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A Non-Archimedean Second Main Theorem for Small Functions and

Applications

Ta Thi Hoai An and Nguyen Viet Phuong*

Abstract. We establish a slowly moving target second main theorem for meromorphic

functions on a non-Archimedean field, with counting functions truncated to level 1. As

an application, we show that two meromorphic functions on a non-Archimedean field

must coincide if they share q (q ≥ 5) distinct small functions, ignoring multiplicities.

Thus, our work improves the results in [2].

1. Introduction and main results

As a consequence of the Truncated Nevanlinna Second Main Theorem, R. Nevanlinna [5]

himself proved that for two distinct nonconstant meromorphic functions f and g on the

complex plane C, they cannot have the same inverse images for five distinct values. Then,

some authors (Yuhua and Jianyong [9], Yao [7], Thai and Tan [6], for example) have

generalized the result where distinct values are replaced by small functions. Here, a

meromorphic function a is called a small function with respect to f if T (r, a) = o(T (r, f))

for r → ∞, where T (r, f) is the Nevanlinna characteristic function of f . In 2002, Yi [8]

extended the five values theorem to the case of sharing five distinct small functions. The

proofs of the above results are based straightforwardly on Cartan’s auxiliary functions. In

2004, Yamanoi gave a sharp moving targets second main theorem with truncated counting

functions, and as its direct consequence, one can obtain Yi’s result.

Nevanlinna theory in complex analysis is so beautiful that one would naturally be

interested in determining how such a theory would look in K, an algebraically closed field

of characteristic zero, complete with respect to a non-Archimedean absolute value | · |.
Adams and Straus [1] (see also [3]) proved the above Nevanlinna result about five distinct

values in the complex case can be replaced with four distinct values in the p-adic case. To
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date, we do not have a sharp non-Archimedean analog of the Yamanoi theorem. Therefore,

one question is created: what is the fewest number of shared slowly moving targets that

uniquely determines a non-constant non-Archimedean meromorphic function?

Recently, A. Escassut and C. C. Yang [2] gave a truncated slowly moving target second

main theorem for non-Archimedean meromorphic functions. Their proof makes use of

different techniques than the theorem of Yamanoi in complex analysis. As a consequence,

they showed that two non-constant non-Archimedean meromorphic functions sharing 7

slowly moving targets must be equal. However, the number 7 is not sharp.

In this work we are able to increase the coefficient q/3 in front of the characteristic

function in Theorem 2 in [2] to 2q/5. This allows us to lower the number of slowly moving

targets in the uniqueness result from seven to five. The problem of whether a non-constant

non-Archimedean meromorphic function is determined by four slowly moving targets, as

is the case with constant values as in Adams and Straus’s work, remains open.

Our first result is as follows.

Theorem 1.1. Let f be a nonconstant meromorphic function on K. Let a1, . . . , aq be q

distinct small functions with respect to f . Then, we have

2q

5
T (r, f) ≤

q∑
i=1

N

(
r,

1

f − ai

)
+ S(r, f).

Let k be a positive integer or ∞, we denote by E(a, k, f) the set of distinct zeros of

f − a with multiplicities at most k, where a zero of f −∞ means a pole of f .

Remark 1.2. If k = ∞, then the set E(a,∞, f) is just the set of distinct zeros of f − a

and was denoted by E(a, f) as usually.

Let f and g be nonconstant non-Archimedean meromorphic functions. Then, E(a, k, f)

= E(a, k, f) means that z0 is a zero of f − a with multiplicity m ≤ k if and only if it is a

zero of g − a with multiplicity n ≤ k, where m is not necessarily equal to n, and if z0 is a

zero of f − a with multiplicity p > k then it does not need to be a zero of g − a.

In the special case k = ∞, the condition E(a, f) = E(a, g) means f and g share the

function a, ignoring multiplicities, as usual.

As an application of Theorem 1.1, we get a uniqueness theorem for the meromorphic

functions sharing a few small functions as follows.

Theorem 1.3. Let f and g be two nonconstant meromorphic functions on K. Let

a1, . . . , aq (q ≥ 5) be q distinct small functions with respect to f and g. Let k1, . . . , kq

be q positive integers or +∞ with

q∑
j=1

1

kj + 1
<

2q(q − 4)

5(q + 4)
.
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If

E(aj , kj , f) = E(aj , kj , g), j = 1, . . . , q,

then f ≡ g.

In the case k1 = · · · = kq = k, we can get the result with slightly smaller multiples as

follows.

