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Continuity of Generalized Riesz Potentials for Double Phase Functionals

with Variable Exponents over Metric Measure Spaces

Takao Ohno* and Tetsu Shimomura

Abstract. Our aim in this paper is to deal with the continuity of generalized Riesz
potentials I, - f of functions in Morrey spaces L‘D*”(')”"(X ) of double phase functionals
with variable exponents over bounded non-doubling metric measure spaces. What is
new in this paper is that p depends on x € X.

1. Introduction

Let (X,d, ) be a metric measure space, where X is a bounded set, d is a metric on X
and p is a nonnegative complete Borel regular outer measure on X which is finite in every
bounded set. We often write X instead of (X,d, ). For x € X and r > 0, we denote by
B(z,r) the open ball in X centered at « with radius  and dx = sup{d(z,y) : z,y € X}.
We assume that
p({z}) =0

for z € X and 0 < pu(B(z,r)) < oo for x € X and r > 0 for simplicity. We do not assume
that v has a so-called doubling condition. Recall that a Radon measure p is said to be
doubling if there exists a constant ¢y > 0 such that u(B(x,2r)) < copu(B(z,r)) for all
x € supp(p) (= X) and 7 > 0 (see |2]). For the Gauss measure space, see [11]. Otherwise
1 is said to be non-doubling. For examples of non-doubling metric measure spaces we
refer to [22,28].

We consider the family (p) of all functions p satisfying the following conditions: p(z,7):
X x (0,00) = (0,00) is a measurable function such that there exist constants 0 < k < 1,
0 < k1 < kg and C, > 0 such that

kar ds
(1.1) sup pla,s)<Cp [ pla,s) S
kr<s<r kir s

for all » > 0 and there exists a constant C' > 0 such that
max{1,2ks2}dx d
(1.2) / p(x,s) ?S <C
0
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for all x € X. What is new in this paper is that p depends on x € X. We do not assume
the doubling condition on p.

We can include a variety of examples of p satisfying and as will be seen in
Remark and Example [£.4] below.

For 7 > 1 and a function p € (p), we define the generalized Riesz potential I, f for a
locally integrable function f on X by

[ plxd(z,y)) f(y)
Torf (@) = /X (B, rd(z,y) "V

(see e.g. [27,132]). The operator I, is also called the generalized fractional integral op-
erator. When X = RV, u = dx, I,1f(x) is equal to I,f(z) = [y % dy. When
p(z,r) = p(r), I,f was first introduced by Nakai [21]. See also 9. If X = RN,y =dx
and p(x, 7‘) = r®) with 0 < inf,cpny (z) < sup,egy a(r) < N, then I, f() is equal to

a a:)f fRN |.CU - |o¢(z) Nf( )

Double phase problems have been studied intensively in variable exponent analysis

and regularity theory of PDEs by many mathematicians (see e.g. [1,4-6,[8|13}/1733]).
In the previous paper [23], we considered the case 5(3:, t) is a double phase functional
given by
&(x,t) = 1P + (b(a)t)",

where 1 < p < g and b(+) is non-negative, bounded and Hélder continuous of order 6 € (0, 1]
(cf. 15]). In [23] we studied the continuity of Riesz potentials fpﬁ f of functions in Morrey
spaces L2 (X) of the double phase functionals ®(z, t) when p does not depend on z € X,

= B p(d(z,y)) f(y)
Bt @)= [ vty )

We refer to [24] for the Euclidean case. See also [15, Theorem 4.1] and [16, Theorem 4.1].

As in [13}24], we consider the case ®(x,t) as a double phase functional given by

where

(x, 1) = ") 4 (b(2)H)""),

where p(z) < ¢(zr) and b(-) is non-negative, bounded and Hdlder continuous of order
6 € (0,1] (cf. |3126]).

In this paper, we shall extend [23,24] from the case p does not depend on z € X to the
case p depends on x € X. In fact, we show the continuity of generalized Riesz potential
I, f of functions f in Morrey spaces L ()#(X) of the double phase functionals ®(z,t)
over bounded non-doubling metric measure spaces X (see Theorem , as an extension
of [23, Theorem 1] and [24, Theorem 2.2]. Our key lemma is Lemma [3.2]

We refer to [25)27,29,32] for the boundedness of I, - f, to [10] for Gagliardo-Nirenberg
inequality for I, - f and to e.g. [7,|9,21] for the boundedness of I,f.
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Throughout this paper, let C' denote various constants independent of the variables in

question.

