

y20
−1 = ŷ20

−1 := (11,−2, 10, 7,−8, 4,−6, 7,−1, 10,−17, 9, 13,−1, 0, 3, 12,−8, 9, 15)T ,

(ŷ−1 denoted to be a fixed vector of y−1) and ∥xn−x∗∥ ≤ 10−6 as stopping criterion. The

projection on C was computed by using the quadprog function in MATLAB. Figure 4.1,

Table 4.1 and Figure 4.2, Table 4.2 show that at the first implementation of this trial for

10 dimensions and 20 dimensions, respectively. We can see that our algorithm (Tseng’s

algorithm with extrapolation from the past or FBF-EP) spends less time than the clas-

sical Tseng’s algorithm (FBF), whereas at the second implementation it is not the case.

Therefore, one may see that our algorithm is quite sensitive with respect to computer

errors or engine computational power.

which are positive definite matrices (the matrices were constructed from the upper triangular ma-
trices in both 10 and 20 dimensions and followed Theorem 8.3.3 in [22]). In general, the operator F is
not monotone (see Bianchi et al. [2]). Moreover, we can show that this operator is pseudo-monotone
(see Bot, et al. [5]), i.e., for all x,y ∈ Rm such that 〈F (x),y−x〉 ≥ 0 and since g (x) := e−‖x‖2 ≥ 0 then we
have 〈Mx+p,y−x〉 ≥ 0 and thus

〈F(y),y−x〉 = g (y)〈My+p,y−x〉
≥ g (y)(〈My+p,y−x〉−〈Mx+p,y−x〉)
= g (y)(〈M(y−x)+p,y−x〉) ≥ 0.

We computed the unique solution x∗ of the variational inequality V I (F,C ) by running 10000 itera-
tions of Tseng’s algorithm for all n ≥ 0 and stepsize λn = 0.49

L .
In the first trial, we give p = 1̄m , a vector in Rm which all elements are equal to one. We compared

the performances of the Tseng’s algorithm (FBF) and the Tseng’s algorithm with extrapolation (FBF-
EP) by considering the random initial points

For 10 dimensions:

x0
10 = (−4,1,8,−9,0,−1,8,3,10,2)T ,

y10
−1 = ŷ10

−1 := (8,−10,−8,5,−2,−2,2,−10,−2,−9)T ,

For 20 dimensions:

x0
20 = (−5,1,3,−9,0,−1,8,−5,3,−2,−1,0,2,−8,4,0,−3,−10,1,2)T ,

y20
−1 = ŷ20

−1 := (11,−2,10,7,−8,4,−6,7,−1,10,−17,9,13,−1,0,3,12,−8,9,15)T ,

(ŷ−1 denoted to be a fixed vector of y−1) and ‖xn−x∗‖ ≤ 10−6 as stopping criterion. The projection on
C was computed by using the quadprog function in MATLAB. Figure 1, Table 1 and Figure 2, Table 2
show that at the first implementation of this trial for 10 dimensions and 20 dimensions, respectively.
We can see that our algorithm (Tseng’s algorithm with extrapolation from the past or FBF-EP) spends
less time than the classical Tseng’s algorithm (FBF), whereas at the second implementation it is not
the case. Therefore, one may see that our algorithm is quite sensitive with respect to computer errors
or engine computational power.

(a) First execution (b) Second execution

Figure 1: [10 dimensions] A figure of two graphs for comparison between the classical Tseng’s algo-
rithm (FBF) and Tseng’s algorithm with extrapolation from the past (FBF-EP) for two different execu-
tions with x0

10 = (−4,1,8,−9,0,−1,8,3,10,2)T and y10
−1 = ŷ10

−1 (when the stepsize is λn = 0.49
L ).

12

(a) First execution.

which are positive definite matrices (the matrices were constructed from the upper triangular ma-
trices in both 10 and 20 dimensions and followed Theorem 8.3.3 in [22]). In general, the operator F is
not monotone (see Bianchi et al. [2]). Moreover, we can show that this operator is pseudo-monotone
(see Bot, et al. [5]), i.e., for all x,y ∈ Rm such that 〈F (x),y−x〉 ≥ 0 and since g (x) := e−‖x‖2 ≥ 0 then we
have 〈Mx+p,y−x〉 ≥ 0 and thus

〈F(y),y−x〉 = g (y)〈My+p,y−x〉
≥ g (y)(〈My+p,y−x〉−〈Mx+p,y−x〉)
= g (y)(〈M(y−x)+p,y−x〉) ≥ 0.

