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Oscillation and Nonoscillation for Two-dimensional Nonlinear Systems of

Ordinary Differential Equations

Manabu Naito

Abstract. For the two-dimensional nonlinear system

u′ = a(t)|v|1/α sgn v, v′ = −b(t)|u|α sgnu

with α > 0, a, b ∈ C[t0,∞), a(t) ≥ 0 (t ≥ t0), new oscillation criteria and nonoscilla-

tion criteria are given in both cases
∫∞
t0
a(s) ds = ∞ and

∫∞
t0
a(s) ds <∞. One of the

main results is an analogue of the Hartman–Wintner oscillation theorem. Our results

generalize Li and Yeh’s results for second order half-linear scalar equations.

1. Introduction

In this paper we consider the two-dimensional nonlinear system of ordinary differential

equations

(1.1) u′ = a(t)|v|1/α sgn v, v′ = −b(t)|u|α sgnu,

where α is a positive constant, and a(t) and b(t) are real-valued continuous functions on

[t0,∞) and

(1.2) a(t)

≥ 0 for t ≥ t0,

̸≡ 0 on [t+0 ,∞) for any t+0 ≥ t0.

By a solution (u(t), v(t)) of the system (1.1) on an interval I ⊆ [t0,∞) we mean that u(t)

and v(t) are continuously differentiable on I and satisfy (1.1) at every point t ∈ I.

It is known (Mirzov [13, Lemma 2.1]) that all local solutions of (1.1) can be continued

to t0 and ∞, and so all solutions of (1.1) exist on the entire interval [t0,∞). Clearly, if

(u(t), v(t)) is a solution of (1.1), then so is (−u(t),−v(t)). It is also known (Mirzov [13,

Lemma 1.1]) that if a solution (u(t), v(t)) of (1.1) satisfies

(u(t1), v(t1)) = (0, 0) for some t1 ≥ t0,

then (u(t), v(t)) ≡ (0, 0) for t ≥ t0.
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The following remark is useful. Let (u(t), v(t)) be a solution of (1.1) such that

u(t1) = u(t2) = 0 and u(t) ̸= 0 on (t1, t2),

where t0 ≤ t1 < t2 < ∞. Then, v(t) has at least one zero on (t1, t2). To prove this,

assume the contrary that v(t) ̸= 0 on (t1, t2). We may suppose that v(t) > 0 on (t1, t2).

Then, since a(t) ≥ 0 for t ≥ t0, it follows from the first equation in (1.1) that u(t) is

nondecreasing on (t1, t2). Since u(t1) = u(t2) = 0, this implies that u(t) ≡ 0 on [t1, t2],

which is a contradiction to the condition u(t) ̸= 0 on (t1, t2).

Following the paper of Dosoudilová, Lomtatidze and Šremr [2], we say that a solution

(u(t), v(t)) of the system (1.1) is nontrivial if u(t) ̸≡ 0 on any neighborhood of infinity,

and that a nontrivial solution (u(t), v(t)) of (1.1) is oscillatory if u(t) has a sequence of

zeros tending to infinity, and nonoscillatory otherwise. By the preceding remark, it is

easily seen that if (u(t), v(t)) is an oscillatory solution of (1.1), then the function v(t) also

has a sequence of zeros tending to infinity.

It is worth noting here that, for any nontrivial solution (u(t), v(t)) of (1.1), the sequence

of zeros of u(t) cannot have a finite cluster point. To see this, assume the contrary that

u(t) has a sequence of zeros {ti}∞i=1 such that lim ti = t∞ ∈ R as i→ ∞. We may suppose

that t0 ≤ t1 < t2 < · · · < ti < ti+1 < · · · , u(ti) = u(ti+1) = 0 and u(t) ̸= 0 on (ti, ti+1)

(i = 1, 2, 3, . . .). Then, by the preceding remark, there are τi such that ti < τi < ti+1

and v(τi) = 0 (i = 1, 2, 3, . . .). It is clear that u(t∞) = v(t∞) = 0. Hence, from the

result of Mirzov [13, Lemma 1.1] it follows that (u(t), v(t)) ≡ (0, 0) for t ≥ t0. This is a

contradiction.

An analogue of Sturm’s comparison theorem was established by Mirzov [13, Theo-

rem 1.1]. A simple version of the result is the following.

Theorem 1.1. (Mirzov [13]) Consider the system (1.1) and another system of the same

type

(1.3) u′1 = a1(t)|v1|1/α sgn v1, v′1 = −b1(t)|u1|α sgnu1.

Suppose that

0 ≤ a(t) ≤ a1(t) and b(t) ≤ b1(t) for t ≥ t0.

If (1.1) has a solution (u(t), v(t)) such that

u(t1) = u(t2) = 0 and u(t) ̸= 0 for t ∈ (t1, t2),

then, for any solution (u1(t), v1(t)) of (1.3), the first component u1(t) has at least one

zero on the interval [t1, t2].
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In particular, if the system (1.1) has an oscillatory solution, then any other non-

trivial solution is also oscillatory. Therefore, if the system (1.1) has a nonoscillatory

solution, then any other nontrivial solution is also nonoscillatory. The system (1.1) is

said to be oscillatory (resp. nonoscillatory) if all of its nontrivial solutions are oscillatory

(resp. nonoscillatory).

If a(t) > 0 for t ≥ t0, then the first component u(t) of a solution (u(t), v(t)) of the

system (1.1) is a solution of the scalar differential equation

(a(t)−α|u′|α sgnu′)′ + b(t)|u|α sgnu = 0.

Conversely, for a solution u(t) of the above scalar differential equation,

(u(t), v(t)) = (u(t), a(t)−α|u′(t)|α sgnu′(t))

is a solution of the system (1.1). Putting p(t) = a(t)−α and q(t) = b(t), we rewrite the

above scalar equation in the form

(1.4) (p(t)|u′|α sgnu′)′ + q(t)|u|α sgnu = 0,

where p(t) and q(t) are continuous functions on [t0,∞) and p(t) > 0 for t ≥ t0. The

equation (1.4) is referred as “half-linear” equation. If α = 1, then (1.4) becomes the linear

equation

(1.5) (p(t)u′)′ + q(t)u = 0.

In the last three decades, many results have been obtained in the theory of oscillatory and

asymptotic behavior of solutions of the half-linear equation (1.4). It is known that basic

results for the linear equation (1.5) can be generalized to the half-linear equation (1.4).

The important works for (1.4) are summarized in the book of Došlý and Řehák [1]. For

the recent results to the half-linear equation (1.4) we refer the papers [5, 7, 15–18, 22–24].

For the results to the nonlinear system (1.1) (including the linear system) we refer the

papers [2, 6, 11–14,19–21].

For simplicity consider the linear equation

(1.6) u′′ + q(t)u = 0,

which is the case of p(t) ≡ 1 in (1.5). The well-known oscillation criterion of Hartman–

Wintner is as follows. If

lim
t→∞

1

t

∫ t

t0

(t− s)q(s) ds = ∞,

or if

−∞ < lim inf
t→∞

1

t

∫ t

t0

(t− s)q(s) ds < lim sup
t→∞

1

t

∫ t

t0

(t− s)q(s) ds,
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then (1.6) is oscillatory (Hartman [3, Theorem 7.3, Chapter XI]). This result can be

generalized to the half-linear equation (1.4) (see [1, Theorem 2.2.10]) and to the nonlinear

system (1.1) (see Dosoudilová et al. [2]).

In this paper we present new oscillation criteria and nonoscillation criteria for the

nonlinear system (1.1). The new oscillation criteria are slightly different from the results

of Dosoudilová et al. [2]. For the half-linear scalar equation (1.4) it is usual to distinguish

the cases

(1.7)

∫ ∞

t0

p(s)−1/α ds = ∞

and

(1.8)

∫ ∞

t0

p(s)−1/α ds <∞.