Theorem 1.4. Let f and g be two nonconstant meromorphic functions on K. Let

a1, . . . , aq (q ≥ 5) be q distinct small functions with respect to f and g. Let k be a

positive integer or +∞ with k > 3(q+4)
2(q−4) . If

E(aj , k, f) = E(aj , k, g), j = 1, . . . , q,

then f ≡ g.

By Theorem 1.4, we obtain the following corollary, which is a uniqueness theorem for

non-Archimedean meromorphic functions sharing 5 small functions ignoring multiplicities.

Corollary 1.5. Let f and g be two nonconstant meromorphic functions on K. Let

a1, . . . , a5 be 5 distinct small functions with respect to f and g. If f and g share aj

ignoring multiplicities (j = 1, . . . , 5), then f ≡ g.

Note that Corollary 1.5 improves a result of A. Escassut and C. C. Yang [2, Theorem 3],

where the number of small functions is reduced to 5.

2. Preliminary on Nevanlinna theory for non-Archimedean meromorphic functions

We recall the following definitions and results (cf. [4]). Let K be an algebraically closed

field of arbitrary characteristic, complete with respect to a non-Archimedean absolute

value | · |. Let f be a meromorphic function. We denote by n
(
r, 1

f

)
the number of zeros of

f in {z | |z| < r}, counting multiplicity. Define the counting function of f by

N

(
r,

1

f

)
=

∫ r

0

n
(
r, 1

f

)
− n

(
0, 1

f

)
t

dt+ n

(
0,

1

f

)
log r,

where n
(
0, 1

f

)
is the order of zero of f at z = 0.

We denote by Nk)

(
r, 1

f−a

)
the counting function of zeros of f − a with multiplicities

at most k, by N (k+1

(
r, 1

f−a

)
the counting function of zeros of f − a with multiplicities at

least k + 1, where each multiple zero in these counting functions counted only once.

We define the compensation function by

m(r, f) = log+ |f |r = max{0, log |f |r},
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and the characteristic function by

T (r, f) = m(r, f) +N(r, f).

The logarithmic derivative lemma can be stated as follows (see [4]).

Lemma 2.1 (Logarithmic derivative lemma). Let f be a non-constant meromorphic func-

tion on K. Then for any integer k > 0, we have

m

(
r,
f (k)

f

)
= O(1)

as r → ∞.

We state the first and second fundamental theorem in Nevanlinna theory (see e.g. [4]):

Theorem 2.2 (First main theorem). Let f(z) be a non-Archimedean meromorphic func-

tion and c ∈ K. Then

T

(
r,

1

f − c

)
= T (r, f) +O(1).

Theorem 2.3 (Second fundamental theorem). Let a1, . . . , aq be a set of distinct numbers

of K. Let f be a non-constant meromorphic function on K. Then, the inequality

(q − 2)T (r, f) ≤
q∑

j=1

N

(
r,

1

f − aj

)
− log r +O(1).

3. Proof of Theorem 1.1

We first consider the following lemma.

Lemma 3.1. Let f be a nonconstant meromorphic function on K. Let a1, . . . , a5 be

distinct small functions with respect to f . We have

2T (r, f) ≤
5∑

i=1

N

(
r,

1

f − ai

)
+ S(r, f).

Proof. By the transformation

F =
f − a2
f − a1

· a3 − a1
a3 − a2

,

we just need to prove the theorem in the case that a1 = ∞, a2 = 0, a3 = 1, a4, a5 ̸≡ 0, 1,∞,

a4 ̸≡ a5. If one of a4 and a5 is constant, then we need to prove nothing according to
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the second main theorem for constants. Thus, we may assume that both a4 and a5 are

nonconstant small functions of f . Set

(3.1) H =

∣∣∣∣∣∣∣∣∣
ff ′ f ′ f(f − 1)

a4a
′
4 a′4 a4(a4 − 1)

a5a
′
5 a′5 a5(a5 − 1)

∣∣∣∣∣∣∣∣∣ .
By a simple computation, we get

H = f(f − 1)a4(a4 − 1)a5(a5 − 1)

×
[(

a′4
a4

− a′5
a5

)(
f ′

f − 1
− a′5

a5 − 1

)
−
(

a′4
a4 − 1

− a′5
a5 − 1

)(
f ′

f
− a′5

a5

)]
.