We computed the unique solution x∗ of the variational inequality V I (F,C ) by running 10000 itera-
tions of Tseng’s algorithm for all n ≥ 0 and stepsize λn = 0.49

L .
In the first trial, we give p = 1̄m , a vector in Rm which all elements are equal to one. We compared

the performances of the Tseng’s algorithm (FBF) and the Tseng’s algorithm with extrapolation (FBF-
EP) by considering the random initial points

For 10 dimensions:

x0
10 = (−4,1,8,−9,0,−1,8,3,10,2)T ,

y10
−1 = ŷ10

−1 := (8,−10,−8,5,−2,−2,2,−10,−2,−9)T ,

For 20 dimensions:

x0
20 = (−5,1,3,−9,0,−1,8,−5,3,−2,−1,0,2,−8,4,0,−3,−10,1,2)T ,

y20
−1 = ŷ20

−1 := (11,−2,10,7,−8,4,−6,7,−1,10,−17,9,13,−1,0,3,12,−8,9,15)T ,

(ŷ−1 denoted to be a fixed vector of y−1) and ‖xn−x∗‖ ≤ 10−6 as stopping criterion. The projection on
C was computed by using the quadprog function in MATLAB. Figure 1, Table 1 and Figure 2, Table 2
show that at the first implementation of this trial for 10 dimensions and 20 dimensions, respectively.
We can see that our algorithm (Tseng’s algorithm with extrapolation from the past or FBF-EP) spends
less time than the classical Tseng’s algorithm (FBF), whereas at the second implementation it is not
the case. Therefore, one may see that our algorithm is quite sensitive with respect to computer errors
or engine computational power.

(a) First execution (b) Second execution

Figure 1: [10 dimensions] A figure of two graphs for comparison between the classical Tseng’s algo-
rithm (FBF) and Tseng’s algorithm with extrapolation from the past (FBF-EP) for two different execu-
tions with x0

10 = (−4,1,8,−9,0,−1,8,3,10,2)T and y10
−1 = ŷ10

−1 (when the stepsize is λn = 0.49
L ).

12

(b) Second execution.

Figure 4.1: [10 dimensions] A figure of two graphs for comparison between the classical

Tseng’s algorithm (FBF) and Tseng’s algorithm with extrapolation from the past (FBF-

EP) for two different executions with x10
0 = (−4, 1, 8,−9, 0,−1, 8, 3, 10, 2)T and y10

−1 = ŷ10
−1

(when the stepsize is λn = 0.49/L).

Table 4.1: [10 dimensions] The table of the performances for 2 attempts of FBF and

FBF-EP with x10
0 = (−4, 1, 8,−9, 0,−1, 8, 3, 10, 2)T and y10

−1 = ŷ10
−1 (when the stepsize is

λn = 0.49/L).

Attempt
FBF FBF-EP

∥xn − x∗∥ No. iter CPU-time ∥xn − x∗∥ No. iter CPU-time

1 3.567× 10−7 464 0.44943 2.6077× 10−7 456 0.42628

2 3.567× 10−7 464 0.43565 2.6077× 10−7 456 0.43983
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Table 1: [10 dimensions] The table of the performances for 2 attempts of FBF and FBF-EP with x0
10 =

(−4,1,8,−9,0,−1,8,3,10,2)T and y10
−1 = ŷ10

−1 (when the stepsize is λn = 0.49
L ).

Attempt
FBF FBF-EP

‖xn −x∗‖ No. iter CPU-time ‖xn −x∗‖ No. iter CPU-time

1 3.567×10−7 464 0.44943 2.6077×10−7 456 0.42628

2 3.567×10−7 464 0.43565 2.6077×10−7 456 0.43983

(a) First execution (b) Second execution

Figure 2: [20 dimensions] A figure of two graphs for comparison between the classical Tseng’s algo-
rithm (FBF) and Tseng’s algorithm with extrapolation from the past (FBF-EP) for two different execu-
tions with x0

20 = (−5,1,3,−9,0,−1,8,−5,3,−2,−1,0,2,−8,4,0,−3,−10,1,2)T and y20
−1 = ŷ20

−1 (when the
stepsize is λn = 0.49

L ).

