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Subeulerian Oriented Graphs

Zhenzhen Li, Baoyindureng Wu* and Anders Yeo

Abstract. A graph is subeulerian if it is a spanning subgraph of an eulerian graph.

All subeulerian graphs were characterized by Boesch, Suffel, Tindell in 1977. Later,

a simple proof of their theorem was given by Jaeger. A digraph D is eulerian if and

only if D is connected and d+(x) = d−(x) for every vertex x ∈ V (D). An orientation
−→
G of a graph G is a digraph obtained from G by replacing each edge xy of G with

an arc xy or yx. An oriented graph is an orientation of a simple graph. An oriented

graph is said to be subeulerian if it is a spanning subdigraph of an eulerian oriented

graph.

In this paper, we initiated the study of subeulerian oriented graphs. We give a

necessary and sufficient condition for an orientated digraph to be subeulerian. We

refine this condition in order to give necessary and sufficient condition for an orien-

tation of a forest to be subeulerian. Furthermore, we prove that if G is a graph of

order n with n ≥ max{4∆(G) − 1, 3}, then every orientation of G is subeulerian. In

particular, we show that if G is a graph of odd order n with ∆(G) ≤ n/4, then every

orientation of G is a spanning subdigraph of a regular tournament.

1. Introduction

Let G = (V (G), E(G)) be a finite simple graph. Its order and size are respectively denoted

by |V (G)| and |E(G)|. If uv ∈ E(G), then we say that u is a neighbor of v in G and

vice verse. For a vertex v ∈ V (G), the degree of a vertex v is denoted by dG(v). Its

neighborhood, denoted by NG(v), is {u : u ∈ V (G), uv ∈ E(G)}. The closed neighborhood

of v, denoted by NG[v], is NG(v)∪{v}. If there is no ambiguity, the above symbols can be

simplified as d(v), N(v) and N [v]. The minimum degree and the maximum degree of G are

denoted by δ(G) and ∆(G), respectively. In particular, G is k-regular for some nonnegative

integer k if ∆(G) = δ(G) = k. We use c(G) to denote the number of component of G.

For a simple graph G, its complement G is the simple graph with V (G) = V (G), in which

two vertices are adjacent if and only if they are nonadjacent in G.
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We say that a graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G),

and write H ⊆ G. In this case, we say that G is a supergraph of H. A connected acyclic

graph is called a tree. A disjoint collection of trees is called a forest. Let m and n be two

positive integers. We use Kn, Pn, Cn to denote the complete graph, the path, the cycle of

order n, respectively. The symbol Km,n present the complete bipartite graph with its two

parts having m and n vertices respectively. We say that Km,n is odd if both m and n are

odd. The double star Sm,n is a tree obtained by joining the centres of K1,m−1 and K1,n−1.

For graph theoretical terms and notations not explicitly defined here, readers are referred

to [9].

Throughout this paper all digraphs are finite without loops or multiple arcs. Let

D = (V (D), A(D)) be a digraph. For a vertex x ∈ V (D). The symbols N+
D (x) and

N−
D (x) present the out-neighborhood and in-neighborhood of x in D, respectively. The

neighbourhood of x, denoted by ND(x), is N+
D (x) ∪ N−

D (x). Similarly, d+D(x) and d−D(x)

denote the out-degree and in-degree of x in D, respectively. The degree of x, dD(x) =

d+D(x) + d−D(x). A vertex x ∈ V (D) is said to be source (or sink) if d+D(x) = dD(x)

(or d−D(x) = dD(x)). The minimum out-degree and in-degree are denoted by δ+(D) and

δ−(D), respectively. Similarly, the maximum out-degree and the maximum in-degree of

D are denoted by ∆+(D) and ∆−(D), respectively. The minimum semi-degree of D

is denoted by δ0(D), δ0(D) = min{δ+(D), δ−(D)}. The maximum semi-degree of D is

∆0(D) = max{∆+(D),∆−(D)}. We say that D is regular if δ0(D) = ∆0(D). In this

case, D is also called δ0(D)-regular. When the digraph D is understood from the context,

we often omit the subscript. We use U(D) to denote the underlying undirected graph

of D, the graph obtained from D by erasing all orientation on the arcs of D. For a set

X ⊆ V (D), D[X] = D− (V (D) \X). For more digraph theory terminologies, we refer the

readers to [5].