(3.2)

We claim that H ̸≡ 0. Indeed, on the contrary, assume that H ≡ 0. Since f is not constant

and a4, a5 ̸≡ 0, 1, it follows from (3.1) that(
a′4
a4

− a′5
a5

)
f ′

f − 1
−
(

a′4
a4 − 1

− a′5
a5 − 1

)
f ′

f

≡
(
a′4
a4

− a′5
a5

)
a′5

a5 − 1
−
(

a′4
a4 − 1

− a′5
a5 − 1

)
a′5
a5

.

(3.3)

We now distinguish four cases

Case 1.
a′4
a4

≡ a′5
a5
. It follows from (3.3) that

a′4
a4−1 ≡ a′5

a5−1 or f ′

f ≡ a′5
a5
. If

a′4
a4−1 ≡ a′5

a5−1

then a4 and a5 are constants, which contradicts our assumption. This means f ′

f ≡ a′5
a5
.

Hence, we get f = ca5, where c is a constant. This is a contradiction.

Case 2.
a′4

a4−1 ≡ a′5
a5−1 . By an argument similar to Case 1, we also get a contradiction.

Case 3.
a′4
a4

− a′5
a5

≡ a′4
a4−1 − a′5

a5−1 ̸≡ 0. It follows from (3.3) that

f ′

f − 1
− f ′

f
≡ a′5

a5 − 1
− a′5

a5
,

which implies
f − 1

f
≡ C

a5 − 1

a5
,

where C is a constant. Thus, we obtain

1

f
≡ 1− C

a5 − 1

a5
.

It follows that

T (r, f) = T

(
r,

1

f

)
+O(1) = S(r, f).

This is a contradiction.

Case 4.
a′4
a4

̸≡ a′5
a5
,

a′4
a4−1 ̸≡ a′5

a5−1 and
a′4
a4

− a′5
a5

̸≡ a′4
a4−1 − a′5

a5−1 . Then, it follows from (3.3)

that the zeros of f −1 can only occur at the zeros or 1-points or the poles of aj , (j = 4, 5),
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or the zeros of
a′4
a4

− a′5
a5
. Similarly, the zeros of f can only occur at the zeros or 1-points

or the poles of aj , (j = 4, 5), or the zeros of
a′4

a4−1 − a′5
a5−1 . Furthermore, from (3.3), we

can also see that the poles of f can only occur at the zeros or 1-points or the poles of aj ,

(j = 4, 5), or the zeros of
a′4
a4

− a′5
a5

− a′4
a4−1 +

a′5
a5−1 . Therefore, we get

(3.4) N(r, f) +N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
= S(r, f).

By (3.4) and applying the Second Main Theorem for f and 0, 1,∞, we have

T (r, f) ≤ N(r, f) +N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
− log r +O(1) = S(r, f).

This is a contradiction again. Thus, we must have H ̸≡ 0.

Given a real number 0 < r < ∞. Let

δ(r) = min
{
1, |a4|r, |a5|r, |a4 − 1|r, |a5 − 1|r, |a4 − a5|r

}
.

Then, we have

log+
1

δ(r)
≤ log+max

{
1,

1

|a4|r
,

1

|a5|r
,

1

|a4 − 1|r
,

1

|a5 − 1|r
,

1

|a4 − a5|r

}
≤ log+

(
1 +

1

|a4|r
+

1

|a5|r
+

1

|a4 − 1|r
+

1

|a5 − 1|r
+

1

|a4 − a5|r

)
≤ log+

1

|a4|r
+ log+

1

|a5|r
+ log+

1

|a4 − 1|r
+ log+

1

|a5 − 1|r

+ log+
1

|a4 − a5|r
+ log 6

= m

(
r,

1

a4

)
+m

(
r,

1

a5

)
+m

(
r,

1

a4 − 1

)
+m

(
r,

1

a5 − 1

)
+m

(
r,

1

a4 − a5

)
+ log 6

= S(r, f).

We first consider the case when

|f − aj |r >
1

2
δ(r)

for all 2 ≤ j ≤ 5. In this case,

m

(
r,

1

f

)
+m

(
r,

1

f − 1

)
+m

(
r,

1

f − a4

)
+m

(
r,

1

f − a5

)
< 5 log+

1

δ(r)
+O(1) = S(r, f).

(3.5)



A Non-Archimedean Second Main Theorem for Small Functions and Applications 919

Now let i (2 ≤ i ≤ 5) be the index among {2, 3, 4, 5} such that

|f − ai|r ≤
1

2
δ(r).

Then for any j ̸= i, 2 ≤ j ≤ 5, we have

δ(r) ≤ |ai − aj |r ≤ |f − ai|r + |f − aj |r ≤
1

2
δ(r) + |f − aj |r,

so

|f − aj |r ≥
1

2
δ(r).