2. Preliminaries
Let p(-) be a measurable functions on X such that
(P1) 1 <p :=infzex p(z) <sup,cx p(z) = p* < oo,

(P2) p(-) is log-Holder continuous on X, namely

C
x) — < P , T,ye X
(@) =Pl = e A ) y
with a constant C}, > 0.
Let v(-) be a measurable functions on X such that
0<v :=inf v(z) < supv(z) = v < oco.

zeX rxeX

For k > 1, the Morrey space with variable exponents Lp(')’”(')7“(X) is the family of mea-

surable functions f on X satisfying

V(@)

vex H(B(z,kr))
0<r<dx

LP(')»V(')v”(X) ={fe Llloc(X) ) sup / ’f(y)’p(y) du(y) < oo
B(z,r)

It is a Banach space with respect to the norm

v(z) ()| p(y)
. r Yy
N = inf _— R <1
”fHLp( P =1 A0 ' 22)8 ,U(B(x,"ﬁr)) /B(x,r) < A ) du(y) -
O<r<dx

(cf. see |19]). When p(-) = p and v(-) = v, we see that the definition of LP*"(X) does
not depend on « as long as X is the Euclidean space and x > 1 (see [18,31]) and that
LP¥*(X) can depend on & (see [30]).

We consider a function
O(x,t): X x[0,00) — [0, 00)
satisfying the following conditions (®1) and ($2):

(®1) ®(-,t) is measurable on X for each ¢t > 0 and ®(z,-) is convex on [0,00) for each
r € X;
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(®2) there exists a constant A; > 1 such that

AT' < ®(2,1) < A forallz € X.

For x> 1, the Musielak-Orlicz-Morrey space L®*()#(X) is defined by

L‘D,V(-),H(X)

vex p(B(z,kr)) A

v(z)
= feli.(X) ' sup ’r/ ) (y, |f(y)|> du(y) < oo for some A > 0
0<r<dx Blar)

It is a Banach space with respect to the norm

Il osioex) = inf A>0' ap / @(y,'f(y)'>du<y>s1
zeX N(B(:E’K/T)) B(z,r) A
0<r<dx

(see [12,20]).

Let ¢(-) be a measurable function on X such that
(Ql) 1 < ¢ :=infrex q(z) < supgex ¢(z) =: ¢+ < oo,
(Q2) q(-) is log-Holder continuous on X, namely

< Cq
~ log(e +1/d(x,y))’

lq(z) — q(y)] r,ye X

with a constant C; > 0.

In what follows, set
®(x,t) = " + (b)),
where p(z) < ¢(z) and b(-) is non-negative, bounded and Hdlder continuous of order

0 € (0,1] (ct. [5)).

3. Lemmas

Let’s begin with the following lemma.

Lemma 3.1. (see |16, Lemma 2.1] or [14, Lemma 2.7]) There exists a constant C > 0

such that
(@) /p()

M(mgc,m))/Bw) |f(y)ldu(y) < C

forallz € X, 0 <r <dx and measurable functions f on X with || f|lLp¢)ve)m(x)y < 1.

We give an estimate inside and outside balls.
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Lemma 3.2. Let f € R, ¢t >0 and p; € (p). Let f be a nonnegative function on X such
that || fllperverm(xy < 1. If 1 <k <7, then there exists a constant C' > 0 such that

d(z,y)’p1(, d(z, y)) @ @46,y U
ey [ ey ) <€ [ (1)

and

d(l‘, ?/)6,01 (-T, Ld([E, y)) 2koud x B gt
32 / d <C +—v(@)/p(z)+B )&
( ) X\ B(r) M(B(SU,Td(I7y))) f(y) M(y) fir pl( ) .

forallz € X and 0 <r < dx.