Table 2: [20 dimensions] The table of the performances for 2 attempts of FBF and FBF-EP with x0
20 =

(−5,1,3,−9,0,−1,8,−5,3,−2,−1,0,2,−8,4,0,−3,−10,1,2)T and y20
−1 = ŷ20

−1 (when the stepsize is λn =
0.49

L ).

Attempt
FBF FBF-EP

‖xn −x∗‖ No. iter CPU-time ‖xn −x∗‖ No. iter CPU-time

1 4.0665×10−7 1976 1.9663 2.295×10−7 1973 1.9147

2 4.0665×10−7 1976 1.9194 2.295×10−7 1973 1.9293

In order to confirm the effectiveness of our method, we designed the experiment as follows.
We randomise an initial vector x0 in which each coordinate is an integer shuffled from the inter-
val [−10,10], denoted by r and[−10,10] (in MATLAB). We also select y−1 to be x0, ŷ−1 and r and[−10,10],
and put vector p as following vectors:

13

(a) First execution.

Table 1: [10 dimensions] The table of the performances for 2 attempts of FBF and FBF-EP with x0
10 =

(−4,1,8,−9,0,−1,8,3,10,2)T and y10
−1 = ŷ10

−1 (when the stepsize is λn = 0.49
L ).

Attempt
FBF FBF-EP

‖xn −x∗‖ No. iter CPU-time ‖xn −x∗‖ No. iter CPU-time

1 3.567×10−7 464 0.44943 2.6077×10−7 456 0.42628

2 3.567×10−7 464 0.43565 2.6077×10−7 456 0.43983

(a) First execution (b) Second execution

Figure 2: [20 dimensions] A figure of two graphs for comparison between the classical Tseng’s algo-
rithm (FBF) and Tseng’s algorithm with extrapolation from the past (FBF-EP) for two different execu-
tions with x0

20 = (−5,1,3,−9,0,−1,8,−5,3,−2,−1,0,2,−8,4,0,−3,−10,1,2)T and y20
−1 = ŷ20

−1 (when the
stepsize is λn = 0.49

L ).

Table 2: [20 dimensions] The table of the performances for 2 attempts of FBF and FBF-EP with x0
20 =

(−5,1,3,−9,0,−1,8,−5,3,−2,−1,0,2,−8,4,0,−3,−10,1,2)T and y20
−1 = ŷ20

−1 (when the stepsize is λn =
0.49

L ).

Attempt
FBF FBF-EP

‖xn −x∗‖ No. iter CPU-time ‖xn −x∗‖ No. iter CPU-time

1 4.0665×10−7 1976 1.9663 2.295×10−7 1973 1.9147

2 4.0665×10−7 1976 1.9194 2.295×10−7 1973 1.9293

In order to confirm the effectiveness of our method, we designed the experiment as follows.
We randomise an initial vector x0 in which each coordinate is an integer shuffled from the inter-
val [−10,10], denoted by r and[−10,10] (in MATLAB). We also select y−1 to be x0, ŷ−1 and r and[−10,10],
and put vector p as following vectors:
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Figure 4.2: [20 dimensions] A figure of two graphs for comparison between the classical

Tseng’s algorithm (FBF) and Tseng’s algorithm with extrapolation from the past (FBF-

EP) for two different executions with x20
0 = (−5, 1, 3,−9, 0,−1, 8,−5, 3,−2,−1, 0, 2,−8, 4,

0,−3,−10, 1, 2)T and y20
−1 = ŷ20

−1 (when the stepsize is λn = 0.49/L).

Table 4.2: [20 dimensions] The table of the performances for 2 attempts of FBF and

FBF-EP with x20
0 = (−5, 1, 3,−9, 0,−1, 8,−5, 3,−2,−1, 0, 2,−8, 4, 0,−3,−10, 1, 2)T and

y20
−1 = ŷ20

−1 (when the stepsize is λn = 0.49/L).