Therefore, for j ̸= i, we have

5∑
j=2
j ̸=i

m

(
r,

1

f − aj

)
=

5∑
j=2
j ̸=i

log+
1

|f − aj |r
≤ 3 log+

1

δ(r)
.

Combining (3.5) and the above inequality, we get

5∑
j=2
j ̸=i

m

(
r,

1

f − aj

)
= S(r, f).

On the other hand, for 2 ≤ i ≤ 5, we can write

ff ′ = (f − ai)(f
′ − a′i) + a′i(f − ai) + ai(f

′ − a′i) + aia
′
i,

f ′ = (f ′ − a′i) + a′i,

f(f − 1) = f2 − f = (f − ai)
2 + (2ai − 1)(f − ai) + a2i − ai.

By substituting the above equalities into (3.1) and using the determinant’s properties, we

get

(3.6) H =

∣∣∣∣∣∣∣∣∣
gi f ′ − a′i hi

a4a
′
4 a′4 a4(a4 − 1)

a5a
′
5 a′5 a5(a5 − 1)

∣∣∣∣∣∣∣∣∣ ,
where

gi = (f − ai)(f
′ − a′i) + a′i(f − ai) + ai(f

′ − a′i), hi = (f − ai)
2 + (2ai − 1)(f − ai)

for 2 ≤ i ≤ 5 (note that a2 = 0, a3 = 1). By the definition of δ(r), we have δ(r) ≤ 1+ |ai|r.
Hence,

log+ δ(r) ≤ log+(1 + |ai|r) ≤ log+ |ai|r + log 2 = m(r, ai) + log 2 = S(r, f).
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Thus, it follows from (3.6) and the Logarithmic Derivative Lemma that

log+
∣∣∣∣ H

f − ai

∣∣∣∣
r

≤ log+
∣∣∣∣f ′ − a′i
f − ai

∣∣∣∣
r

+ log+ |f − ai|r

+O(log+ |ai|r + log+ |a′i|r + log+ |a4|r + log+ |a′4|r + log+ |a5|r + log+ |a′5|r)

≤ m

(
f ′ − a′i
f − ai

)
+ log+ δ(r) + S(r, f)

= S(r, f).

Hence, we get

m

(
r,

1

f − ai

)
= log+

1

|f − ai|r
≤ log+

∣∣∣∣ H

f − ai

∣∣∣∣
r

+ log+
∣∣∣∣ 1H
∣∣∣∣
r

≤ m

(
r,

1

H

)
+ S(r, f).

(3.7)

It follows from (3.5), (3.6) and (3.7) that in any case, we have

m

(
r,

1

f

)
+m

(
r,

1

f − 1

)
+m

(
r,

1

f − a4

)
+m

(
r,

1

f − a5

)
≤ m

(
r,

1

H

)
+ S(r, f).

Hence, by the First Main Theorem, we get

4T (r, f) ≤ N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+N

(
r,

1

f − a4

)
+N

(
r,

1

f − a5

)
+ T (r,H)−N

(
r,

1

H

)
+ S(r, f).

(3.8)

On the other hand, suppose that z0 is a zero of f − ai, (2 ≤ i ≤ 5) of order s > 1 which is

not a pole of a4 or a5. Then, it follows from (3.6) that z0 is also a zero of H of order at

least s− 1. Hence, from (3.8) and the above observations, we get

4T (r, f) ≤ N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+N

(
r,

1

f − a4

)
+N

(
r,

1

f − a5

)
+ T (r,H) + S(r, f).

(3.9)

From (3.2), we have

m(r,H) ≤ 2m(r, f) + S(r, f),

N(r,H) ≤ 2N(r, f) +N(r, f) + S(r, f).

Hence, we get

(3.10) T (r,H) ≤ 2T (r, f) +N(r, f) + S(r, f).
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Combining (3.9) and (3.10), we obtain

2T (r, f) ≤ N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+N

(
r,

1

f − a4

)
+N

(
r,

1

f − a5

)
+ S(r, f).

This completes the proof of Lemma 3.1.

Proof of Theorem 1.1. By Lemma 3.1, for every subset {i1, . . . , i5} of {1, . . . , q} such that

1 ≤ i1 < · · · < i5 ≤ q, we have

(3.11) 2T (r, f) ≤
5∑

s=1

N

(
r,

1

f − ais

)
+ S(r, f).

