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Exact Optimization: Part I

Li-Gang Lin* and Yew-Wen Liang

Abstract. Nonlinear programming is explicitly analyzed via a novel perspective/meth-

od and from a bottom-up manner. The philosophy is based on the recent findings

on convex quadratic equation (CQE), which help clarify a geometric interpretation

that relates CQE to convex quadratic function (CQF). More specifically, regarding

the solvability of CQE, its necessary and sufficient condition as well as a unified

parameterization of all the solutions has recently been analytically formulated. Moving

forward, the understanding of CQE is utilized to describe the geometric structure of

CQF, and the CQE-CQF relation. All these results are shown closely related to a basis

in the optimization literature, namely quadratic programming (QP). For the first time

from this viewpoint, the QPs subject to equality, inequality, equality-and-inequality,

and extended constraints can be algebraically solved in derivative-free closed formulae,

respectively. All the results are derived without knowing a feasible point, a priori and

any time during the process.

1. Introduction

Recently, [14] provided more understanding of the mathematical fundamentals: convex

quadratic equation and function (CQE and CQF). In particular, [14] has analytically and

completely formulated an equivalent solvability condition of CQE and a parameterization

of all its solutions. These results encourage new investigations into a spectrum of applica-

tions, such as the one to nonlinear optimal control (see [14, Section 4]). The findings not

only facilitate preliminary optimality recovery using the state-dependent Riccati equation

(SDRE) scheme and its differential variant (see [3] for a survey), but also enhance the

computational performance of the other major application in this article. Specifically, we

analyze the nonlinear programming [16]/convex optimization [2] from a new perspective

based on [14], which particularly boasts impacts in management science, operations re-

search, and control engineering, for example, the model predictive control (MPC) [4]. It is

worth mentioning that [10] and [22] reveal more connection between the two applications,

that is, nonlinear MPC using “state-dependent coefficient” (a design flexibility) in the
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SDRE scheme. Such a unified framework is envisioned/pioneered by [1], and also pursued

by this article.

With regard to the convex optimization, a basis in the literature of nonlinear pro-

gramming algorithms is the quadratic programming (QP) [16], which includes the linear

programming (LP) as a special case and is closely linked with the CQE and CQF [21,24].

Regarding the former reference, [21] utilize a solution subset of CQE, which is reformulated

from the explicitly considered CQF and in terms of the polyhedral characterization [17].

Considering the latter, [24] make use of an important equality that is related with a CQF,

as well as the existence and uniqueness of the corresponding optimum (point), with respect

to a QP-like optimization problem. This supports the construction of a feasible sequence

converging to the optimum. Generally speaking, more iterative/numerical QP solvers are

available in the mainstream literature [20], which are mostly analyzed from the differ-

ential perspective and can be classified by three levels [2]: (i) equality-constrained QP;

(ii) linear equality-constrained optimization problem with twice-differentiable objective,

as solved using Newton’s method by reducing it to a sequence of equality-constrained QPs;

and, after further imposing inequality constraints, (iii) interior-point methods, which re-

duce the problem to a sequence of (ii). It is worth noting that the equality-constrained QP

solver is the most fundamental to build up various algorithms, subject to the constraints

at the three levels. In addition, one area of great creativity among existing algorithms,

namely the conjugate direction methods, illustrates that detailed analysis of QP leads

to significant practical advances [16], such as solution accuracy, computation time, and

more reported in [9] (see Section 3.5 later for a comparison discussion). Moreover, the

constrained QP can also be regarded as an optimization problem with the objective of

constrained convex quadratic function (CCQF). These observations quite endorse the im-

portance of QP and CQF, while motivate this article to provide further theoretical support

(extended from [14]). One highlight is the first closed-form QP solver subject to a variety

of constraints. The analytical philosophy is inspired by [15] (vector space methods) as well

as the computational interest among a variety of research fields [5,8,16,23,27]; but based

on a novel understanding and perspective of the associated CQE, and interpretations of

its relations to CQF and QP, respectively.

Following the previous findings of CQE and CQF [14], this article deals with another

application to nonlinear programming and—in response to, for example, the open question

in [5, Section VI]—the main result is exactly, autonomously, and algebraically solving the

QPs that

� are subject to equality, inequality, equality-and-inequality, and extended constraints,

respectively;

� refrain from any derivative (only functional information is used);
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� consist of finite steps, the maximum of which is explicitly pre-determined;

� and do not require any knowledge of a feasible point (any time before and during

the process).

The derivation leverages the vector space methods such as the singular value decomposition

(SVD), and investigates from a perspective based on [14] and geometric interpretations

that clarify the structures of CQE, CQF, and CQE-CQF relation, respectively.

The rest of this article is arranged as follows. The notations and the formulation of

main problem are provided in Section 2. The method proposed in [14] is applied to this

focused application “nonlinear programming/convex optimization” in Section 3. At first,

the analysis of extreme/minimal values of CQF is performed in Section 3.1, which is fol-

lowed by a complete characterization of the explicit solution to the equality-constrained

QP in Section 3.2. As a step forward, the two preliminary subsections are shown indis-

pensable for the proposed closed-form QP solver in Section 3.3, and an extension subject

to the constraints in Section 3.4. Therefore, discussions on differences and advantages with

respect to existing solvers in the literature can be justified in Section 3.5. Finally, three

representative examples are demonstrated to offer computational evidences and additional

insights (as verified using MATLAB®) in Section 4, while concluding remarks are given

in Section 5.

2. Notation and problem formulation

We use the notational conventions, unless noted otherwise: the symbols ∥ · ∥, N (·), R(·),
λ(·), (·)†, (·)†/2, and (·)T denote the Euclidean norm, null space, range space, spec-

trum/eigenvalues, Moore–Penrose generalized inverse (shortened as “pseudoinverse” af-

terward), square root of the pseudoinverse [26], and transpose of a vector or matrix, re-

spectively. Additionally, we denote (·)⊥ as the orthogonal complement of a vector space,

⊕ the direct sum of vector spaces, e1 the first standard basis vector in Rn, and {σi}ni=1

the set of singular values of an n × n matrix with rank r (σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 and

σr > 0). Moreover, denote P ≻ 0 (resp., P ⪰ 0), if P = P T ∈ Rn×n is positive definite

(resp., semidefinite) [16].

Consider the following CQF Fx : Rn → R [16],

(2.1) Fx(x) = xTPx/2 + qTx+ s,

where both x,q ∈ Rn, P = P T ∈ Rn×n, P ⪰ 0, and s ∈ R. In particular, the function (2.1)

is strictly convex, if its Hessian matrix P ≻ 0. Note that the early findings in [14] start

with the formulation of CQE, as in (3.1) later, to emphasize its dominance. Then, in this

continuing work, the concept of CQF dominates, and thus we also give its formulation
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in the very beginning (2.1) and interpret its close relation to CQE later in detail. More

specifically, in this article, the main focus shifts to explicitly analyzing and solving the

following problem.

Problem 2.1. From a new viewpoint based on the solution to [14, Problem 2.1] as well

as the CQE-CQF relation, solve the QPs in an analytical, autonomous, and derivative-

free manner and subject to equality, inequality, equality-and-inequality, and extended

constraints, respectively.

3. Application to convex optimization (QP)

The main concepts behind all the derivations in this section are the geometrical interpre-

tations of (i) the value/difference “qTP †q/2 − s” according to the solvability conditions

in (3.2) and (3.4) later and (ii) the solution parameterization in (3.3) and (3.6). No-

tably, in (i), P † = P−1 when P is nonsingular. Moreover, the novelty can be revealed by

that (i) facilitates the derivations that exploit the (additional) analysis perspective from

the image of the CQF (2.1). As a step forward, the hierarchical layers in the param-

eterization, with respect to (ii), exactly categorize the location(s) of the unconstrained

optimum/optima. In the following, Section 3.1 considers the unconstrained optimization,

which are preliminaries supporting the derivations of constrained ones in the remaining

subsections. Following the QP formulation/definition in literature [2, 16], Section 3.4 en-

larges the included types of constraints, without introducing any excessive variable but,

actually, reducing to a lower-dimensional unconstrained equivalent problem. Finally, Sec-

tion 3.5 discusses advantages or differences over existing solvers [20]. Remarkably, we

recall the following lemma because it is largely used in this article, where the notation is

consistent with [13,14] to avoid misleading/confusion.

Lemma 3.1 (Solvability and solutions of CQE). [14, Theorem 3.1] Consider the CQE

below [16]:

(3.1) zTMz+ kT z+ c = 0,

where both z,k ∈ Rn, M = MT ∈ Rn×n, M ⪰ 0, and c ∈ R.

(A) If rank(M) = n, then CQE (3.1) is solvable, if and only if (iff)

(3.2) kTM−1k ≥ 4c.

Accordingly, the set of solutions are, and can be parameterized by,

(3.3) z = −M−1k/2 +
√

kTM−1k/4− c ·M−1/2 · v,

where v ∈ Rn and ∥v∥ = 1.
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(B) Otherwise (rank(M) < n), it is solvable, iff (3.4) or (3.5), where

k ∈ R(M) and kTM †k ≥ 4c,(3.4)

k /∈ R(M).(3.5)

Accordingly, the sets of solutions are, and can be parameterized by, respectively,

(a) for Condition (3.4),

(3.6) z = −M †k/2 +
√
kTM †k/4− c ·M †/2ρ+ ε,

where both ρ, ε ∈ Rn, ρ ∈ R(M), ∥ρ∥ = 1, and ε ∈ N (M);

(b) for Condition (3.5), decompose k = kM + kM⊥, where kM ∈ R(M), kM⊥ ∈
R(M)⊥, and both kM ,kM⊥ ∈ Rn. Then,

(3.7) z = −(Fw/∥kM⊥∥2) · kM⊥ +φ+ τ ,

where the CQF Fw : R(M) ⊂ Rn → R,

(3.8) Fw(w) = wTMw + kT
Mw + c,

all w,φ, τ ∈ Rn, both w, τ ∈ R(M), and φ ∈ N (M) ∩N (kT ).

3.1. Unconstrained QP

Theorem 3.2 (Solutions to unconstrained QP). Consider the optimization problem, min-

imize Fx (2.1) with respect to x.

(i) The preimage of any level set of Fx (2.1) can be parameterized by (3.3), (3.6)–(3.8),

respectively, where M = P/2, k = q, c = s − l, and l ∈ R is any level set value of

Fx.

(ii) The optimal value is finite, iff q ∈ R(P ).

(iii) The finite optimal value is l∗ = s−qTP †q/2. And the corresponding unique optimum

is, or optima are all parameterized by, x∗ = x∗
p+ ε̆, where x∗

p := −P †q, ε̆ ∈ Rn, and

ε̆ ∈ N (P ).