In the system (1.1) these cases correspond to

(1.9)

∫ ∞

t0

a(s) ds = ∞

and

(1.10)

∫ ∞

t0

a(s) ds <∞,

respectively.

For the nonlinear system (1.1) we define a number σ and a function f(t) as follows.

For the case where (1.9) holds

(1.11) σ = +1, f(t) =

∫ t

t0

a(s) ds, t ≥ t0,

and for the case where (1.10) holds

(1.12) σ = −1, f(t) =

∫ ∞

t
a(s) ds, t ≥ t0.

It is clear that in the former case f(t) > 0 for all large t, and that in the latter case the

condition (1.2) implies f(t) > 0 for all t ≥ t0. In either case there is a number t1 ≥ t0

such that

(1.13) f(t) > 0, t ≥ t1.

Hereafter we suppose that t1 ≥ t0 is a number satisfying (1.13). It is obvious that f(t)σ > 0

for t ≥ t1 and

f ′(t) = σa(t), t ≥ t1 and lim
t→∞

f(t)σ = ∞.
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By making good use of the above σ and f(t), we can treat the cases (1.9) and (1.10) in a

unified manner.

To describe our results, we introduce the function classes W and W0 with respect to

the system (1.1). Members of W and W0 will be used as weight functions. Define σ and

f(t) by (1.11) or (1.12) according as (1.9) or (1.10) holds, and let t1 ≥ t0 be a number

satisfying (1.13). Further, let λ be a number such that σ(λ−α) < 0, and let ξ be a number

such that 0 ≤ ξ < 1/α. Then we denote by W the set of all locally integrable functions

w(t) on [t1,∞) such that w(t) ≥ 0 for t ≥ t1 and a(t)w(t) ̸≡ 0 on [t+1 ,∞) for any t+1 ≥ t1,

and either

(1.14)

∫ ∞
a(s)w(s)Ψ(s) ds = ∞

or

(1.15) lim sup
t→∞

(∫ t

a(s)w(s) ds

)−ξ+(1/α) ∫ ∞

t
a(s)w(s)Ψ(s) ds > 0,

where

Ψ(t) =

(∫ t

a(s)w(s) ds

)ξ (∫ t

a(s)w(s)α+1f(s)λ ds

)−1/α

.

Further, we denote by W0 the set of all locally integrable functions w(t) on [t1,∞)

such that w(t) ≥ 0 for t ≥ t1 and a(t)w(t) ̸≡ 0 on [t+1 ,∞) for any t+1 ≥ t1, and

(1.16) lim
t→∞

(∫ t

a(s)w(s) ds

)−α−1 ∫ t

a(s)w(s)α+1f(s)λ ds = 0.

If a(t) ≡ 1 and λ = 0, then the sets W and W0 coincide with the sets I and I0 in Li

and Yeh [9], and the sets J and J0 in Došlý and Řehák [1, pp. 91–92], respectively.

It is seen that if w ∈ W, then

(1.17)

∫ ∞
a(t)w(t) dt = ∞.

Moreover it can be proved without difficulty that

w ∈ W0 =⇒ w ∈ W, i.e., W0 ⊆ W.

Therefore, if w ∈ W0, then (1.17) holds. This fact can also be checked from the definition

of W0. In general, W0 ⊊ W. Indeed, for the case a(t) ≡ 1, α = 1 and λ = 0 we have

et /∈ W0 and et ∈ W.

Let λ be a number satisfying σ(λ − α) < 0. Let w(t) be a locally integrable function

on [t1,∞) which satisfies w(t) ≥ 0 for t ≥ t1 and a(t)w(t) ̸≡ 0 on [t+1 ,∞) for any t+1 ≥ t1,

and (1.17) holds. If w(t) satisfies the additional condition

w(t)f(t)λ/α is bounded on [t1,∞),
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or, more generally,

(1.18) lim
t→∞

w(t)f(t)λ/α
(∫ t

a(s)w(s) ds

)−1

= 0,

then w ∈ W0. Hence it is found that if w(t) satisfies w(t) ∼ kf(t)ρ with k > 0, σ(ρ+1) > 0

and σ(λ − α) < 0, then w ∈ W0, and if w(t) satisfies w(t) ∼ kf(t)−1 with k > 0 and

σ(λ− α) < 0, then w ∈ W0. The proofs of these facts are left to the reader.

Let σ, f(t) and t1 be as above, and suppose that λ and ξ satisfy σ(λ − α) < 0 and

0 ≤ ξ < 1/α, respectively. Let w ∈ W or w ∈ W0. Then we set

C(t;w, λ) =

(∫ t

t1

a(s)w(s) ds

)−1 ∫ t

t1

a(s)w(s)

(∫ s

t1

f(r)λb(r) dr

)
ds

on a neighborhood of infinity. We will prove the following results.

Theorem 1.2. Let σ, f(t) and t1 be as above, and suppose that λ and ξ satisfy σ(λ−α) < 0

and 0 ≤ ξ < 1/α, respectively. Suppose moreover that there is a function w ∈ W such that

(1.19) lim inf
t→∞

C(t;w, λ) > −∞.

If there is a function w0 ∈ W0 such that C(t;w0, λ) does not possess a finite limit as

t→ ∞, then the system (1.1) is oscillatory.

In Theorem 1.2, taking w = w0 ∈ W0 ⊆ W, we find that if there is a function w0 ∈ W0

such that lim inf C(t;w0, λ) > −∞ as t → ∞, and C(t;w0, λ) does not possess a finite

limit as t→ ∞, then (1.1) is oscillatory. Therefore we have the following corollary, which

gives an analogue of the Hartman–Wintner oscillation theorem.

Corollary 1.3. Let σ, f(t) and t1 be as above. Suppose that λ satisfies σ(λ− α) < 0. If

there is a function w0 ∈ W0 such that

lim
t→∞

C(t;w0, λ) = ∞

or

(1.20) −∞ < lim inf
t→∞

C(t;w0, λ) < lim sup
t→∞

C(t;w0, λ),

then the system (1.1) is oscillatory.

In Corollary 1.3, letting w0(t) = f(t)ρ ∈ W0 with σ(ρ+ 1) > 0, we have the following

result.
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Corollary 1.4. Let σ, f(t) and t1 be as above, and suppose that λ satisfies σ(λ−α) < 0.

Suppose moreover that there is ρ such that σ(ρ+ 1) > 0 and

lim
t→∞

1

f(t)ρ+1

∫ t

t1

a(s)f(s)ρ
(∫ s

t1

f(r)λb(r) dr

)
ds = ∞

or

−∞ < lim inf
t→∞

1

f(t)ρ+1

∫ t

t1

a(s)f(s)ρ
(∫ s

t1

f(r)λb(r) dr

)
ds

< lim sup
t→∞

1

f(t)ρ+1

∫ t

t1

a(s)f(s)ρ
(∫ s

t1

f(r)λb(r) dr

)
ds.

Then the system (1.1) is oscillatory.

Similarly, letting w0(t) = 1/f(t) ∈ W0 in Corollary 1.3, we have the following result.

Corollary 1.5. Let σ, f(t) and t1 be as above, and suppose that λ satisfies σ(λ−α) < 0.

Suppose moreover that

lim
t→∞

1

log f(t)σ

∫ t

t1

a(s)

f(s)

(∫ s

t1

f(r)λb(r) dr

)
ds = ∞

or

−∞ < lim inf
t→∞

1

log f(t)σ

∫ t

t1

a(s)

f(s)

(∫ s

t1

f(r)λb(r) dr

)
ds

< lim sup
t→∞

1

log f(t)σ

∫ t

t1

a(s)

f(s)

(∫ s

t1

f(r)λb(r) dr

)
ds.