It is easily seen that the number of such inequalities is C5
q . Summing up of (3.11) over all

subsets {i1, . . . , i5} of {1, . . . , q} as above, we get

2C5
qT (r, f)

≤
∑

{i1,...,i5}⊂{1,...,q}
1≤i1<···<i5≤q

(
N

(
r,

1

f − ai1

)
+N

(
r,

1

f − ai2

)
+N

(
r,

1

f − ai3

)

+N

(
r,

1

f − ai4

)
+N

(
r,

1

f − ai5

))
+ S(r, f).

(3.12)

In (3.12), for each index ik, the number of terms N
(
r, 1

f−aik

)
is C4

q−1. Hence, from (3.12),

we get

2C5
qT (r, f) ≤ C4

q−1

q∑
i=1

N

(
r,

1

f − ai

)
+ S(r, f).

It follows that

2q

5
T (r, f) ≤

q∑
i=1

N

(
r,

1

f − ai

)
+ S(r, f).

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.3

To prove Theorem 1.3, we need to prove the following lemma.

Lemma 4.1. Let f and g be nonconstant meromorphic functions on K and a1, . . . , aq be

q distinct small functions with respect to f and g. Let k1, . . . , kq be q positive integers or

+∞. Suppose that

E(aj , kj , f) = E(aj , kj , g), j = 1, . . . , q.
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If f ̸≡ g, then for every subset {i1, i2, i3, i4} of {1, . . . , q}, we have

∑
j∈{1,...,q}\{i1,...,i4}

Nkj)

(
r,

1

f − aj

)
≤

4∑
s=1

(
N (kis+1

(
r,

1

f − ais

)
+N (kis+1

(
r,

1

g − ais

))
+ S(r, f) + S(r, g).

Proof. Without loss of generality, we just need to prove that

q∑
i=5

Nki)

(
r,

1

f − ai

)
≤

4∑
j=1

(
N (kj+1

(
r,

1

f − aj

)
+N (kj+1

(
r,

1

g − aj

))
+ S(r, f) + S(r, g).

(4.1)

If
∑q

i=5Nki)

(
r, 1

f−ai

)
= S(r, f) + S(r, g), then (4.1) obviously holds. Thus, in the

following we may assume that

(4.2)

q∑
i=5

Nki)

(
r,

1

f − ai

)
̸= S(r, f) + S(r, g).

By using the transformation

L(w) =
w − a1
w − a2

· a3 − a2
a3 − a1

and considering two functions F = L(f), G = L(g) if necessary, we may assume that

a1 = 0, a2 = ∞, a3 = 1 and a4, . . . , aq are distinct small functions with respect to f and

g, ai ̸≡ 0, 1,∞ for i = 4, . . . , q.

Set

(4.3) M :=
f ′(a′4g − a4g

′)(f − g)

f(f − 1)g(g − a4)
− g′(a′4f − a4f

′)(f − g)

g(g − 1)f(f − a4)
.

Then we have

(4.4) M =
(f − g)Q

f(f − 1)(f − a4)g(g − 1)(g − a4)
,

where

Q = f ′(a′4g − a4g
′)(f − a4)(g − 1)− g′(a′4f − a4f

′)(g − a4)(f − 1)

= a′4ff
′g2 − a′4ff

′g − a4(a4 − 1)ff ′g′ − a4a
′
4f

′g2 + a4a
′
4f

′g − a′4f
2gg′

+ a′4fgg
′ + a4(a4 − 1)f ′gg′ + a4a

′
4f

2g′ − a4a
′
4fg

′.

(4.5)

Suppose that M ≡ 0. Then from (4.3) we have

(4.6)
f ′(a′4g − a4g

′)(f − g)

f(f − 1)g(g − a4)
≡ g′(a′4f − a4f

′)(f − g)

g(g − 1)f(f − a4)
.
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If a4 is a constant then f ≡ g, which contradicts our assumption. Thus, a4 is not a

constant. It follows from (4.6) that

(f − 1)(g − a4)

(g − 1)(f − a4)
− 1 ≡ f ′(a′4g − a4g

′)

g′(a′4f − a4f ′)
− 1,

which implies
(f − g)(1− a4)

(g − 1)(f − a4)
≡ a′4[(f

′ − g′)g − (f − g)g′]

g′(a′4f − a4f ′)
.

This yields that

(4.7)
f ′ − g′

f − g
≡ (1− a4)g

′(a′4f − a4f
′)

a′4g(g − 1)(f − a4)
+

g′

g
.