Proof. See Appendix A for a complete and unified proof, which is new with regard to

(ii) and (iii), while first for (i). Along with the proof, a geometric interpretation for the

novel concept of “critical shift” (resp., “hierarchical layers”) is given in Figure 3.1 (resp.,

Remark A.1 and Figure 3.2).
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Figure 3.1: Geometric interpretation of a “shift” l and the critical one “l∗” in Section 3.1.
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Figure 3.2: Geometric interpretation of “hierarchical layers” in Section 3.1 (Remark A.1).

Remark 3.3. Based on Lemma 3.1, the results of (ii) and (iii) in Theorem 3.2 are con-

sistent with the literature, for example, [2] as analyzed from the differential perspective,

which thus and also endorses Lemma 3.1. All the results in Theorem 3.2, particularly (i),

will be utilized for the constrained and extended QP problems, later in Sections 3.2 to

3.4. On the other hand, more potentials are expected toward the applications to least-

squares approximation and regression analysis. Finally, according to the respective items

in Theorem 3.2, it is worth remarking that:

(i) A geometric interpretation is illustrated in Figure 3.1.

(ii) From its proof, typically (A.1), Fx is always unbounded above; bounded below, iff

q ∈ R(P ).

(iii) Regarding the special but popular case of nonsingular P [16], then P † = P−1,

N (P ) = {0}, the unique optimum x∗ = −P−1q, and l∗ = s− qTP−1q/2.
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Remark 3.4. After introducing the concept of “critical shift l∗” in this section, as illustrated

in Figure 3.1, it suffices to complement the examination previously in [14, Remark 3.2].

By (ii) and (iii) of Theorem 3.2, the optimal/minimal value (l∗) is finite and equals zero

(no shift) for M ⪰ 0, either singular or nonsingular. In other words, zTMz > 0, for all

z /∈ N (M). To sum up, combining [14, Remark 3.2] and this Remark 3.4 endorse both

Theorem 3.2 and Lemma 3.1 above, according to the basic mathematical properties of

positive definiteness and semidefiniteness.

3.2. Equality-constrained QP

Theorem 3.5 (Solutions to equality-constrained QP). Consider the optimization problem

(3.9) minimize Fx subject to Ax = b,

where Fx is in (2.1), A ∈ Rm×n, rank(A) = m ∈ {1, 2, . . . , n− 1}, and b ∈ Rm. From the

SVD of A, let a V2 ∈ Rn×(n−m) be given, which is associated with R(V2) = N (A). Denote

l ∈ R as any level set value of Fx.

(A) If V T
2 PV2 ̸= 0 ⇔ R(P ) ∩N (A) ̸= {0} ⇔ N (A) ̸⊆ N (P ),

(a) Problem (3.9) is equivalent to an unconstrained QP,

(b) the preimage of any level set/value of “Fx subject to Ax = b” can be respectively

parameterized by

(3.10) x = A†b+ V2y,

where y ∈ Rn−m is determined by (3.3), (3.6)–(3.8), with z = y, M =

V T
2 PV2/2, k = V T

2 (q+ PA†b), and c = s+
[
qT + bT (A†)TP/2

]
A†b− l,

(c) among all l in (A)(b), the optimal one/minimum is finite, iff V T
2 (q+PA†b) ∈

R(V T
2 PV2),

(d) following (A)(c), this finite optimal value is l
∗ ∈ R,

(3.11)

l
∗
=

[
bT (A†)TP/2+qT

][
In−V2(V

T
2 PV2)

†V T
2 P

]
A†b+s−qTV2(V

T
2 PV2)

†V T
2 q/2,

and the corresponding unique optimum is, or optima are all, parameterized by,

(3.12) x∗ = x∗
p + V2ε

∗,

where x∗
p := A†b − V2(V

T
2 PV2)

†V T
2 (q + PA†b) ∈ Rn denotes the particular

solution of x∗ ∈ Rn, ε∗ ∈ Rn−m, and ε∗ ∈ N (V T
2 PV2),

(e) to further categorize (A)(d), the optimum is unique, iff N (A) ∩N (P ) = {0};
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(B) else, if V T
2 (q+ PA†b) ̸= 0,

(a) Problem (3.9) is equivalent to an unconstrained LP, and thus unbounded,

(b) the preimage of any level set/value of “Fx subject to Ax = b” can be respectively

parameterized by (3.10), where y is determined by [14, Lemma 3.1], with z = y,

ζ = V T
2 (q+ PA†b), and ν = s+

[
qT + bT (A†)TP/2

]
A†b− l;

(C) else,

(a) Problem (3.9) is equivalent to a constant function,

(b) its value is “s+
[
qT + bT (A†)TP/2

]
A†b”,

(c) the (only) preimage is parameterized by (3.10), for all y.

Proof. See Appendix B for the first, complete, and unified proof.

Remark 3.6. Both Theorems 3.2 and 3.5 present the results within a unified framework.

In particular, the following summarize further analyses of the more significant, quadratic

case (A) in Theorem 3.5.

(i) Using the common terminology, such as [2, Section 4.1.1], the considered problem is

feasible since b ∈ R(A). The preimage of any level set of “Fx (2.1) subject to Ax =

b” is the feasible set. The definitions of the optimum/optima and corresponding

optimal value follow the general consensus [2] throughout Section 3, and thus omitted

for brevity.

(ii) Regarding the consistent constraint Ax = b (in other words, b ∈ R(A) where A is

of full rank) in this theorem, we omit the only remaining case (that is, rank(A) = n)

for a more concise presentation. This corresponds to N (A) = {0} and that there is

only one feasible point x∗ = A†b. However, by an extended definition of V2 := 0n,

the results of (A)(c)–(A)(e) in this theorem still apply to this sub-QP problem.

(iii) In the proof, the considered QP Problem (3.9) is equivalently reformulated as an

unconstrained QP: minimize Fy (B.2) with respect to y. This is viable, iff V T
2 PV2 ̸=

0. With regard to the unconstrained QP, Fy (resp., the original QP Problem (3.9)) is

always unbounded above; bounded below, iff V T
2 (q+PA†b) ∈ R(V T

2 PV2). Note that

a geometric interpretation regarding the CQF Fy (resp., QP (3.9) for the optimal

value) can be inferred from Figure 3.1.

Remark 3.7. An example to endorse Theorem 3.5 comes from the minimum or least-norm

problem [2,6]. More specifically, to find the optimum x∗
ln that (satisfies the consistent un-

derdetermined constraint Ax = b and) is of least l2-norm, which (norm) is most commonly
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adopted. This is in the applicable form using this theorem, with P = 2In ≻ 0, q = 0,

and s = 0. Accordingly, this is a QP given R(P ) ∩ N (A) = N (A), which (null space) is

at least one-dimensional and thus nonzero. Moreover, the optimal value (denoted l
∗
ln) is

finite since V T
2 A†b = V T

2 V1Γ
−1
1 W Tb = 0 ∈ R(Im) = Rm, where both V1 ∈ Rn×m being

orthogonal to V2 and A† = V1Γ
−1
1 W T ∈ Rn×m are given in (B.1) in the proof. Specifically,

l
∗
ln = bT (A†)TA†b− bT (A†)TV2(V

T
2 V2)

−1 V T
2 A†︸ ︷︷ ︸
0

b = ∥A†b∥2.

Correspondingly and similarly, the unique optimum is

x∗
ln = A†b− 2V2(V

T
2 PV2)

†V T
2 A†b+ V2ε

∗ = A†b,

where ε∗ ∈ N (V T
2 V2) = (Rn−m)⊥ = {0}. As expected, these results agree with the

literature [2].

Remark 3.8. This remark focuses upon the special case of m = 1, and more efficiently

constructs an example of V2 in Theorem 3.5. Without loss of generality, let A = aT ∈
R1×n be normalized. Given the results in [14, Theorem 4.2] and further analyses in [14,

Remark 4.4], V2 is readily available by computing the last (n− 1) columns of Ha
ι := In −

2ιaι
T
a , where ιa := (a−e1)/(∥a−e1∥) and Y = In−1. This remark also indicates a research

direction, which aims at extending to generalm in the equality-constrained QP (3.9) based

on the generalization of [14, Theorem 4.2], and thus involves the orthogonalization on the

rows of A in the first place.

3.3. QP

Consider the optimization problem (see [16])

(3.13) minimize Fx subject to Ax = b and cTi x ≤ di,

where Fx is in (2.1), A ∈ Rm×n, rank(A) = m ∈ {1, 2, . . . , n − 1}, b ∈ Rm, ci ∈ Rn,

di ∈ R, i ∈ I = {1, 2, . . . , κ}, and there exists a point that satisfies all the constraints.

To this general QP Problem (3.13), an explicit solver (namely, without any itera-

tions, approximations, or assumptions as in the classical/numerical optimization [16, 20])

is available in Algorithm 3.1, whose proof is in Appendix C (together with geometric

demonstrations via Figures 3.3 and 3.4).
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Algorithm 3.1 Closed-Form QP Solver

Require: P , q, s, A, b, {ci, di}i∈I as defined in (3.13)

Initial Conditions: L = X = I = Ĩ∗ = ∅
Ensure: The optimal value l̃∗ and the (resp., a subset of) corresponding optimum (resp., optima)

x∗̃

1: compute the SVD of A till R(V2) = N (A) is obtained

2: if V T
2 PV2 ̸= 0 then

3: x∗
p = A†b− V2(V

T
2 PV2)

†V T
2 (q+ PA†b)

4: l
∗
=

[
bT (A†)TP/2 + qT

][
In − V2(V

T
2 PV2)

†V T
2 P

]
A†b+ s− qTV2(V

T
2 PV2)

†V T
2 q/2

5: if “V T
2 PV2 ≻ 0” and “cTi x

∗
p ≤ di for all i ∈ I” then

6: return l̃∗ = l
∗
, x∗̃ = x∗

p, and Ĩ∗

7: else if “V T
2 (q+ PA†b) ∈ R(V T

2 PV2)” and “cTi x
∗
p ≤ di for all i ∈ I” then

8: (l
∗
,x∗

p, ∅) ∈ L × X × I
9: go to line 12

10: end if

11: else

12: for all Ij := {j1, j2, . . . , jk} ⊆ I, where k ∈ {1, 2, . . . , κ}, do
13: let C̃ = [cj1 , cj2 , . . . , cjk ]

T , Ã =
[
AT , C̃T

]T
, and b̃ = [bT , dj1 , dj2 , . . . , djk ]

T

14: if b̃ ∈ R(Ã) then

15: if rank(Ã) = m+ k < n then

16: compute the SVD of Ã till R(Ṽ2) = N (Ã) is obtained

17: if “Ṽ T
2 PṼ2 ̸= 0”, “Ṽ T

2 (q+ PÃ†b̃) ∈ R(Ṽ T
2 PṼ2)”, and “cTi x̃

∗
p ≤ di for all i ∈ I \ Ij ,

where x̃∗
p = Ã†b̃− V2(V

T
2 PV2)