Then the system (1.1) is oscillatory.

Corollary 1.4 has been proved by Dosoudilová et al. [2, Corollaries 2.5 and 2.11]. In

the present paper a different proof from [2] is given. Corollary 1.5 seems to be new.

Theorem 1.6. Let σ, f(t) and t1 be as above, and suppose that λ satisfies σ(λ− α) < 0.

(I) If there are w0, w1 ∈ W0 such that

(1.21) lim inf
t→∞

C(t;w0, λ) < lim inf
t→∞

C(t;w1, λ),

then the system (1.1) is oscillatory.

(II) If there are w0, w1 ∈ W0 such that

(1.22) −∞ < lim inf
t→∞

C(t;w0, λ) < lim sup
t→∞

C(t;w1, λ),

then the system (1.1) is oscillatory.
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If a(t) ≡ 1 and w0, w1 are nonnegative bounded functions satisfying∫ ∞
w0(t) dt =

∫ ∞
w1(t) dt = ∞,

then w0, w1 ∈ W0 with λ = 0. Therefore Theorem 1.6(I) gives an extension of the result by

Li and Yeh [9, Corollary 3.2]. (Note that the scalar half-linear equation (1.4) is regarded

as a special case of the system (1.1) with a(t) = p(t)−1/α and b(t) = q(t).)

In the statement (II) of Theorem 1.6, the condition (1.22) of the case w1 = w0 becomes

the condition (1.20) in Corollary 1.3.

By Corollary 1.4 (or Corollary 1.5) we find that if there is a constant λ such that

σ(λ− α) < 0 and

(1.23) lim
t→∞

∫ t

t1

f(s)λb(s) ds =

∫ ∞

t1

f(s)λb(s) ds = ∞,

then (1.1) is oscillatory. A typical counter condition to (1.23) is

(1.24) lim
t→∞

∫ t

t0

f(s)αb(s) ds =

∫ ∞

t0

f(s)αb(s) ds exists and is finite,

which plays an important role for the nonoscillation of (1.1). In fact, it can be proved

that (1.24) is sufficient for (1.1) to be nonoscillatory.

Theorem 1.7. Let f(t) be as above. If (1.24) holds, then the system (1.1) is nonoscilla-

tory.

Theorems 1.2, 1.6 and 1.7 are proved in the next section. Since the scalar half-linear

equation (1.4) is regarded as a special case of the system (1.1) with a(t) = p(t)−1/α and

b(t) = q(t), the results for (1.1) automatically produce the corresponding ones for (1.4).

In Section 3 we state the oscillatory and nonoscillatory results for (1.4). Several examples

illustrating our results are presented in Section 4.

2. Proofs of theorems

Lemma 2.1. Let φ(t) be a continuous function on [T0,∞) such that φ(t) ≥ 0 for t ≥ T0

and ∫ ∞

T0

φ(s) ds = ∞,

and let ψ(t) be a continuous function on [T0,∞). For T ≥ T0, define the function F (t, T )

on a neighborhood of infinity by

F (t, T ) =

(∫ t

T
φ(s) ds

)−1 ∫ t

T
φ(s)

(∫ s

T
ψ(r) dr

)
ds.

Let T1 ≥ T0 and T2 ≥ T0. Then
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(i) lim
t→∞

F (t, T2) = L2 ∈ R =⇒ lim
t→∞

F (t, T1) =

∫ T2

T1

ψ(s) ds+ L2,

(ii) lim
t→∞

F (t, T2) = ∞ [−∞] =⇒ lim
t→∞

F (t, T1) = ∞ [−∞],

(iii) lim sup
t→∞

F (t, T2) <∞ =⇒ lim sup
t→∞

F (t, T1) <∞,

(iv) lim inf
t→∞

F (t, T2) > −∞ =⇒ lim inf
t→∞

F (t, T1) > −∞.

Proof. Since

F (t, T1) =

∫ T2

T1

ψ(s) ds+

(∫ t

T1

φ(s) ds

)−1 ∫ T2

T1

φ(s)

(∫ s

T2

ψ(r) dr

)
ds

+

(∫ t

T1

φ(s) ds

)−1(∫ t

T2

φ(s) ds

)
F (t, T2)

for all large t, the assertions (i)–(iv) are clear. The proof is complete.

Now, as in the preceding section, we define σ and f(t) by (1.11) or (1.12) according

as (1.9) or (1.10) holds, and let t1 ≥ t0 be a number satisfying (1.13).

Suppose that the system (1.1) has a nonoscillatory solution (u(t), v(t)) such that u(t) >

0 for t ≥ T (≥ t1). Define the function R(t) by

(2.1) R(t) =
v(t)

u(t)α
, t ≥ T.

It is easily seen that R(t) satisfies the generalized Riccati differential equation

R′(t) = −b(t)− αa(t)|R(t)|(α+1)/α, t ≥ T.

This gives∫ t

τ
f(s)λR′(s) ds = −

∫ t

τ
f(s)λb(s) ds− α

∫ t

τ
a(s)f(s)λ|R(s)|(α+1)/α ds

for t ≥ τ ≥ T . Using integration by parts on the left-hand side of the above, we find that

f(t)λR(t) = f(τ)λR(τ)−
∫ t

τ
f(s)λb(s) ds+ σλ

∫ t

τ
a(s)f(s)λ−1R(s) ds

− α

∫ t

τ
a(s)f(s)λ|R(s)|(α+1)/α ds, t ≥ τ ≥ T.

(2.2)

For brevity, we put

(2.3) I(t, τ) =

∫ t

τ
a(s)f(s)λ|R(s)|(α+1)/α ds, t ≥ τ ≥ T.
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Let λ and ξ satisfy σ(λ−α) < 0 and 0 ≤ ξ < 1/α, respectively, and let w ∈ W or w ∈ W0.

Then it follows from (2.2) and (2.3) that∫ t

τ
a(s)w(s)f(s)λR(s) ds

= f(τ)λR(τ)

∫ t

τ
a(s)w(s) ds−

∫ t

τ
a(s)w(s)

(∫ s

τ
f(r)λb(r) dr

)
ds

+ σλ

∫ t

τ
a(s)w(s)

(∫ s

τ
a(r)f(r)λ−1R(r) dr

)
ds

− α

∫ t

τ
a(s)w(s)I(s, τ) ds, t ≥ τ ≥ T.

(2.4)

We will divide the proofs of Theorems 1.2 and 1.6 into two steps. The first step is the

following lemma.

Lemma 2.2. Let σ, f(t), t1, λ and ξ be as above. Suppose that there is a function w ∈ W
such that (1.19) holds. If the system (1.1) has a nonoscillatory solution (u(t), v(t)) such

that u(t) > 0 for t ≥ T (≥ t1), then

(2.5)

∫ ∞

T
a(s)f(s)λ|R(s)|(α+1)/α ds <∞,

where R(t) is defined by (2.1).

Proof. Let w(t) be a function which belongs to W and satisfies (1.19). For the meanwhile,

we suppose that τ ≥ t1 is an arbitrary number such that

(2.6) a(τ)w(τ) > 0.

This gives ∫ t

τ
a(s)w(s) ds > 0 for all t > τ.

Then we define the functions A(t, τ) and B(t, τ) on [τ,∞) by

A(t, τ) =

∫ t

τ
a(s)w(s) ds, t ≥ τ,

and

B(t, τ) =
1

A(t, τ)

∫ t

τ
a(s)w(s)

(∫ s

τ
f(r)λb(r) dr

)
ds, t ≥ τ.

Here, the value of B(τ, τ) is interpreted as 0.