An Euler tour of a graph is a closed trial containing all edges. A graph is said to

eulerian if it has an Euler tour. It is well-known that a graph is eulerian if and only if it is

connected and degrees of all vertices are even. A graph G is subeulerian if it is a spanning

subgraph of an eulerian graph. Boesch, Suffel, Tindell [8] characterized all subeulerian

graphs in the following two theorems. For a short proof of the above results, we refer to

Jaeger [16].

Theorem 1.1. (see [8, Theorem 1]) A connected graph G is subeulerian if and only if no

spanning subgraph of G is isomorphic to an odd complete bipartite graph.

Theorem 1.2. (see [8, Theorem 3]) A disconnected graph G is subeulerian if and only if

G is not K1 ∪K2m+1.

For a given graph G (or a digraph D), the subeulerian problem seeks whether one can

obtain an eulerian graph (or digraph) by adding edges (arcs). Dually, for a given graph
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G (or a digraph D), the supereulerian problem seeks whether one can obtain an eulerian

graph (or digraph) by deleting edges (arcs). Boesch, Suffel and Tindell in [8] first raised

the supereulerian problem. Pulleyblank [17] proved that the problem of determining if a

graph is supereulerian is NP-complete. The supereulerian problem can also be raised for

digraphs. A digraph is said to be supereulerian if it has an eulerian spanning subdigraph,

otherwise, nonsupereulerain. Some sufficient conditions were established for a digraph

being supereulerian in [1–4,6, 7, 10–15,18].

A digraph D is weakly eulerian if d+(x) = d−(x) for every x ∈ V (D). Moreover, D is

eulerian if it is weakly eulerian and U(D) is connected. It is well-known that, a digraph

D is eulerian if and only if D is connected and d+(x) = d−(x) for every x ∈ V (D).

An orientation
−→
G of a graph G is a digraph obtained from G by replacing each edge

xy of G with an arc xy or yx. An oriented graph is an orientation of a simple graph.

An orientation of a complete graph is called a tournament. Clearly, an oriented graph D

is eulerian if and only if D is connected and d+(x) = d−(x) for every vertex x ∈ V (D).

Similarly, an orientation of a graph is said to be subeulerian if it is a spanning subdigraph

of an eulerian oriented graph, otherwise, nonsubeulerian.

Let
←→
Kn be a digraph such that there exist symmetric arcs between any distinct vertices.

Notice that any digraph D of order n is a spanning subdigraph of
←→
Kn, that is to say any

digraph is a spanning subdigraph of an eulerian digraph. But not all oriented graphs are

spanning subdigraphs of an eulerian oriented graph. It is an interesting problem to decide

whether an oriented graph is a spanning subdigraph of an eulerian oriented graph or not.

This is our main topic here.

Let
−→
G be a subeulerian orientation of a graph G of order n, and let D be an eule-

rian oriented graph spanned by
−→
G . It is easy to see that ∆0(D) ≤ (n − 1)/2 and G is

subeulerian. By Theorem 1.1, we have

Corollary 1.3. Let
−→
G be a orientation of a graph G of order n. If

−→
G is subeulerian,

then ∆0(
−→
G) ≤ (n− 1)/2 and G has no spanning subgraph isomorphic to an odd complete

bipartite graph.

For digraph D, the converse of D, denoted by
←−
D , is the digraph obtained by reversing

each arc of D. The proof of the following lemma is omitted.

Lemma 1.4. An oriented graph D is subeulerian if and only if
←−
D is subeulerian.