Proof. Let f be a nonnegative function on X such that || f[|pc)vem(x) < 1. Take vy € R
such that 1 <y < min{1/k,7/k,2}. If y € B(x,7r) \ B(z,7~r) for j € Z, then we see

from (1.1]) that

d B d 1,7 A (47r)B
(xay) pl(x>[' (a:,y)) < ma‘X{ }(’17 T) sup Pl(x,s)
:U‘(B(xv Td(:]}, y))) /J(B(:II Ty )) NIl <s<vyiur
maxil,y ir)B
g {Gila sup  pi(z,s)
:LL(B(‘T 7—7] T) kyiur<s<vyiur

)
Cp max{Ly ) (n)? [ ds
W(B(a, 7)) / prie )

Jkiur

since v < min{1/k,7/k}. By Lemma we obtain

/ d(a:,y)ﬁpl(m,Ld(x,y))
Blanir\B(zni-tr) Bz, 7d(z,y)))

; 7 kaur ds 1
< C,, max{1l,~v " JT‘B/ x,s-./ d
< Cpy max{1,7""}(~'r) e P, s) — (B i) B(W_T)f(y) 1(y)

) ~ikour ds
< C1C, max{1, 275} (yir) ~@/r(o) 5 / pr(w,5)
Y

Jkyur

f(y) du(y)

< C,C,, max{1,27"}
~I kour ds

X Max {(Lkl)'/(:v)/p(r)—ﬁ, (Lk;Q)V(r)/p(x)—ﬂ} / sTV@/P@FB ) (1 5) —
Y kyur

~Ikaur
e / @8, (4 gy 9
o S

Jkyur

for j € Z, where

Cy = C1C), max{1, 2_5} max {(Lkl)ﬁ/f _B, (Lkl)l’i/]ﬁ_ﬁ, (Lk‘g)fr/lf _B, (Lk’g)yi/er_'B}.
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Therefore we obtain

/ d(x,y)Pp1(x, vd(z,y))
S

Bz, rd(z.y))) f(y) du(y)

d(l‘?y)ﬁm(x, Ld(x,y))
/ 2,y Ir)\B(z,y~i~1r) w(B(x,Td(x,y))) f(y) du(y)

[ w48 ds
Czj;)/ , s ,01(90’3)?-

Yy~ Ikyer

IN

Let jo be the smallest integer such that ko /k; < 'yjo. Then we have

d(x,y)°pi(z, 1d(z,y)) o [T ey s ds
fly) du(y) < C / sV @@ (2, 5) —
/B(m,r) w(B(z,7d(x,y))) (W) duly) 2;‘20 ~—I=30 kgur (@, 5) s

kaur ds
< jOCQ/ s7V@/P@T8 5, (2, 5) ’
0

which proves ({3.1]).

Let j; be the smallest integer such that dx < 47'7. Then we obtain

d(z,y)Pp1(z, ud(z,y))
/X\B(z‘,r) M(B(l', 7'd(x7 y))) f(y) d'u<y)

it d(z,y)’ pi(x,d(z,y))

- J(y) du(y)
= /B@c,w\B(ww) w(B(z,d(x,y)))
J1 ijgw’
<y / DB, () B
vikiur S

Ji v kaur
<0y / s /P8 (5 5) D
S

j=1 ~I=I0kour

vhotdx ds
< jOCQ/ sV (., 5) o
k

1Lr

2kotd x ds
< jocz/ sTV@/P@EE (1, 5) e
k

r

which proves (3.2)).

Here note that 2ksudx in (3.2)) can be replaced by akotdx with a > 1.

4. Continuity of generalized Riesz potentials

Before we state our theorem we consider the following conditions:
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(pp) there are constants 9 > 0, 72 > 0, 11 >0, 12 > 1, 01 > 1 and ¢; > 0 such that

Wy |pwden) | pledey) | d@o o nde,y)

W(B(z,rd(z,y))  p(B(zrd(z )| = " d(w,y)® p(Blz, 12d(z,y)))

whenever d(z, z) < d(z,y)/o1,

(pl) there are functions h(z,z): X x X — [0,00) and p € (p) and constants t3 > 0,
ty >0, 00 > 1 and cy > 0 such that

(42)  |p(z,d(z,y)) = p(z, d(z,y))| < bz, 2){p(x, 13d(x,y)) + P(2, tad(2,9)) }
whenever d(z,z) < d(z,y)/o2.