To prove (2.5), assume on the contrary that

(2.7)

∫ ∞

T
a(s)f(s)λ|R(s)|(α+1)/α ds = ∞.
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Without loss of generality we can suppose that a(T )w(T ) > 0. By using the above

functions A(t, τ) and B(t, τ), the equality (2.4) is written as∫ t

τ
a(s)w(s)f(s)λR(s) ds = [f(τ)λR(τ)−B(t, τ)]A(t, τ)

+ σλ

∫ t

τ
a(s)w(s)

(∫ s

τ
a(r)f(r)λ−1R(r) dr

)
ds

− α

∫ t

τ
a(s)w(s)I(s, τ) ds, t ≥ τ ≥ T.

(2.8)

Applying Lemma 2.1(iv) to the case T0 = T2 = t1, T1 = T , φ(t) = a(t)w(t) and ψ(t) =

f(t)λb(t), we see that the assumption (1.19) implies lim inf B(t, T ) > −∞ (t → ∞).

Therefore there exists a positive constant M such that

(2.9) B(t, T ) ≥ −M for all t ≥ T .

As in the equality (2.2), we get

f(τ)λR(τ) = f(T )λR(T )−
∫ τ

T
f(s)λb(s) ds

+ σλ

∫ τ

T
a(s)f(s)λ−1R(s) ds− αI(τ, T ), τ ≥ T,

(2.10)

where

I(τ, T ) =

∫ τ

T
a(s)f(s)λ|R(s)|(α+1)/α ds.

By the definitions of A(t, τ) and B(t, τ) we have

B(t, τ) =
A(t, T )

A(t, τ)
B(t, T )−

∫ τ

T
f(s)λb(s) ds

− 1

A(t, τ)

∫ τ

T
a(s)w(s)

(∫ s

T
f(r)λb(r) dr

)
ds, t > τ ≥ T.

(2.11)

Therefore it follows from (2.10) and (2.11) that

f(τ)λR(τ)−B(t, τ)

= f(T )λR(T ) + σλ

∫ τ

T
a(s)f(s)λ−1R(s) ds− αI(τ, T )− A(t, T )

A(t, τ)
B(t, T )

+
1

A(t, τ)

∫ τ

T
a(s)w(s)

(∫ s

T
f(r)λb(r) dr

)
ds, t > τ ≥ T.

(2.12)

Using (2.9) on the right-hand side of (2.12), and taking the upper limit as t → ∞, we

obtain

lim sup
t→∞

[f(τ)λR(τ)−B(t, τ)]

≤ f(T )λ|R(T )|+ |λ|
∫ τ

T
a(s)f(s)λ−1|R(s)| ds− αI(τ, T ) +M

(2.13)
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for τ ≥ T . By Hölder’s inequality the integral of the second term on the right-hand side

of (2.13) is estimated as follows:∫ τ

T
a(s)f(s)λ−1|R(s)| ds

≤
(∫ τ

T
a(s)f(s)λ−α−1 ds

)1/(α+1)(∫ τ

T
a(s)f(s)λ|R(s)|(α+1)/α ds

)α/(α+1)

=

(∫ τ

T
a(s)f(s)λ−α−1 ds

)1/(α+1)

I(τ, T )α/(α+1), τ ≥ T.

Note here that

0 ≤
∫ τ

T
a(s)f(s)λ−α−1 ds ≤

∫ ∞

t1

a(s)f(s)λ−α−1 ds = − 1

σ

f(t1)
λ−α

λ− α
<∞.

Therefore we have

(2.14)

∫ τ

T
a(s)f(s)λ−1|R(s)| ds ≤

(∫ ∞

t1

a(s)f(s)λ−α−1 ds

)1/(α+1)

I(τ, T )α/(α+1)

for τ ≥ T . Then, (2.13) gives

lim sup
t→∞

[f(τ)λR(τ)−B(t, τ)]

≤ f(T )λ|R(T )|+ |λ|
(∫ ∞

t1

a(s)f(s)λ−α−1 ds

)1/(α+1)

I(τ, T )α/(α+1)

− αI(τ, T ) +M, τ ≥ T.

(2.15)

We denote the right-hand side of (2.15) by L(τ). Remark that τ in (2.15) is a number

satisfying (2.6). There exists a sequence {τi}∞i=1 such that

a(τi)w(τi) > 0, i = 1, 2, 3, . . . and lim
i→∞

τi = ∞.

Since (2.7) implies I(τi, T ) → ∞ (i→ ∞), we have L(τi)/I(τi, T ) → −α (i→ ∞), and so

L(τi) → −∞ as i→ ∞. Therefore, for any positive number ζ, there is τ = τ(ζ) > T such

that a(τ)w(τ) > 0 and L(τ) < −2ζ hold. In what follows, τ = τ(ζ) is a number having

these properties. In the last step we will let ζ → ∞. By the inequality (2.15), there is a

sufficiently large number T1 > τ such that

f(τ)λR(τ)−B(t, τ) ≤ −ζ for all t ≥ T1.

Then it follows from (2.8) that∫ t

τ
a(s)w(s)f(s)λR(s) ds

≤ −ζA(t, τ) + |λ|
∫ t

τ
a(s)w(s)

(∫ s

τ
a(r)f(r)λ−1|R(r)| dr

)
ds

− α

∫ t

τ
a(s)w(s)I(s, τ) ds

(2.16)
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for t ≥ T1. Similar to (2.14) we have∫ s

τ
a(r)f(r)λ−1|R(r)| dr ≤

(∫ ∞

t1

a(r)f(r)λ−α−1 dr

)1/(α+1)

I(s, τ)α/(α+1)

for s ≥ τ . Hence, by (2.16),

∫ t

τ
a(s)w(s)f(s)λR(s) ds

≤ −ζA(t, τ)

+

∫ t

τ
a(s)w(s)

[
|λ|

(∫ ∞

t1

a(r)f(r)λ−α−1 dr

)1/(α+1)

I(s, τ)α/(α+1) − αI(s, τ)

]
ds

(2.17)

for t ≥ T1. Denote by L(s, τ) the term in the square brackets of the right-hand side of

(2.17). Since I(s, τ) → ∞ (s → ∞), we have L(s, τ)/I(s, τ) → −α as s → ∞. Therefore

there is η > T1 such that

L(s, τ) ≤ −α
2
I(s, τ) for s ≥ η.

Then, by (2.17), we see that∫ t

τ
a(s)w(s)f(s)λR(s) ds ≤ −ζA(t, τ) +

∫ η

τ
a(s)w(s)L(s, τ) ds

− α

2

∫ t

η
a(s)w(s)I(s, τ) ds

(2.18)

for t ≥ η. Remember that w ∈ W satisfies (1.17). This means that A(t, τ) → ∞ as t→ ∞.

Therefore, there is θ > η such that∫ η

τ
a(s)w(s)L(s, τ) ds ≤ ζ

2
A(t, τ) for t ≥ θ.

Then it follows from (2.18) that

(2.19)

∫ t

τ
a(s)w(s)f(s)λR(s) ds ≤ −ζ

2
A(t, τ)− α

2

∫ t

η
a(s)w(s)I(s, τ) ds

for t ≥ θ. Denote by −G(t) the right-hand side of (2.19). We have

G(t) ≥ ζ

2
A(t, τ) > 0,(2.20)

0 < G(t) ≤ −
∫ t

τ
a(s)w(s)f(s)λR(s) ds =

∣∣∣∣∫ t

τ
a(s)w(s)f(s)λR(s) ds

∣∣∣∣ ,(2.21)
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and

(2.22) G′(t) ≥ α

2
a(t)w(t)I(t, τ)

for t ≥ θ.