Attempt
FBF FBF-EP

∥xn − x∗∥ No. iter CPU-time ∥xn − x∗∥ No. iter CPU-time

1 4.0665× 10−7 1976 1.9663 2.295× 10−7 1973 1.9147

2 4.0665× 10−7 1976 1.9194 2.295× 10−7 1973 1.9293

In order to confirm the effectiveness of our method, we designed the experiment as

follows. We randomise an initial vector x0 in which each coordinate is an integer shuffled

from the interval [−10, 10], denoted by rand[−10,10] (in MATLAB). We also select y−1 to

be x0, ŷ−1 and rand[−10,10], and put vector p as following vectors:

For 10 dimensions:

p10
1 = 110, p10

2 = (1, 2, 1, 0,−1, 2, 0, 1,−1, 2)T ,

p10
3 = (5, 1, 0,−2,−1, 0,−5, 4,−5,−1)T ,

For 20 dimensions:

p20
1 = 120, p20

2 = (1,−2, 1, 2,−1, 2, 0, 1,−1, 2, 1,−2, 1, 0,−1, 2, 0, 1,−1, 2)T ,

p20
3 = (5, 1, 0,−2,−1, 0,−5, 4,−5,−1, 5, 1, 0,−2,−1, 0,−5, 4,−5,−1)T .
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Table 4.3: The table shows the result of satisfaction after 100 executions in 10 dimensions

by choosing x0 = rand[−10,10] (for 10 dimensions), y−1 = x10
0 , ŷ10

−1, rand[−10,10] (for 10

dimensions) and p = p10
1 , p10

2 and p10
2 (when the stepsize is λn = 0.49/L).

x0 y−1 vectorp satisfaction1

rand[−10,10] x10
0 69 out of 100

rand[−10,10] ŷ10
−1 p10

1 65 out of 100

rand[−10,10] rand[−10,10] 66 out of 100

rand[−10,10] x10
0 66 out of 100

rand[−10,10] ŷ10
−1 p10

2 70 out of 100

rand[−10,10] rand[−10,10] 57 out of 100

rand[−10,10] x10
0 61 out of 100

rand[−10,10] ŷ10
−1 p10

3 60 out of 100

rand[−10,10] rand[−10,10] 60 out of 100

1 The number of executions in which the CPU time for Tseng-

EP algorithm is less than the Tseng algorithm, within 100

executions.

Table 4.4: The table shows the result of satisfaction after 100 executions in 20 dimensions

by choosing x0 = rand[−10,10] (for 20 dimensions), y−1 = x20
0 , ŷ20

−1 and rand[−10,10] (for 20

dimensions), and p = p20
1 , p20

2 , p20
3 (when the stepsize is λn = 0.49/L).

x0 y−1 vectorp satisfaction1

rand[−10,10] x20
0 62 out of 100

rand[−10,10] ŷ20
−1 p20

1 61 out of 100

rand[−10,10] rand[−10,10] 56 out of 100

rand[−10,10] x20
0 51 out of 100

rand[−10,10] ŷ20
−1 p20

2 53 out of 100

rand[−10,10] rand[−10,10] 53 out of 100

rand[−10,10] x20
0 58 out of 100

rand[−10,10] ŷ20
−1 p20

3 55 out of 100

rand[−10,10] rand[−10,10] 51 out of 100

1 The number of executions in which the CPU time for Tseng-

EP algorithm is less than the Tseng algorithm, within 100

executions.
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Then, we run 100 executions for FBF and FBF-EP algorithms. Finally, we collect the

achievements when FBF-EP takes less time than FBF and call this value “satisfaction”.

As a result, we could deduce from Table 4.3 (and Table 4.4) that the FBF-EP algorithm

overcomes the FBF algorithm by more than half of 100 executions. In 10 dimensions,

the highest satisfaction value is 70 (62 in 20 dimensions), and the lowest is 57 (51 in 20

dimensions) for this experiment.

As the referee suggested, it would be better to show another example in Hilbert space,

which is not Euclidean space. Then, we consider our proposed algorithm for solving the

variational inequality problem in L2-space as below.

Example 4.2. Let H = L2([0, 1]) with norm ∥x∥ :=
( ∫ 1

0 |x(t)|2 dt
)1/2

and inner product

⟨x, y⟩ :=
∫ 1
0 x(t)y(t) dt, ∀x, y ∈ H . Define an operator F : H → H by

(Fx)(t) = max{x(t), 0}, x ∈ H , t ∈ [0, 1].