†V T
2 (q+ PÃ†b̃)” then

18: l̃
∗
=

[
b̃T (Ã†)TP/2+qT

][
In−V2(V

T
2 PV2)

†V T
2 P

]
Ã†b̃+s−qTV2(V

T
2 PV2)

†V T
2 q/2

19:
(̃
l
∗
, x̃∗

p, Ij
)
∈ L × X × I

20: end if

21: else if rank(Ã) = n then

22: compute x̂ = Ã†b̃

23: if cTi x̂ ≤ di, for all i ∈ I \ Ij then

24: l̂ = Fx(x̂), where Fx is from (2.1)

25: (l̂, x̂, Ij) ∈ L × X × I
26: end if

27: end if

28: end if

29: end for

30: l̃∗ = minL, while x∗̃ and Ĩ∗ are as associated

31: return l̃∗, x∗̃, and Ĩ∗

32: end if
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(a) (b)

(c) (d)

F
F

FF

Figure 3.3: Representative cases in terms of the location of x∗ (3.12) for Algorithm 3.1:

(a) x∗
p ∈ F , (b) x∗

p /∈ F and x∗ ∈ F for some ε∗ ̸= 0, (c) x∗ /∈ F while x∗̃ on an edge, and

(d) x∗ /∈ F while x∗̃ on a vertex.

d ∗෤ܠ

(a) ෤ܠ௣ത∗(b) ෤ܠ௣෤∗

(c) ොܠ
ሚ݈∗ሚ݈̅∗መ݈ሚ݈̅∗

F

Figure 3.4: A planar demonstration of “optimality candidates” in Appendix C.2 when

x∗ /∈ F according to (3.12), where (a) x̃∗ is not a candidate, both (b) and (c) x̃∗̃ are

candidates on an edge and vertex, respectively, and the optimality occurs at another

vertex/candidate (d) x∗̃.

Remark 3.9. Regarding Algorithm 3.1,

(i) it does not require to know a feasible point at any time in the solving process (in

contrast to, for example, a priori to initiate the process according to [2, 16]) since

the core of the analytical philosophy is a novel categorization of QP Problem (3.13)

in Appendix C, which particularly builds on new results in Lemma 3.1.

(ii) in the for-all environment (lines 12–29), the processing order is arbitrary, as long as

every nonempty subset of I is examined. Examples are given later in Section 4.
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(iii) an economic/expedited version of this algorithm is available with respect to Case (a)

in Figure 3.3, as motivated by the particular interest in the computational perfor-

mance using existing QP solvers (to name a few, [8, 23]). Specifically, by replacing

lines 8 and 9 with 6, the complete searching for all optima is economized since the

optimal value and an optimum have already been obtained, without further effort for

any possible, additional optimum. Accordingly, the algorithm is expedited because

it terminates at line 8 without proceeding into the for-all environment (lines 12–29).

More details and related discussions can be found in the end of Appendix C.1, as

well as Remark C.4.

Corollary 3.10. With regard to Algorithm 3.1, consider

(A) a special case of the QP Problem (3.13), P ≻ 0 as is commonly seen in literature [16].

Algorithm 3.1 can be more efficiently compacted by removing lines 2, 7–9, 11, and

32, as well as “V T
2 PV2 ≻ 0” at line 5, and both “Ṽ T

2 PṼ2 ̸= 0” and “Ṽ T
2 (q+PÃ†b̃) ∈

R(Ṽ T
2 PṼ2)” at line 17.

(B) an extension to the QP under inequality constraints only, that is, A = 0 and b = 0

in the QP Problem (3.13). Algorithm 3.1 applies to this case by replacing “both A,

A† with 0”, “V2 with In”, “x
∗
p with x∗

p”, “b with 0”, and “l
∗
with l∗”.

Proof. (A) Given P ≻ 0, in Algorithm 3.1 we readily have V T
2 PV2 ≻ 0, V T

2 (q+ PA†b) ∈
R(V T

2 PV2) = Rn−m, Ṽ T
2 PṼ2 ≻ 0, and Ṽ T

2 (q + PÃ†b̃) ∈ R(Ṽ T
2 PṼ2) = Rn−m−k. The

result immediately follows.

(B) At first, the concept is to replace the application of Theorem 3.5 by Theorem 3.2

in the beginning of Algorithm 3.1. More specifically, the processes before the for-all envi-

ronment (lines 3–10) instead consider the unconstrained QP, and determine whether the

associated unique optimum, or the particular solution of nonunique optima, satisfies the

(inequality) constraints. Starting from line 12, the remaining processes in Algorithm 3.1

are slightly modified. The main difference is that, at line 13, the remaining processes are

instead built on the “base” of unconstrained QP (A = 0 and b = 0) and then taking each

inequality constraint into consideration. All in all, from this novel perspective and design,

this extension can be easily established by the simple parameter replacements.

Remark 3.11. With respect to Corollary 3.10,

(i) in Corollary 3.10(A), the more compacted algorithm renders x∗ = x∗
p and x̃∗ =

x̃∗
p for all Ij ⊆ I. That is, the associated solution freedom vanishes (because of

P ≻ 0). Even though Algorithm 3.1 is designed to implicitly while exhaustively

include the optimality searching within such a freedom (more detailed arguments at
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Appendix C), this remark also reminds that the searching process, excessive in this

case, automatically vanishes as well—as designed.

(ii) Example 4.1 demonstrates both Algorithm 3.1 and Corollary 3.10.

3.4. Extended QP

Theorem 3.12 (Solutions to an extended QP). Consider the optimization problem

(3.14) minimize Fx subject to both x,q ∈ R(P ),

where Fx is in (2.1).

(A) The preimage of any level set of the CCQF “Fx subject to both x,q ∈ R(P )” can be

respectively parameterized by

(3.15) x = −P †q+

√
qTP †q− 2s+ 2ľ · P †/2 · ρ̌,

where ľ ∈ R is any level set value of the CCQF, ρ̌ ∈ R(P ), and ∥ρ̌∥ = 1.

(B) The optimal value is finite, and equals ľ∗ = s−qTP †q/2. The corresponding unique

optimum is x∗̂ = −P †q.

Proof. See Appendix D.

Corollary 3.13. Consider the specific but popular case, P ≻ 0 [16]. Theorem 3.12 can be

specialized by replacing P † with P−1, P †/2 with P−1/2, and “ρ̌ ∈ R(P )” with “ρ̌ ∈ Rn”,

respectively.

Proof. Given P ≻ 0, such a case-specific result readily follows by relating the basic SVD

properties in [14, (35)–(39)] to this special consideration.

Remark 3.14. An application of Theorem 3.12 is associated with the CQF in (3.8), that is,

to obtain its preimage w at any level set/value. To be more detailed, by letting P = 2M

which is rank deficient, q = kM , and s = c in accordance with the CQF in (2.1), the

preimage w can be algebraically while completely parameterized by (using Theorem 3.12)

w = −M †kM/2 +

√
kT
MM †kM/4− c+ F̆w ·M †/2 · ρ̂,

where F̆w ∈ R is any (given) level set value, ρ̂ ∈ R(M), and ∥ρ̂∥ = 1. As an example, this

application-benefit is also demonstrated (with an illustration) in [14, Section 5].
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3.5. Comparisons and impacts to literature

With respect to the QP Problem (3.13), several representative and popular solvers in the

literature or readily in the market [20] are selected to demonstrate this section. At first,

according to [16], such a general QP (with inequality constraints) is usually, numerically

solved using an “Active Set Method” (ASM), which is also valued in the fields of man-

agement science [7, 11] and control engineering [8], to name a few. It has been reported

that a feasible point is required to initiate the solving process of ASM—including a sim-

pler/common case of P ≻ 0 [16]—till the latest MATLAB® implementation (namely, in

the quadprog routine). Similar difficulty/inconvenience can also be found in other cel-

ebrated solvers: Newton’s method, the barrier method, and primal-dual interior-point

methods [2, 7, 8]. In contrast, the proposed solvers autonomously generate the results/so-

lutions, notably Algorithm 3.1 and Theorem 3.5. The analytical philosophy differentiates

from the classical Lagrange/Primal-Dual method [2,16,20], but stems from Lemma 3.1 as

well as Figures 3.1 (“critical shift”) and 3.2 (“hierarchical layers”).

In addition, another advantage is revealed from an accuracy perspective, with regard

to the other representative solver: the barrier method that is renowned for large-scale

problems [8]. The importance of such an interior-point solver is particularly focused

upon in [2, Chapter 11]. Accordingly, under reasonable assumptions, a minimum number

of iteration steps are generally required for convergence, or a desired accuracy; whilst,

the maximum number of steps (and computation time) are deemed challenging [8]. As

a comparison, the proposed results yield exact solutions for both the optimal point(s)

and value. Specifically, considering the equality-constrained QP Problem (3.9), the finite

solutions (when existed, according to a comprehensive categorization in Theorem 3.5)

are available in (3.11) and (3.12). Moreover, regarding the general (resp., extended) QP

problem in (3.13) (resp., (3.14)), Algorithm 3.1 (resp., Theorem 3.12) also renders results

in analytical, algebraic, and closed forms. Remarkably, it is worth mentioning that all

the proposed results refrain from any convergence analysis, namely the estimation of

convergence rate, which can cause computational difficulty [5] but is generally necessary

till the up-to-date literature.

Furthermore, the proposed exact optimization is beneficial in the light of its derivative-

free feature. Such a property subject to special cases has a long history in literature while

attracts renewed interest in recent years, for instance, [5] that highlights its necessity

in the very beginning. In other words, the feature is a merit since it does not require

any gradients. More specifically, it is desirable in settings in which exact gradient/first-

order calculations are computationally expensive or impossible. Note that, in such cases,

the classical techniques—including Kiefer–Wolfowitz-type procedures [12]—often resort to

compromises that are based on approximations, which (observation) further strengthens
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the above mentioned advantage in accuracy while reminds a special consideration in Re-

mark C.4. Moreover, in the fields of statistics and machine learning [5, References 3–7],

there has been a growing spectrum of optimization problems that entail functional in-

formation only, which also broadens the impacts of this research direction. Finally, it is

worth reiterating that the proposed scheme exploits all the information of the function,

which (unified framework) includes both the zero-order [5] and first-order values that have

been widely leveraged in the classical/iterative optimization [16,20].

All of the above advantages will be validated in Section 4 below, which provides explicit

computational evidence. Promisingly, there exist more advantages, such as the one consid-

ered in Remark C.4; and those of practical importance: computational speed, hardware

complexity, and safety standard, since this research direction toward an exact solution

aligns with, for example, [9] and its mathematical preliminaries (notably [1], which is with

respect to a positive definite Hessian matrix). Last but not least, an additional impact to

the scientific literature suggests the (bi)linear matrix inequalities-based design (to name

one recent representative, [19]), which traces its core value/concept to the QP problem

and thus motivates an interesting further research.