Let 0 = max{o1,02}. For z,z € X and 0 < r < dx, we consider the functions
koor koor
wilezr) = [ ey oy [ i) 0,
0 0
ko(o+1)r dt ka(o+1)r dt
@/, ) B / @/ ai) 0, 4y O
-/ e G+ | oz1)

L0 / /0 (5, ) 2
ki1(c—1)r t

and

2kot1dx dt
¢2 ('CC7 Z, T) =7 / t*ll(x)/p(x)+97772p(x’ t) 7

kiouir
2k2L1dX dt
4m / ()
kiotir

Further we set

Y3z, z, 1)
2kotsdx t

2kotsdx dt d
—h() [ T h(ez) [ e, O
kioisr kiousr

2kotgadx 2katadx
+ iz, 2) / VP05 gy % + iz, 2) / VA 5, ) %
k

1(oc—1)tar ki(oc—1)war
forz,z€ X and 0 < r < dy.
We prove the following theorem, as an extension of [23, Theorem 1] and [24, Theo-
rem 2.2]. See also |15, Theorem 4.1] and [16, Theorem 4.1].

Theorem 4.1. Assume that p satisfies (pp) and (pl). If1 < k < min{r(1—-1/0)—1/0,12},
then there exists a constant C' > 0 such that

3

‘b(‘r)lpﬂ'f(x) - b(Z)Ip,Tf(Z)| <C Z wk@:a 2 d(‘rv Z))

k=1



820 Takao Ohno and Tetsu Shimomura

for all z,z € X with (x,z,d(z,2)) < oo and measurable functions f on X with
[fllpewermxy < 1.

Remark 4.2. Let x,z € X with x # z and 91 (z, z,d(z, 2)) < co. Then note that

kood(z,z) dt kaod(z,2) dt
/0 @) /p@)+ 5 4y % /0 @/ (. 1) =

ka(o+1)d(.2) ka(o+1)d(a,2)
0 0

Let f be a nonnegative measurable function f on X with || f[| o) (x) < 1. By Lemma
and (|1.2)), we see that

/d(%y)ep(w,d(x,y))
x Bz, Td(z,y)))
p(

( y)?p(x, d(z,y))
/B(m Bz 7d(z,1))) f(y) du(y)

d(, ) pla. d(z, y))
*/X Bodiey HB@rd,g) Y W)

kod(x,z) dt 2kod x dt
/ @I, 1) & 4 / R () T
kid(z,z)

fy) du(y)

IN
Q

kood(x,z)

IN

S~

{
“l

2kaod x
I 0, ) ot d(, ) p@,t)‘ff}
0

and that

p(z,d(z,y))
(

Bz, rd(z,y)) LW W) duy)
2,2)) ,M(B(x, Td(m, y))) {b(y)f(y)} dﬂ(y)
P Y) ) )} du(y)
X\B(z,d(z,2))
kad(@,2) 2kodx
C {/o t—V(x)/Q(a:)p(x,t) % -|-/k t_V(x)/q(x)p(:L‘,t) Cit}
/

/X 1(
_ / p(z,d(z,y))

B(z,d

_l’_
w(B(z, 7d(x,y)))
1d(x,z)
kood(x,z) 2kodx
o { 1r@)/a() 5 ) % +d(z, 2) @/ / p(,1) Cit}
0

00.

IN

IN

<

Hence

bl f (o) < [ BT b))l ) dity)
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plx,d(x,y))
@. Td @ y)))b(y)f(y) du(y)

“ oo
/ o, die, y))f(y) du(y)
oo

:xrd:cy)))
xdazy)
B(z,7d(x,y)))

{b(y)f(y)} duly) < oo.

Similarly, we see that b(z)1, - f(z) < 0o, so that |b(z)I,+ f(x)—b(2)I,+ f ()| in Theorem
is well defined.