In this paper, we give a necessary and sufficient condition for an orientated digraph to

be subeulerian. We refine this condition in order to give necessary and sufficient condition

for an orientation of a forest being subeulerian. Furthermore, we prove that if G is a

graph of order n with n ≥ max{4∆(G)− 1, 3}, then every orientation of G is subeulerian.
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In particular, we show that if G is a graph of odd order n with ∆(G) ≤ n/4, then every

orientation of G is a spanning subdigraph of a regular tournament.

2. Preliminaries

We say that (X,Y ) partitions a set S if X and Y are non-empty and X ∪ Y = S and

X ∩ Y = ∅. We say that (X,Y ) is a (x, y)-partition of S if (X,Y ) is a partition of S and

x ∈ X and y ∈ Y .

Let G be any oriented graph. We let eG(X,Y ) denote the number of edges in the cut

(X,Y ). That is, the number of edges xy ∈ E(G) with x ∈ X and y ∈ Y . We let eG(X,Y )

denote the number of non-edges in the cut (X,Y ). That is, eG(X,Y ) = |X|·|Y |−eG(X,Y ).

Let D be a digraph or multi-digraph. Let aD(X,Y ) denote the number of arcs going from

X to Y in D. That is, the number of arcs xy ∈ A(D) with x ∈ X and y ∈ Y . If X ⊆ V (D)

then we denote the complement of X by X = V (D) \X. If the graph or digraph is clear

from the context then we omit the subscript. The following lemma is well known and

follows from the fact that any eulerian tour has to leave any set equally many times as it

returns to the set.

Lemma 2.1. If D is an eulerian digraph, then a(X,Y ) = a(Y,X) for all partitions (X,Y )

of V (D).

We say that the deficiency of a set X in D is def(X) = |aD(X,X)− aD(X,X)|. Note
that Lemma 2.1 is equivalent to saying that the deficiency of every set in a Eulerain

digraph is zero. Let Q denote all digraphs obtained from a regular tournament by adding

an isolated vertex.

Theorem 2.2. Let D be any oriented digraph of order at least 3. Then D is subeulerian

if and only if def(X) ≤ eUG[D](X,X) for all X ⊆ V (D) and D /∈ Q.

Proof. Let D be any digraph of order at least 3. First assume that D ∈ Q and x is the

isolated vertex in D (which implies that D−x is a regular tournament). If D is a spanning

subdigraph of some eulerian oriented digraph D∗, then some arc, ux, must enter x in D∗,

which implies that d+D∗(u) > d−D∗(u), a contradiction to D∗ being eulerian. So, if D ∈ Q
then D is not subeulerian.

Now assume that D is an oriented digraph and that there is some X ⊆ V (D) with

def(X) > eUG[D](X,X) and that D is a spanning subdigraph of some digraph D∗. Then

the following

defD∗(X) ≥ defD(X)− eUG[D](X,X) > 0

holds, which proves that D∗ is not eulerian, by Lemma 2.1.
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This proves one direction of the theorem. Now assume that def(X) ≤ eUG[D](X,X)

for all X ⊆ V (D) and D /∈ Q.

Let H be the multi-digraph with vertex set V (H) = {s, t} ∪ V (D) and arc set defined

as follows. For all xy /∈ UG[D] we add the 2-cycle xyx to H. Then, for all u ∈ V (G) we

add max{0, d−D(u)−d+D(u)} arcs from s to u and we add max{0, d+D(u)−d−D(u)} arcs from
u to t. This completes the construction of H. Let X1 = N+

H (s) and let X2 = V (D) \X1.

The following two claims now complete the proof (where we note that d+H(s) denotes

the number of arcs out of s in a multi-digraph).

Claim A. There exists d+H(s) arc-disjoint (s, t)-paths in H.

Proof of Claim A. We will show that for any (s, t)-partition (S, T ) of V (H) we have

aH(S, T ) ≥ d+H(s). This will complete the proof of Claim A by Mengers Theorem. Let

S1 = S ∩X1 and S2 = S ∩X2 and let S∗ = S1 ∪ S2 = S \ {s} and let T ∗ = T \ {t}. With

these definitions, direct computation yield

defD(S2) = |aD(S2, S1 ∪ T ∗)− aD(S1 ∪ T ∗, S2)|

≥ aD(S2, S1) + aD(S2, T
∗)− aD(S1, S2)− aD(T

∗, S2),

defD(T
∗) = |aD(T ∗, S1 ∪ S2)− aD(S1 ∪ S2, T

∗)|

≥ aD(T
∗, S1) + aD(T

∗, S2)− aD(S1, T
∗)− aD(S2, T

∗).