Now, using Hölder’s inequality, we obtain∣∣∣∣∫ t

τ
a(s)w(s)f(s)λR(s) ds

∣∣∣∣
≤

(∫ t

τ
a(s)w(s)α+1f(s)λ ds

)1/(α+1)(∫ t

τ
a(s)f(s)λ|R(s)|(α+1)/α ds

)α/(α+1)

=

(∫ t

τ
a(s)w(s)α+1f(s)λ ds

)1/(α+1)

I(t, τ)α/(α+1), t ≥ τ,

(2.23)

and, hence, it follows from (2.21) that

I(t, τ) ≥
(∫ t

τ
a(s)w(s)α+1f(s)λ ds

)−1/α

G(t)(α+1)/α

for t ≥ θ. To simplify notation, we put

J(t, u) =

∫ t

u
a(s)w(s)α+1f(s)λ ds, t ≥ u ≥ T.

Then, (2.22) gives

(2.24) G′(t) ≥ α

2
a(t)w(t)J(t, τ)−1/αG(t)(α+1)/α

for t ≥ θ. Multiplying (2.24) by G(t)ξ−[(α+1)/α], where ξ is a number such that 0 ≤ ξ <

1/α, and using (2.20), we get

G′(t)G(t)ξ−[(α+1)/α] ≥ α

2

(
ζ

2

)ξ

a(t)w(t)J(t, τ)−1/αA(t, τ)ξ

for t ≥ θ. Integrate the above inequality from t (≥ θ) to t′, and let t′ → ∞. Since ξ < 1/α

and G(t) → ∞ as t→ ∞ (see (2.20)) we find that

(2.25)

∫ ∞

θ
a(s)w(s)J(s, τ)−1/αA(s, τ)ξ ds <∞

and

(2.26)

(
1

α
− ξ

)−1

G(t)ξ−(1/α) ≥ α

2

(
ζ

2

)ξ ∫ ∞

t
a(s)w(s)J(s, τ)−1/αA(s, τ)ξ ds

for t ≥ θ.
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For the case where w ∈ W satisfies (1.14), the result (2.25) yields a contradiction.

Therefore, let us consider the case where w ∈ W satisfies (1.15). Using (2.20) on the

left-hand side of (2.26), we deduce that

2

α

(
ζ

2

)−1/α( 1

α
− ξ

)−1

≥ A(t, τ)−ξ+(1/α)

∫ ∞

t
a(s)w(s)J(s, τ)−1/αA(s, τ)ξ ds, t ≥ θ.

(2.27)

Since

A(t, T ) = A(τ, T ) +A(t, τ), J(s, τ) ≤ J(s, T ),

A(s, T ) = A(τ, T ) +A(s, τ), A(s, τ) ≥ A(t, τ), s ≥ t,

we easily see that

A(t, T )−ξ+(1/α)

∫ ∞

t
a(s)w(s)J(s, T )−1/αA(s, T )ξ ds

≤
[
A(τ, T ) +A(t, τ)

A(t, τ)

]−ξ+(1/α) [A(τ, T )
A(t, τ)

+ 1

]ξ
A(t, τ)−ξ+(1/α)

×
∫ ∞

t
a(s)w(s)J(s, τ)−1/αA(s, τ)ξ ds, t ≥ θ.

Hence, taking the upper limit as t→ ∞ in (2.27), we get

2

α

(
ζ

2

)−1/α( 1

α
− ξ

)−1

≥ lim sup
t→∞

A(t, T )−ξ+(1/α)

∫ ∞

t
a(s)w(s)J(s, T )−1/αA(s, T )ξ ds.

(2.28)

Note that the right-hand side of (2.28) is independent of ζ > 0. Since ζ > 0 is arbitrary,

letting ζ → ∞ in (2.28), we find that

lim sup
t→∞

A(t, T )−ξ+(1/α)

∫ ∞

t
a(s)w(s)J(s, T )−1/αA(s, T )ξ ds = 0.

This is a contradiction to (1.15). Thus we conclude that (2.5) holds. This completes the

proof of Lemma 2.2.

Lemma 2.3. Let σ, f(t), t1 and λ be as above. Suppose that the system (1.1) has a

nonoscillatory solution (u(t), v(t)) such that u(t) > 0 for t ≥ T (≥ t1). Suppose further

that the function R(t) defined by (2.1) satisfies (2.5). Then, for any w ∈ W0, the function

C(t;w, λ) has a finite limit as t→ ∞. The value of the limit of C(t;w, λ) as t→ ∞ does

not depend on w ∈ W0.
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Proof. For any w ∈ W0, we have (2.4). Note that w(t) satisfies (1.17). Putting τ = T in

(2.4), we get

1

A(t, T )

∫ t

T
a(s)w(s)

(∫ s

T
f(r)λb(r) dr

)
ds

= f(T )λR(T )− 1

A(t, T )

∫ t

T
a(s)w(s)f(s)λR(s) ds

+
σλ

A(t, T )

∫ t

T
a(s)w(s)

(∫ s

T
a(r)f(r)λ−1R(r) dr

)
ds

− α

A(t, T )

∫ t

T
a(s)w(s)I(s, T ) ds

(2.29)

for all large t. Here,

A(t, T ) =

∫ t

T
a(s)w(s) ds and I(t, T ) =

∫ t

T
a(s)f(s)λ|R(s)|(α+1)/α ds, t ≥ T.

From the condition (2.5) it follows that

(2.30) lim
t→∞

I(t, T ) =

∫ ∞

T
a(s)f(s)λ|R(s)|(α+1)/α ds <∞.

Then it is clear that

lim
t→∞

1

A(t, T )

∫ t

T
a(s)w(s)I(s, T ) ds =

∫ ∞

T
a(s)f(s)λ|R(s)|(α+1)/α ds ∈ R.

Analogously to (2.23) we have∣∣∣∣∫ t

T
a(s)w(s)f(s)λR(s) ds

∣∣∣∣ ≤ (∫ t

T
a(s)w(s)α+1f(s)λ ds

)1/(α+1)

I(t, T )α/(α+1)

and so

1

A(t, T )

∣∣∣∣∫ t

T
a(s)w(s)f(s)λR(s) ds

∣∣∣∣
≤ 1

A(t, T )

(∫ t

T
a(s)w(s)α+1f(s)λ ds

)1/(α+1)

I(t, T )α/(α+1)

for all large t. Therefore, by (1.16) and (2.30), we get

lim
t→∞

1

A(t, T )

∫ t

T
a(s)w(s)f(s)λR(s) ds = 0.

As in the proof of (2.14), we have

(2.31)

∫ t

T
a(s)f(s)λ−1|R(s)| ds ≤

(∫ ∞

t1

a(s)f(s)λ−α−1 ds

)1/(α+1)

I(t, T )α/(α+1)
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for t ≥ T . Since I(t, T ) has a finite limit as t→ ∞, it is bounded on [T,∞), and so (2.31)

yields ∫ ∞

T
a(s)f(s)λ−1|R(s)| ds <∞.

This implies that

lim
t→∞

∫ t

T
a(s)f(s)λ−1R(s) ds =

∫ ∞

T
a(s)f(s)λ−1R(s) ds

exists and is finite. Hence,

lim
t→∞

1

A(t, T )

∫ t

T
a(s)w(s)

(∫ s

T
a(r)f(r)λ−1R(r) dr

)
ds =

∫ ∞

T
a(s)f(s)λ−1R(s) ds ∈ R.

Then, by (2.29), we conclude that

lim
t→∞

1

A(t, T )

∫ t

T
a(s)w(s)

(∫ s

T
f(r)λb(r) dr

)
ds

= f(T )λR(T ) + σλ

∫ ∞

T
a(s)f(s)λ−1R(s) ds− α

∫ ∞

T
a(s)f(s)λ|R(s)|(α+1)/α ds.