4. Three illustrative examples

The main objective is to demonstrate the autonomy, generality, and functionality of the

proposed novel closed-form QP solvers (Theorem 3.5, Algorithm 3.1, and so on), particu-

larly from the implementation perspective. More specifically, it is worth reiterating that all

the proposed results do not require any knowledge of a feasible point—at any time before

and during the solving process (namely, autonomy); deal with the general QP problem in

accordance with, for example, [16], as well as an extension that enlarges the application

coverage (generality); and exploit all the information of the function that includes the

commonly utilized zero-order [5] and first-order functional values in the classical/numeri-

cal optimization [20] (functionality). Example 4.1 is directly adopted from [16], and used

to demonstrate Theorems 3.2, 3.5, Algorithm 3.1, Corollary 3.10, Remarks 3.3, 3.6, 3.11,

C.3, and Lemma 3.1. One step forward, Example 4.3 is extended and modified from Ex-

ample 4.1, by adding an equality constraint, rendering the Hessian matrix singular, and

increasing the system dimension. Therefore, it also demonstrates those mentioned above,

except the special cases of Corollary 3.10 and Remark 3.11, and additionally Remark C.1

for the concept of terminal optima and related solution freedom. For compactness, the

illustration for Example 4.1 can be either inferred from Figure 3.4 or referenced to [16, 2nd

edition, Figure 14.1]; whereas, in Example 4.3, a geometric interpretation for Remark C.1

is given in Figure 4.1. Last but not least, Example 4.5 leverages a benchmark prob-

lem as selected in [18] and compares the proposed approach with the built-in QP solver
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quadprog, which (among others) boasts a wide popularity in the optimization literature

and beyond [25]. Note that all computations in the three examples are performed and/or

verified on the MATLAB® platform, and they are subject to a variety of hardware im-

plementations (details in Table 4.1 later).ݔଶ

ଵݔ

0,4, ܾ = ෤ܠത∗|௶భ= ොܠ|௶య

0,0, ܾ = ∗തܠ = ෤ܠത∗|௶య= ොܠ|௶ఱ = ∗෤ܠ

ሚ݈∗

F

Figure 4.1: A geometric interpretation of “terminal optima” in Example 4.3, where x3 = b.

Example 4.1. Consider a QP problem of nonsingular Hessian matrix and under inequal-

ity constraints only, where n = 2, P (1, : ) = [4, 1], P (2, : ) = [1, 2], q = [−12,−10]T , s = 0,

c1 = [1, 1]T , c2 = [−1, 0]T , c3 = [0,−1]T , d1 = 4, and d2 = d3 = 0 [16]. Given P ≻ 0, ac-

cording to Corollary 3.10, Theorem 3.2(iii), or line 3 of Algorithm 3.1, we have the unique

optimum with respect to the unconstrained problem as x∗ = −P−1q = [2, 4]T , which does

not satisfy the inequality constraint associated with (c1, d1). That is, this unconstrained

optimum does not reside in the feasible set. Therefore, following Algorithm 3.1, the next

step is the for-all environment starting at line 12, where I = {1, 2, 3} (κ = 3). Note that

the significant parameters and values in this step are summarized by Table E.1 for com-

pleteness and easy comparison. Moreover, the examination order for all Ij ’s is arbitrary,
as long as every nonempty subset of I is examined, which is discussed in Remark 3.9(ii).

In Table E.1, at first we note that only those Ij ’s with b̃ ∈ R(Ã) in the corresponding

augmented system are included, as filtered at line 14 in Algorithm 3.1; otherwise, it does

not associate with the optimality since being inconsistent, and the only case is I7, where,
equivalently,

det




cT1

cT2

cT3

d1

d2

d3


 ̸= 0.

Second, regarding I1, the corresponding augmented matrix Ã is of full rank, and the
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augmented system Ãx = b̃ is underdetermined and has more than one solution. This

falls into the processes at lines 16–20 of Algorithm 3.1. According to Theorem 3.5, an

example of Ṽ2 =
[
1/
√
2,−1/

√
2
]T

is by means of SVD, which is computed at line 16 of

Algorithm 3.1. This yields the value “Ṽ2PṼ2 = 2 ̸= 0”, which implies that this case is

equivalently an unconstrained QP. As a matter of fact, given P ≻ 0, the following results

also endorse Corollary 3.10:

� Ṽ T
2 (q + PÃ†b̃) ∈ R(Ṽ2PṼ2) = R(2) = R, which means that the equivalent QP

problem is of finite value by Theorem 3.5(A)(c).

� N (P ) = {0}, and thus N (Ã) ∩ N (P ) = {0}. According to Theorem 3.5(A)(e) or

Remark 3.11(i), we have that the associated optimum for this case I1 is unique and

denoted x̃∗ = x̃∗
p = [1.5, 2.5]T . This point is computed at line 17 in Algorithm 3.1.

� x̃∗ is an optimality candidate for the original problem, as recognized at line 19, since

it satisfies the other (inequality) constraints with respect to {(ci, di)}i=2,3. In other

words, it is (also) a feasible point with regard to the original problem/constraints.

� The associated optimal value (̃l
∗
= −28.5) for this case I1 is determined by (3.11),

computed at line 18, and included at line 25 for the overall comparison later at

line 30 of Algorithm 3.1.

Similar considerations apply to Cases {Ij}j=2,3, but note that the associated unique opti-

mum
(
x̃∗ = [0, 5]T

)
for Case I2 is not a candidate, because it violates the first inequality

constraint “x1 + x2 ≤ 4”.

Third, Case I4 corresponds to a “vertex”, which is zero-dimensional, as a result of

rank(Ã) = n = 2. Specifically, according to Remark 3.6(ii), this case is instead included

at lines 21–27 of Algorithm 3.1, and there is only one feasible point x̂ = [0, 4]T as computed

at line 22. Since x̂ satisfies all the constraints, it is recognized as a candidate (line 25).

The associated, only level set value l̂ = −24 is exclusively optimal in this case, computed

at line 24, and thus included for the comparison at line 30. Similar considerations apply

to Cases {Ij}j=5,6, but omitted for conciseness.

Finally, all the values, either l̃
∗
or l̂, are compared at line 30. This concludes that

Case I1 corresponds to the optimality. To be more detailed, x∗̃ = x̃∗ = [1.5, 2.5]T for I1 is

also the unique optimum for the original problem, with the optimal value l̃∗ = l̃
∗
= −28.5,

and x∗̃ is located on the edge of F that is associated with I1, explicitly, x1 + x2 = 4.

Remark 4.2. The results agree with [16] that uses ASM, but without any prior knowledge of

a feasible point to initiate the solving process. Besides, all computations are performed in

terms of analytical, algebraic, closed-form representations. Moreover, there are only seven

cases considered in the for-all environment of Algorithm 3.1 (lines 12–29). In consistency
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with Remark C.3, the cardinality of L, which equals 5, is less than the upper bound

“2κ = 8”.

Example 4.3. This example is extended and modified from Example 4.1. The main

difference in the motivation is additionally to demonstrate the concept of terminal optima,

as explained in Appendix C.2, and a potential to assist the analytical and comprehensive

representation of all the nonunique optima. According to the problem formulation in

QP (3.13), we let n = 3, singular P = diag(1, 0, 0) ⪰ 0, q = 0, A = [0 0 1], b = b ∈ R,
while the other parameters follow Example 4.1. For succinctness, only the significantly

different analyses and results are presented below.

First (lines 1–10 in Algorithm 3.1), consider the QP under only the equality constraint

(Ax = b). At line 1, V2 is computed as V2(:, 1) = [0 1 0]T and V2(:, 2) = [1 0 0]T . The

associated matrix V T
2 PV2 = diag(0, 1) ̸= 0, which implies that this is equivalently an

unconstrained QP by Theorem 3.5(A). In addition, given the singular V T
2 PV2 ⪰ 0 as

well as V T
2 (q+ PA†b) = 0 ∈ R(V T

2 PV2), by Theorem 3.5(A)(c), the optimal value (that

is, minimum) is finite. Moreover, since N (A) ∩ N (P ) = R([0 1 0]T ) ̸= {0}, applying

Theorem 3.5(A)(e) yields that the optima are nonunique. Preliminarily at this stage,

Algorithm 3.1 only examines the particular solution of the optima (x∗
p, as computed at

line 3), while integrates the examination on its solution freedom (V2ε
∗) into the for-all

environment later (lines 12–29). The result is x∗
p = [0, 0, b]T , which resides in the feasible

set F of the original problem (grey/shaded area in Figure 4.1). Hence it qualifies as an

optimality candidate (included at line 8), associated with l
∗
= 0 (computed at line 4).

Second, the process goes to the for-all environment in Algorithm 3.1. Following the

analyses in Example 4.1, the results are briefed and summarized by Table E.2 for better

presentation clarity. Note that:

� Considering I1, this corresponds to the terminal optimum associated with the above

mentioned solution freedom of x∗ (namely, V2ε
∗) as a result of the additional con-

straint with respect to (c1, d1). This can also be inferred from Figure 4.1, where the

red/solid/vertical lines represent the level sets/values of the involved CQF; while

the x2-axis is just the linear variety x∗, and the terminal optima (0, 4, b) is owing to

the additional constraint (c1, d1). This demonstration agrees with the discussions in

Appendix C.1.

� Regarding I2, this is equivalently an optimization problem but of constant value,

according to (B) and (C) of Theorem 3.5. Specifically, it is owing to Ṽ T
2 PṼ2 = 0,

Ṽ T
2 (q+ PÃ†b̃) = 0, and the constant value equals s+

[
qT + b̃T (Ã†)TP/2

]
Ã†b̃ = 0.

Additionally, as addressed in (ii)(b) of Appendix C.2, the algorithm is designed to

economize this examination by focusing on the associated terminal optima. Specif-
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ically, it is instead included in Cases {Ij}j=4,5, and associated with additional con-

straints {(ci, di)}i=1,3, respectively. Notably, the associated optimal value remains.

Finally, a geometric interpretation is also available in Figure 4.1, where, on the

x2-axis (that is, the border of cT2 x ≤ d2), the equivalent problem/function bears

the constant value. In its domain, the upper (resp., lower) terminal is due to the

additional constraint “(c1, d1)” (resp., “(c3, d3)”), and the discussion/categorization

goes to the case I4 (resp., I5).

� Noting the additional column of N (P ) ∩ N (Ã) in Table E.2, which is omitted in

Table E.1 because of the more convenient condition “P ≻ 0” instead/previously in

Example 4.1, the case I1 (resp., I3) renders this intersection only at the origin, and

thus the corresponding optimum is unique, x̃∗
p = x̃∗, according to Theorem 3.5(A)(e).