Adding the two equations above implies the following, as by the definition of S1 we have

d−D(u) − d+D(u) > 0 for all u ∈ S1 and therefore def(S1) =
∑

u d
−
D(u) − d+D(u) = aD(S2 ∪

T ∗, S1)− aD(S1, S2 ∪ T ∗),

defD(S2) + defD(T
∗) ≥ aD(S2, S1) + aD(T

∗, S1)− aD(S1, S2)− aD(S1, T
∗) = defD(S1).

This implies that the following holds, as aH(s, S1) = defD(S1) and aH(S2, t) =

defD(S2) and defD(X) ≤ eUG[D](X,X) = aH(V (D) \ X,X) = aH(X,V (D) \ X) for

all X ⊆ V (D),

d+H(s) = aH(s, S1) + aH(s, T ∗) = defD(S1) + aH(s, T ∗)

≤ defD(S2) + defD(T
∗) + aH(s, T ∗) = aH(S2, t) + defD(T

∗) + aH(s, T ∗)

≤ aH(S2, t) + aH(S1 ∪ S2, T
∗) + aH(s, T ∗) = aH(S, T ).

This completes the proof of Claim A.

Claim B. If there exist d+H(s) arc-disjoint (s, t)-paths in H, then D is subeulerian.

Proof of Claim B. Let P1, P2, . . . , Pk be d+H(s) arc-disjoint (s, t)-paths in H (k = d+H(s))

after removing s and t (and the arcs incident with s and t) from each path. Adding the
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paths P1, P2, . . . , Pk to D results in a digraph, which we denote by F , with d+F (u) = d−F (u)

for all u ∈ V (F ). If there exists 2-cycles in F , then we remove both the arcs of the 2-cycle

from F . For convenience, the resulting graph still denoted by F . Note that we still have

d+F (u) = d−F (u) for all u ∈ V (H) and that D is a spanning subdigraph of F (as no arc of

D is part of a 2-cycle in F ).

We have now proved that D is a spanning subdigraph of a weakly eulerian oriented

digraph. Let R be a weakly eulerian oriented digraph containing D as a spanning subdi-

graph such that R contains as few connected components as possible. If R is connected,

then we are done, so assume that R is not connected. If there exists a1, a2, b1, b2 ∈ V (R)

such that no connected component contains a vertex ai and a vertex bj , then adding the

arcs a1b1a2b2a2 to R gives us a weakly eulerian oriented digraph containing D as a subdi-

graph with fewer connected components than R, a contradiction. Thus there must exist

a vertex r ∈ V (R) such that R − r is a connected component of R and r is an isolated

vertex in R. As |V (R)| = |V (G)| ≥ 3 we note that |V (R− r)| ≥ 2 and as R− r is oriented

and eulerian we note that |V (R− r)| ≥ 3.

If D[V (R)\{r}] is a regular tournament then D ∈ Q, a contradiction, so D[V (R)\{r}]
is not a regular tournament. If D[V (R)\{r}] is a tournament, then R−r = D[V (R)\{r}]
is a non-regular tournament, a contradiction to R being weakly eulerian (as r is isolated

in R). So, D[V (R)\{r}] is not a tournament and there exists two vertices q, w ∈ V (R−r)

which are non-adjacent in D. If qw ∈ A(R) then replace qw with the path qrw and if

wq ∈ A(R) then replace wq with the path wrq and if q and w are non-adjacent in R

then add the 3-cycle qwrq. In all cases we obtain a contradiction to the minimality of the

number of connected components in R. This completes the proof.