(2.32)

Observe that the right-hand side of (2.32) is a finite value, and it does not depend on

w ∈ W0. Then, applying Lemma 2.1(i) to the case T0 = T1 = t1, T2 = T , φ(t) = a(t)w(t)

and ψ(t) = f(t)λb(t), we see that

lim
t→∞

C(t;w, λ) =

∫ T

t1

f(s)λb(s) ds+ f(T )λR(T )

+ σλ

∫ ∞

T
a(s)f(s)λ−1R(s) ds− α

∫ ∞

T
a(s)f(s)λ|R(s)|(α+1)/α ds.

Thus, we deduce that C(t;w, λ) has a finite limit as t → ∞ and that the value of the

limit of C(t;w, λ) as t → ∞ does not depend on w ∈ W0. The proof of Lemma 2.3 is

complete.

We are now ready to prove Theorems 1.2 and 1.6.

Proof of Theorem 1.2. Assume that the system (1.1) has a nonoscillatory solution (u(t),

v(t)). Let u(t) > 0 for t ≥ T (≥ t1), and define the function R(t) by (2.1). By Lemma 2.2

we have (2.5). Therefore, by Lemma 2.3, the function C(t;w0, λ) has a finite limit as t→ ∞
for any w0 ∈ W0. Consequently, if there is a function w0 ∈ W0 such that C(t;w0, λ) does

not possess a finite limit as t → ∞, then the system (1.1) is oscillatory. The proof of

Theorem 1.2 is complete.
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Proof of Theorem 1.6. Assume that the system (1.1) has a nonoscillatory solution (u(t),

v(t)). Let u(t) > 0 for t ≥ T (≥ t1), and define the function R(t) by (2.1). Let ξ be a

number satisfying 0 ≤ ξ < 1/α. For the proof of (I) note that w1 ∈ W0 ⊆ W and

lim inf
t→∞

C(t;w1, λ) > −∞,

and for the proof of (II) note that w0 ∈ W0 ⊆ W and

lim inf
t→∞

C(t;w0, λ) > −∞.

Then, by Lemma 2.2 applied to the case w = w1 ∈ W (resp. w = w0 ∈ W) for the proof of

(I) (resp. (II)), we have (2.5). Therefore it follows from Lemma 2.3 that, for any w ∈ W0,

the function C(t;w, λ) has a finite limit as t → ∞ and the limit (in particular, the lower

limit and the upper limit) of C(t;w, λ) as t → ∞ does not depend on w ∈ W0. This is

a contradiction to the condition (1.21) (resp. (1.22)) for the proof of (I) (resp. (II)). The

proof of Theorem 1.6 is complete.

For the proof of Theorem 1.7 we use Sturm’s comparison theorem (see Theorem 1.1).

Proof of Theorem 1.7. Suppose that (1.24) holds. We take a number T ≥ t0 such that∣∣∣∣∫ ∞

t
f(s)αb(s) ds

∣∣∣∣ ≤ 1

3
for t ≥ T .

Clearly we have

0 <
1

6
≤ σ

∫ ∞

t
f(s)αb(s) ds+

1

2
≤ 5

6
< 1, t ≥ T,

where σ = +1 for the case where (1.9) holds, and σ = −1 for the case where (1.10) holds.

Define the function R(t) by

R(t) = σf(t)−α

(
σ

∫ ∞

t
f(s)αb(s) ds+

1

2

)
, t ≥ T.

It is easy to see that

R′(t) = −b(t)− αa(t)|R(t)|(α+1)/α

(
σ

∫ ∞

t
f(s)αb(s) ds+

1

2

)−1/α

for t ≥ T , and so

(2.33) R′(t) ≤ −b(t)− αa(t)|R(t)|(α+1)/α, t ≥ T.

Next, define the positive function u1(t) by

u1(t) = exp

(∫ t

T
a(s)|R(s)|1/α sgnR(s) ds

)
, t ≥ T.
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Further, using the above R(t) and u1(t), we put

v1(t) = u1(t)
αR(t), t ≥ T.

Then,

u′1(t) = a(t)|v1(t)|1/α sgn v1(t), t ≥ T,

and, it follows from (2.33) that

v′1(t) ≤ −b(t)u1(t)α, t ≥ T.

Put

b1(t) = − v′1(t)

u1(t)α
, t ≥ T.

It is clear that b1(t) ≥ b(t) (t ≥ T ), and that (u1(t), v1(t)) is a solution on [T,∞) of the

system

u′1 = a(t)|v1|1/α sgn v1, v′1 = −b1(t)|u1|α sgnu1.

Remember that u1(t) > 0 for t ≥ T . Then, by Theorem 1.1, we conclude that for any

nontrivial solution (u(t), v(t)) of (1.1) the first component u(t) has at most one zero in

[T,∞). This shows that (1.1) is nonoscillatory. The proof of Theorem 1.7 is complete.

3. Scalar half-linear equations

Now, let us state the oscillatory and nonoscillatory results for the scalar half-linear equa-

tion (1.4). Since (1.4) can be regarded as a special case of (1.1) with a(t) = p(t)−1/α

and b(t) = q(t), the results for (1.1) yield the corresponding results for (1.4). The precise

statements of the general results for (1.4) which can be derived from Theorem 1.2, Corol-

lary 1.3 and Theorem 1.6 are omitted because they are complicated and long. We only

give a remark that the result of Li and Yeh [9, Theorem 3.1] for (1.4) with p(t) ≡ 1 is

easily derived from Theorem 1.2 of the case λ = 0. See also Theorem 1.3 in Willett [25] for

the linear equation (1.6). We further note that the corresponding result to Theorem 1.6

of the case λ = 0 gives an extension of the result of Li and Yeh [9, Corollary 3.2]. See

Corollary 1.2 in Willett [25] for the linear equation (1.6).

In this section we state the results for (1.4) which can be derived from Corollaries 1.4

and 1.5 and Theorem 1.7. We first consider the case where (1.7) holds. Then we set

(3.1) P (t) =

∫ t

t0

p(s)−1/α ds, t ≥ t0.

Corollary 1.4 produces the following result.
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Corollary 3.1. Consider the equation (1.4) under the condition (1.7). Define P (t) by

(3.1), and take t1 > t0 so that P (t) > 0 for t ≥ t1. Suppose moreover that there are λ and

ρ such that λ < α, ρ > −1 and

lim
t→∞

1

P (t)ρ+1

∫ t

t1

p(s)−1/αP (s)ρ
(∫ s

t1

P (r)λq(r) dr

)
ds = ∞

or

−∞ < lim inf
t→∞

1

P (t)ρ+1

∫ t

t1

p(s)−1/αP (s)ρ
(∫ s

t1

P (r)λq(r) dr

)
ds

< lim sup
t→∞

1

P (t)ρ+1

∫ t

t1

p(s)−1/αP (s)ρ
(∫ s

t1

P (r)λq(r) dr

)
ds.

Then, (1.4) is oscillatory.

The classical Hartman–Wintner oscillation criterion for (1.6) is the case of α = 1,

p(t) ≡ 1, ρ = 0 and λ = 0 in Corollary 3.1.

Corollary 1.5 yields the following result.

Corollary 3.2. Consider the equation (1.4) under the condition (1.7). Define P (t) by

(3.1), and take t1 > t0 so that P (t) > 0 for t ≥ t1. Suppose moreover that there exists λ

such that λ < α and

lim
t→∞

1

logP (t)

∫ t

t1

p(s)−1/α

P (s)

(∫ s

t1

P (r)λq(r) dr

)
ds = ∞

or

−∞ < lim inf
t→∞

1

logP (t)

∫ t

t1

p(s)−1/α

P (s)

(∫ s

t1

P (r)λq(r) dr

)
ds

< lim sup
t→∞

1

logP (t)

∫ t

t1

p(s)−1/α

P (s)

(∫ s

t1

P (r)λq(r) dr

)
ds.