This can also be inferred from Figure 4.1, where there is only one intersection between

the optimal (level set) value, denoted l̃∗, and the border of cT1 x ≤ d1 (resp., cT3 x ≤
d3).

Finally, corresponding to the optimal value l̃∗, at line 30 in this algorithm, it concludes

with the five optimality pairs/points residing in L×X×I: ([0, 0, b]T , 0, ∅), ([0, 4, b]T , 0, I1),
([0, 0, b]T , 0, I3), ([0, 4, b]T , 0, I4), and ([0, 0, b]T , 0, I5). That is, Algorithm 3.1 gives the

optimal value, l̃∗ = 0, with respect to the original problem. All the terminal optima are

[0, 0, b]T and [0, 4, b]T , as illustrated in Figure 4.1. Notably, the former (i) is the particular

solution with regard to the QP under only the equality constraint, and also feasible to

the original QP; and (ii) resides on an edge associated with the inequality constraint

“cT3 x ≤ d3”, while also on a vertex with the additional constraint “cT2 x ≤ d2”. On the

other hand, the latter terminal optimum resides on an edge associated with the constraint

“cT1 x ≤ d1”, while also on a vertex with the additional “cT2 x ≤ d2”. It is worth remarking

that Algorithm 3.1 ably gives all/both the terminal optima. Based on this, it can be

analyzed that all the optima are just intermediate, denoted as X ∗ = {[0, t, b]T | 0 ≤ t ≤
4, t ∈ R}, which can also be revealed from Figure 4.1 (specifically, the red-dashed line

segment).

Remark 4.4. As expected and similar to Example 4.1 (Remark 4.2), Algorithm 3.1 au-

tonomously yields the results, with only functional information (derivative-free) and with-

out any (prior) knowledge of a feasible (starting) point. Also, in this setting, all compu-

tations are performed in terms of algebraic and explicit representations. Moreover, there

are still only few cases (seven, to be exact) considered in the for-all environment of Al-

gorithm 3.1 and, being consistent with Remark C.3, the cardinality of L (precisely, 6) is

indeed less than the upper bound “2κ = 8”.
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Example 4.5. The extensive QP literature highlights a universal and popular solver

quadprog in MATLAB® [25], and this example leverages a benchmark problem as demon-

strated in [18] to offer more computational evidences of the superiority of the proposed

approach. Specifically, let P (1, : ) = [1,−1, 1], P (2, : ) = [−1, 2,−2], P (3, : ) = [1,−2, 4],

q = [−7,−12,−15]T , s = 0, A = [1, 1, 1], and b = 3 in Problem (3.9), and this Example 4.5

compares Theorem 3.5 with quadprog. Among various implementations for Theorem 3.5,

we demonstrate an intuitive and preliminary one using MATLAB® for the sake of brevity,

whose primary steps are sequentially summarized:

1 A_dagger=pinv(A);

2 V_2=null(A);

3 x_star_particular=A_dagger*b...

4 -V_2*pinv(V_2 ’*P*V_2 )*(V_2 ’*q+V_2 ’*P*A_dagger*b);

5 l_star_equilibrium =(b’*A_dagger ’*P/2+q’)*( eye(n)-V_2*pinv(V_2 ’*P*V_2 )...

6 *V_2 ’*P)* A_dagger*b+s-q’*V_2*pinv(V_2 ’*P*V_2)*V_2 ’*q/2; (i)

Note that lines 3 and 4 in Implementation (i) correspond to (3.12) while 5 and 6 to

(3.11). In addition, this example falls into Case (A) of Theorem 3.5 because of R(P ) ∩
N (A) = N (A) ̸= {0}, which can be easily verified—using V T

2 PV2 ̸= 0—and thus omitted

in the summary of primary steps (i).

On the MATLAB® platform, the proposed solver yields the optimal value l
∗

=

−47.1786 and the optimum x∗ = [−3.5714, 2.9286, 3.6429]T , where the uniqueness of l
∗

(resp., x∗) is owing to the nonsingular V T
2 PV2, namely the nulled flexibility ε∗ = 0 in

(3.12); whereas, the built-in quadprog routine renders the same l
∗
and x∗ but not the

associated uniqueness, respectively [18]. Moreover, the performance in computation time

also quite differ, which is evaluated—for better comprehensiveness—subject to a variety of

software and hardware in Table 4.1. Specifically, Table 4.1 also more favors Theorem 3.5

than quadprog, where the evaluation is in terms of the ratio of computation time (Theo-

rem 3.5 over quadprog) while among several Intel Core® CPUs and MATLAB® versions

till the state of the art (with 8GB RAM). Accordingly, the maximum (resp., minimum)

advantage amounts to 2.3% (resp., 9.6%) of the computation time using quadprog; in

other words, the proposed solver reduces the computational effort by 90.4%–97.7%. In

average, the numerics still significantly account for a computational reduction of 94.5% by

virtue of Theorem 3.5. It is worth reiterating that Implementation (i) is only preliminary,

whose efficiency potentials can be more exploited by, for instance, “coalescing” lines 1 and

2, namely, by performing the SVD operation on A only once. This requires modifications

for the svd routine in MATLAB®, and thus serves as a future research to remain focused

of this article.
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Table 4.1: Advantage in computation time1 in Example 4.5.

i3, 2.75GHz i5, 3.4GHz i7, 2.2GHz

MATLAB® 2010b 2.5% 2.4% 2.3%

MATLAB® 2020b 8.9% 7.4% 9.6%

1 Ratio of time using Theorem 3.5 over quadprog.

Remark 4.6. Regarding the up-to-date universal solver quadprog, [18] highlights a nec-

essary condition “P ≻ 0” that associates with a finite optimal value, even if the QP

problem is without any constraint (Section 3.1). Actually, there exists a counterexample

to the condition/necessity: P = diag(1, 0), q = 0, and s = 0 in (2.1). That is, the QP

problem is to minimize Fx(x) = x21, which has a/the finite minimum (zero) whereas the

Hessian matrix is not positive definite. As a comparison, Theorem 3.2(ii) provides a nec-

essary and sufficient condition, which readily guarantees the finite minimum in the above

counterexample—owing to q = 0 ∈ R(P ). Remarkably, Theorem 3.2 fundamentally helps

develop the remaining results (with constraints) in Section 3, such as another equivalent

condition for the finite optimal value in Theorem 3.5(A)(c).

5. Conclusion

A motivation of this application—to the field of nonlinear programming based on the re-

cent observations of CQE—responds to an open question in [5]; and an expectation in the

general optimization literature: computational enhancement for practical advances [16].

The philosophy aims at analytical and exact optimization, as a comparison to the common

numerical algorithms [20, 27]. Specifically, the focus of this article is on the QP, which is

a constituent in various approaches such as the Newton’s method. At first, we re-examine

the unconstrained QP based on, and from the perspective of, the new analyses of CQE (in

the recent literature), CQF, and CQE-CQF relation. This preliminary finding facilitates

a complete and analytical characterization of the equality-constrained QP, which actually

can be categorized into three equivalent problems in a unified framework. In addition, all

the above results are consistent with the literature, when specialized to specific considera-

tions; while promising in terms of the computational performance, which is partially owing

to the shared motivation and beneficial results in the recent contribution [14]. Another

highlight in this presentation is the proposed QP solver, in accordance with the general

problem formulation. The analytical philosophy also benefits from the above mentioned

categorization of equality-constrained QP, and yields algebraic zero-order closed-form re-

sults/solutions in a guaranteed, pre-determined, finite, and explicit number of steps; and
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without any knowledge of a feasible point, a priori and any time in the process. All these

characteristics/merits are shared throughout this article. Moreover, to further exploit its

computational capabilities, this flexible QP solver includes problem-specific (and more

efficient) variants below:

� an economic/expedited version for a subset of QP problems;

� a special but popular case “the objective function whose Hessian matrix is positive

definite”, which corresponds to a thinned version of the algorithm;

� QP problems subject to inequality constraints only, being applicable (that is, solv-

able) after a simple replacement of parameters in the algorithm.

Note that, regarding a subset of QP problems, we preliminarily and explicitly present the

associated terminal optimum/optima. This indicates a further research direction, because

it requires an analytical representation of all the elements bounded by the inequality

constraints. Moreover, we extend the general formulation on the constraints to a different

branch, as inspired by the analyses of CQE and CQF, which further broadens the spectrum

of QP applications. Last but not least, two representative solvers in literature (the ASM

and barrier method) help justify advantages/potentials of the proposed results; while

three examples demonstrate the results with illustrations, computational evidences, and

further insights (notably, a counterexample to the state of the art)—analytically as well

as numerically on the MATLAB® platform. Under positive definite and semidefinite

Hessian matrices in the objective functions, respectively, these demonstrations endorse the

effectiveness, autonomy, efficiency, functionality, and exactness of the proposed solvers.

A. Proof of Theorem 3.2 (unconstrained QP)

For brevity, only the results that are significantly required in this proof are given, whereas

most of the shared similarities are referenced to Lemma 3.1 and its proof.

(i) To obtain the preimage of any level set, Fx = l, is equivalent to that of the zero

level set of F̃x, where the CQF F̃x : Rn → R and F̃x = Fx − l, as “(vertically) shifted”

from Fx by l. Furthermore, this is equivalent to solving the CQE, xTPx+qTx+s− l = 0,

which is always solvable since the original process is to find the preimage. The result

directly follows by applying Lemma 3.1 to this CQE. Note that the above mentioned

“shift” is widely used throughout Section 3, and thus exemplified/illustrated in Figure 3.1

for presentation clarity.

(ii) Divide the derivations, following Lemma 3.1, into whether P is of full rank. (A) If

rank(P ) = n, then we reformulate the CQF Fx in (2.1) equivalently as

(A.1) Fx(x) =
∥∥P 1/2x+ P−1/2q

∥∥2/2 + s− qTP−1q/2,
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which is similar to [14, (34)]. Obviously, this function (A.1) is bounded below by the value

“(s − qTP−1q/2)”, which (value) is finite and important in the derivations afterward.

Note that, in this case, q ∈ R(P ) = Rn. On the other hand, (B) if rank(P ) = r < n, then

reformulate Fx (2.1) equivalently as

(A.2) Fx(x) = xT
1 Σ̆1x1 + qT

1 x1 + s+ qT
2 x2,

which is similar to [14, (42)]. Obviously, if q2 = 0, that is, q ∈ R(P ), then the domain

of Fx shrinks and corresponds to the x1-freedom in x. Similar to (A) above, Fx, or

equivalently the CQF Fx1 : Rr → R,

(A.3) Fx1(x1) = xT
1 Σ̆1x1 + qT

1 x1 + s

is bounded below by l̆ := s− qT
1 Σ̆1q1/2 = s− qTP †q/2 ∈ R. However, if q2 ̸= 0 ⇔ q /∈

R(P ), then Fx in (A.2) is unbounded because of the x2-freedom, which is decoupled from

x.