Proof of Theorem [£.1] We may assume that f is nonnegative on X. Let f be a nonneg-
ative function on X such that || f[[ eve)xx) < 1. Let 2,2 € X and set r = d(x, z). First

we estimate the following three terms:

e p(x,d(z,y))
Il(x) N b( )/B(J:,Ur) M(B($7Td(x’y)))

L (. d(2.9)
B =06 [ G it g O

f(y) du(y),

and
2) = r? plz, d(z,y))
I3(2) /x\B(z,(a—l)r) n(B(z,md(z,)))

For I (z), we have

f(y) du(y).

p(z, d(z,y))
hiw) = (@o7) M(B(:U rd(z, y)))’b(x) —b(y)|f(y) duly)
plz,d(z,y))
/ (z,07) u (x Td(:[; y)))b(y)f(y) du(y)
<

o)
B(z,or) :U’ x Td(x y)))

= Ch(z) + Li2().

d(z,y)"p(z,d(z,y))
/zw u(B xfaxw»f@”M”
/ {b(w) f(y)} duly)

We obtain from (3.1)),

koot koor
Ii(z) < C / t_”(x)/p(mH@p(:c,t)% and Ijo(z) < C / t—v(ﬂ/q(%(x,t)%
0 0

since 1 < k < 7. For I3(z), we have by (3.2,

2kodx
I3(z) < Cr’ / 1) 1) 2
ki(o—1)r t
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since 1 < k < 7. Therefore, we find
(4.3) Li(z) + Ix(z) + I3(2) < CYi(z, z,7).
Next we estimate the following term:

(s d(z,y) " p(x, nd(z,y))
14(2) = b( )/X\B(x,or) /’L(B(xv LQd(x7y))) f(y) dﬂ(y)

Then we have

1 d({l),y)_mp(il?, le(iU,y))
law) < /X\B@,m) (B 12d(z,9)))

b(z) — b(y)|f (y) du(y)
) d(z,y) ™ p(x, 11d(z,y))

o /X\B(a:,ar) w(B(z, 2d(z,y))) Y ) i)

X d(z,y)? " p(z, 11d(z,y))

< Cr" /X\B(zm) w(B(x, 1ad(z,7)))

m d(xay)iwp(m‘, le({p7y))
i /X\B@;,m 1(B(z, 12d(, y))) {o(y) f(y)} du(y)

= 0141(1,‘) + ]42(33).

f(y) du(y)

Note from (3.2 that

2kot1dx dt
In(e) < Crm [ @i gy

kiouir

and that I
2010X dt
Lo(z) < Crm / ) (1)

kiouir
since 1 < k < 19. Therefore, we find

(4.4) Iy(x) < Cipo(z, z,71).

Finally we estimate the following two terms:

VRV plx, 13d(z,y))
Is(z, 2) = b(z)h(z, )/X\B(M) M(B(Md(z’y)))f(y)du(y)

and

o e (=)
o) =W ) [ G i gy O )

For I5(z,z), set 7/ = 7(1 — 1/0) — 1/0. Note that

(4.5) (1 _ ;) d(z,y) < d(z,y) < (1 + i) d(z,y)
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and that
B(z,7'd(z,y)) C B(z,7d(2,y))

for y € X \ B(x,or). Hence, we have

B, 13z, )
(o) SHhG2) [ B S duty

P (@) |,
Shwa) [y bW duty

)

ple, 13d(z,y))
" h(w’ Z) /X\B(J},UT) /L(B(CL' Tld( ) )
d(

Ao, )Br, 15z, )
SO [y B i OB

Pz, 3d(x,y))
+ h(z, 2) /X\B(x . M(B(%T,d(x,y))){b(y)f(y)}du(y)

= CI51($’, Z) + I52(.1‘, Z)

b(y) f(y) du(y)

Note from (3.2)) that

2kotsdx
Fa(e,2) < Chla,2) [ e @0,

kiousr
and that
2kotsdx dt
Iso(z, 2) < Ch(:z:,z)/ @/ 50 t) v

kioutsr

since 1 < k < 7. By (4.5)) we have

P uad(sy)
o) Sha) [ S b)) duty)

Pz, 1ad(2, y))
+ h(x, 2) /X\B( ot M(B(z d(z, y)))b( ) f(y) du(y)
(z

<o) [ (D) 1)) ()

CET N 4d§(yy)))) b(0) () i)

< Ohiarz / X\B(z,(c—1)r) u z(jdé(4d§j§ ?)J> F(y) duly)
/ efo—ty) (B z;idcg(z ?j)))){b(y)f(y)}du(y)

= Clg (z, )-f—]ag( x,z).