It is easy to show that F is monotone (pseudo-monotone) and Lipschitz continuous with

Lipschitz constant L = 1. We provide the feasible set as the ball C := {x ∈ H : ∥x∥ ≤ 2}.
To implement, we consider either the FBF or FBF-EP methods, including their adaptive

stepsize strategy. We represent FBF and FBF-EP with adaptive stepsize strategy by

aFBF and aFBF-EP, respectively, and the stopping criterion is ∥xn − xn−1∥ ≤ ϵ with

ϵ = 105. Note that the aFBF algorithm is obtained from [5]. The parameter values of the

algorithm in Example 4.2 is determined as follows.

Case I.

FBF : x0 = t3, λn = 0.49;

FBF-EP (our proposed algorithm) : x0 = y−1 = t3, λn = 0.49;

aFBF [5] : x0 = t3, µ = 0.49, λ0 = 0.7;

aFBF-EP (our proposed algorithm) : x0 = y−1 = t3, µ = 0.49, λ0 = 0.7.

Case II.

FBF : x0 =
cos(−3t) + sin(−10)

200
, λn = 0.49;

FBF-EP (our proposed algorithm) : x0 = y−1 =
cos(−3t) + sin(−10)

200
, λn = 0.49;

aFBF [5] : x0 =
cos(−3t) + sin(−10)

200
, µ = 0.49, λ0 = 0.7;

aFBF-EP (our proposed algorithm) : x0 = y−1 =
cos(−3t) + sin(−10)

200
, µ = 0.49,

λ0 = 0.7.
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Case III.

FBF : x0 = (10t3 − 3t2)/20, λn = 0.49;

FBF-EP (our proposed algorithm) : x0 = y−1 = (10t3 − 3t2)/20, λn = 0.49;

aFBF [5] : x0 = (10t3 − 3t2)/20, µ = 0.49, λ0 = 0.7;

aFBF-EP (our proposed algorithm) : x0 = y−1 = (10t3 − 3t2)/20, µ = 0.49, λ0 = 0.7.

Case IV. In this case, we use the same values of starting points x0, y−1, µ and λn

in the methods without adaptive stepsize strategy as in Case III, and we replace instead

λ0 = 0.9 in the adaptive stepsize scheme.

Table 4.5: The result of computation in Example 4.2.

Algorithms
Case I Case II

∥xn+1 − xn∥ No. iter CPU-time ∥xn+1 − xn∥ No. iter CPU-time

FBF 7.980980× 10−6 38 15.9776 8.472908× 10−6 20 79.437

FBF-EP* 9.608509× 10−6 32 7.9064 6.706328× 10−6 18 53.6874

aFBF 8.405511× 10−6 38 18.2491 8.923607× 10−6 20 85.596

aFBF-EP** 8.08286× 10−6 32 9.7161 9.771265× 10−6 16 47.0231

Algorithms
Case III Case IV

∥xn+1 − xn∥ No. iter CPU-time ∥xn+1 − xn∥ No. iter CPU-time

FBF 8.823636× 10−6 34 14.9177 8.823636× 10−7 34 14.7945

FBF-EP* 6.640949× 10−6 30 7.59 6.640949× 10−6 30 8.0234

aFBF 9.292991× 10−6 34 16.8252 8.029509× 10−6 35 17.3107

aFBF-EP** 5.520665× 10−6 30 9.4287 9.317460× 10−6 90 28.3885

* Our proposed algorithm.
** Our proposed algorithm with adaptive stepsize strategy.

Table 4.5 and Figure 4.3 depict the results of the experiment by showing ∥xn+1−xn∥,
the number of iteration (No. iter), CPU-time (second) in the table, and plotting between

∥xn+1 − xn∥ and their iteration numbers in different cases. One can notice that our pro-

posed algorithm, FBF-EP, is always faster than FBF method, which sometimes consumes

twice the CPU-time more significantly than the CPU-time of FBF-EP. Further, the num-

ber of iterations of FBF-EP is less than the iteration numbers of FBF. For this numerical

experiment, we know that the Lipschitz constant L equals to 1 (L = 1). Therefore, we

have to choose λn < 1/(2L) (= 1/2, because L = 1) for the FBF-EP method (see The-

orem 3.1). Nevertheless, the constant L might not figure out in certain cases. Then,

we can use the adaptive stepsize strategy described in Remark 3.3 with µ = 0.49 < 1/2
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Table 5: The result of computation in Example 4.2.