(iii) Given q ∈ R(P ), the derivations differ only in the singularity of P according to

Conditions (3.2) and (3.4), which are divided into Cases (A) and (B) below.

(A) If rank(P ) = n, by (i) above and (3.3), the unique optimum happens exclusively

when the only solution freedom (v) is canceled. In other words, the term in the square-

root operator (“−l∗” as in this theorem) vanishes. Geometrically from Figure 3.1, this can

also be explained by the critical shift of l∗, which allows the only one-point intersection

with the zero plane/line. It is worth mentioning that this shift can be “ascending” (resp.,

“descending”), if l∗ < 0 (resp., l∗ > 0), that is, the critical “distance” to null the square-

root operation (resp., make it consistent). For succinctness, another explanation using

(A.1) is omitted. To summarize, the preimage of the level set at the optimal value l∗ is

the singleton {x∗}.
(B) If rank(P ) = r < n, we at first introduce the concept of hierarchical layers in

the preimage of CQF in (2.1), according to (i) above and (3.6). There are three layers:

(I) the unique point, x∗
p = −P †q, (II) the ε-freedom in N (P ), and (III) the ρ-freedom in

R(P ). This (I)–(III) order follows the size of included preimage elements, and (I) being

the smallest. Geometrically, the (I) and (II) layers correspond to the optima, where (II)

mainly reflects the singularity of P . Then, introducing (III) equips with the full freedom,

which thus corresponds to the complete preimage. For brevity, other explanations by

means of, for instance, (a) the geometrical perspective, which interprets the critical shift

of optimal value l∗ similarly as in (A); (b) (A.3), which can be reformulated similar to

(A.1); and (c) the support from [14, Theorem 3.2] (and its proof) are omitted.

Remark A.1. As an example, Figure 3.2 illustrates the concept of “hierarchical layers”.

Regarding the singular P , the three layers are represented by the (I) black/crossed point:
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this particular solution is denoted by x∗
p = −P−1q at the center of the figure, (II) blue/-

gridded closed region, and (III) red/dashed region, respectively. All the layers are within

the preimage of Fx, denoted by F−1
x := F−1

x (l) : R → Rn with respect to any level set

value l. (I) and (II) layers are in the same level set at (the optimal value) l∗, while each

red/dashed ellipse in the (III) layer corresponds to a level set at a higher value. Moreover,

(II) corresponds to N (P ) and each element/point is referenced by the vector ϵ̆; while

(III) to a point Φ · ρ̆ ∈ R(P ), where Φ := Φ(l) =
√

2l + qTP †q− 2s · P †/2 ∈ Rn×n

while ρ̆ ∈ R(P ) ⊆ Rn is of unit length. Note that R(Φ) = R(P †/2) = R(P ) and

∥Φ∥ =
√
(2l + qTP †q− 2s)/σr [6], where σr > 0 denotes the smallest (positive) singular

value of P . On the other hand, considering the case of invertible P , the only differences

are

� the lack of (II) layer, because of ε ∈ N (P ) = {0} and P † = P−1;

� Φ =
√
2l + qTP−1q− 2s · P−1/2 and ∥Φ∥ =

√
(2l + qTP−1q− 2s)/σn, where σn

denotes the smallest (positive) singular value or, equivalently here, eigenvalue of P .

Finally, this concept of “hierarchical layers” is essential for the subsequent derivations and

results in Section 3, particularly the constrained optimization as analytically solved from

a novel perspective (Sections 3.2 and 3.3).

B. Proof of Theorem 3.5 (equality constraints)

Let the SVD of A be given by

A = W ·
[
Γ1 0

]V T
1

V T
2


with its unique pseudoinverse A† ∈ Rn×m [6],

(B.1) A† =
[
V1 V2

]Γ−1
1

0

 ·W T = V1Γ
−1
1 W T (the thin version),

where W ∈ Rm×m, V1 ∈ Rn×m, V2 ∈ Rn×(n−m), R(V1) = R(AT ), R(V2) = N (A),

Γ1 ∈ Rm×m is nonsingular, and more properties are widely available in literature [6].

The idea is to equivalently transform the equality-constrained QP into an unconstrained

optimization problem, by down-casting to the linear variety/constraint as described by

Ax = b. Specifically, the first step is to parameterize all the feasible points, namely Ax =

b ⇔ (3.10), where y ∈ Rn−m. Then, reformulate the considered constrained optimization
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problem, “minimize Fx (2.1) subject to Ax = b”, equivalently as the following one:

minimize Fy with respect to y, where Fy : Rn−m → R,

(B.2) Fy(y) = yTV T
2 PV2y/2 +

[
bT (A†)TP + qT

]
V2y + s+

[
qT + bT (A†)TP/2

]
A†b.

Therefore, the QP Problem (3.9) is equivalently categorized into the three cases (A)–(C),

according to the coefficients of quadratic, linear, and constant terms in (B.2), respectively.

The system dimension is expectedly reduced, from Rn to Rn−m. The following derivations

focus on the case of (equivalently unconstrained) QP, while it is straightforward to derive

the other cases and thus omitted for compactness.

To start with, we further analyze the equivalence conditions such that Fy in (B.2)

is quadratic, intentionally/preferably in terms of the original, given parameters. Let the

SVD of (non)singular P ⪰ 0 be

(B.3) P = Ǔ1Σ̌1Ǔ
T
1 (full/thin version),

where Ǔ1 ∈ Rn×ř is with orthonormal column(s), ř := rank(P ), and Σ̌1 ∈ Rř×ř is

nonsingular. With respect to the case of singular P , more properties and details re-

garding this SVD similarly follow [14, (35)–(37)], which can be easily extended to the

nonsingular/other case. It is worth emphasizing that the following derivations coalesce

both cases of P . On the one hand, this is a QP, namely, Fy in (B.2) is a CQF, iff

V T
2 PV2 ̸= 0 ⇔ V T

2 Ǔ1Σ̌1Ǔ
T
1 V2 ̸= 0 ⇔ ǓT

1 V2 ̸= 0 ⇔ R(P ) ∩ N (A) ̸= {0}. Similarly

on the other, this is not a QP, iff ǓT
1 V2 = 0 ⇔ “N (A) ⊆ (R(P ))⊥ = N (P )”, where the

equality holds when R(P )⊕N (A) = Rn.

Notably, to conform to the applicable form using Theorem 3.2, any level set of Fy

(B.2) is regarded as a CQE (3.1) in the unknown variable z = y, with the parameters

given in (A)(b)of this theorem. Applying Theorem 3.2 yields the results in (A), except

(A)(e), while omitting the lengthy but somewhat straightforward calculations. Regarding

the exceptional/last one (A)(e), based on the above derivations, the optimum is unique,

iff the Hessian matrix of the CQF Fy in (B.2) is positive definite. Rewrite this equivalence

condition as V T
2 PV2 = V T

2 Ǔ1Σ̌1Ǔ
T
1 V2 ≻ 0, according to the thin version of (B.3). Note

that the full version corresponds to the case of nonsingular P , and the result similarly

follows. Let any ỹ ∈ Rn−m \ {0} be given, this condition is further equivalent to∥∥Σ̌1/2
1 ǓT

1 V2ỹ
∥∥2 > 0 ⇐⇒ ǓT

1 · V2ỹ ̸= 0 ⇐⇒ N (P ) ∩N (A) = {0},

where Σ̌
1/2
1 := diag

(√
σ1,

√
σ2, . . . ,

√
σř
)

≻ 0 and {σi}ři=1 denotes the set of nonzero

singular values or, equivalently in this case, eigenvalues of P .

Remark B.1. Regarding the SVD of A, the columns of V2 are not unique. However,

the effect by this nonuniqueness is completely coalesced by virtue of (3.10), in the very



194 Li-Gang Lin and Yew-Wen Liang

beginning of this proof. In other words, the results in Theorem 3.5 are independent of

the nonunique choices of V2. From the implementation perspective, in the literature there

exist many and various algorithms to construct an example, such as the Golub–Reinsch

SVD till the second step [6]. Note that, in the MATLAB® platform, the null function

ably gives an example of V2 ∈ N (A), which is implemented by computing the SVD of A.

Remark B.2. For computational purposes, we select the SVD process to obtain a basis of

N (A), that is, the right singular vectors of A that are associated with the zero singular

value. As expected, the derivations only utilize the property of R(V2) = N (A) where V2 ∈
Rn×(n−m), and can be easily extended to the general case: any matrix in Rn×(n−m) with

its range spanning N (A). However, owing to many computational benefits [6] while noting

the largely used parameter A† (and P †) in Section 3, the SVD process is more reasonably

preferred to construct an example. Besides, regarding the extension in Section 3.3, the

proposed algorithm is based on this theorem, and thus shares such a consideration.

C. Proof of Algorithm 3.1 (exact QP solver)

Outline: The proof builds on the concept “hierarchical layers” as illustrated in Figure 3.2,

which clarifies the geometric structure of the solution to CQE (3.1) that is associated

with the optimality/minimality of CQF (2.1); and case-by-case arguments in accordance

with Figure 3.3, which exactly extract the optimality for most of the cases, except a sub-

set that requires further investigation (parameterization of inequality-constrained feasible

points) to complementarily locate all the optima. Moreover, the derivations largely utilize

Theorem 3.5, which are divided into: Appendix C.1 corresponding to lines 2–10 in Al-

gorithm 3.1; and C.2 to lines 11–30, which augments/coalesces the inequality constraints

with respect to each nonempty subset (line 12). Note that the design of categorizations

examines every “optimality candidate” (a demonstration in Figure 3.4) for the ultimate

comparison at line 30, and benefits efficient extensions to QP variants such as those in

Corollary 3.10.

To start with, Figure 3.3 illustrates the main categorization for the derivations in

this proof. With regard to the QP Problem (3.13) under only equality constraints, (a)

considers the case that the unique optimum, or the particular solution x∗
p associated with

the optima, resides in the feasible set F (shaded/grey area, a polyhedron [2, 16]). If the

considered point in (a) is outside of F , but the degree of freedom in (3.12) associated

with the case of nonunique optima (V2ε
∗) intersects F , then this is included in (b). On

the other hand (x∗ /∈ F), the derivations go to either (c) or (d), where (c) addresses the

case that the optimality occurs on an “edge/space of nonzero dimension” while (d) at a

“vertex/point”. Note that F ̸= ∅, according to the QP problem formulation in (3.13).

Moreover, denote Ĩ∗ ⊆ I as the optimality subset of involved inequality constraints, which
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associates with the additional equality constraint(s) that is/are the border(s) of involved

inequality constraint(s). This subset indicates the “edge(s)” or “vertex/vertices” that

the optimum/optima reside(s). A special case is Ĩ∗ = ∅, which corresponds to the case

when QP Problems (3.9) and (3.13) yield the identical solution. Finally, the first line

(fundamental step) of this algorithm is to compute an orthonormal basis of N (A), denoted

V2, preferably using SVD due to its many computational advantages [6].