Corollary 2.3. Let G be any graph of order at least 3. Then every orientation of G is

subeulerian if and only if e(X,Y ) ≤ e(X,Y ) for all partitions (X,Y ) of V (G).

Proof. Let G be any graph of order at least 3. If eG(X,X) > eG(X,X) for some subset

X ⊆ V (G), then let D be any orientation of G that orients all edges in the cut (X,X) from

X to X. In this case def(X) > eG(X,X) and so D is not subeulerian by Theorem 2.2.

If eG(X,X) ≤ eG(X,X) for all subsets X ⊆ V (G) and D is any orientation of G, then

D /∈ Q (as eG({x}, V (G) \ {x}) < e({x}, V (G) \ {x}) for all x ∈ V (G)) and therefore D

is subeulerian by Theorem 2.2 (as defD(X) ≤ eG(X,X) for all X). This completes the

proof.

3. Orientation of a forest

For convenience, a trivial orientation of a connected bipartite graph G[X,Y ] is an orien-

tation of G, in which all edges of G are oriented from X to Y , or from Y to X. Thus,
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there are two kinds of trivial orientations of a connected bipartite graph G[X,Y ], one of

which is the converse of the other.

For a positive integer k, Bk denotes the tree obtained from identifying two leaves of

two vertex-disjoint stars K1,k. Clearly, the order of Bk is 2k + 1. In particular, B1
∼= P3

and B2
∼= P5. Note that there is a unique trivial orientation of P6 up to isomorphism. For

an example of a trivial orientation of P6 and B4, see Figure 3.1.

Figure 3.1: A trivial orientation of P6 and B4.

Lemma 3.1. Each trivial orientation of P6 and Bk is nonsubeulerian, where k ≥ 1.

Proof. Let V (P6) = {v1, . . . , v6} and
−→
P6, a trivial orientation of P6. In view of Lemma 1.4,

we may assume that A(
−→
P6) = {v1v2, v3v2, v3v4, v5v4, v5v6}. Suppose that D is an eulerian

oriented graph with V (D) = V (
−→
P6) and A(D) ⊇ A(

−→
P6). By Corollary 1.3, ∆0(D) =

∆−(D) = 2. Thus v2 and v4 are nonadjacent in D. Since N−
D (v2) = {v1, v3} and N−

D (v4) =

{v3, v5}, we have N+
D (v2) = {v5, v6} and N+

D (v4) = {v1, v6}. It forces that v6 ∈ N+
D (v2) ∩

N+
D (v4). This gives d

−
D(v6) ≥ 3, contradicting that d+D(v6) = d−D(v6) ≤ (5− 1)/2.

Since B1
∼= P3, clearly, any trivial orientation of P3 is nonsubeulerian. Now let k ≥ 2.

Again by Lemma 1.4, let
−→
Bk be a trivial orientation of Bk such that ∆0(

−→
Bk) = ∆−(

−→
Bk).

Let v1 and v2 be the two centers of K1,k constructing Bk. Let N(v) = {v1, v2}. Note that

d−(vi) = k and |V \ (N(vi) ∪ {v1, v2})| = k − 1 for each i ∈ {1, 2}. If D is an eulerian

oriented graph with V (D) = V (Bk), then ∆0(D) = k. In particular, d+D(vi) = d−D(vi) = k

for each i ∈ {1, 2}. It forces each edge joining v1 and a vertex in N [v2] \ {v} is oriented

from v1 to N [v2] \ {v} and each edge joining v2 and a vertex in N [v1] \ {v} is oriented

from v2 to N [v1] \ {v}. But, this is not possible for the orientation of v1v2.

Let F be a digraph class contains exactly trivial orientation of P6 and all trivial

orientation of Bk where k ≥ 2.

Theorem 3.2. Let D be any orientation of some forest F . Then D is subeulerian if and

only if D /∈ F and ∆0(D) ≤ (|V (D)| − 1)/2.

Proof. By Corollary 1.3 and Lemma 3.1, it remains to prove its sufficiency.