It follows from (4.2) that there exists a point z0 that is a common zero of f−aj and g−aj ,

and it is not neither a zero nor a pole of a4, a
′
4, aj , aj −1, aj −a4, for any 5 ≤ j ≤ q. Then,

z0 must be a pole of the left-hand side of (4.7), and not be a pole of the right-hand side

of (4.7). This is a contradiction. Thus M ̸≡ 0.

Suppose that z1 is a common zero of f − aj and g− aj and it is not neither a zero nor

a pole of a4, aj , aj − 1, aj − a4 for 5 ≤ j ≤ q. Then, z1 is a zero of f − g and is not a pole

of
Q

f(f − 1)(f − a4)g(g − 1)(g − a4)
,

which implies that z1 is a zero of M . Since E(aj , kj , f) = E(aj , kj , g) for any j = 1, . . . , q,

we have
q∑

i=5

Nki)

(
r,

1

g − ai

)
=

q∑
i=5

Nki)

(
r,

1

f − ai

)
≤ N

(
r,

1

M

)
+ S(r, f) + S(r, g)

≤ m(r,M) +N(r,M) + S(r, f) + S(r, g).

(4.8)

We will estimate m(r,M). From (4.3) we get

M =
f ′

f − 1

a′4g − a4g
′

g(g − a4)
−
(

f ′

f − 1
− f ′

f

)
a′4g − a4g

′

g − a4

+
g′

g − 1

a′4f − a4f
′

f(f − a4)
−
(

g′

g − 1
− g′

g

)
a′4f − a4f

′

f − a4

=
f ′

f − 1

(
g′

g
− g′ − a′4

g − a4

)
−
(

f ′

f − 1
− f ′

f

)(
a′4 − a4

g′ − a′4
g − a4

)
+

g′

g − 1

(
f ′

f
− f ′ − a′4

f − a4

)
−
(

g′

g − 1
− g′

g

)(
a′4 − a4

f ′ − a′4
f − a4

)
.

(4.9)

Combining (4.9) and lemma of the logarithmic derivative, we obtain

(4.10) m(r,M) = S(r, f) + S(r, g).
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Next, we estimate the counting function N(r,M). It follows from (4.3) that the poles

of M can only occur at the zeros of f − ai, and g − ai with i = 1, 2, 3, 4 and the poles of

a′4, a4. Remind that a1 = 0, a2 = ∞, a3 = 1 and the zeros of f − ∞ mean the poles of

1/f . We consider all the following possibilities.

Case 1. z is a pole of a′4 or a4. We have ord∞a′4
(z) = ord∞a4(z) + 1, where ord∞a (z)

denotes the order of a pole of a function a at z. From the formula of M in (4.3), we obtain

ord∞M (z) ≤ ord∞a4(z) + 2 ≤ 3 ord∞a4(z).

Case 2. For each i = 1, 3 or 4, assume that z is a common zero of f−ai and g−ai, but it

is not a pole of a4. Then z is a zero of f−g of order at least min
{
ord0f−ai

(z), ord0g−ai(z)
}
.

From (4.5), z is a zero of Q of order at least ord0f−ai
(z) + ord0g−ai(z) − 1. From (4.4) we

have

ord0M (z) ≥ min
{
ord0f−ai

(z), ord0g−ai(z)
}
+ ord0f−ai

(z) + ord0g−ai(z)− 1

−
(
ord0f−ai

(z) + ord0g−ai(z)
)

≥ min
{
ord0f−ai

(z), ord0g−ai(z)
}
− 1

≥ 0.

Hence, z is not a pole of M .

Case 3. z is a common pole of f and g but it is not a pole of a4. Then, from (4.5), z is

a pole of Q of order at most 2 ord∞f (z)+ 2 ord∞g (z)+ 1. Then, z is a pole of f − g of order

max
{
ord∞f (z), ord∞g (z)

}
. Hence, from (4.4) we see that z is a pole of the numerator of

M of order at most 2 ord∞f (z) + 2 ord∞g (z) + 1+max
{
ord∞f (z), ord∞g (z)

}
and it is a pole

of the denominator of M of order 3 ord∞f (z) + 3 ord∞g (z). Since

2 ord∞f (z) + 2 ord∞g (z) + 1 +max
{
ord∞f (z), ord∞g (z)

}
−
(
3 ord∞f (z) + 3 ord∞g (z)

)
= 1 +max

{
ord∞f (z), ord∞g (z)

}
−
(
ord∞f (z) + ord∞g (z)

)
≤ 0,

we see that z is not a pole of M .