823
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Note from (3.2)) that
2k2L4dX
Toa(r,2) < Chiz.2) [ 050z, 1) L
ki(oc—1)tar t
and that Shnd
2t404x
Isa(x, z) < Ch(z, 2) / v 52 1) dt
k1(oc—1)ear t
since 1 < k < 7. Therefore, we find
(4.6) Is(z,2) + Ig(x, 2) < Cpg(z, z,7).
Note from (4.1]) and ( .,
’ plz,d(z,y)  plzd(zy)) ‘
w(B(z,7d(z,y)))  u(B(z,7d(z,y)))
< ‘ plz, d(z,y)) _ plx,d(zy)) ’ N ‘ plz.d(z,y) p(zd(zy)) ‘

w(B(x,7d(x,y))) w(B(z,7d(z,9)))| |u(B(z,1d(z,y)) wu(B(z,7d(2,y)))
dlag) o nd(ey)) | Pl sd(ev) + (e ad(z9)
SC{” W(Bwdzy)) T uB G rd( ) }

for y € X \ B(z,or), so that

‘b(x)lp,ﬂ'f(x) - b(Z)Ip,Tf(Z)‘
ol d(z. ) oz, d(z, )
<o) [ e @ ) ) [ (y) du(y)

) B(z,or) ,LL(B(Z, Td(Z, y)))
hw) b [ B 1) duty
e (o)  plnd(ny)
*b("’”/X\B(m W(Be.7d(e,y))) BB () ‘f ) duly)

<C{II —l—[g( )+13(Z)+I4((13)+I5($,Z)+Iﬁ($,z)}.
Hence we obtain by , and ,
|b(@) Lp,r f(2) = b(2) L f(2)| < C Y el 2,7).

Thus we complete the proof. O

Remark 4.3. (1) If p satisfies the doubling condition, that is, there exists a constant
C > 0 such that

C—l S p(fl?,?“) S C
p(z,s)

for x € X and 1/2 < r/s < 2, then p satisfies (1.1) whenever k = 1/2 and 2k; = k.
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(2) If p is increasing in the second variable, then p satisfies (1.1) with £ =1/2, k; =1
and ko = 2.
(3) If p is decreasing in the second variable, then p satisfies (1.1) with &k =1/2, ky = 1/4
and ko = 1/2.
Example 4.4. (i) Let a(-) be a measurable function on X such that

0<a :=inf a(r) <supa(z) = a" < oo

and p(z,r) = r*®) . Then p satisfies (I.1)) and (1.2) with k = 1/2, k; = 1 and ko = 2
by Remark [4.3{1) or (2).

(ii) Let o € X and p(x,r) = (1 + d(xg,z)/r)r* for some o > 0. Then p satisfies (|1.1)
with k =1/2, k1 = 1 and ko = 2 by Remark [.3(1). Further, if o > 1, then

/1 ( )*S<(1 ( ))/ — <

plx,s +d(xg, x S

0 ’ s 0 0 s — a—1"
so that p satisfies 1’

(iii) Let a > 0 and let A(-) be a positive measurable function on X. Set

A(z)re for0 <r <1,
A(z)e= =D for r > 1.

Then p satisfies ) and (1.2) with k¥ = 1/2, ky = 1/4 and ks = 1/2 by Re-
mark [£.3(1) and ( See [10].

plz,r) =

(iv) Let p(z,r) = p(B(z,7r))" for some 0 < 7 < 1 and 7 > 1. Then p satisfies
with £ =1/2, k; = 1 and ko = 2 by Remark (2) Further, if p satisfies the upper
Ahlfors condition p(B(z,7)) < Cr@ (z € X, r > 0) for some Q > 0, then p satisfies
(L.2). See [27,[32].

(v) Let a(-) be as in (i) and let p(z,7) = r*®e=%/"(log(e +1/r))? for a > 0 and 8 € R.
Then p satisfies and with £ = 1/2, k; = 1 and ky = 2. In fact, there

exists a constant Cy > 0 such that
i o) < Gy p(w,r)
whenever 0 < r{ < rq, so that
02 2r d
swp_p(os) < Cupleyr) < U1 [ o)
r/2<s<r og2 J, S
for all » > 0 and
1 1
d —od 20
/ pla,s) = < Cuple, 1)/ 57222 < S (log(e + 1))
0 S 0

s a~
for all z € X.
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5. Corollaries

In this section, we give consequences of Theorem

Let a(-) be a measurable function on X such that 0 < o~ < a™ < co.