Then, (1.4) is oscillatory.

Theorem 1.7 produces the following result.

Corollary 3.3. Consider the equation (1.4) under the condition (1.7). Define P (t) by

(3.1). If

(3.2) lim
t→∞

∫ t

t0

P (s)αq(s) ds =

∫ ∞

t0

P (s)αq(s) ds exists and is finite,

then (1.4) is nonoscillatory.
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The above result for the case p(t) ≡ 1 was shown by Li and Yeh [10, Corollary 3.3].

For case where q(t) ≥ 0 for all large t, it is well known (see, e.g., [4,6]) that if (3.2) holds,

then (1.4) has a nonoscillatory solution u(t) such that

(3.3) lim
t→∞

u(t)

P (t)
exists and is a nonzero finite value,

and, conversely, if (1.4) has a nonoscillatory solution u(t) satisfying (3.3), then (3.2) holds.

Next, consider the case where (1.8) holds. We set

(3.4) π(t) =

∫ ∞

t
p(s)−1/α ds, t ≥ t0.

Then we can take t1 = t0. The following results can be obtained from Corollaries 1.4 and

1.5 and Theorem 1.7.

Corollary 3.4. Consider the equation (1.4) under the condition (1.8). Define π(t) by

(3.4). Suppose that there are λ and ρ such that λ > α, ρ < −1 and

lim
t→∞

1

π(t)ρ+1

∫ t

t0

p(s)−1/απ(s)ρ
(∫ s

t0

π(r)λq(r) dr

)
ds = ∞

or

−∞ < lim inf
t→∞

1

π(t)ρ+1

∫ t

t0

p(s)−1/απ(s)ρ
(∫ s

t0

π(r)λq(r) dr

)
ds

< lim sup
t→∞

1

π(t)ρ+1

∫ t

t0

p(s)−1/απ(s)ρ
(∫ s

t0

π(r)λq(r) dr

)
ds.

Then, (1.4) is oscillatory.

Corollary 3.5. Consider the equation (1.4) under the condition (1.8). Define π(t) by

(3.4). Suppose that there exists λ such that λ > α and

lim
t→∞

1

log(1/π(t))

∫ t

t0

p(s)−1/α

π(s)

(∫ s

t0

π(r)λq(r) dr

)
ds = ∞

or

−∞ < lim inf
t→∞

1

log(1/π(t))

∫ t

t0

p(s)−1/α

π(s)

(∫ s

t0

π(r)λq(r) dr

)
ds

< lim sup
t→∞

1

log(1/π(t))

∫ t

t0

p(s)−1/α

π(s)

(∫ s

t0

π(r)λq(r) dr

)
ds.

Then, (1.4) is oscillatory.
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Corollary 3.6. Consider the equation (1.4) under the condition (1.8). Define π(t) by

(3.4). If

(3.5) lim
t→∞

∫ t

t0

π(s)αq(s) ds =

∫ ∞

t0

π(s)αq(s) ds exists and is finite,

then (1.4) is nonoscillatory.

For the case where q(t) ≥ 0 for all large t, it is known (see, e.g., [6, 8]) that if (3.5)

holds, then (1.4) has a nonoscillatory solution u(t) such that

(3.6) lim
t→∞

u(t)

π(t)
exists and is a nonzero finite value,

and, conversely, if (1.4) has a nonoscillatory solution u(t) satisfying (3.6), then (3.5) holds.

4. Examples

In this section we illustrate our results by several examples.

Example 4.1. Let g ∈ C1[t0,∞), t0 > 0, be a function such that

g(t) > 0 and g′(t) ≥ 0 for t ≥ t0, and lim
t→∞

g(t) = ∞,

and put

a(t) = g′(t) and b(t) =
d

dt

{
sin log g(t) + log g(t) cos log g(t)

}
for t ≥ t0. For this pair of a(t) and b(t), the system (1.1) is oscillatory. To see this, take

a function G ∈ C1[0,∞) such that G(t) = g(t) for t ≥ t0 and

G(0) = 0, G′(t) ≥ 0 for t ∈ [0, t0].

We put A(t) = G′(t) for t ≥ 0, and so A(t) = a(t) for t ≥ t0. Further, take a function

B ∈ C[0,∞) such that B(t) = b(t) for t ≥ t0. Then we consider the auxiliary system

(4.1) u′ = A(t)|v|1/α sgn v, v′ = −B(t)|u|α sgnu,

on the interval [0,∞). Clearly, the original system is oscillatory if and only if the auxiliary

system (4.1) is oscillatory. For the system (4.1), we have σ = +1 and f(t) =
∫ t
0 A(s) ds =

G(t) for t ≥ 0. Let t1 = t0, and so f(t) = g(t) > 0 for t ≥ t1. It is clear that∫ t

t1

B(s) ds = sin log g(t) + log g(t) cos log g(t) + c1, t ≥ t1,

where c1 is a constant. Then we can easily check that∫ t

t1

A(s)

f(s)

(∫ s

t1

B(r) dr

)
ds = log g(t) sin log g(t) + c1 log g(t) + c2, t ≥ t1,
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where c2 is also a constant. Hence we have

−1 + c1 = lim inf
t→∞

1

log f(t)

∫ t

t1

A(s)

f(s)

(∫ s

t1

B(r) dr

)
ds

< lim sup
t→∞

1

log f(t)

∫ t

t1

A(s)

f(s)

(∫ s

t1

B(r) dr

)
ds = 1 + c1.

Therefore, by Corollary 1.5 with λ = 0, the system (4.1) is oscillatory, and, in consequence,

the system (1.1) under consideration is oscillatory.

Example 4.2. Consider the half-linear scalar equation (1.4) of the case

p(t) = t2α and q(t) = t2α
d

dt

{
sin log t+ log t cos log t

}
for t ≥ t0 (> 0). In this case, σ = −1 and π(t) = 1/t (t ≥ t0). We will apply Corollary 3.5

with λ = 2α. Since∫ t

t0

π(r)2αq(r) dr = sin log t+ log t cos log t+ c1, t ≥ t0,

we have∫ t

t0

p(s)−1/α

π(s)

(∫ s

t0

π(r)2αq(r) dr

)
ds = log t sin log t+ c1 log t+ c2, t ≥ t0.

Here c1 and c2 are constants. It is easy to see that

−1 + c1 = lim inf
t→∞

1

log(1/π(t))

∫ t

t0

p(s)−1/α

π(s)

(∫ s

t0

π(r)2αq(r) dr

)
ds

< lim sup
t→∞

1

log(1/π(t))

∫ t

t0

p(s)−1/α

π(s)

(∫ s

t0

π(r)2αq(r) dr

)
ds = 1 + c1.

Therefore, by Corollary 3.5 with λ = 2α, this equation (1.4) is oscillatory.

Remark 4.3. From Example 4.1 of the case g(t) = t, we find that the equation (1.4) of the

case

p(t) ≡ 1 and q(t) =
d

dt

{
sin log t+ log t cos log t

}
, t ≥ t0 > 0,

is oscillatory. If this equation is written as

(4.2) (|u′|α sgnu′)′ + q(t)|u|α sgnu = 0,

then the equation in Example 4.2 is

(4.3) (t2α|u′|α sgnu′)′ + t2αq(t)|u|α sgnu = 0.
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In general, let q(t) be a continuous function on [t0,∞), t0 > 0. Then it may be guessed that

there is some relation between (4.2) and (4.3) with respect to oscillatory (and nonoscil-

latory) properties of solutions. This is surely true for the case α = 1 in the sense that

(4.2) with α = 1 is oscillatory (resp. nonoscillatory) if and only if (4.3) with α = 1 is

oscillatory (resp. nonoscillatory). Indeed, for a solution u(t) of (4.2) with α = 1, the

function ũ(t) = u(t)/t is a solution of (4.3) with α = 1, and, by this transformation, the

oscillatory (and nonoscillatory) property does not change.