Case 4. Assume that z is a zero only of either f − ai or g− ai, i = 1, 2, 3 or 4 and z is

not a pole of a4. By the hypothesis

E(aj , kj , f) = E(aj , kj , g), j = 1, . . . , q,

all zeros order at most k of f − ai will be zeros of g − ai. Hence, in this case we may

assume z to be either a zero of f − ai or a zero of g − ai of order at least k + 1. The

formula (4.9) can be written in terms of

M =

4∑
i,j=1

a

(
(f − ai)

′

f − ai
· (g − aj)

′

g − aj

)
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when a is either a4 or a′4. For each term of the form fi :=
(f−ai)

′

f−ai
we have

ord∞fi (z) = min
{
1, ord0f−ai

(z)
}
:= ord

0
f−ai(z),

which implies

ord∞M (z) ≤ max
i,j=1,2,3,4

{
ord

0
f−ai(z) + ord

0
g−aj (z)

}
.

So, from the assumption and the above observations, we get

(4.11) N(r,M) ≤
4∑

j=1

(
N (kj+1

(
r,

1

f − aj

)
+N (kj+1

(
r,

1

g − aj

))
+ S(r, f) + S(r, g).

By combining (4.8), (4.10) and (4.11), we get (4.1). The proof of Lemma 4.1 is

completed.

Proof of Theorem 1.3. Suppose that f ̸≡ g. By Lemma 4.1, for every subset {i1, . . . , i4}
of {1, . . . , q}, we have

q∑
j=1

Nkj)

(
r,

1

f − aj

)
−

4∑
s=1

Nkis )

(
r,

1

f − ais

)

≤
4∑

s=1

(
N (kis+1

(
r,

1

f − ais

)
+N (kis+1

(
r,

1

g − ais

))
+ S(r, f) + S(r, g).

(4.12)

Taking summing up of (4.12) over all subsets {i1, . . . , i4} of {1, . . . , q}, we get

C4
q

q∑
j=1

Nkj)

(
r,

1

f − aj

)
−

∑
{i1,...,i4}⊂{1,...,q}
1≤i1<···<i4≤q

4∑
s=1

Nkis )

(
r,

1

f − ais

)

≤
∑

{i1,...,i4}⊂{1,...,q}
1≤i1<···<i4≤q

4∑
s=1

(
N (kis+1

(
r,

1

f − ais

)
+N (kis+1

(
r,

1

g − ais

))

+ S(r, f) + S(r, g).

In the above inequality, for each index is, the number of terms N
(
r, 1

f−ais

)
is C3

q−1. Hence,

it follows that

(q − 4)

q∑
j=1

Nkj)

(
r,

1

f − aj

)
≤ 4

q∑
j=1

(
N (kj+1

(
r,

1

f − aj

)
+N (kj+1

(
r,

1

g − aj

))
+ S(r, f) + S(r, g).
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By a similar argument, we have

(q − 4)

q∑
j=1

Nkj)

(
r,

1

g − aj

)
≤ 4

q∑
j=1

(
N (kj+1

(
r,

1

f − aj

)
+N (kj+1

(
r,

1

g − aj

))
+ S(r, f) + S(r, g).

Hence, we get

(q − 4)

q∑
j=1

(
N

(
r,

1

f − aj

)
+N

(
r,

1

g − aj

))

≤ (q + 4)

q∑
j=1

(
N (kj+1

(
r,

1

f − aj

)
+N (kj+1

(
r,

1

g − aj

))
+ S(r, f) + S(r, g).

(4.13)

By Theorem 1.1, we have

2q

5
(T (r, f) + T (r, g)) ≤

q∑
j=1

(
N

(
r,

1

f − aj

)
+N

(
r,

1

g − aj

))
+ S(r, f) + S(r, g).

(4.14)

Combining (4.13) and (4.14), we get

2q(q − 4)

5
(T (r, f) + T (r, g))

≤ (q + 4)

q∑
j=1

(
N (kj+1

(
r,

1

f − aj

)
+N (kj+1

(
r,

1

g − aj

))
+ S(r, f) + S(r, g).

(4.15)

On the other hand, we have

q∑
j=1

(
N (kj+1

(
r,

1

f − aj

)
+N (kj+1

(
r,

1

g − aj

))

≤
q∑

j=1

1

kj + 1

(
N(kj+1

(
r,

1

f − aj

)
+N(kj+1

(
r,

1

g − aj

))

≤
q∑

j=1

1

kj + 1
(T (r, f) + T (r, g)).