Remark 5.1. Let p(z,r) = r*®e=/"(log(e 4 1/7))? for a > 0 and § € R. Then (pl)
holds for 13 = 3/2, 14 = 1, 09 = 2, h(z, 2) = |a(x) — a(2)| and p(z,r) = r*@ e~/ (log(e +
1/r))P .

In fact, we have by the mean value property

|p(x, d(2,y)) = p(z,d(2,9))]
e~ 4=Y) (log(e 4 1/d(z,y))) ﬁ‘d @ _d(z, y)a(z)‘
< eV (log(e + 1/d(z,y)))’ |a( ) (Z)|(d(27y)a(m) +d(z,9)")) [log d(z, y)|
< Ch(z, 2){p(x,d(z,9)) + p(=,d(z,9)) }
< Ch(z, 2){p(x,3d(z,y)/2) + p(z,d(z,y))}
whenever d(z,z) < d(z,y)/2 since d(z,y)/2 < d(z,y) < 3d(z,y)/2 for all z,z € X with
d(z,z) < d(xz,y)/2.

Remark 5.2. Let G be an open bounded set in RY. Let p(z,r) = r®®e=%/"(log(e+1/r))?
for a > 0 and 5 € R.

(1) If a =0, then (pu) holds for 1 =n2 =11 =12 =1 and o1 = 2.

(2) If a > 0, then (pu) holds for n; =1, ne = 2, 11 = 3/2, 12 = 1 and o1 = 2. We refer
to |24, Remark 2.3].

We set
Py(x, 2) = d(z, Z)a(z) (d(aj, Z)—V($)/P(:t)+0 + d(z, Z)—l/(a:)/q(x))

and
Ps(x, 2) = d(z, 2)C) (d(z, 2) VEPET 4 g(g, 2)7v(=)/a)

for z,z € X.
As in the proof of [24, Corollary 3.1], we obtain the following corollary by Theorem

Corollary 5.3. Let p(z,7) = @) (log(e + 1/r))? for € R. Let X be a non-doubling
metric measure space. Assume that (pp) holds. Suppose

inf (v(z) — a(z)p(x)) >0, inf (v(z)— (a(z)+60—n2)p(z)) >0

reX zeX

and

Inf ((a(z) + )p(2) - v(2)) > 0.
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Further suppose

Inf (v(2) - (a(z) = m2)q(2)) >0 and  inf (a(z)q(z) - v(z)) > 0.

If 1 <k <min{7(1 — 1/0) — 1/0, 12}, then there exists a constant C > 0 such that

[b(@) Tpr f () = b(2)T,.7 f (2)]
<C [(¢4(x, z) + ¥5(x, z) + min {d(m, 2)N ey (x, 2), d(z, 2) Py (x, z)})
x (1og(e +1/d(z,2))) + la(x) - a(2) |
for allx,z € X and measurable functions f on X with || f|lpe.vc)xx) < 1.
Remark 5.4. The assumptions like inf,cx(v(z) — a(x)p(z)) > 0 in Corollary were
considered in [24}, Corollary 3.1].
When p(z,r) = r*®) | we write I, +f = I,()+f, which is called the Riesz potential of

variable order a(-). If we take § = 0 in Corollary we obtain the next corollary.

Corollary 5.5. Let p(z,r) = @) Let X be a non-doubling metric measure space.

Assume that (pp) holds. Suppose

inf (u(z) — a(@)p(@)) > 0, inf (v(x) — (alw) + 0~ w)p(x)) >0

and

inf ((a(2) + 0)p(z) — v(x) > 0.

Further suppose

Inf (v(2) - (a(z) —m2)q(2)) >0 and  inf (a(z)q(z) - v(z)) > 0.