C.1. Case (a): x∗
p ∈ F

According to Theorem 3.5, this case corresponds to (A) where V T
2 PV2 ̸= 0, as filtered

at line 2. Note that the case of V T
2 PV2 = 0 corresponds to either an LP or constant

function. If, due to additional inequality constraints, the optimality of QP Problem (3.13)

is associated with the former (resp., latter), then the optimality occurs (resp., also) at

the “terminal optima/optimum” that will be detailed later in Appendix C.2 while deter-

mined/computed at lines 11–30 of this algorithm.

By Theorem 3.5(A)(e), the optimum of equality-constrained QP is unique, iff N (A)∩
N (P ) = {0}, or equivalently V T

2 PV2 ≻ 0 in (3.12). Accordingly, further divide this case

into whether V T
2 PV2 is nonsingular.

(i) If V T
2 PV2 ≻ 0, then the unique optimum x∗ = x∗

p is given by (3.12), where the

freedom ε∗ ∈ N (V T
2 PV2) = {0} is nulled, and included in line 3 of this algorithm. The

associated optimal value l
∗
is given by (3.11), and included in line 4. However, only if

this unique optimum resides in the feasible set F , which is verified at line 5, the algorithm

completes solving QP Problem (3.13), since this optimality (x∗, l
∗
) under only equality

constraints also solves the general QP Problem (3.13). It is worth mentioning that the

pair of “V T
2 PV2 ≻ 0 and the additional, returned parameter Ĩ∗ = ∅” serves as a unique

identifier for this case, but this excludes the extreme case of singleton F ≠ ∅ (details at

Remark C.4 later).

(ii) If V T
2 PV2 is singular, then at first we need to check whether the optimal value is

finite, whose equivalence condition is formulated in Theorem 3.5(A)(c) and included in

line 7. If infinite, then the optimality of QP Problem (3.13) can only possibly occur at

the “terminal optima/optimum”, owing to additional inequality constraints, which will be

determined later in Appendix C.2. On the other hand, consider the finite optimal value as

given by (3.11), with the associated optima by (3.12). These two have also been computed

in lines 3 and 4 for a concise presentation. Note that, at this stage, only the particular

solution of (3.12) is checked to be feasible or not; while the freedom arising from V2ε
∗,

where ε∗ ∈ N (V T
2 PV2) ̸= {0}, will be checked later in the for-all environment (at lines 12–

29). This argument similarly follows Appendix C.2(ii)(d) below. It is worth remarking

that an expedited alternative is available by economizing the searching of any possible
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further optimum, as determined by some ε∗ ̸= {0}. Specifically, replacing lines 8–9 by 6.

C.2. Cases (b)–(d): x∗
p /∈ F

As illustrated in Figures 3.3(b)–(d), the remaining derivations correspond to lines 11–

30. They examine all possible cases that the optimality occurs, corresponding to the

boundary as determined by additional inequality constraint(s). It is worth noting that

such a boundary can be either “edge” or “vertex”, depending on its dimension. Specifically,

at line 12, we examine all the possible, (2κ−1)’s subsets/cases Ik ⊆ I. The feasibility will

be checked during the process, and each one is associated with the “augmented” equality-

constrained QP problem with respect to (Ã, b̃) at line 13, where C̃ ∈ Rk×n, Ã ∈ R(m+k)×n,

and b̃ ∈ Rm+k.

In the very beginning, line 14 filters out the inconsistent case(s): augmented QP(s)

imposed by inconsistent equality constraint(s), or not an “edge/vertex” of the polyhedron

F as shown in Figure 3.3. Obviously, the optimality does not occur in such case(s). The

next stage, the if-else setting at lines 15–27, filters in only the cases of full-rank Ã, accord-

ing to the formulation in (3.9); while the other(s) has/have already been considered before

(this case/consideration), corresponding to the reduced, full-rank, equivalent counterpart.

Also, the if-else setting distinguishes between augmented systems of many solutions (com-

monly an underdetermined system) and of the only one. Specifically, lines 15–20 mimic

the processes at lines 1–8 but with respect to the “augmented” equality constraints (Ã, b̃),

where Ṽ2 ∈ Rn×(n−m−k) is an orthogonal matrix as computed at line 16; while lines 21–26

consider the full-column-rank Ã, and the unique feasible point/optimum candidate x̂ (com-

puted at line 22), which is associated with some Ij and the only level set (corresponding

to the optimal value for this augmented system). Note that:

(i) At lines 17 and 23, it is sufficient to check all those inequality constraints that are

not “augmented/involved” in (Ã, b̃) corresponding to an Ij . This is beneficial from
a computational perspective, because excessive computations are avoided.

(ii) If the conditions at line 17 are all satisfied, then lines 18 and 19 gather the optimality

candidate, as well as the involved/associated inequality constraints, in L × X × I.
The last element provides the information on which “edge” the unique optimum (or

the particular solution of optima) resides, with respect to the augmented equality-

constrained QP. A geometric interpretation of this optimality candidate is illustrated

in Figure 3.4, with more details in Remark C.2. On the other hand (when unsatisfied

at line 17), according to Theorem 3.5, the consideration instead goes to one of the

following:

(a) An unconstrained LP, as in Theorem 3.5(B), the optimality can be determined
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in another case, say Ij ⊃ Ij , if the optimality is actually associated with the

Ij in this case. In other words, given the unbounded LP, the optimal value

only happens by imposing further (inequality) constraints, and will be at the

“terminal(s)”. Accordingly, the associated optimum/optima are further termed

terminal.

(b) A constant problem, as in Theorem 3.5(C). Obviously, its optimal value is just

the only level set value. However, instead of checking whether the domain in-

tersects F , a more efficient way is to reserve this case to another one in the

for-all environment, since there are only two possibilities: one is that this case

will never be further constrained, which obviously does not solve QP Prob-

lem (3.13); regarding the other, the optimal value still remains and also occurs

at the “terminal optimum/optima”, which is/are included at line 19 and later

compared with all the other candidate(s) at line 30. This case is demonstrated

by Example 4.3.

(c) An (equality-constrained) QP but unbounded below, as determined by Theo-

rem 3.5(A)(c). This derivation is similar to (ii)(a) above and thus omitted.

(d) An (equality-constrained) QP of finite optimal value, with its unique optimum,

or the particular solution of optima, outside of the polyhedron F ; in other

words, not satisfying the other inequality constraint(s) that is/are not involved

in this augmented system. Notably, there is still only one possibility that the

optimality of QP Problem (3.13) is associated with this case, which corre-

sponds to the nonuniqueness of optima. Specifically, this possibility is owing

to the further imposed equality constraint(s), or the boundary of inequality

constraint(s) from I \ Ij , on the degree of freedom of the optima with respect

to the augmented QP under equality constraints and additional ones from Ij .
This will be elsewhere included/considered by virtue of the for-all environment

in Algorithm 3.1.

(iii) Regarding the full-column-rank Ã, at lines 21–26, the only feasible point/optimum

with respect to the augmented equality-constrained QP is computed a priori at

line 22. If this point is also feasible with respect to the original/general QP Prob-

lem (3.13), as determined at line 23, then the corresponding, only, feasible/optimal

value is later computed at line 24, and included as an optimality candidate at line 25

(the overall comparison in the end of this algorithm).

Finally, at line 30, the result concludes by comparing all the candidates in L of finite

elements. As a matter of fact, the cardinality of L is at most 2κ, which is detailed later in

Remark C.3. The minimum/optimal value l̃∗ is associated with the corresponding terminal
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optimum/optima in X , which can be either the unique optimum, or the particular/terminal

solution of nonunique optima, located on the “edge(s)” or “vertex/vertices” as determined

by Ĩ∗.

Remark C.1. In the end of proof/algorithm, such an optimality pair (l̃∗,x∗̃, Ĩ∗) can be

nonunique. A more in-depth interpretation is that the optimality can occur at the differ-

ent/nonunique optima, or different “edges/vertices”. The information regarding the latter

is completely gathered by means of this algorithm. As for the former, if the optimum is

unique with respect to all possible Ĩ∗(’s), then this information is also complete. On the

other hand, if the optima (with respect to some Ĩ∗) are nonunique, then, to remain fo-

cused of this presentation, preliminarily a subset is formulated using Algorithm 3.1. This

subset includes all the terminal optima. That is, Algorithm 3.1 preliminarily gives closed-

form solutions for all the optimum/optima at the terminals; while the intermediate points

require specific attention due to the flexibility of inequality constraints. Although this

indicates an interesting further research direction, Example 4.3 demonstrates a potential

of the proposed results for such a comprehensive generalization. That is, a closed-form

solution to the considered QP, including an explicit representation for all the (nonunique)

optima.

Remark C.2. Figure 3.4 demonstrates a fundamental concept “optimality candidates”

for the design of Algorithm 3.1, in terms of the case where all x∗ /∈ F . It is worth

noting that, according to (3.12), if there exists an ε∗ such that the corresponding x∗ ∈ F ,

then l̃∗ = l
∗
, and follow similar discussions in the remaining of this remark. Regarding

this planar example of Figure 3.4, the optimality occurs at (d) x∗̃, and there are three

representative cases/points (a)–(c) that are considered in the for-all design at lines 12–29

of Algorithm 3.1:

(a) The corresponding augmented pair (Ã, b̃) satisfies all the conditions at lines 15 and

17, except that its unique optimum is outside of the feasible set F . Thus, this point

is not an optimality candidate.

(b) The pair (Ã, b̃) satisfies all the conditions at lines 15 and 17, where its unique

optimum is located on an edge of F . Hence, this optimality candidate x̃∗
p = x̃∗ is

included at line 19, for the overall comparison later at line 30.

(c) Since Ã is of full column rank and its associated unique feasible point (optimum) x̂

is also feasible with regard to the other inequality constraints, x̂ is a candidate and

also a vertex of F , which is included at line 25 for the overall comparison (line 30).

However, the optimality of this demonstration occurs at the vertex/candidate (d) x∗̃,

whose arguments similarly follow the above (c). After comparing the associated, finitely
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many optimal values among all the candidates (line 30), including the ones at (b)–(d), the

corresponding unique optimum x∗̃, optimal (level set) value l̃∗, and information for the

location of x∗̃ (Ĩ∗) are exactly determined. Note that the complete and explicit formula-

tion of the QP example in Figure 3.4 is not required for the discussions in this remark,

particularly regarding the inequality constraints, since it is compactly two-dimensional for

ease of reading.