Algorithms
Case I Case II

‖xn+1 −xn‖ No. iter CPU-time ‖xn+1 −xn‖ No. iter CPU-time

FBF 7.980980×10−6 38 15.9776 8.472908×10−6 20 79.437

FBF-EP* 9.608509×10−6 32 7.9064 6.706328×10−6 18 53.6874

aFBF 8.405511×10−6 38 18.2491 8.923607×10−6 20 85.596

aFBF-EP** 8.08286×10−6 32 9.7161 9.771265×10−6 16 47.0231

Algorithms
Case III Case IV

‖xn+1 −xn‖ No. iter CPU-time ‖xn+1 −xn‖ No. iter CPU-time

FBF 8.823636×10−6 34 14.9177 8.823636×10−7 34 14.7945

FBF-EP* 6.640949×10−6 30 7.59 6.640949×10−6 30 8.0234

aFBF 9.292991×10−6 34 16.8252 8.029509×10−6 35 17.3107

aFBF-EP** 5.520665×10−6 30 9.4287 9.317460×10−6 90 28.3885

* our proposed algorithm.

** our proposed algorithm. with adaptive stepsize strategy.

(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 3: The graphs plot the value between ‖xn+1−xn‖ and the iteration number of the experiments
in Case I, Case II, Case III and Case IV.

Table 5 and Figure 3 depict the results of the experiment by showing ‖xn+1 − xn‖, the number
of iteration (No. iter), CPU-time (second) in the table, and plotting between ‖xn+1 − xn‖ and their
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of iteration (No. iter), CPU-time (second) in the table, and plotting between ‖xn+1 − xn‖ and their
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FBF 7.980980×10−6 38 15.9776 8.472908×10−6 20 79.437

FBF-EP* 9.608509×10−6 32 7.9064 6.706328×10−6 18 53.6874

aFBF 8.405511×10−6 38 18.2491 8.923607×10−6 20 85.596

aFBF-EP** 8.08286×10−6 32 9.7161 9.771265×10−6 16 47.0231
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Case III Case IV

‖xn+1 −xn‖ No. iter CPU-time ‖xn+1 −xn‖ No. iter CPU-time

FBF 8.823636×10−6 34 14.9177 8.823636×10−7 34 14.7945
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aFBF 9.292991×10−6 34 16.8252 8.029509×10−6 35 17.3107
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in Case I, Case II, Case III and Case IV.

Table 5 and Figure 3 depict the results of the experiment by showing ‖xn+1 − xn‖, the number
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FBF 7.980980×10−6 38 15.9776 8.472908×10−6 20 79.437

FBF-EP* 9.608509×10−6 32 7.9064 6.706328×10−6 18 53.6874

aFBF 8.405511×10−6 38 18.2491 8.923607×10−6 20 85.596

aFBF-EP** 8.08286×10−6 32 9.7161 9.771265×10−6 16 47.0231

Algorithms
Case III Case IV
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FBF 8.823636×10−6 34 14.9177 8.823636×10−7 34 14.7945

FBF-EP* 6.640949×10−6 30 7.59 6.640949×10−6 30 8.0234

aFBF 9.292991×10−6 34 16.8252 8.029509×10−6 35 17.3107

aFBF-EP** 5.520665×10−6 30 9.4287 9.317460×10−6 90 28.3885

* our proposed algorithm.

** our proposed algorithm. with adaptive stepsize strategy.
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(c) Case III (d) Case IV

Figure 3: The graphs plot the value between ‖xn+1−xn‖ and the iteration number of the experiments
in Case I, Case II, Case III and Case IV.

Table 5 and Figure 3 depict the results of the experiment by showing ‖xn+1 − xn‖, the number
of iteration (No. iter), CPU-time (second) in the table, and plotting between ‖xn+1 − xn‖ and their
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(d) Case IV.

Figure 4.3: The graphs plot the value between ∥xn+1 − xn∥ and the iteration number of

the experiments in Cases I, II, III and IV.

and λ0 > 0. We have seen that the starting stepsize λ0 have a significant effect in both

aFBF-EP and aFBF. If the stepsize is a suitable one, it can reduce the CPU-time and

turn the method to the fastest one, for example, the FBF-EP in Case II; however, since

the time of the process to finding λn in the next iteration of the adaptive stepsize strategy

has been counted in computation then the method with adaptive stepsize strategy can

give the time performance, which is slower than the normal method without the adaptive

stepsize strategy. In addition, the adaptive stepsize strategy can provide a small stepsize,

which then impacts the number of iterations of the iterative method shown in Case IV.
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