Now assume that D is any orientation of some forest, F , with ∆0(D) ≤ (|V (D)|−1)/2

and such that D is not subeulerian. We will show that D ∈ F , which will complete
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the proof. By Theorem 2.2 there must exist a subset X ⊆ V (D) such that def(X) >

eUG[D](X,X). Without loss of generality assume that |X| ≤ |X| (otherwise consider

X instead of X, as def(X) = def(X)). Also, without loss of generality assume that

aD(X,X) ≥ aD(X,X) (otherwise we can reverse all arcs). Now def(X) = aD(X,X) −
aD(X,X) and eUG[D](X,X) = |X|(|V (D)| − |X|)− (aD(X,X)+ aD(X,X)). This implies

(3.1) 0 > eUG[D](X,X)− def(X) ≥ |X|(|V (D)| − |X|)− 2aD(X,X).

We now consider the following cases.

Case 1: |X| = 1. Let X = {x}. By (3.1) we note that 2aD(X,X) > 1 · (|V (D)| − 1).

Therefore d+D(x) > (|V (D)| − 1)/2, a contradiction.

Case 2: |X| = 2. By (3.1) we note that 2aD(X,X) > 2(|V (D)| − 2). So aD(X,X) =

|V (D)| − 1. That is, all arcs of D go from X to X and d+(x) = (|V (D)| − 1)/2 for each

x ∈ X, which implies that D ∈ F . This completes the case when |X| = 2.

Case 3: |X| = 3. By (3.1) we note that 2aD(X,X) > 3(|V (D)| − 3). If aD(X,X) ≤
|V (D)| − 2 or if |V (D)| ≥ 7 then we obtain a contradiction to the above (as |V (D)| ≥ 6,

as 3 = |X| ≤ |X|). So we must have aD(X,X) = |V (D)| − 1 and |V (D)| = 6, which, as

∆0(D) ≤ (|V (D)| − 1)/2, implies that D ∈ F . This completes the case when |X| = 3.

Case 4: |X| ≥ 4. By (3.1) we note that 2(|V (D)| − 1) ≥ 2aD(X,X) > 4(|V (D)| − 4),

which implies that 14 > 2|V (D)|. As 4 = |X| ≤ |X|, we note that |V (D)| ≥ 8, a

contradiction to 14 > 2|V (D)|.

4. Orientation of Cn

For any two vertices x, y ∈ V (G), dG(x, y) denote the distance between x and y in G.

Theorem 4.1. An orientation, Dn, of Cn is subeulerian if and only if one of the following

hold.

(1) Dn is a directed cycle when 3 ≤ n ≤ 4;

(2) Dn contains no trivial orientation of Pn and 5 ≤ n ≤ 6;

(3) n ≥ 7.

Proof. Part (1) is immediately seen and part (3) follows from Theorem 5.1. In order to

prove part (2) we first consider the case when n = 5. If Dn contains a trivial orientation of

Pn, then letting X be the sources of the trivial orientation of Pn we note that a(X,V (D5)\
X) ≥ 4 > 3 = |X|× |V (D5) \X|/2. So Dn is not subeulerian by Lemma 2.1. Now assume

that Dn contains no trivial orientation of Pn. There are only three possible orientations

of C5 (see Figure 4.1) that contain no trivial orientation of P5 and it is not difficult to
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check that each of these are subdigraphs of the unique 2-regular tournament of order five

(which is eulerian).

So now consider n = 6. If D6 contains a trivial orientation of P6, then letting X be

the sources of the trivial orientation of Pn we note that a(X,V (D6) \ X) ≥ 5 > 4.5 =

|X| × |V (D6) \X|/2. So D6 is not subeulerian by Lemma 2.1.

Figure 4.1: D5
∼= Fi where i ∈ {1, 2, 3} and D6

∼= Fi where i ∈ {4, 5, 6}.

Now assume that D6 contains no trivial orientation of P6. Let X contain all sources in

D6. Let G
∗ denote the complement of the underlying graph of D6. So G∗ is 3-regular and

3-edge-connected. If |X| = 3 then D6 contains a trivial orientation of P6, a contradiction.