Next we give two examples illustrating Theorem 1.6.

Example 4.4. Consider the half-linear equation (1.4) of the case

p(t) = 1 and q(t) = t2 cos t

for t ≥ 0. This equation is regarded as a special case of the system (1.1) with a(t) = 1

and b(t) = t2 cos t. In this case, we have σ = +1 and f(t) = t (t ≥ 0). We will apply

Theorem 1.6(I) with λ = 0, and so σ(λ− α) < 0. Let t1 = 2π. We have∫ t

t1

b(r) dr =

∫ t

t1

r2 cos r dr = t2 sin t+ 2t cos t− 2 sin t+ c1,

where c1 is a constant.

The positive constant function w0(t) ≡ 1 satisfies a(t)w0(t) = 1 ̸≡ 0 on [t2,∞) for any

t2 ≥ t1, and (1.17) and (1.18)λ=0 with w(t) replaced by w0(t) hold. Therefore, w0 ∈ W0.

The function C(t;w0, 0) is given by

C(t;w0, 0) =
1

t− t1

(
− t2 cos t+ 4t sin t+ 6 cos t+ c2 + c1(t− t1)

)
,

where c2 is a constant. Hence we have

lim inf
t→∞

C(t;w0, 0) = −∞.

Next, take w1(t) = (sin t)+(cos t)+, where in general ψ(t)+ = max{ψ(t), 0}. The

function w1(t) satisfies w1(t) ≥ 0 for t ≥ t1 and a(t)w1(t) = (sin t)+(cos t)+ ̸≡ 0 on [t2,∞)

for any t2 ≥ t1. For t ≥ t1 = 2π, there is an n ∈ {1, 2, 3, . . .} such that 2nπ ≤ t < 2(n+1)π.

Then,

∫ t

t1

a(s)w1(s) ds =

∫ t

2π
(sin s)+(cos s)+ ds ≥

n−1∑
i=1

∫ 2iπ+(π/2)

2iπ
sin s cos s ds

=
n− 1

2
>
t− 4π

4π
.

(4.4)
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Therefore, w1(t) satisfies (1.17) and (1.18)λ=0 with w(t) replaced by w1(t). Hence, w1 ∈
W0. Since (sin t)+ ≥ 0, (cos t)+ ≥ 0, sin t (sin t)+ ≥ 0 and cos t (cos t)+ ≥ 0, we have∫ t

t1

a(s)w1(s)

(∫ s

t1

b(r) dr

)
ds

≥
∫ t

2π

{
− 2 sin s (sin s)+(cos s)+ + c1(sin s)+(cos s)+

}
ds

≥
∫ t

2π
(−2− |c1|) ds = (−2− |c1|)(t− 2π), t ≥ 2π.

Therefore the inequality (4.4) gives

C(t;w1, 0) ≥
4π

t− 4π
(−2− |c1|)(t− 2π), t > 4π.

Consequently, we get

lim inf
t→∞

C(t;w1, 0) > −∞.

Thus the condition (1.21) holds. By Theorem 1.6(I), the equation in this example is

oscillatory.

Example 4.5. Consider the half-linear equation (1.4) of the case

p(t) = tα and q(t) = (log t)β cos t (β: constant)

for t ≥ π. If β > −α, then this equation is oscillatory. To see this, we take a function

Q ∈ C[1,∞) such that Q(t) = (log t)β cos t for t ≥ π, and consider the auxiliary equation

(4.5) (tα|u′|α sgnu′)′ +Q(t)|u|α sgnu = 0

on the interval [1,∞). Clearly, the original equation is oscillatory if and only if (4.5)

is oscillatory. The equation (4.5) is regarded as a special case of the system (1.1) with

a(t) = 1/t and b(t) = Q(t). We will apply Theorem 1.6(II) to (4.5), for which σ = +1 and

f(t) = log t (t ≥ 1). Let λ = −β, and so σ(λ − α) < 0. Put t1 = 2π (> 1). The positive

constant function w0(t) ≡ 1 satisfies a(t)w0(t) = 1/t ̸≡ 0 on [t2,∞) for any t2 ≥ t1,

and (1.17) and (1.18)λ=−β with w(t) replaced by w0(t) hold. Therefore, w0 ∈ W0. The

function C(t;w0,−β) satisfies

C(t;w0,−β) =
1

log t− log(2π)

∫ t

2π

1

s

(∫ s

2π
cos r dr

)
ds→ 0 as t→ ∞.

Next, take w1(t) = (sin t)+, where in general ψ(t)+ = max{ψ(t), 0}. This function

satisfies w1(t) ≥ 0 on [t1,∞) and a(t)w1(t) = (sin t)+/t ̸≡ 0 on [t2,∞) for any t2 ≥ t1. Let
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t ≥ t1 = 2π. There is an n ∈ {1, 2, 3, . . .} such that 2nπ ≤ t < 2(n+ 1)π. Then,∫ t

t1

a(s)w1(s) ds

=

∫ t

2π

(sin s)+
s

ds ≥
n−1∑
i=1

∫ (2i+1)π−(π/4)

2iπ+(π/4)

sin s

s
ds

≥
n−1∑
i=1

∫ (2i+1)π−(π/4)

2iπ+(π/4)

√
2/2

(2i+ 1)π − (π/4)
ds =

√
2

4

n−1∑
i=1

1

(2i+ 1)− (1/4)

≥
√
2

12

n−1∑
i=1

1

i
≥

√
2

12
log n ≥

√
2

12
log

(
t− 2π

2π

)
, t > 4π.

(4.6)

Therefore, w1(t) satisfies (1.17) and (1.18)λ=−β with w(t) replaced by w1(t). Hence,

w1 ∈ W0. By a similar calculation to (4.6) we get∫ t

t1

a(s)w1(s)

(∫ s

t1

f(r)λb(r) dr

)
ds

=

∫ t

2π

[
(sin s)+

]2
s

ds ≥
n−1∑
i=1

∫ (2i+1)π−(π/4)

2iπ+(π/4)

sin2 s

s
ds ≥ 1

12
log

(
t− 2π

2π

)
, t > 4π.

We have∫ t

t1

a(s)w1(s) ds =

∫ t

2π

(sin s)+
s

ds ≤
∫ t

2π

1

s
ds = log t− log(2π), t ≥ 2π.

Therefore,

C(t;w1,−β) ≥
1

log t− log(2π)

1

12
log

(
t− 2π

2π

)
, t > 4π,

which gives

lim sup
t→∞

C(t;w1,−β) ≥
1

12
.

Thus,

−∞ < lim inf
t→∞

C(t;w0,−β) = 0 <
1

12
≤ lim sup

t→∞
C(t;w1,−β).

By Theorem 1.6(II), we conclude that if β > −α, then the equation in this example is

oscillatory. Since

lim inf
t→∞

C(t;w0,−β) = 0 <
1

12
≤ lim inf

t→∞
C(t;w1,−β),

we may apply Theorem 1.6(I).

In the equation of Example 4.5, the case β < −α is nonoscillatory.
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Example 4.6. Consider the half-linear equation (1.4) with

p(t) = tα and q(t) = (log t)β cos t (β: constant)

for t ≥ π. If β < −α, then this equation is nonoscillatory. In fact, for this equation, we

have σ = +1 and P (t) = log t− log π (t ≥ π), and it can be verified that if β < −α, then

lim
t→∞

∫ t

π
P (s)αq(s) ds =

∫ ∞

π
(log s− log π)α(log s)β cos s ds

exists and is finite. Therefore, by Corollary 3.3, this equation with β < −α is nonoscilla-

tory.
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