Remark C.3. This is to determine the largest possible cardinality of L. To start with, note

that there are 2κ’s different subsets of I. The case of empty set is considered in lines 3–10

to check the feasibility of x∗
p, which is associated with L = ∅ (as in the designed initial

condition); while its possible freedom (V2ε
∗) is designed to be checked within the for-all

environment (lines 12–29), if the solutions to QP Problems (3.9) and (3.13) intersect,

such as the demonstrations (a) and (b) in Figure 3.3. On the other hand, the for-all

design/coverage includes all the other subsets (note that k ≥ 1 at line 12), which is

associated with, at most, (2κ − 1)’s elements for L.

Remark C.4. An extreme example considers the singleton F ≠ ∅ (noting that the subset

∅ contains no point), and this remark explains how Algorithm 3.1 solves it. Similarly,

divide the derivations into whether {x∗
p} = F . Regarding the equivalent/simpler case,

then the solving process can be more efficiently completed without excessively going into

the for-all environment (lines 12–29), while returning and ensuring the correct optimality.

On the other hand, the process at lines 15–20 yields the optimality, only if x̃∗
p ∈ F for

some Ij ; while that at 21–26 “exhaustively” includes this case, a vertex of F . Although

in the former (two) cases, this algorithm only concentrates on the particular solution

x∗
p/x̃

∗
p; nonetheless, this example also demonstrates that the consideration on the freedom

(V2ε
∗/Ṽ2ε̃

∗) can be more than necessary, where, for brevity, the notation ε̃∗ similarly

follows ε∗ but with respect to the augmented pair (Ã, b̃). As a comparison, it is not

straightforward to apply most of the existing QP solvers [2,20] to this singleton example,

which are commonly/classically designed from the differential perspective while initiated

by (knowing) a feasible point, such as the popular ASM [16].

D. Proof of Theorem 3.12 (extended QP)

(A) By Theorem 3.2(i), rewrite equivalently the CCQF at any level set value of ľ as the

following constrained convex quadratic equation (CCQE):

(D.1) (1/2)xTPx+ qTx+ s− ľ = 0 subject to both x,q ∈ R(P ).
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According to Lemma 3.1, a necessary condition that renders the above CCQE in (D.1)

solvable is

qTP−1q− 2s+ 2ľ ≥ 0 if rank(P ) = n,(D.2a)

qTP †q− 2s+ 2ľ ≥ 0 and x ∈ R(P ) if rank(P ) < n.(D.2b)

Note that the constraint “q ∈ R(P )” has been (implicitly) taken into consideration.

The remaining part of this proof starts with the derivations for the sufficiency of Condi-

tion (D.2). Accordingly, divide the derivations into whether the Hessian matrix is of full

rank or not, as (A-1) and (A-2) below.

(A-1) rank(P ) = n. In this case, we have (i) P is nonsingular, (ii)R(P ) = Rn, and thus

(iii) the constraint “both x,q ∈ R(P )” is automatically lifted, which ensures the sufficiency

of Condition (D.2a). By virtue of Parameterization (3.3) under Condition (D.2a), the

result thus follows.

(A-2) rank(P ) = r < n. Let the SVD of P be given by

(D.3) P =
[
Ũ1 Ũ2

]Σ̃1 0

0 0

ŨT
1

ŨT
2

 = Ũ1Σ̃1Ũ
T
1 ,

where Ũ1 ∈ Rn×r, Ũ2 ∈ Rn×(n−r), and Σ̃1 ∈ Rr×r. For conciseness, the properties of this

SVD (D.3) for derivations afterward are similar to, and thus referenced at, [14, (35)–(37)].

Likewise, define P † := Ũ1Σ̃
−1
1 ŨT

1 and P †/2 := Ũ1Σ̃
−1/2
1 ŨT

1 . As a result, the CCQE in

(D.1) is equivalent to the following CQE:

(1/2)xT Ũ1Σ̃1Ũ
T
1 x+ qT (Ũ1Ũ

T
1 + Ũ2Ũ

T
2 )x+ s− ľ = 0

⇐⇒ (1/2)x̌T Σ̃1x̌+ q̂T x̌+ s− F̆x = 0,
(D.4)

where Ũ1Ũ
T
1 +Ũ2Ũ

T
2 = In is inserted purposely, and x̌ = ŨT

1 x ∈ Rr (resp., q̂ = ŨT
1 q ∈ Rr)

is the coordinate vector of x ∈ R(P ) (resp., q ∈ R(P )) with respect to the Ũ1-basis. Note

that the original CCQF has been equivalently transformed into the CQE (D.4) with the

full-rank Hessian matrix Σ̃1, and the dimension is reduced from n to r (because of the

constraint “both x,q ∈ R(P )”). In addition, the solvability of the CQE (D.4) has already

been ensured. To see this, by Lemma 3.1(A), the CQE (D.4) is solvable, iff

(1/4)q̂T (Σ̃1/2)
−1q̂ ≥ s− ľ ⇐⇒ qT Ũ1Σ̃

−1
1 ŨT

1 q− 2s+ 2ľ ≥ 0.

This has already been given/guaranteed according to Condition (D.2b), and also ensures

its sufficiency that renders the above CCQE (D.1) solvable.

Therefore, by virtue of Parameterization (3.3), the solution set to the CQE in (D.4),

where Σ̂1 is of full rank (r), is given as

x̌ = −Σ̃−1
1 q̂+

√
q̂T Σ̃−1

1 q̂/2− s+ ľ · (Σ̃1/2)
−1/2v̂,
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where v̂ ∈ Rr and ∥v̂∥ = 1. In terms of the original coordinate, finally we obtain all the

constrained solutions (namely, elements):

x = Ũ1x̌

= −Ũ1Σ̃
−1
1 ŨT

1 q+

√
qT Ũ1Σ̃

−1
1 ŨT

1 q/2− s+ ľ ·
√
2 · Ũ1Σ̃

−1/2
1 · ŨT

1 Ũ1 · v̂

= (3.15),

where ŨT
1 Ũ1 = Ir is inserted purposely, ρ̌ = Ũ1v̂ ∈ R(P ), and ∥ρ̌∥ = ∥Ũ1v̂∥ = ∥v̂∥ = 1.

Remarkably, the constraint x ∈ R(P ) is satisfied since the two vectors in (3.15), P †q and

P †/2ρ̌, reside in R(P ).

(B) The optimal value is finite, whose arguments similarly follow the proof for Theo-

rem 3.2(ii), and is mainly due to the constraint “q ∈ R(P )”. Moreover, according to the

above derivations for (A), the necessary condition in (D.2) is also sufficient to render the

CCQE (D.1) solvable. Thus, the optimal value ľ∗ readily follows from the Condition (D.2).

Substituting ľ∗ into (3.15) yields the associated unique optimum x∗̂, which completes the

proof.

Remark D.1. A geometric interpretation of the preimage, as addressed in Theorem 3.12(A),

can be similarly inferred from Figure 3.2, where the solution freedom residing in N (P )

is not available/effective. This is essentially due to the constraint “x ∈ R(P )” in Prob-

lem (3.14), while the other “q ∈ R(P )” mainly renders this optimization problem with a

finite optimal value. From a different viewpoint, this remark is also consistent with (3.6),

whose derivations are similar and hence omitted for conciseness.

E. Tables for all Ij’s in Examples 4.1 and 4.3

This appendix is designed to facilitate comparisons between Examples 4.1 and 4.3. Ta-

ble E.1 (resp., E.2) is associated with Example 4.1 (resp., 4.3), which demonstrates the

solving process on a positive definite Hessian matrix given in [16] (resp., positive semidef-

inite and singular Hessian matrix ), to summarize the details/steps when examining each

case Ij according to Algorithm 3.1, specifically, the for-all environment at lines 12–29.

Note that the case of subset/empty set “∅” (in other words, no inequality constraint im-

posed) has been more efficiently considered a priori, in the beginning of the two examples

(lines 2–10 in Algorithm 3.1). Moreover, I7 = {1, 2, 3} imposed by all the three inequality

constraints is excluded in both tables/examples, for compactness, because it is obviously

not associated with the optimality (b̃ /∈ R(Ã)).
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Table E.1: A summary of significant parameters and values for all Ij ’s in Example 4.1.

Ij (b̃ ∈ R(Ã)) Ã b̃ Ṽ2 Ṽ T
2 PṼ2 Categorization x̃∗/x̂ ? Candidate? l̃

∗
/l̂ ?

I1 = {1}
[
1 1

]
4

[
1√
2

−1√
2

]T
2 QP x̃∗ =

[
1.5 2.5

]T
yes l̃

∗
= −28.5

I2 = {2}
[
−1 0

]
0

[
0 1

]T
2 QP x̃∗ =

[
0 5

]T
no n/a

I3 = {3}
[
0 −1

]
0

[
−1 0

]T
4 QP x̃∗ =

[
3 0

]T
yes l̃

∗
= −18

I4 = {1, 2}

 1 1

−1 0

 4
0

 n/a n/a vertex x̂ =

0
4

 yes l̂ = −24

I5 = {2, 3}

−1 0

0 −1

 0
0

 n/a n/a vertex x̂ =

0
0

 yes l̂ = 0

I6 = {1, 3}

1 1

0 −1

 4
0

 n/a n/a vertex x̂ =

4
0

 yes l̂ = −16

Table E.2: A summary of significant parameters and values for all Ij ’s in Example 4.3.

Ij (b̃ ∈ R(Ã)) Ã b̃ Ṽ2 Ṽ T
2 PṼ2 Categorization N (P ) ∩N (Ã) x̃∗/x̂ ? Candidate? l̃

∗
/l̂ ?

I1 = {1}

0 0 1

1 1 0

 0
4




−1√
2

1√
2

0

 1
2 QP {0} x̃∗ =


0

4

b

 yes l̃
∗
= 0

I2 = {2}

 0 0 1

−1 0 0

 b
0




0

−1

0

 0 constant1 n/a n/a n/a2 n/a

I3 = {3}

0 0 1

0 −1 0

 b
0



1

0

0

 1 QP {0} x̃∗ =


0

0

b

 yes l̃
∗
= 0

I4 = {1, 2}


0 0 1

1 1 0

−1 0 0



b

4

0

 n/a n/a vertex n/a x̂ =


0

4

b

 yes l̂ = 0

I5 = {2, 3}


0 0 1

−1 0 0

0 −1 0



b

0

0

 n/a n/a vertex n/a x̂ =


0

0

b

 yes l̂ = 0

I6 = {1, 3}


0 0 1

1 1 0

0 −1 0



b

4

0

 n/a n/a vertex n/a x̂ =


4

0

b

 yes l̂ = 16

1 Ṽ T
2 q+ Ṽ T

2 PÃ†b̃ = 0 (not an LP), and the constant value is s+ qT Ã†b̃+ b̃T (Ã†)TPÃ†b̃/2 = 0.
2 The associated terminal optima are explicitly formulated after further imposing constraints (c1, d1) and

(c3, d3), as included in Cases {I4} and {I5}, respectively.
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