If |X| = 2 then let X = {x1, x2} and note that D6 is unique if dC6(x1, x2) = 2 as show

in Figure 4.1, F4 and that there are two possible options for D6 if dC6(x1, x2) = 3 (see

Figure 4.1, F5 and F6). One can easily check that D6 is subeulerian in all three cases.

If |X| = 1 then let X = {x} let y be the unique sink in Dn and let P1 and P2 be two

edge-disjoint (y, x)-paths in G∗ (which exist as G∗ is 3-edge-connected). Orient P1 and

P2 from y to x and add these arcs to Dn. This results in a eulerain digraph, showing that

D6 is subeulerian. If |X| = 0 then D6 is an oriented cycle and therefore eulerian (and

subeulerian). This completes the proof.

5. Orientation of graphs with order n ≥ max{4∆− 1, 3}

In this section, we prove that if G is a graph of order n with n ≥ max{4∆ − 1, 3}, then
every orientation of G is subeulerian. In particular, we show that if G is a graph of odd

order n with ∆(G) ≤ n/4, then every orientation of G is a spanning subdigraph of a

regular tournament.

Theorem 5.1. If G is a graph of order n with n ≥ max{4∆(G) − 1, 3}, then every

orientation of G is subeulerian.

Proof. Let G be a graph of order n with n ≥ max{4∆(G) − 1, 3} and (X,Y ) be any

partition of V (G). Without loss of generality assume that |Y | ≥ |X|, which implies

that |Y | ≥ ⌈n/2⌉ ≥ 2∆(G). As every vertex in X has at most ∆(G) neighbours in Y
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(and therefore at least ∆(G) non-neighbours in Y ), we note that e(X,Y ) ≤ e(X,Y ). By

Corollary 2.3 we note that every orientation of G is subeulerian.

Furthermore, we prove that the order and maximum degree condition in Theorem 5.1

is tight by the following lemma.

Lemma 5.2. For any positive integer k, a trivial orientation
−→
G of a k-regular bipartite

graph G of order n = 4k − 2 is nonsubeulerian.

Proof. Let
−→
G be a trivial orientation of G = G[X,Y ] with X = {x1, . . . , x2k−1} and

Y = {y1, . . . , y2k−1}. Without loss of generality, we may assume that

d+−→
G
(xi) = k for each i ∈ {1, . . . , 2k − 1}.

If D is an eulerian oriented graph spanned by
−→
G , then for each i, d+D(xi) = d−D(xi). Let

D[X,Y ] = D −A(D[X])−A(D[Y ]). Since G is regular, |X| = |Y | = n/2 = 2k − 1. Since

for each i, d+D[X,Y ](xi) ≥ d+−→
G
(xi) = k and d+D[X,Y ](xi) + d−D[X,Y ](xi) ≤ |Y | = 2k − 1, it

follows that d+D[X,Y ](xi) > d−D[X,Y ](xi). Since d
+
D[X,Y ](xi)+d+D[X](xi) = d+D(xi) = d−D(xi) =

d−D[X,Y ](xi)+d−D[X](xi), we have d
+
D[X](xi) < d−D[X](xi) for each i. This is not possible.

Theorem 5.3. If G is a graph of odd order n with ∆(G) ≤ n/4, then every orientation

of G is a spanning subdigraph of a regular tournament.

Proof. Let G is a graph of odd order n with ∆(G) ≤ n/4. As n ≥ 4∆(G) ≥ 4∆(G) − 1,

we note that Theorem 5.1 implies that there exists an eulerian oriented graph D∗ such

that D is a spanning subdigraph of D∗. Let G∗ be the underlying graph of D∗ and let

G∗ denote the complement of G∗. As D∗ is eulerian (and contains no 2-cycles) we note

that all degrees in G∗ are even and therefore that all degrees in G∗ are even (as n is odd).

While there exists any edge in G∗ we can therefore pick a cycle, C, in G∗ and orient it

(in one of the two ways) and add it to D∗. Doing this as long as G∗ contains edges, will

result in the desired tournament D∗.
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