(4.16)

The inequalities (4.15) and (4.16) imply2q(q − 4)

5(q + 4)
−

q∑
j=1

1

kj + 1

 (T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).

Hence, when
∑q

j=1
1

kj+1 < 2q(q−4)
5(q+4) , we have a contradiction. Thus, f ≡ g. The proof of

Theorem 1.3 is completed.
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5. Proof of Theorem 1.4

First, we prove the following lemma.

Lemma 5.1. Let f be a nonconstant meromorphic function on K. Let a1, . . . , aq be q

distinct small functions with respect to f . Let k be a positive integer or +∞. Then

q∑
i=1

N (k+1

(
r,

1

f − ai

)
≤ 3q

5k
T (r, f) + S(r, f).

Proof. If k = +∞, then N (k+1

(
r, 1

f−ai

)
= 0. Therefore, the lemma is always true. From

now, we may assume that k is finite.

For each 1 ≤ i ≤ q, we have

kN (k+1

(
r,

1

f − ai

)
+N

(
r,

1

f − ai

)
= (k + 1)N (k+1

(
r,

1

f − ai

)
+Nk)

(
r,

1

f − ai

)
≤ N(k+1

(
r,

1

f − ai

)
+Nk)

(
r,

1

f − ai

)
= N

(
r,

1

f − ai

)
≤ T (r, f) + S(r, f).

Hence, we get

kN (k+1

(
r,

1

f − ai

)
≤ T (r, f)−N

(
r,

1

f − ai

)
+ S(r, f).

Combining this and Theorem 1.1, we obtain

k

q∑
i=1

N (k+1

(
r,

1

f − ai

)
≤ 3q

5
T (r, f) + S(r, f).

This completes the proof of lemma.

Proof of Theorem 1.4. Suppose that f ̸≡ g. By arguments similar to the inequality (4.15)

in the proof of Theorem 1.3, we get

2q(q − 4)

5
(T (r, f) + T (r, g))

≤ (q + 4)

q∑
j=1

(
N (k+1

(
r,

1

f − aj

)
+N (k+1

(
r,

1

g − aj

))
+ S(r, f) + S(r, g).

(5.1)

By Lemma 5.1, we have

q∑
j=1

(
N (k+1

(
r,

1

f − aj

)
+N (k+1

(
r,

1

g − aj

))
≤ 3q

5k
(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

(5.2)
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Combining (5.1) and (5.2), we obtain

q

5

(
2(q − 4)− 3(q + 4)

k

)
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).

Thus, when k > 3(q+4)
2(q−4) , we have a contradiction. Hence, f ≡ g.

Proof of Corollary 1.5. Suppose that f ̸≡ g. Applying Lemma 4.1 with k = ∞, we show

that for every subset {i1, . . . , i4} of {1, . . . , 5}, we have

N

(
r,

1

f − aj

)
= S(r, f) + S(r, g)

for j ∈ {1, . . . , 5} \ {i1, . . . , i4}. Hence, we obtain

(5.3)

5∑
j=1

N

(
r,

1

f − aj

)
−

4∑
s=1

N

(
r,

1

f − ais

)
= S(r, f) + S(r, g).

Summing up of (5.3) over all subsets {i1, . . . , i4} of {1, . . . , 5}, we get

C4
5

q∑
j=1

N

(
r,

1

f − aj

)
−

∑
{i1,...,i4}⊂{1,...,5}
1≤i1<···<i4≤5

4∑
s=1

N

(
r,

1

f − ais

)
= S(r, f) + S(r, g).

In the above equality, for each index is, the number of terms N
(
r, 1

f−ais

)
is C3

4. Hence, it

follows that
5∑

j=1

N

(
r,

1

f − aj

)
= S(r, f) + S(r, g).

By a similar argument, we have

5∑
j=1

N

(
r,

1

g − aj

)
= S(r, f) + S(r, g).

Hence, we get

(5.4)
5∑

j=1

(
N

(
r,

1

f − aj

)
+N

(
r,

1

g − aj

))
= S(r, f) + S(r, g).

By Theorem 1.1, we have

(5.5) 2(T (r, f) + T (r, g)) ≤
5∑

j=1

(
N

(
r,

1

f − aj

)
+N

(
r,

1

g − aj

))
+ S(r, f) + S(r, g).

Combining (5.4) and (5.5), we get

2(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).

Hence, we have a contradiction. Thus, f ≡ g. The proof of Corollary 1.5 is completed.
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