Assume that a(-) and v(-) are log-Hélder continuous on X. If 1 < x < min{r(1 —1/0) —
1/0, 12}, then there exists a constant C' > 0 such that

b(2) Loy f(2) = b(2) ag) + (2)] < C{tba(z, 2) + d(z, 2)"u(z, 2) + |a(z) — a(2)|}
for all z,z € X and measurable functions f on X with || f||pe.ve)mx) < 1.
When p(z,7) = r*® e~/ (log(e+1/r))?, we obtain the next corollary by Theorem 4.1

Corollary 5.6. Let p(z,r) = r*@e=%"(log(e + 1/7))? for a >0 and B € R. Let X be a
non-doubling metric measure space. Assume that (pp) holds. If 1 < k < min{r(1—1/0)—
1/0, 12}, then there exists a constant C' > 0 such that

|0(@)Lp,r f(2) = b(2) L f(2)| < Cld(z,2)" + d(z, 2)™ + |a(z) - a(2)]}

for all z,z € X and measurable functions f on X with |||l e.ve)mx) < 1.
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To get this, we note, for b € R, there exists a constant ¢ > 0 such that

" dt
/ tPe=t(log(e + 1/t))? - < er?
0

for all 0 < r < dx.
For the case LP(): () (X)), we obtain the following corollaries. The following corollary
is a consequence of Theorem [4.1{ with b(-) = 1 and p(z, ) = @) (log(e 4 1/1))".

Corollary 5.7. Let p(z,7) = @) (log(e + 1/r))? for € R. Let X be a non-doubling

metric measure space. Assume that (pp) holds. Suppose

Inf (v(z) - (a(z) —m2)p(2)) >0 and  inf (a(2)p(z) - v(z)) > 0.

If 1 <k <min{r(1 —1/0) — 1/0,12}, then there exists a constant C > 0 such that
Lo f(@) = 17 £(2)]
<C {(d(x, )@ —v@)/p@) 4 (g, )2 -v(=)/p(2)
+ min {d(z, z)e@=v@/p@tm=n gy 5)2)=v(z)/p(z)+m—nz 1) (log(e + 1/d(z, 2)))?
+ laz) - a(2)]
for all z,z € X and measurable functions f on X with || f|| pe)ve)m(x) < 1.

The next corollary is a consequence of Theorem with b(:) = 1 and p(z,r) =
re®e=a/m(log(e 4 1/1))P.

Corollary 5.8. Let p(z,r) = r*®e=%"(log(e + 1/7))? for a >0 and B € R. Let X be a
non-doubling metric measure space. Assume that (pp) holds. If 1 < k < min{r(1—1/0)—
1/0,19}, then there exists a constant C' > 0 such that

Lo f(2) = Ipr f(2)] < C{d(z,2)™ + |a(z) — a(2)]}
for all z,z € X and measurable functions f on X with || f|l ppe)ve)m(x) < 1.

The following corollary is the doubling metric measure case of Corollary

Corollary 5.9. Let p(z,r) = r*®) (log(e + 1/7))? for B € R. Let X be a doubling metric

measure space. Assume that (pp) holds. Suppose

inf (u(x) — a(@)p(@) > 0, it (v(x) — (alw) + 0 — w)p(x)) > 0

and

Inf ((a(z) + )p(2) - v(2)) > 0.
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Further suppose

Inf (v(z) - (a(z) —m)q(2)) >0 and  inf (a(z)q(z) - v(z)) > 0.

Then there exists a constant C' > 0 such that
[b(@) T f () = b(2) 51 f(2)]
< C| (va(, 2) + ¥ (@, 2) + min {d(w, 2)" Pepy(x,2), d(, 2) P x,2)})
x (log(e + 1/d(z, 2)))’ + |a(x) — a(z)]}
for all z, z € X and measurable functions f on X with ||f||Lq>,,,(A),1(X) <1
The following corollary is the doubling metric measure case of Corollary

Corollary 5.10. Let p(x,r) = r*®)e=%/"(log(e 4+ 1/7))? for a > 0 and § € R. Let X be
a doubling metric measure space. Assume that (pu) holds. Then there ezists a constant
C > 0 such that

|b(@) Ip,1 f () = b(2)Lp1 f(2)| < C{d(w,2) + d(z,2)™ +|a(z) — a(2)]}

for allz,z € X and measurable functions f on X with || f|| o.uc)1(x) < 1.
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